The generalized localization principle for Bochner-Riesz means*

Heping LIU (Received November 11, 1991, Revised April 30, 1992)

Let $f \in L^p(\mathbf{R}^n)$, $1 \le p \le 2$. The Bochner-Riesz means with index α of f is defined via Fourier transform by

$$(B_R^{\alpha}f)^{\hat{}}(\xi) = \left(1 - \frac{|\xi|^2}{R^2}\right)_+^{\alpha} \hat{f}(\xi), \quad 0 < R < \infty, Re\alpha > -1.$$

It is a known fact that localization principle holds in $L(\mathbf{R}^n)$ for the Bochner-Riesz means with the critical index $\alpha = \frac{n-1}{2}$, but fails with lower indices (see [1]). Another interesting result is due to Bastis (see [2]): For $f \in L^2(\mathbf{R}^n)$, the spherical summation operator $B_R^0 f$ satisfies the generalized localization principle, i.e.

$$\lim_{R\to\infty} B_R^0 f(x) = 0, \quad a. \ e. \ x \in \mathbb{R}^n \setminus \text{supp} f,$$

which is failed in $L^p(\mathbf{R}^n)$, p < 2.

Our goal is to prove the generalized localization principle for the Bochner-Riesz means with lower indices.

THEOREM. Let
$$f \in L^p(\mathbf{R}^n)$$
, $1 \le p \le 2$, and $Re\alpha = (n-1)(\frac{1}{p} - \frac{1}{2})$. Then $\lim_{R \to \infty} B_R^{\alpha} f(x) = 0$, a. e. $x \in \mathbf{R}^n \setminus suppf$.

Using the density of the space $C_0^{\infty}(\mathbf{R}^n)$ in $L^p(\mathbf{R}^n)$ and the fact that $\lim_{R\to\infty} B_R^{\alpha} f(x) = f(x)$ for $f \in C_0^{\infty}(\mathbf{R}^n)$,

Theorem is deduced from the following assertion.

PROPOSITION. Let $1 \le p \le 2$ and $Re\alpha = (n-1)(\frac{1}{p} - \frac{1}{2})$. For every compact set $K \subset \mathbb{R}^n$ and every positive number δ , there exists a constant $C = C(K, \delta, n)$ such that

^{*}The work for this paper was supported by the Post Doctor Science Foundation of China.

$$||B_*^{\alpha}f||_{L^p(K)} \le C||f||_{L^p(\mathbf{R}^n)}$$

for any function $f \in L^p(\mathbf{R}^n)$ with dist $(K, suppf) \ge \delta$, where

$$B_*^{\alpha}f(x) = \sup_{0 < R < \infty} |B_R^{\alpha}f(x)|.$$

PROOF: To begin with, we consider the case of p=1. Let $f \in C_0^{\infty}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$. Write

$$f_x(t) = \frac{1}{\omega_n} \int_{\mathbb{S}^{n-1}} f(x - ty') d\sigma(y'),$$

where ω_n is the surface area of the unit sphere S^{n-1} of \mathbb{R}^n and $d\sigma(y')$ is the element of surface area on S^{n-1} . Then

(1)
$$B_{R}^{\alpha}f(x) = \frac{2^{\alpha+1}\Gamma(\alpha+1)}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} \int_{0}^{\infty} f_{x}(t) \frac{J_{\frac{n}{2}+\alpha}(Rt)}{(Rt)^{\frac{n}{2}+\alpha}} R^{n}t^{n-1}dt,$$

where $J_{\nu}(t)$ denotes the Bessel function of order ν (see [3]). Suppose $\alpha = \frac{n-1}{2} + i\tau$, $\tau \in \mathbf{R}$. We can write the formular (1) as

(2)
$$B_{R}^{\frac{n-1}{2}+i\tau}f(x) = \frac{2^{\frac{1}{2}+i\tau}\Gamma\left(\frac{n+1}{2}+i\tau\right)}{\Gamma\left(\frac{n}{2}\right)} \int_{0}^{\infty} f * \mu_{t}(x) \frac{(Rt)^{\frac{1}{2}-i\tau} J_{n-\frac{1}{2}+i\tau}(Rt)}{t} dt,$$

where μ_t are the singular positive measures supported on spheres $\{x \in \mathbb{R}^n : |x|=t\}$ such that

$$\int_{\mathbf{R}^n} d\mu_t = 1.$$

Therefore

(3)
$$||f * \mu_t||_{L(\mathbf{R}^n)} \leq ||f||_{L(\mathbf{R}^n)}.$$

Suppose that the compact set K is contained in the ball of radius $r > \delta$ about the origin and dist $(K, \operatorname{supp} f) \ge \delta$. It is easy to see that the function $f * \mu_t(x)$ depends only on the values of f(x) on the set $A_j = \{x \in \mathbb{R}^n : (j-2)r \le |x| < (j+1)r\}$ for $t \in [(j-1)r, jr), j=2, 3...,$ and $x \in K$. Therefore.

$$(4) f*\mu_t(x)=0 for 0 < t \le \delta,$$

and

(5)
$$||f*\mu_t||_{L(K)} \le ||f||_{L(A_j)}$$
 for $t \in [(j-1)r, jr)$.

Applying Stiring's formula and the following estimates on the Bessel functions (see [4])

(6)
$$|J_{s+i\tau}(t)| \le C(s)e^{\pi|\tau|}t^{-\frac{1}{2}}, \quad t > 0, s \ge 0,$$

(7) $|J_{s+i\tau}(t)| \le C(s)e^{2\pi|\tau|}t^s, \quad t > 0, s \ge 0,$

(7)
$$|J_{s+i\tau}(t)| \le C(s)e^{2\pi|\tau|}t^s, \quad t>0, s\ge 0,$$

it is not difficult to get

(8)
$$\sup_{0 < R, t < \infty} \left| \frac{2^{\frac{1}{2} + i\tau} \Gamma\left(\frac{n+1}{2} + i\tau\right)}{\Gamma\left(\frac{n}{2}\right)} (Rt)^{\frac{1}{2} - i\tau} J_{n - \frac{1}{2} + i\tau} (Rt) \right| \le Ce^{2\pi |\tau|}.$$

(Now and then we denote by C the constant which value is of no importance.) We fix an arbitrary function R(x) that is positive on K. (2), (4) and (8) give us

$$\left\| B_{R(x)}^{\frac{n-1}{2} + i\tau} f(x) \right\|_{L(K)} \le C e^{2\pi |\tau|} \left\{ \left\| \int_{\delta}^{\tau} \frac{1}{t} |f * \mu_{t}(x)| dt \right\|_{L(K)} + \left\| \int_{\tau}^{\infty} \frac{1}{t} |f * \mu_{t}(x)| dt \right\|_{L(K)} \right\}.$$

For the first integral in the above we use (3) and get

$$\left\| \int_{\delta}^{r} \frac{1}{t} |f * \mu_{t}(x)| dt \right\|_{L(K)} \leq \int_{\delta}^{r} \frac{1}{t} \|f * \mu_{t}\|_{L(K)} dt \leq \log \frac{r}{\delta} \|f\|_{L(\mathbf{R}^{n})}.$$

For the second integral we use (5) and get

$$\begin{split} \left\| \int_{r}^{\infty} \frac{1}{t} |f * \mu_{t}(x)| dt \right\|_{L(K)} &\leq \sum_{j=2}^{\infty} \int_{(j-1)r}^{jr} \frac{1}{t} \|f * \mu_{t}\|_{L(K)} dt \\ &\leq \sum_{j=2}^{\infty} \log \left(1 + \frac{1}{j-1} \right) \|f\|_{L(A_{j})} \\ &\leq 3 \|f\|_{L(\mathbf{R}^{n})}. \end{split}$$

Hence we obtain

(9)
$$||B_{R(x)}^{\frac{n-1}{2}+i\tau}f(x)||_{L(K)} \le Ce^{2\pi|\tau|} ||f||_{L(\mathbf{R}^n)}.$$

Now suppose p=2. Let u(t,x) be the solution of the Cauchy problem for the wave equation

Heping Liu

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x_1^2} + \dots + \frac{\partial^2 u}{\partial x_n^2}, \quad x \in \mathbf{R}^n, \ t > 0,$$

with original values

$$u\Big|_{t=0} = f(x), \quad \frac{\partial u}{\partial t}\Big|_{t=0} = 0.$$

We can write u(t, x) in terms of Fourier transform as

$$u(t, \cdot)\hat{}(\xi) = \cos(|\xi|t)\hat{f}(\xi).$$

So

(10)
$$\|u(t, \cdot)\|_{L^2(\mathbf{R}^n)} \leq \|f\|_{L^2(\mathbf{R}^n)}.$$

By the integral formula of the Bessel functions (see [4])

$$\int_{0}^{\infty} \frac{J_{\mu}(at)J_{\nu}(bt)}{t^{\lambda}} dt = \frac{b^{\nu}\Gamma\left(\frac{1}{2}\mu + \frac{1}{2}\nu - \frac{1}{2}\lambda + \frac{1}{2}\right)}{2^{\lambda}a^{\nu - \lambda + 1}\Gamma(\nu + 1)\Gamma\left(\frac{1}{2}\lambda + \frac{1}{2}\mu - \frac{1}{2}\nu + \frac{1}{2}\right)} \cdot 2F_{1}\left(\frac{\mu + \nu - \lambda + 1}{2}, \frac{\nu - \lambda - \mu + 1}{2}; \nu + 1; \frac{b^{2}}{a^{2}}\right),$$

$$Re(\mu + \nu + 1) > Re\lambda > -1, 0 < b < a,$$

we have

(11)
$$\frac{2^{\frac{1}{2}+i\tau}\Gamma(i\tau+1)}{\pi^{\frac{1}{2}}} \int_{0}^{\infty} \frac{RJ_{\frac{1}{2}+i\tau}(Rt)}{(Rt)^{\frac{1}{2}+i\tau}} \cos(|\xi|t) dt$$

$$= \frac{2^{i\tau}\Gamma(i\tau+1)|\xi|^{\frac{1}{2}}}{R^{-\frac{1}{2}+i\tau}} \int_{0}^{\infty} \frac{J_{\frac{1}{2}+i\tau}(Rt)J_{-\frac{1}{2}}(|\xi|t)}{t^{i\tau}} dt$$

$$= \left(1 - \frac{|\xi|^{2}}{R^{2}}\right)_{+}^{i\tau}, \quad R \neq |\xi|.$$

Using the asymptotically expansion of the Bessel functions (see [4])

$$J_{\nu}(t) = \left(\frac{2}{\pi t}\right)^{\frac{1}{2}} \cos\left(t - \frac{\nu\pi}{2} - \frac{\pi}{4}\right) + O\left(\frac{1}{t^{\frac{3}{2}}}\right), \quad t \to \infty,$$

it is easy to verify that the integral

$$\int_0^N \frac{J_{\frac{1}{2}+i\tau}(Rt)}{(Rt)^{\frac{1}{2}+i\tau}} \cos(|\xi|t) dt$$

is uniformly bounded on N, ξ . Then (11) implies

(12)
$$B_{R}^{i\tau}f(x) = \frac{2^{\frac{1}{2}+i\tau}\Gamma(i\tau+1)}{\pi^{\frac{1}{2}}} \int_{0}^{\infty} \frac{(Rt)^{\frac{1}{2}-i\tau}J_{\frac{1}{2}+i\tau}(Rt)}{t} u(t,x)dt, \\ f \in C_{0}^{\infty}(\mathbf{R}^{n}).$$

(6) and (7) give us the estimate similar to (8):

(13)
$$\sup_{0 < R, t < \infty} \left| \frac{2^{\frac{1}{2} + i\tau} \Gamma(i\tau + 1)}{\pi^{\frac{1}{2}}} (Rt)^{\frac{1}{2} - i\tau} J_{\frac{1}{2} + i\tau}(Rt) \right| \le Ce^{2\pi |\tau|}.$$

We shall keep the notations above. If n is an odd integer, according to the formula (see [5])

$$u(t,x) = \frac{1}{1 \cdot 3 \cdots (n-2)\omega_n} \frac{\partial}{\partial t} \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{\frac{n-3}{2}} \left(t^{n-2} \int_{S^{n-1}} f(x+ty') d\sigma(y') \right),$$

u(t, x) depends only on the values of f(x) on the set A_j for $t \in [(j-1)r, jr), j=2, 3, \dots$, and $x \in K$. We have

(14)
$$u(t,x) = 0 \text{ for } 0 < t \le \delta,$$

and

(15)
$$||u(t,\cdot)||_{L^2(K)} \le ||f||_{L^2(A_j)} \text{ for } t \in [(j-1)r, jr).$$

Now (12)-(14) yield

$$||B_{R(x)}^{i\tau}f(x)||_{L^{2}(K)} \leq Ce^{2\pi|\tau|} \left\{ \left\| \int_{\delta}^{\tau} \frac{1}{t} |u(t,x)| dt \right\|_{L^{2}(K)} + \left\| \int_{\tau}^{\infty} \frac{1}{t} |u(t,x)| dt \right\|_{L^{2}(K)}^{\tau} \right\}.$$

Using (10) and (15) respectively, we get

$$\left\| \int_{\delta}^{r} \frac{1}{t} |u(t,x)| dt \right\|_{L^{2}(K)} \leq \int_{\delta}^{r} \frac{1}{t} ||u(t,\cdot)||_{L^{2}(K)} dt \leq \log \frac{r}{\delta} ||f||_{L^{2}(\mathbf{R}^{n})},$$

and

$$\begin{split} \left\| \int_{r}^{\infty} \frac{1}{t} |u(t,x)| dt \right\|_{L^{2}(K)} &\leq \sum_{j=2}^{\infty} \int_{(j-1)r}^{jr} \frac{1}{t} \|u(t,\cdot)\|_{L^{2}(K)} dt \\ &\leq \sum_{j=2}^{\infty} \log \left(1 + \frac{1}{j-1} \right) \|f\|_{L^{2}(A_{j})} \\ &\leq \left(\sum_{j=2}^{\infty} \frac{1}{(j-1)^{2}} \right)^{\frac{1}{2}} \left(\sum_{j=2}^{\infty} \|f\|_{L^{2}(A_{j})}^{2} \right)^{\frac{1}{2}} \\ &\leq C \|f\|_{L^{2}(R^{n})}. \end{split}$$

Therefore

(16)
$$||B_{R(x)}^{i\tau}f(x)||_{L^{2}(K)} \leq Ce^{2\pi|\tau|}||f||_{L^{2}(\mathbb{R}^{n})}.$$

If n is an even integer, then

$$u(t,x) = \frac{2}{1 \cdot 3 \cdots (n-1)\omega_{n+1}} \frac{\partial}{\partial t} \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{\frac{n-2}{2}} \left(t^{n-1} \int_{\mathbb{B}} \frac{f(x+ty)}{\sqrt{1-|y|^2}} dy \right),$$

where B is the unit ball of \mathbb{R}^n (see [5]). So we have

(17)
$$u(t,x)=0 \text{ for } 0 < t \le \delta.$$

Let $t \in [j^2r, (j+1)^2r)$, $j=2, 3, \cdots$. We fix an arbitrary function $\chi_j(\eta) \in C_0^{\infty}(0, \infty)$ such that $0 \le \chi_j(\eta) \le 1$, $\chi_j(\eta) = 1$ for $0 \le \eta \le (j-1)^2r$, and $\chi_j(\eta) = 0$ for $\eta \ge (j-\frac{1}{2})^2r$. Write

$$u(t, x) = u_0(t, x) + u_1(t, x),$$

where $u_0(t, x)$ and $u_1(t, x)$ are the solutions of the Cauchy problem for the wave equation with the original values

$$u_0\Big|_{t=0} = \chi_j(|x|)f(x), \quad \frac{\partial u_0}{\partial t}\Big|_{t=0} = 0$$

and

$$u_1\Big|_{t=0} = (1-\chi_j(|x|))f(x), \quad \frac{\partial u_1}{\partial t}\Big|_{t=0} = 0$$

respectively. Similar to (15), we have

(18)
$$||u_1(t, \cdot)||_{L^2(K)} \le ||f||_{L^2(B_j)}$$
 for $t \in [j^2r, (j+1)^2r)$,

where $B_j = \{x \in \mathbb{R}^n : (j-1)^2 r \le |x| \le (j+2)^2 r\}$. Also we can prove the estimate

(19)
$$|u_0(t,x)| \le Ct^{-\frac{1}{4}} ||f||_{L^2(\mathbf{R}^n)}$$

for $t \in [j^2r, (j+1)^2r)$ and $x \in K$. Therefore

(20)
$$\|u_0(t,\cdot)\|_{L^2(K)} \leq Ct^{-\frac{1}{4}} \|f\|_{L^2(\mathbf{R}^n)}.$$

In fact,

$$\begin{aligned} &|u_0(t,x)| \\ &= \left| \frac{2}{1 \cdot 3 \cdots (n-1)\omega_{n+1}} \frac{\partial}{\partial t} \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{\frac{n-2}{2}} \left(t^{n-1} \int_{B} \frac{\chi_{j}(|x+ty|)f(x+ty)}{\sqrt{1-|y|^{2}}} dy \right) \right| \\ &= C \left| \frac{\partial}{\partial t} \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{\frac{n-2}{2}} \left(\int_{|y| < ((j-\frac{1}{2})^{2}+1)r} \frac{\chi_{j}(|x+y|)f(x+y)}{\sqrt{t^{2}-|y|^{2}}} dy \right) \right| \end{aligned}$$

$$= C \left| \int_{|y| < ((j-\frac{1}{2})^2 + 1)r} \frac{t\chi_j(|x+y|)f(x+y)}{(t^2 - |y|^2)^{\frac{n+1}{2}}} dy \right|$$

$$\leq C \frac{t(((j-\frac{1}{2})^2 + 1)r)^{\frac{n}{2}}}{(t^2 - ((j-\frac{1}{2})^2 + 1)^2 r^2)^{\frac{n+1}{2}}} ||f||_{L^2(\mathbf{R}^n)}$$

$$\leq C j^{-\frac{n-1}{2}} ||f||_{L^2(\mathbf{R}^n)}$$

$$\leq C t^{-\frac{1}{4}} ||f||_{L^2(\mathbf{R}^n)}.$$

Now (17), (18) and (20) yield

$$(21) \qquad \|B_{R(x)}^{i\tau}f(x)\|_{L^{2}(K)}$$

$$\leq Ce^{2\pi|\tau|} \Big\{ \Big\| \int_{\delta}^{4\tau} \frac{1}{t} |u(t,x)| dt \Big\|_{L^{2}(K)} + \Big\| \int_{4\tau}^{\infty} \frac{1}{t} |u(t,x)| dt \Big\|_{L^{2}(K)} \Big\}$$

$$\leq Ce^{2\pi|\tau|} \Big\{ \int_{\delta}^{4\tau} \frac{1}{t} \|u(t,\cdot)\|_{L^{2}(K)} dt$$

$$+ \int_{4\tau}^{\infty} \frac{1}{t} \|u_{0}(t,\cdot)\|_{L^{2}(K)} dt + \sum_{j=2}^{\infty} \int_{j^{2}\tau}^{(j+1)^{2}\tau} \frac{1}{t} \|u_{1}(t,\cdot)\|_{L^{2}(K)} dt \Big\}$$

$$\leq Ce^{2\pi|\tau|} \Big\{ \int_{\delta}^{4\tau} \frac{1}{t} \|f\|_{L^{2}(R^{n})} dt$$

$$+ \int_{4\tau}^{\infty} \frac{1}{t^{\frac{5}{4}}} \|f\|_{L^{2}(R^{n})} dt + \sum_{j=2}^{\infty} \int_{j^{2}\tau}^{(j+1)^{2}\tau} \frac{1}{t} \|f\|_{L^{2}(B_{j})} dt \Big\}$$

$$\leq Ce^{2\pi|\tau|} \Big\{ \|f\|_{L^{2}(R^{n})} + \Big(\sum_{j=2}^{\infty} \frac{1}{j^{2}} \Big)^{\frac{1}{2}} \Big(\sum_{j=2}^{\infty} \|f\|_{L^{2}(B_{j})} \Big)^{\frac{1}{2}} \Big\}$$

$$\leq Ce^{2\pi|\tau|} \|f\|_{L^{2}(R^{n})}.$$

To conclude, we use the interpolation theorem of analytic families of operators (see [6]) for the cases of $1 . It is easy to check that <math>\{B_{R(x)}^{\alpha}\}$ is an admissible family of linear operators. Then (9), (16) and (21) yield

(22)
$$||B_{R(x)}^{\alpha}f(x)||_{L^{p}(K)} \leq C||f||_{L^{p}(\mathbb{R}^{n})}, \quad Re\alpha = (n-1)\left(\frac{1}{p} - \frac{1}{2}\right).$$

Because R(x) is arbitrary, arguing as in [6], we get

$$||B_*^{\alpha}f||_{L^p(K)} \le C||f||_{L^p(\mathbf{R}^n)}, \quad Re\alpha = (n-1)\left(\frac{1}{p} - \frac{1}{2}\right).$$

The proof is completed.

References

[1] BOCHNER, S., Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc. 40 (1936), 175-207.

- [2] BASTIS, A. I., On the generalized localization principle for the N-fold Fourier integral in L_p-classes, Soviet Math. Dokl. **39** (1989), 91-94.
- [3] Lu, S. Z. and WANG, K. Y., Bochner-Riesz Means (Chinese), Publ. House Beijing Normal Univ., 1988.
- [4] WATSON, G. N., Theory of Bessel Functions, Cambrige, 1952.
- [5] FOLLAND, G. B., Introduction to Partial Differential Equations, Princeton Univ. Press, 1976.
- [6] STEIN, E. M. and WEISS, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.

Department of Mathematics and Institute of Mathematics Peking University Beijing 100871 People's Republic of China