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This paper provides new approaches to two old results in the study of
conformal mappings of Euclidean space.

Part 1. Liouville’s theorem on conformal maps

Liouville’s theorem states that a conformal map between open sets in
a Euclidean space E^{n}-n\geq 3 may be extended, after allowing that the map
might take on the point at infinity as a value, to a global conformal map;
and that the group of such conformal maps is finite dimensional. We
show how to simplify the standard proofs of this theorem using an elemen-
tary but apparently new observation that the normal curvature of a curve
in a hypersurface changes in a very transparent way under conformal
mappings.

There are two common ways of stating Liouville’s result. For the
first, recall that the inversions, dilations, translations, and orthogonal
rotations on E^{n}\cup\{\infty\} generate a finite dimensional group called the
M\"obius group, M(n) .

THEOREM 1. For n\geq 3 , any conformal map of open sets in E^{n} is the
restriction of an element of M(n) .

For the second statement, we identify the conformal structure on E^{n}

with that of the sphere (with one point deleted). We then identify S^{n}

with the standard hyperquadric of homogeneous signature (n+1,1) in the
real projective space P^{n+1} of one higher dimension and produce an action
of Q(n+1,1) on the sphere and thus on the extended Euclidean plane.

THEOREM 2. For n\geq 3 , any conformal map of open sets in E^{n} is the
restriction of an element of O(n+1,1) . For n\geq 3 and n odd, the group
of conformal maps is isomorphic to SO (n+1, 1) . For n\geq 3 and n even,

the group of conformal maps is isomorphic to (O(n+1,1)/Z)\ltimes Z for a
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certain semi-direct product.

We study a conformal map \phi : Uarrow V of open sets in R^{n} . By
definition \phi preserves angles. This is easily seen to be equivalent to the
fact that \phi preserves the metric up to a scalar function (see [Sp II , page
7-50])

<\phi_{*}u , \phi_{*}v>=\lambda<u , v> .

We start with a hypersurface M\subset U in R^{n} and a parametrized curve
\gamma(t) in M. The normal curvature of \gamma with respect to M is given by

\kappa=\frac{1}{|\gamma(t)|^{2}}\frac{d^{2}\gamma}{dt^{2}}\cdot n

where n is one choice of the unit normal to M. Recall that all curves
which are tangent at p have the same normal curvature there.

Now let \tilde{\gamma} and \tilde{M} be the images under some conformal map \phi and let
\rho^{=\lambda^{-1/2}}- Here is the elementary result from which we shall prove both
versions of the theorem.

LEMMA. The normal curvatures of \gamma in M and \tilde{\gamma} in \tilde{M} are related
by

(1) \tilde{\kappa}=\rho\epsilon+\frac{\partial\rho}{\partial n} .

PROOF. We may assume that at p, u= \frac{d\gamma}{dt} is a unit tangent vector.

Let n be one choice of the unit normal vector to M at p. Extend u and n
to constant vector fields. In terms of local coordinates

\frac{\partial\phi^{o}}{\partial x_{a}}u_{a}\frac{\partial\phi^{o}}{\partial x_{b}}u_{b}=\frac{1}{\rho^{2}} and \frac{\partial\phi^{0}}{\partial x_{b}}u_{b}\frac{\partial\phi^{o}}{\partial x_{c}}n_{c}=0

where we always sum over repeated indices. Let n_{c^{\frac{\partial}{\partial x_{c}}}} act on the first

equation and u_{a^{\frac{\partial}{\partial x_{a}}}} act on the second. The results are

\frac{\partial^{2}\phi^{U}}{\partial x_{a}\partial x_{C}}u_{a}n_{c}\frac{\partial\phi^{0}}{\partial x_{b}}u_{b}=-\frac{1}{\rho^{3}}\frac{\partial\rho}{\partial x_{c}}n_{c}

and

\frac{\partial^{2}\phi^{U}}{\partial x_{a}\partial x_{b}}u_{a}n_{b}\frac{\partial\phi^{o}}{\partial x_{c}}n_{c}=-\frac{\partial^{2}\phi^{\iota J}}{\partial x_{a}\partial x_{c}}u_{a}n_{c}\frac{\partial\phi^{lJ}}{\partial x_{b}}u_{b} .
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Thus

\frac{\partial^{2}\phi^{U}}{\partial x_{a}\partial x_{b}}u_{a}n_{b}\frac{\partial\phi^{o}}{\partial x_{c}}u_{c}=-\frac{1}{\rho^{3}}\frac{\partial\rho}{\partial x_{c}}n_{c} .

We now can compute the normal curvatures.

\tilde{\kappa}=<\frac{1}{|\phi_{*}d\gamma/dt|^{2}}\{\frac{d^{2}}{dt^{2}}\phi(\gamma)\} , \frac{\phi_{*}n}{|\phi_{*}n|}>

= \rho^{3}(\frac{\partial\phi^{o}}{\partial x_{j}}\frac{d^{2}}{dt^{2}}\gamma_{j}+\frac{\partial^{2}\phi^{U}}{\partial x_{j}\partial x_{k}}\frac{d}{dt}\gamma_{j}\frac{d}{dt}\gamma_{k})(\frac{\partial\phi^{o}}{\partial x_{a}})n_{a}

= \rho^{3}(\rho^{-2}<\frac{d^{2}}{dt^{2}}\gamma, n>+ \rho^{-3}\frac{\partial\rho}{\partial x_{c}}n_{c})

= \rho\kappa+\frac{\partial\rho}{\partial n} .

To give a second coordinate free proof, we extend u and n differently,
now taking u to be the unit tangent field along \gamma and n to be the unit
normal field along \gamma . In terms of the Euclidean connection, the normal
curvature in the direction u is

\kappa=<u\vdash u, n>
and since <u, u>=1 , this normal curvature can also be given by

\kappa=-<u, [u, n]> .

For \tilde{\kappa} we have
\tilde{\kappa}=(|\phi_{*}u|^{2}|\phi_{*}n|)^{-1}<\phi_{*}u\vdash\phi_{*}u, \phi_{*}n>

=\rho^{3}<\phi_{*}u\vdash\phi_{*}u, \phi_{*}n>

=-\rho^{3}<\phi_{*}u, \phi_{*}u\vdash\phi_{*}n>

=-\rho^{3}(<\phi_{*}u, \phi_{*}n\vdash\phi_{*}u>+<\phi_{*}u, [\phi_{*}u, \phi_{*}n]>)

=- \rho^{3}(\frac{1}{2}\phi_{*}n(\rho^{-2})+<\phi_{*}u, \phi_{*}[u, n]>)

=- \rho^{3}(-\rho^{-3}\frac{\partial\rho}{\partial n}+\rho^{-2}<u, [u, n]>)

=- \rho^{3}(-\rho^{-3}\frac{\partial\rho}{\partial n}+\rho^{-2}(-\kappa))

and thus

\tilde{\kappa}=\rho\kappa+\frac{\partial\rho}{\partial n}.

COROLLARY. A conformal map takes principal directions to principal
directions.
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COROLLARY. Let M^{3}\subset R^{4} have principal curvatures \kappa_{1}>\kappa_{2}>\kappa_{3} . The
quantity

(\kappa_{1}-\kappa_{2})/(\kappa_{1}-\kappa_{3})

is a conformal invariant.

A mapping is called spherical if it maps generalized spheres (that is,
spheres and hyperplanes) to generalized spheres.

COROLLARY. A conformal map is spherical.

PROOF. Generalized spheres are characterized by the fact that each
point is umbilic, i . e. , every curve through p has the same normal curva-
ture there. But if all curves in M through p have the same normal curva-
ture, then the same is true for all curves in \tilde{M} through \phi(p) . So \phi maps
generalized spheres to generalized spheres.

PROOF OF THEOREM 1. The image of any hyperplane is umbilic.
Thus, if we apply (1) to the hyperplane \{x_{n}=0\} we derive

\frac{\partial}{\partial x_{n}}\rho (x_{1} ,\ldots, Xn-i,0) =constant

and hence at the origin

rightarrow\partial^{2}=0

\partial x_{1}\partial x_{n}

and in the same way, at the origin

\frac{\partial^{2}\rho}{\partial x_{j}\partial x_{k}}=0

for j\neq k.
Consideration of the hyperplane \{x_{1}=x_{2}\} leads to

rightarrow\partial^{2}=\infty\partial^{2}

\partial x_{1}\partial x_{1} \partial x_{2}\partial x_{2}

at the origin. There is nothing special about the origin or about the par-
ticular indices. The general result is

\frac{\partial^{2}\rho}{\partial x_{j}\partial x_{k}}=\sigma(X)\delta_{jk} .

The rest of the proof is direct and well-known (see for instance, [Be,
page 226]). By differentiating, we see that \sigma is a constant. Thus the
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equations can be integrated and we have

\rho=\frac{1}{2}\sigma|x|^{2}+A_{j}x_{j}+B

which we rewrite as
\rho=a|x-x_{1}|^{2}+b .

We distinguish the three cases
i a=0, b\neq 0

ii a\neq 0 , b=0
iii a\neq 0 , b\neq 0

In the first case, <\phi_{*}u, \phi_{*}v>=b<u, v> . Thus \phi=\sqrt{b}U , for some Eu-
clidean motion U. In the second case, let i be the inversion about the
unit sphere with center x_{1} . Let \rho_{i} and \rho_{\phi} be the scalar functions associated
ed to i_{*} and \phi_{*} . At the point x, i_{*} has \rho_{i}=|x-x_{0}|^{2}- At the point i(x) ,
\phi* has

\rho_{\phi}=a|i(x)-x_{)}|^{2}=a|x-x_{)}|^{-2} .

So \phi\circ i has \rho=a and thus, \phi=\frac{1}{a}U\circ i^{-1}-

Finally, we show that the third case cannot occur. To do this, we
use (1) in place of the argument in [Be]. We assume that a\neq 0 . Then
there is no loss of generality in taking \rho to be given by

\rho=|x|^{2}+b .

From (1), we derive that the sphere S_{r} of radius r and centered at the
origin maps onto a sphere of radius r’=|r/(r^{2}-b)| . But on S_{r} , |\phi_{*}u|=

\rho^{-1}|u| . So \phi multiplies the surface area of S_{r} by \rho^{-n+1} and thus takes S_{r}

onto a sphere of radius r’=\rho^{-1}r=r/(r^{2}+b) . From these two expressions
for r’ it follows that b=0. This concludes the proof of the first theorem.

The fact that conformal maps are spherical is also central to the clas-
sical proof of Theorem 2. This proof identifies spheres in R^{n} with points
in R^{n+1} and then shows that a conformal map preserves lines in R^{n+1} and
hence is projective. The association of a point in R^{3} to each circle in R^{2} ,
and many beautiful consequences, is discussed very clearly in [Pe]. A
complete treatment of circles and spheres, in classical language, can be
found in [Co].

PROOF OF THEOREM 2. Let S\subset R^{n} be the sphere

\sum_{i=1}^{n}(x_{i}-p_{i})^{2}=R^{2}-
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Then P= (p_{1}, \ldots, p_{n}, \sum_{1}^{n}(p_{j}^{2})-R^{2}) is the associated point in R^{n+1} . That is,

the sphere S with the equation

\Sigma x_{i}^{2}-2\Sigma p_{i}x_{i}+p_{n+1}=0

is associated to the point P= (p_{1}, \ldots, p_{n+1}) . We denote this association by

Parrow Sp.

Points in R^{n} are considered as spheres with radius zero and are as-
sociated to points on the hyperquadric

Q= \{(p_{1}, \ldots, p_{n+1}) : p_{n+1}=\sum_{1}^{n}p_{j}^{2}\} .

Note that the image of the set of spheres in R^{n} is the closed set

Q^{-}= \{(p_{1_{ }},\ldots, p_{n+1}) ; p_{n+1}\leq\sum_{1}^{n}p_{j}^{2}\} .

Now let L be any line in R^{n+1} . The set of spheres in R^{n} given by

\mathscr{L}=\{S\subset R^{n} : S=Sp, P\epsilon L\}

is called the pencil determined by L. We will call L a simple line if there
is some sphere S’ of dimension n-2 which is contained in each sphere S in
the pencil. We use these simple lines to give a new proof that conformal
maps take lines (in R^{n+1} , not R^{n} !) to lines and hence are projective. It is
easy to characterize those lines which correspond to simple pencils. Let
S_{1} and S be spheres such that S_{1}\cap S=S_{12} is a sphere of dimension n-2.
Let P_{1} and P_{2} be the unique points such that S_{P_{1}}=S_{1} and S_{P_{2}}=S and let L
be the line determined by P_{1} and P_{2} . Then L corresponds to a simple
pencil and every sphere containing S_{12} is associated to a point of L.

The set of simple lines is clearly non-empty and open in the set of
lines in R^{n+1} . By a segment of a pencil, we mean those spheres which
correspond to a segment of the associated line. So those spheres from a
pencil that lie in a given open set form a segment of the pencil. It is
obvious that the image of a segment of a simple pencil under a conformal
map is itself a segment of a simple pencil.

Now let \phi : U_{1}arrow U_{2} be a conformal map of open sets in R^{n} . We lift
\phi to a map \Phi:V_{1}arrow V_{2} of open sets of Q^{-} by setting

V_{j}=\{P\epsilon Q^{-} : S_{P}\subset U_{j}\}

and
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S\Phi(P)=\phi(Sp) .

In particular, from the association of point spheres in R^{n} with points of Q

(p_{1}, \ldots, p_{n})arrow(p_{1}, \ldots, p_{n}, \sum_{1}^{n}p_{j}^{2})

we see that

\Phi:Qarrow Q

is given by

\Phi(p_{1}, \ldots, p_{n}, \sum_{1}^{n}p_{j}^{2})=(\phi(p_{1}, \ldots, p_{n}), \sum_{1}^{n}\phi_{v}^{2}) .

Further, for each line L that corresponds to a simple pencil, the line seg-
n ot of L in V_{1} is mapped by \Phi to another line segment. Thus \Phi maps
line segments to line segments for an open set of lines. It follows, of
course, that \Phi is a projective map. Note that not only is \Phi projective,
but it preserves the hyperquadric Q. In the identification of R^{n+1} with the
“ finite ” points of P^{n+1}\wedge i , e. , in the introduction of homogeneous coordi-
notes on P^{n+1} , Q becomes the “ finite ” points of

(2) \overline{Q}=\{(\chi_{)}, x_{1}, \ldots, x_{n+1}) _{:} _{x_{)}x_{n+1}=\sum_{1}^{n}x_{j}^{2}\}} .

I. e. , Q is identified with the subset of \overline{Q} where x_{)}=1 .
The projective map \Phi on R^{n+1} is the restriction of some linear map on

R^{n+2} . Temporarily, for notational convenience, let us call this linear map
\Phi and the projective map [\Phi] . So \Phi\epsilon GL(n+2) , [\Phi] is a projective map
on R^{n+1} , and \phi is a conformal map on R^{n} Note that both \Phi and \Psi

induce the same projective map if and only if \Phi=\lambda\Psi , for some nonzero
constant \lambda . Each \Phi which induces [\Phi] maps \tilde{Q} to itself and so, as is
easily shown, satisfies the matrix equation

\Phi^{T}J\Phi=cJ

for some constant c where J is the (n+2)x(n+2) matrix

(3) (\begin{array}{lll} -\frac{1}{2} I -\frac{1}{2} \end{array})

and \Phi^{T} is the transpose of the matrix \Phi .
In particular, (det \Phi)^{2}=c^{n+2} and so when n+2 is odd, c must be posi-
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tive. Thus, replacing \Phi by \lambda\Phi we can achieve
\Phi^{T}J\Phi=J.

Thus \Phi\in O(n+1,1) , where, as usual,

O(n+1,1)=\{A\in GL(n+2) : A^{T}JA=J\} .

Conversely, it can be directly verified that each element of O(n+1,1)
induces a conformal map on R^{n}\cup\{\infty\} . Further, \Phi and -\Phi are the only
elements of O(n+1,1) inducing [\Phi] , so we may further restrict \Phi to be in
SO (n+1,1) , where, as usual,

SO (n+1,1)= {A\in O(n+1,1) : det A=1 }.

If n+2 is even, then we cannot conclude that c is positive and we
write \Phi\in\overline{O}(n+1,1) , where

\overline{O}(n+1,1)=\{A\in GL(n+2) : A^{T}JA=\pm J\} .

Again, \Phi and -\Phi are the only elements of \overline{O}(n+1,1) inducing [\Phi] .
Note, however, that now both \Phi and -\Phi can be in SO(n 1) . The
group of conformal maps thus consists of several components, one of
which is isomorphic to SO (n 1)/Z_{2} . We can represent the full group
as follows. First, we pick some G\epsilon GL(n+2) with G^{T}JG=-J and G^{2}=I

and define a map

a:Zarrow aut(O(n+1,1))
by

a(-1)H=G^{-1}HG.

We then consider the associated semi-direct product O\ltimes Z given by

(H_{1}, z_{1})(H_{2}, z_{2})=(H_{1}a(z_{1})H_{2}, z_{1}z_{2}) .

The map m:O\ltimes Z-\overline{O} given by

m(H, 1)=H and m(H, -1)=HG^{-1}

shows that \overline{O} is isomorphic to O\ltimes Z . We must still identify \Phi and -\Phi .
So the group of conformal maps is isomorphic to (O/Z)\ltimes Z .
We want to follow the above construction to explicitly give this action of
O(n+1,1) on R^{n} . The same action also can be derived by a simpler
construction (without considering the space of spheres but also without
establishing that every conformal map is of this type). See [KN, p. 311].
Also, a third proof that a spherical map is an element of M(n) can be
found in [Sp III, p. 310].
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The map [\Phi] , whose domain is an open set of R^{n+1} . becomes a linear
map in terms of the homogeneous coordinates that are used to represent
R^{n+1} as a subset of P^{n+1} . That is,

\Phi[1, p_{1}, \ldots, p_{n}, |p|^{2}]=[r_{0}, r_{1}, \ldots, r_{n+1}]

with

r_{k}=A_{k0}+ \sum_{1}^{n}A_{ki}p_{i}+A_{kn+1}|p|^{2} . k=0, \ldots , n+1

where the (n+2)x(n+2) matrix A preserves the form q(u, v)=
u_{1}v_{1}+ \ldots+u_{n}v_{n}-\frac{1}{2}(u_{0}v_{n+1}+u_{n+1}v_{0}) . In non-homogeneous coordinates, \Phi

restricted to Q is given by

\Phi(p_{1}, \ldots, p_{n}, |p|^{2})=(\frac{r_{1}}{r_{0}},
\ldots’\frac{r_{n}}{r_{0}} , \frac{r_{n+1}}{r_{0}})

and so the k^{th} component of \phi is given by

\phi k(p_{1}, \ldots, p_{n})=\frac{A_{k0}+\sum_{1}^{n}A_{ki}p_{i}+A_{kn+1}|p|^{2}}{A_{o0}+\sum_{1}^{n}A_{0i}p_{i}+A_{0n+1}|p|^{2}}

where A^{T}JA=J for the (n+2)x(n+2) matrix J given by (3).
In the second part of this paper we will work with n=3. It will be

convenient to use a different representation of SO (4, 1) and so also a
different representation for the conformal maps. Let B:R^{5}arrow R^{5} be the
change of basis given by

\xi_{1}=x_{1} , \xi_{2}=x_{2} , \xi_{3}=x_{3} , \xi_{4}=1/2(x_{1}-x_{t}) , \xi_{5}=1/2(x_{1}+x_{4}) .
A linear map which preserves Q given by (2) above, when written

with respect to the new basis, now preserves the quadric (which for con-
venience we also denote by Q).

(4) Q=\{\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}+\xi_{4}^{2}-\xi_{5}^{2}=0\} .

Let F:R^{3}arrow R^{5} be given by

(x, y, z)arrow(2x, 2y, 2z, |x|^{2}-1, |x|^{2}+1) .

So the image of R^{3} under F lies in Q, and, as is easily shown, as subsets
of P^{4}

F(R^{3})=Q-\{[0,0,0,1,1]\} .
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Thus F extends as a diffeomorphism of S^{3} to Q. This leads to an alterna-
tive representation of a conformal map \phi , where the k^{th} component is
given by

\phi_{k}(x_{1}, x_{2}, x_{3})=N/D

with

N= \sum_{1}^{3}B_{kj}x_{j}+\frac{1}{2}(B_{k4}+B_{k5})|x|^{2}+\frac{1}{2}(B_{k5}-B_{k4})

and

D= \sum_{1}^{3}(R_{j}-B_{4j})x_{j}+\frac{1}{2}(fl_{4}-B_{44})(|x|^{2}-1)+\frac{1}{2}(fi_{5}-B_{45})(|x|^{2}+1) .

Here B is a 5\cross 5 matrix satisfying B^{T}JB=J where in place of (3), J is
now given by

(\begin{array}{lllll}1 1 1 1 -1\end{array})

We will be interested in orientation preserving maps that leave 0\in R^{3}

fixed and at the origin map \partial/\partial x and \partial/\mathfrak{B} to multiples of themselves

\vec{a_{X}^{\partial}}\lambda\frac{\partial}{\partial x} , \vec{\infty}\partial\lambda\frac{\partial}{\mathfrak{B}} .

In terms of the \xi-coordinates, the vector \sigma= (0, 0, 0, -1, 1) is mapped to a
multiple of itself

\sigmaarrow\mu\sigma

and

X=(1,0,0,0,0)arrow\sigma X+\gamma 1\sigma , Y=(0,1,0,0, 0)arrow\sigma Y+\gamma 2\sigma .

It follows, since the map is conformal, that

Z= \frac{\partial}{\partial z}=(0,0,1,0,0)arrow\sigma Z+n\sigma .

When these conditions alone are imposed, it is easy to see that the
matrix B has the form
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(\begin{array}{lll}\sigma I \alpha \alpha-\gamma c_{11} c_{12}\gamma c_{21} c_{22}\end{array})

for \gamma=(_{\gamma_{1},\gamma_{2},n}) , \alpha^{T}=(\alpha_{1}, \alpha_{2}, \alpha_{3}) , and I=the3\cross 3 identity.
We next want to impose the condition B^{T}JB=J. But first we intr0-

duce the subgroup H of SO (4, 1) given by the elements h satisfying

h(0, 0, 0, -1, 1)=c(0,0, 0, -1, 1) with c a nonzero real number,
h(1,0,0,0,0)\in\{(1,0,0, 0,0) , (0, 0, 0, -1, 1) ],
h(0, 1, 0, 0, 0)\in\{(0,1,0,0, 0) , (0, 0, 0, -1, 1) ].

REMARK. If \phi is conformal in a neighborhood of 0\in R^{3} and is orien-
tation preserving, with \phi(0)=0 , \phi_{*}(\frac{\partial}{\partial x}|_{0})=\lambda\frac{\partial}{\partial x}, and \phi_{*}(\frac{\partial}{\mathfrak{B}}|_{0})=\lambda\frac{\partial}{\partial y} ,

then \Phi\in H.

Let \gamma=(_{\gamma_{1}})\in R^{3} and a\in R^{1} be arbitrary, but nonzero. Set \alpha=

a^{-1}\gamma^{T} and b=a^{-1}|\gamma|^{2}- Now we impose h^{T}Jh=J and det h=1 .

LEMMA. Each element h\in H has the form

h(a, \gamma)=(\begin{array}{lll}I \alpha \alpha-\gamma c_{11} c_{12}\gamma c_{21} c_{22}\end{array})

with

2c_{11}=a+a^{-1}-b ,
2c_{12}=-a+a^{-1}-b ,
2c_{21}=-a+a^{-1}+b ,
2c_{22}=a+a^{-1}+b .

Part 2. Conformal invariants of surfaces

We use a technique introduced in [Ja] to find invariants of surfaces in
R^{3} with respect to the group of conformal mappings. The basic idea is to
construct the bundle of normal forms together with a large number of
one-forms on this bundle. As a general reference for surfaces in a confor-
mal space, one could consult [B1]. As to what this conformal geometry
tells us about the general problem of induced geometric structures (see the
introduction to [Ja] ) , we wish to make only one comment here. There is
no special surface which can serve as a model for the geometry of sur-
faces in M\"obius space. For the conformal group is determined by 2-jets
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(see [Ko]) but, for instance, it is not in general possible to get second
order osculation of a surface with a sphere. Indeed here we will use os-
culation with a plane. This works in the Riemannian case but it is some-
what surprising that it also provides information for conformal geometry.

Let M\subset R^{3} be any surface free of umbilic points. We shall construct
an H-bundle over M. On M there are (locally) two families of principal
curves. Consider a diffeomorphism (u, v)arrow q(u, v) of a neighborhood of
the origin in R^{2} to an open set of M , such that each of the lines u=c and
v=c is a principal curve on M. Then (u, v) are called curvature coordi-
nates on M (and we now locally identify (u, v ) space with M). Our aim
is to define functions f(u, v) on M with the property that they do not
depend on the choice of curvature coordinates and that they are un-
changed if M is replaced by \Psi(M) where \Psi is any conformal map of R^{3}

First we limit ourselves to orientation preserving maps.
For each p\in M , let \mathscr{L}_{p}=\{\phi|\phi is an oriented conformal map of R^{3} .

\phi(O)=p , \phi_{*}(\frac{\partial}{\partial x}|_{0})=\alpha\frac{\partial}{\partial u} and \phi_{*}(\frac{\partial}{\mathfrak{B}}|_{0})=\beta\frac{\partial}{\partial v} with \alpha and \beta positive}.

To each \phi\in \mathscr{L}_{p} , we may uniquely associate \Phi\in SO(4,1) . Note that \phi\epsilon \mathscr{L}_{p}

implies [\Phi\circ h]\in \mathscr{L}_{p} for all h\in H and if \phi and \psi are in \mathscr{L}_{p} , then [\Phi]=

[\Psi\circ h] for some h\in H. It is clear that B= \bigcup_{p}\{\Phi\in SO(4,1):[\Phi]\in \mathscr{L}_{p}\} is a
principal H-bundle over M.

Further if \psi is any orientation preserving conformal map, if B is the
bundle for M and if B is the bundle for \psi(M) , then there is a natural
induced map \psi:Barrow\overline{B} providede, in addition, that \psi takes the first fam-
ily of curvature lines on M (i . e. , the oriented u-family) to the first family
on \overline{M}. Let \psi^{*}: T^{*}\overline{B}arrow T^{*}B be the induced map on differential forms.

Each point of B corresponds to a projective linear map. So we have

\tau:Barrow SO (4, 1)\subset GL(5) .

Let \omega MC be the Maurer-Cartan form on SO (4, 1) . Its pull-back \tau^{*}\omega MC is
defined on B. Note that \psi^{*}\overline{\tau}^{*}=\tau^{*} . So the natural isomorphism \psi:Barrow

\overline{B} also preserves this induced form.
The dimension of B is six, while \omega MC has ten components. Thus

there are linear relations among these components. We use this fact to
produce our invariants.

First we need local coordinates for the bundle B. For H. we have
the coordinates a\in R , a\neq 0 , and \gamma\in R^{3} . We next determine \Phi explicitly
when \phi\in_{\mathscr{L}p} . Let M be given in terms of curvature coordinates by q(u,
v) . Set
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A=( \frac{q_{u}}{|q_{u}|},
\frac{q_{v}}{|q_{v}|}, \frac{q_{u}\cross q_{v}}{|q_{u}\cross q_{v}|})

where q is given as a column vector. So A is a 3\cross 3 orthogonal matrix.
For convenience we shall denote (q^{T})A by qA , |q|^{2} by q^{2} etc. Let Q(u, v)
be the 5\cross 5 matrix

Q(u, v)=(\begin{array}{lll}A -q qqA 1-(q^{2}/2) q^{2}/2qA -q^{2}/2 1+(q^{2}/2)\end{array})

One easily verifies that \Phi must be of the form Q(u, v)h(a, \gamma) . So as local
coordinates for B we have

(u, v, a, \gamma)arrow Q(u, v)h(a, \gamma) .

We now compute the restriction of \omega MC to B. The Maurer-Cartan
form on GL(n) is given by g^{-1}dg . So we seek to compute this for g=
Q(u, v)h(a, \gamma) . That is, we must compute h^{-1}Q^{-1}(dQ)h+h^{-1}dh . Note
that

h(a, \gamma)^{-1}=h(a^{-1}, -a^{-1}\gamma)

and

Q^{-1}=(\begin{array}{lll}A^{T} A^{T}q -A^{T}q-q 1-(q^{2}/2) q^{2}/2-q -q^{2}/2 1+(q^{2}/2)\end{array}) .

It follows easily that

h^{-1}dh=(\begin{array}{lll}0 a^{-1}d\gamma a^{-1}d\gamma-a^{-1}d\gamma 0 -a^{-1}daa^{-1}d\gamma -a^{-1}da 0\end{array})

and

Q^{-1}dQ=(\begin{array}{lll}A^{T}dA -(dq)A (dq)A(dq)A 0 0(dq)A 0 0\end{array}) .

We want to write this second matrix in terms of familiar geometric
objects. To do so, we use an adapted orth0-normal frame

e_{1}= \frac{q_{u}}{|q_{u}|} , e_{2^{\frac{q_{v}}{|q_{v}|}}} , e_{3^{\frac{q_{u}\cross q_{v}}{|q_{u}\cross q_{v}|}}} .

Note that A= ( e_{1} , e2, e_{3}) and that
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dq=\omega_{a}e_{a} and de_{a}=\omega_{a\beta}e_{\beta}

where

\omega_{1}=|q_{u}|du , \omega_{2}=|q_{v}|dv , and \omega_{3}=0

\omega_{1}=S^{1}\omega_{1}+S^{2}\omega and \omega_{a\beta}=-\omega_{\beta a} .

Further, since we are using curvature coordinates
\omega_{13}=h_{1}\omega_{1} and \omega_{23}=h_{2}\omega

where h_{1} and h_{2} are the negatives of the principal curvatures.
Note that (A^{T}dA)_{ij}=\omega_{ji} , hence A^{T}dA is antisymmetric and (dq)A=

\omega . Thus we have

Q^{-1}dQ=(\begin{array}{lll}\omega ji -\omega \omega\omega 0 0\omega 0 0\end{array}) .

If F_{ij} is the one-form in the i^{th} row and j^{th} column of

h^{-1}Q^{-1}(dQ)h+h^{-1}dh ,
then it is seen that, after simplification using the principal curvatures, we
have the following values for six independent forms on B.

F_{31}=H_{1}\omega_{1} with H_{1}=h_{1}-2n

F_{32}=H_{2}\omega with H_{2}=h_{2}-2n

F_{41}=a^{-1}(\gamma 0\omega_{12}+?6\omega 13)+(a_{a^{-}}^{--\chi^{2}})\omega_{1}+2a^{-1}(\gamma\cdot\omega)\gamma_{1}-a^{-1}d\gamma_{1}

F_{42}=a^{-1}(\gamma_{1}\omega_{21}+\gamma_{6}\omega_{23})+(a-_{a^{-}}-l^{2})\omega_{2}+2a^{-1}(\gamma\cdot\omega)\gamma_{2}-a^{-1}d\gamma_{2}

F_{43}=a^{-1}(\gamma_{1}\omega_{31}+\gamma_{2}\omega_{32})+2a^{-1}(\gamma\cdot\omega)\gamma_{3}-a^{-1}d\gamma_{3}

F_{54}=2 \gamma\cdot\omega-\frac{da}{a} .

Each of the remaining F_{ij} can be expressed in terms of these six indepen-
dent forms (since dim B=6). These are the linear relations we use to
produce our invariants. The only nonconstant functions which arise as
coefficients are the pairs

(5) \frac{2a}{H_{1}} and \frac{2a}{H_{2}}

and

(6) \frac{S^{1}+2_{?}a}{H_{1}} and \frac{S^{2}-2\gamma_{1}}{H_{2}} .
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Finally, we consider what happens when M is replaced by \overline{M}=\psi M

where \psi is an orientation preserving conformal map. We take (u, v) to
be curvature coordinates for both M and \overline{M}. We have \psi(u, v, a, \gamma)=

(u, v,\overline{a}, \gamma) and \psi^{*}\overline{F}_{ij}=F_{ij} . So, for instance, from (5) we derive
\overline{h_{1}}-\overline{h_{2}}=a^{-1}\overline{a}(h_{1}-h_{2}) .

This corresponds to the fact that a conformal map must take non-umbilic
points to non-umbilic points. We say that h_{1}-h_{2} is a relative invariant.
See [Ja] for a discussion of such relative invariants and related concepts.

We will now take the differentials of the coefficients relating the F_{ij}’ s.
Each function that occurs will satisfy f(u, v, a, \gamma)=f(\overline{u},\overline{v},\overline{a},\overline{\gamma}) . But
some functions will be constant on the fibers of B. So for them, f(u, v)=

f(\overline{u},\overline{v}) . We have seen that the choice of coordinates is irrelevant as long
as we respect the chosen orientation of the principal curves. Thus such a
function f is well defined on both M and on \overline{M} and for y\in M , f(y)=
f(\psi(y)) . Such invariant functions answer the question: Can there exist
an orientation preserving conformal map of R^{3} taking M to \overline{M} and y to
\overline{y} ? (We shall soon see that the orientation preserving property can easily
be eliminated.)

The differential of any function f(u, v, a, \gamma) on B can of course be
expressed as

df=\lambda_{1}F_{31}+\lambda_{2}F_{32}+\alpha F_{54}\dagger\mu_{1}F_{41}+\mu_{2}F_{42}+\mu_{3}F_{43} .

For f=H_{1}/a , these coefficients are

\lambda_{1}=\frac{1}{aH_{1}}(\frac{h_{1u}}{|q_{u}|})

\lambda_{2}=\frac{1}{aH_{2}}(\frac{h_{1v}}{|q_{v}|}+2\gamma_{2}(H_{2}-H_{1}))

\alpha=H_{1}/a , \mu_{1}=\mu_{2}=0 , \mu_{3}=2 .

Observe that the product of well-defined functions on B

\lambda_{1}(H_{1}/a)(\frac{H_{2}}{a}-\frac{H_{1}}{a})^{-2}

is equal to the function on M

I_{1}= \frac{h_{1\mathcal{U}}}{(h_{1}-h_{2})^{2}|q_{u}|}

and so this function is an invariant under orientation preserving conformal
maps of R^{3} (provided the oriented u-family of the first maps to the ori-
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ented u-family of the second).

Similarly, the differential of H_{2}/a leads to the invariant

I_{2}= \frac{h_{2v}}{(h_{1}-h_{2})^{2}|q_{v}|} .

We may continue in this way to obtain additional invariants. For
instance, from the differential of

\frac{S^{1}+2\gamma_{2}}{a}

we obtain
I_{3}= \frac{S_{u}^{1}}{(h_{1}-h_{2})^{2}|q_{u}|}.

These invariants are of third order in that they depend on the deriva-
tives up to third order of the embedding q(u, v) . The first two were
already found by Tresse [Trl] and [Tr2] and general considerations show
that there are only two independent third order invariants. This may be
seen by refering to Tresse’s paper [Trl] or as follows: The use of curva-
ture coordinates at the origin means that a surface is given by

z=au^{2}+bv^{2}+\ldots

There are four terms of order three in (u, v) and so there are six terms
up to (and including) order three. The dimension of H is four and we
may expect that the space of surfaces is foliated by the four dimensional
orbits of H. So in the space of surfaces up to order three there should be
two invariants.

An interesting question is to what extent do the first two invariants
determine the surface. That is, given functions f_{1}(u, v) and f_{2}(u, v) , per-
haps satisfying some compatibility condition, does there exist a surface
M\subset R^{3} with I_{i}=f_{i} ? And if so, is M unique up to a conformal transfor-
mation ? It would also be interesting to relate these invariants to the con-
formal Gauss-Codazzi equations of Yano [Ya] and YanO-Muto [YM].
Note that the curvature tensor is zero because M is of dimension two.

It is easy to remove the restriction that the conformal map be orienta-
tion preserving. For a direct computation shows that an inversion
changes the signs of I_{1} and I2 (but leaves I3 unchanged). It then follows
that any orientation reversing conformal map does the same. Finally, we
should rid ourselves of the remaining arbitrary choices. For we chose one
family of principal curves to correspond to the u-directions. The other
choice would just interchange the roles of u and v. We also chose orien-
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tations for the two families of principal curves. Any of the other three
choices would cause only various sign changes in our invariants.
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