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The generalized localization principle
for Bochner-Riesz means*

Heping LIU
(Received November 11, 1991, Revised April 30, 1992)

Let fEL?(R"), 1<p<2. The Bochner-Riesz means with index a of f
is defined via Fourier transform by

(B (O=(1-15) 7(®), 0<R<o0, Rea>—1

It is a known fact that localization principle holds in L(R") for the Boch-

n—1

ner-Riesz means with the critical index a= 5 but fails with lower in-

dices (see [1]). Another interesting result is due to Bastis (see [2]): For
fEL¥R"), the spherical summation operator B}f satisfies the generalized
localization principle, 1. e.

}?iInB?gf(x)=0, a.e. x€R"\supp/f,
which is failed in L?(R"), p<2.

Our goal is to prove the generalized localization principle for the Bo-
chner-Riesz means with lower indices.

THEOREM. Let FELP(R™), 1<p<2. and ReaZ(n—l)(%—%). Then

lim B&f(x)=0, a.e. x&SR"\suppf.

R -0
Using the density of the space C&(R”) in L?(R") and the fact that
Lian;‘%f(x)Zf(x) for fe CS¥(R"),

is deduced from the following assertion.

PROPOSITION. Let 1<p<2 and Rea =(n—1)(%——§—). For every

compact set KCR" and every positive number 6, therve exists a constant C
=C(K, 8, n) such that
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| BEf Loy < Cll f | Lomm
for any function f€ LP(R") with dist (K, suppf)=9, where
£/(x)= sup |B&f(x)l.

PROOF: To begin with, we consider the case of p=1. Let f&
C(R") and x€R". Write

A= [ A= 1)do(y),

where w, is the surface area of the unit sphere S™! of R" and do(y’) is
the element of surface area on S*'. Then

a+1 © L Rt)
V) B= 2t ) SR g,
2ir(3) ?

where /.(t) denotes the Bessel function of order v (see [3]). Suppose a=

"_;l+ ir, TS R. We can write the formular (1) as

ALy ir
(2) Be? " flx)
1. n+1 . .
_ 2e F( 2 T ZT) °° \ (Rt)%_w ]n—%ﬁ—iz‘(Rt)
o n /0‘ f*/lt(X/ 7 dt,

r(%)
where y: are the singular positive measures supported on spheres {xER" :
|x|=1¢} such that

j;na’,atzl.

Therefore

(3) 7% el ccrm < 1| £l .

Suppose that the compact set K is contained in the ball of radius 7 >¢
about the origin and dist (K, suppf)=46. It is easy to see that the function
f*p(x) depends only on the values of f(x) on the set A;={xER":(i—2)r
<|x|<(G+1)7} for t€[(G—1)r, j»),j=2,3..., and x=K.

Therefore,

(4) frux)=0 for 0<¢<$,
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and

(5) I/ * pellecry <Ifllecan  for tE[(G—1)7, j7).

Applying Stiring’s formula and the following estimates on the Bessel func-

tions (see [4])

(6) Tsrie(£)| < Cls)e™ 72, ¢>0, >0,
(7) I]s+ir(t)lSC(S)ezn'T|Ifs, t>0,820,

it is not difficult to get

—1—+i‘r <n+1 . )
S .
(8) Su (Rt)f—”]n_%Hr(Rt) < Ce?™*l
0<R,l<oo I‘(ﬂ)
2

(Now and then we denote by C the constant which value is of no impor-
tance.) We fix an arbitrary function R(x) that is positive on K. Then
(2), (4) and (8) give us

’L(K)

|
ol

For the first integral in the above we use (3) and get

+zr

BR(x) f(x)

gcezﬂrl{

far%!f*ﬂt(xﬂdt
[ dear

L(K)

1 ™1
[ smelar], < [ ot <tos 5w

For the second integral we use (5) and get

Hfr Srm@la) <37 il
< Zlog (1+] IWlecas
<3| fll .
Hence we obtain
O 1B Sl = C

Now suppose p=2. Let u(¢, x) be the solution of the Cauchy problem
for the wave equation
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Pu _ du ou N
ot? 2 ox2’ ’ ’

with original values

_ oul _
utzo_f(x)’ ot t=0—0'

We can write u(¢, x) in terms of Fourier transform as
u(t, -y (&)=cos(|&l1) 7 (£).

So

(10) l2e(t, ren <| £l .

By the integral formula of the Bessel functions (see [4])

1 1 1 1
T st ——/1+—)
”]#(at){y(bt)dt: bF<2ﬂ 2V 2 .
0 ¢ ZAaU‘MF(V+1)F<—%A+%ﬂ—%—u+—%—>
. 3y _ 2
2F1<,u+z/ /H-l, v—A—u+1 ;V+1;_Z)_7>’
2 2 a
Re(p+v+1)>Red>—1,0<b<aq,
we have
1 .
2rt P (ir+1) [~ RIi+ie(RY)
11 C t)dt
(11) ! /0 (REE os(|€[¢)
:2”1‘(“‘—{—1”5& ”]%Hr(Rt)]—%('E't)dt
R—%ﬂ‘r 0 I

Using the asymptotically expansion of the Bessel functions (see [4])

AN vt _=w <L> _
]'“(t)_(m‘) cos<t 5 4>+O T) t—0co,

it is easy to verify that the integral

T t)dt
(ROE cos(|&1¢)

is uniformly bounded on N, &. Then implies

/N]%Hr(Rl‘)
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+ir Rt)z ]IW(Rt)
1) Bis= 2 L) (ROTRRD
7[2
fECE(RY).
(6) and (7) give us the estimate similar to (8):
Lpie
(13) 0<SRI.1< ||22 F(ZZ’+1) /Rt)——zr]1+zr(Rt)}< Cezmr{

72'2

We shall keep the notations above. If # is an odd integer, according
to the formula (see [5])

(17 [ St 15)do()),

u(t, x) depends only on the values of f(x) on the set A; for t€[(j—1)7,
jr),j=2,3,+, and x&K. We have

(14) u(t, x)=0 for 0<t<6,
and
(15) lee(t, Nezoo <N flleean  for tE[(G=1)7, jr).
Now (12)-(14) yield
e

+||f L, 0)ldt

| B&o f (0l L2 < CQZ"”'{

K)

Z(K)}

Using and (15) respectively, we get
1 '
M —lult, x)|dt||Lz<K>£/; —lu(t, ')”LZ(K)dtélOg%‘“f||Lz(Rn>,

and
<i " L, ewdt

Lxk) j=2JG-vr t
AN izca

1
< 2 (]-_11)2 >%<2|lf||mm,)>

“/jitlu(t, x)|dt

D[ —

Therefore
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(16) | B f ()l 2a0 < C*™ | £l .

If » is an even integer, then

_ 2 O (1 3N u [flx+ty)
u(t’x)_1'3"'(n—1)a)n+1 ot <t 8t> (t 51— |y’ dy),

where B is the unit ball of R" (see [5]). So we have
(17) u(t, x)=0 for 0<¢t<96.

Let tE[/%r, j+1)*r), j=2,3,~. We fix an arbitrary function x;(7)€ C(0,
o0) such that 0<y;()<1, x;(n)=1 for 0<7<(j—1)%*», and x;(7)=0 for p>

. 1Y\? )
( —7> r. Write
u(t, x)=uot, x)+wu(t, x),

where uo(¢, x) and (¢, x) are the solutions of the Cauchy problem for the
wave equation with the original values

_ =l fC), a;;(’ =

0

Uo
t

and

==z ), 98—2;:

U
¢

respectively. Similar to (15), we have
(18) leer(t, ez <Ifliewy  for t€[%7, (j+1)%7),

where B,i={x€R":(j—1r<|x|<(j+2)*r}.  Also we can prove the esti-
mate

(19 luolt, )< Ct5l Alzmr
for t<[/%7, (j+1)?7) and x€K. Therefore

20) et ezao< Ct sl fliw.

In fact,
luo(t, x)|
_ 2 0 _— xJ(|x+ty|)f(x+ty)
‘13 n—TDwnm 8t< ) ( / dy)‘

& (3L

(/I;’|<((j—%)2+l)f j(lx/%+ y) dy)‘
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Cf txj(lx+y|)f(x+y)d
.1 n+1
Iy|<((J—7)2+1)r (t2—|y|2) >

H(G 5P+ D)
e 1 —if
(P (=g P+ 1"

_n-l
<Gz | fllxen

| L2(R7)

gCt‘%llf L¥R™).
Now (17), (18) and yield
(21) ||B§T(x)f(x)||L2(K)
a7 ] i |
2z 4 4
=Ce { ,/3' tlu(t’ x>|dt LZ(K)+“[;T tlu(t’ x)|dt LZ(K)}

47
< cer e [T e, st
© 1 o G+D2r
e, Moot + 5 [0 Lt Mosodt
4r
SC@Z"'”{’/&- %r”f”L?(R")dt

© 1 o AGHDIT ]
[ A+ 3 [ st
r t4 J=2J9

r

S

1

< Ce |l +( 55 ) (S s )|

=
< Ce®™ || Fll .

To conclude, we use the interpolation theorem of analytic families of
operators (see [6]) for the cases of 1<p<2. It is easy to check that
{B#x} is an admissible family of linear operators. Then (9), and
yield

1 1

(22)  |Biwf()leur < Clflwy, Rea=(n—1) (;_7),

Because R(x) is arbitrary, arguing as in [6], we get

IB3f v < Cllws, Rea=(n=1) (=)

The proof is completed.
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