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1. Introduction

All groups we consider are finite. It is well known that the product
of two supersolvable normal subgroups is not supersolvable in general
(see Huppert [3]).

In [2]. Baer proved that if G is the product of two supersolvable
normal subgroups and the commutator subgroup G’ of G is nilpotent, then
G is supersolvable.

In [1]. Asaad and Shaalan proved the following generalization of
Baer’s theorem:

Suppose that H and K are supersolvable subgroups of G, G’ is nilpotent
and G=HK. Suppose further that H is permutable with every subgroup
of K and K is permutable with every subgroup of H. Then G is super-
solvable.

Further, they proved the following result:

Suppose that H is a nilpotent, K a supersolvable subgroup of G and G=
HK. Suppose further that H is permutable with every subgroup of K and
K is permutable with every subgroup of H. Then G is supersolvable.

If H and K are subgroups of a group G such that H is permutable
with every subgroup of K and K is permutable with every subgroup of H,

we say that H and K are mutually permutable and we say that H and K
are totally permutable if every subgroup of H is permutable with every
subgroup of K.

The purpose of the present communication is the presentation of some
properties of products of mutually permutable subgroups:

THEOREM A. Let G=HK>1 be a group where H and K are mutu-
ally permutable. Then H or K contains a nonidentity normal subgroup of
G or F(G)\neq 1 , where F(G) denotes the Fitting subgroup of G.

Further we present a generalization and give independent proofs of
the above mentioned results of Asaad and Shaalan in the following sense:
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THEOREM B. Let p be a prime number and G=HK a group such
that H and K arc p-supersolvable subgroups of G. If H and K are mulu-
ally permutable and G’ is p-nilpotent, then G is p-supersolvable.

THEOREM C. Let p be a prime number and G=HK a group such
that H is a p-supersolvable and K a p-nilpotcnt subgroup of G. If H and
K are mutually permutable then G is p-supersolvable.

2. Preliminary results

We develop a sequence of straightforward lemmas.

2. 1 LEMMA. Let G be a p-supersolvable group for some prime num-
berp. Then O_{p^{\gamma}}(G)\neq 1 or P\underline{\triangleleft}G, where O_{p\prime}(G) denotes the largest normal
p’ -subgroup of G and P\in Syt_{p}(G) .

For a proof see ([4]. p. 691, Th. 6. 6).

2. 2 LEMMA. Let G=HK>1 be a group such that H and K arc
cyclic subgroups of G. If |H|\geq|K| , then H contains a nonidentity normal
subgroup of G. Moreover, G is supersolvable.

For a proof see ([4]. p. 722, Th. 10. 1).

2. 3 LEMMA. The p-solvable group G is p-supersolvablc, if and only
if for every maximal subgroup V of G, the index |G:V| is p or relatively
ty prime to p.

This is a famous theorem due to Huppert ([4]. p. 717, Th. 9.2/9.3).
To avoid repetitions in the subsequent proofs, we separate the follow-

ing facts as common routine steps in certain induction arguments.

2. 4 LEMMA. Let p be a prime number and G a p-solvable group.
Suppose that for every 1\neq S\underline{\triangleleft}G we have G/S is p-supersolvable, but G itself
is not p-supersolvable. Then

(a) G has a unique minimal normal subgroup N and N is a p group of
order greater than p.

(b) \Phi(G)=1 and there is a maximal subgroup V of G such that G=NV
and N\cap V=1 , where \Phi(G) is the Frattini subgroup of G.

(c) N=O_{p}(G)=C_{G}(N) .
(d) If N\leq H\leq G, then O_{p\prime}(H)--1 .

PROOF.
(a) Suppose that S_{1} and S_{2} are minimal normal subgroups of G such that
S_{1}\neq S_{2} . By hypothesis, the factor groups G/S_{1} and G/S_{2} are p-
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supersolvable.
Since

G\cong G/(S_{1}\cap S_{2})\leq G/S_{1}\cross G/S_{2} ,

we have that G is p-supersolvable So, we conclude that the minimal nor-
mal subgroup N of G is unique. Therefore, N is an abelian p-group of
order |N|>p .
(b) Suppose that \Phi(G)>1 . By hypothesis G/\Phi(G) is p supersolvable.
Since every maximal subgroup of G contains \Phi(G) , there is an index
preserving 1-1-correspondence between the maximal subgroups of G/\Phi(G)

whith those of G and hence G is p-supersolvablye by Lemma 2. 3. So
\Phi(G)=1 . Let V be a maximal subgroup of G such that N\not\leq V . We have
that G=NV and obtain N\cap V=1 since N is abelian.
(c) If N<C_{G}(N) , then 1\neq C_{G}(N)\cap V=C_{V}(N)\underline{\triangleleft}NV=G .
Then C_{V}(N) contains a minimal normal subgroup of G different from N,

against (a).
Since \Phi(G)=1 , we have \Phi(O_{p}(G))=1 (see [4]. p. 269, Th. 3. 3).
So. O_{p}(G)\leq C_{G}(N)=N . It follows N=O_{p}(G) .
(d) Let H\leq G such that N\leq H . If O_{p^{\gamma}}(H)>1 , then
O_{p\prime}(H)\leq C_{G}(N)=N , a contradiction. \blacksquare

REMARK 1. Let G be a p-supersolvable group, and N\neq 1 a normal
elementary abelian p-subgroup of G . If N=C_{G}(N) , then p is the largest
prime divisor of |G| .

3. Permutable and subnormal subgroups

We develop a sequence of definitions, lemmas and properties concern-
ing permutability and subnormality of subgroups.

3. 1 LEMMA. Let G=HK be a group and p a prime number. Then
there are subgroups P\in Syt_{p}(G) , H_{p}\in Syt_{p}(H) and K_{p}\in Syt_{p}(K) such that
P=H_{p}K_{p} .

For a proof see ([4]. p. 676, Th. 4. 7).

3. 2 DEFINITION. Let G be a group and X\leq G .
(a) X is said to be subnormal in G(X\underline{\triangleleft}\underline{\triangleleft}G) , if there is a chain of sub-

groups

X=G_{0}\underline{\triangleleft}G_{1}\underline{\triangleleft}\ldots\underline{\triangleleft}G_{r}=G .

(b) X is said to be quasinormal in G(X<G)qn ’ if XH=HX holds for all

subgroups H\leq G .
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REMARK 2. It is well known that if X<Gqn ’ then X\underline{\triangleleft}\underline{\triangleleft}G (see [6]. p .

213, Th. 7. 1. 2)

3. 3 LEMMA. Let G be a group, A, B and X subgroups of G such
that X\leq A\cap B, X\underline{\triangleleft}\underline{\triangleleft}A and X\underline{\triangleleft}\underline{\triangleleft}B. If AB–BA, then X\underline{\triangleleft}\underline{\triangleleft}AB.

For a proof see ([6]. p. 239, Th. 7. 7. 1).

3. 4 DEFINITION. Let G be a group. H and K subgroups of G.
(a) We say that H and K are mutually permutable, if H is permutable

with every subgroup of K and K is permutable with every subgroup
of H.

(b) We say that H and K are totally permutable, if every subgroup of H
is permutable with every subgroup of K.

Certainly, if H and K are normal subgroups of G, then H and K are
mutually permutable. Also, if H and K are totally permutable, then they
are mutually permutable.

Let G=S_{4} be the symmetric group of degree 4, H\in Syl_{2}(G) and K=
A_{4} the alternating group. Clearly G=HK, and H and K are mutually
permutable, but not totally permutable.

3. 5 PROPOSITION. Let G=HK be a group such that H and K are
mutually permutable.
(a) If H\cap K\leq X\leq H and Y\leq K, then XY=YX.

If H\cap K\leq Y\leq K and X\leq H, then XY=YX. In particular, if H\cap

K\leq X\leq H and H\cap K\leq Y\leq K, then X and Y are mutually pcrmuta-
ble.

(b) If H\cap K=1 , then H and K are totally permutable.
(c) H\cap K<Hqn’ H\cap K<Kqn and H\cap K\underline{\triangleleft}\underline{\triangleleft}G.

PROOF.
(a) Let H\cap K\leq X\leq H and Y\leq K . We have

XY=X(H\cap K)Y=(HY\cap XK)=(YH\cap KX)=Y(H\cap K)X=YX .

(b) By (a), every subgroup of H is permutable with every subgroup of K.
(c) By (a) it is clear that H\cap K<Hqn and H\cap K<Kqn . Moreover.
H\cap K\underline{\triangleleft}\underline{\triangleleft}H and H\cap K\underline{\triangleleft}\underline{\triangleleft}K , by Remark 2. So, H\cap K\underline{\triangleleft}\underline{\triangleleft}G , by Lemma
3. 3.

3. 6 LEMMA (see Maier [7]). Let G=HK be a group such that H
and K are totally permutable subgroups of G. If |G|>1 , then H or K
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contains a nonidentity normal subgroup of G.

PROOF. Let p denote the largest prime divisor of |G| . Certainly p

divides at least one of |H| or |K| . Let x be a p-element of the union set
H\cup K of maximal order and suppose x\in H , say. Let y be any q-element
of K where q is a prime divisor of |K| . Since H and K are totally per-
mutable, we see by Lemma 2. 2 that <x><y>=<y><x> is a super-
solvable group.

If q\neq p , then <x> is the normal Sylow-P-subgroup of <x><y>
since p>q ([4]. p. 716. Th. 9. 1). If q=p, then |<x>|\geq|<y>| and there
exists a nonidentity normal subgroup of <x><y>contained in <x>by
Lemma 2. 2. In any case, the unique subgroup R of order p in <x> is
normalized by y . We conclude that K normalizes R . Now, the normal
closure R^{G}=R^{HK}=R^{KH}=R^{H}\leq H is a nonidentity normal subgroup of G .

3. 7 LEMMA. Let G be a group and X<qn G. Then

(a) X/X_{G} is nilpotent, where X_{G}= \bigcap_{g\in G}X^{g} .

(b) If X is a p-group for some prime p, then X is normalized by O^{p}(G) ,

where O^{p}(G) denotes the smallest normal subgroup of G with p-factor
group; obviously O^{p}(G) is the join of all p’ -elements of G.

See (It\^o-Sz\’ep [5])
With these preparations we are able to prove:

THEOREM A. Let G=HK>1 be a group where H and K are mutu-
ally permutable. Then H or K contains a nonidentity normal subgroup of
G or F(G)\neq 1 .

PROOF. Let D=H\cap K . Suppose that H_{G}=1=K_{G} . By Lemma 3. 6
and Proposition 3. 5 (b) we have D\neq 1 . Since (D_{H})^{G}=(D_{H})^{K}\underline{\triangleleft}G and
(D_{H})^{K}\leq K we have D_{H}=1 . So, by Lemma 3. 7 (a) D is nilpotent and
since D\underline{\triangleleft}\underline{\triangleleft}G by Prop. 3. 5 (c). we obtain D\leq F(G)\neq 1 . \blacksquare

COROLLARY 1. Let p be a prime number and G=HK a group such
that H and K are mutually permutable. If H and K are p-solvable, then
G is p-solvable.

PROOF: By induction on |G| .
For all N\underline{\triangleleft}G we have G/N=(HN/N)(KN/N) and HN/N and KN/N

are mutually permutable subgroups of G/N. If N\neq 1 , then G/N is p-
solvable by induction. Now, by Theorem A there is 1\neq N\underline{\triangleleft}G , such that
N\leq H or N\leq K or N\leq F(G) . In any case, N is p-solvable. It follows G
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is p-solvable. \blacksquare

REMARK 3. Let G=HK be a group such that H and K are mutually
permutable. Then for every subgroup L of G such that H\leq L(orK\leq L)

we have L=H(L\cap K) (or L_{-}^{-}K(L\cap H) ) where H and L\cap K (or K and H
\cap L) are mutually permutable, by 3. 5 (a).

The Proofs of our Theorems B and C

THEOREM B. Let p be a prime number and G=HK a group such
that H and K are p-supersolvable. If H and K are mutually permutable
and G’ is p-nilpotent, then G is p-supersolvable.

PROOF. Suppose that the Theorem fails, and let G be a minimal
counterexample. Lemma 2. 4 is obviously applicable. So G contains a
unique minimal normal subgroup N which has the properties stated in
Lemma 2. 4.

Since we may assume that G’>1 , we have N\leq G’ . Since G’ is p-
nilpotent and N=C_{G}(N) we obtain that G’ is a p-group. So G’=N\in
Syl_{p}(G) and the complements of N in G are cyclic (see [4]. p. 165, Th. 3.
8). Clearly HN<G and KN<G . Hence HN and KN are p-supersolvable
by Remark 3.

Let L be a p-complement of HN and R a p-complement of KN. It is
easy to check that L and R are cyclic groups of orders dividing p-l.
Hence G/N=(LN/N)(RN/N) is an abelian group whose exponent divides
p-l. Since G/N acts irreducibely on N we have |N|=p , by ([4]. p. 165,
Th. 3. 8.) which means that G is p-supersolvable.

As consequence of Theorem B we have

COROLLARY 2 ([1]. Th. 3. 7). Suppose that H and K are supersolvable
subgroups of G, G’ is nilpotent and G=HK. Suppose further that H and
K are mutually permutable. Then G is supersolvable.

To prove the Theorem C. we develop a necessary lemma.

LEMMA (^{*}) . Let p be a prime number and G=HK a group such that
H and K are p-supersolvable. If H and K are totally permutable, then G
is p-supersolvable.

PROOF. Suppose that the Lemma is false, and let G be a counterex-
ample of smallest order. By Corollary 1 G is p-solvable and so Lemma 2.
4 is applicable. So G contains a unique minimal normal subgroup N
which has the properties stated in Lemma 2. 4.
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We can assume N\leq H by Lemma 3. 6.
Let N_{1}\leq N such that N_{1}\underline{\triangleleft}H and |N_{1}|=p and let V be a complement of

N in G. We have that U=V\cap H is a complement of N in H. Let D=
N\cap K\underline{\triangleleft}K . By hypothesis we have DU_{-}^{-}UD . So, D=D(U\cap N)=DU\cap

N\underline{\triangleleft}DU and D\underline{\triangleleft}H . So D\underline{\triangleleft}G and D=1 or D=N.
If D=1 , then N_{1}=N_{1}(K\cap N)=N_{1}K\cap N\underline{\triangleleft}N_{1}K . So N_{1}\underline{\triangleleft}G , a contradic-

tion.
Suppose D=N. We have that W=K\cap V is a complement of N in K.

By hypothesis we have N_{1}W=WN_{1} .
So N_{1}\underline{\triangleleft}N_{1}Wr It follows N_{1}\underline{\triangleleft}K and N_{1}\underline{\triangleleft}G . \blacksquare

The above Lemma implies the following

COROLLARY 3 ([1]. Th. 3. 1). Suppose that H and K arc supersolvable
subgroups of G and G=HK. Suppose further that H and K are totally
permutable. Then G is supersolvable.

For a formation-theoretic generalization of our Lemma (^{*}) and Corollary
3 see [7].

THEOREM C. Let p be a prime number and G=HK a group such
that H is a p supersolvable and K a p-nilpotent subgroup of G. If H and
K are mutually permutable, then G is p-supersolvable.

PROOF. Suppose that the Theorem is false and let G be minimal
counterexample. By corollary 1 G is p-solvable and so Lemma 2. 4 is
applicable. So G contains a unique minimal normal subgroup N which
has the properties stated in Lemma 2. 4.

By Proposition 3. 5 (b) and our Lemma (^{*}) we have H\cap K=D\neq 1 .
First we show that N\not\leq K . Suppose that N\leq K . Since K is p-

nilpotent and N=C_{G}(N) , K is p-group. By Proposition 3. 5 (c) D\underline{\triangleleft}\underline{\triangleleft}G .
So D^{G} is a p-subgroup and hence D\leq D^{G}=N and D=N\cap H\underline{\triangleleft}H . Let V
be a complement of N in G. Then K=NS and S\cap N=1 , where S=K\cap

V By Proposition 3. 5 (a) DS=SD. Therefore D=D(S\cap N)=SD\cap N\underline{\triangleleft}

DS and hence D\underline{\triangleleft}K . Thus N=D\underline{\triangleleft}G . Since O_{p\prime}(H)=1 and H_{p}\underline{\triangleleft}H , p is
the largest prime divisor of H and hence of |G| by Remark 1. Let H_{p\prime} be
a Sylow p-complement of H and let x be a q -element of H_{p^{r}} , where q is a
prime. By hypothesis <x>K=K<x> . Since p>q , by Burnside’s split-
ting theorem x normalizes K and so H_{p^{r}} normalizes K. Thus O_{p}(G)=

H_{p}K=N=D and hence G=H which is a contradiction.
Secondly we show that D_{H}=1 . If D_{H}>1 , then (D_{H})^{G}=(D_{H})^{HK}=(D_{H})^{K}

\leq K . Thus N\leq(D_{H})^{G}\leq K which is a contradiction.
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Since D_{H}=1 , D is nilpotent by Lemma 3. 7 (a). Since D\underline{\triangleleft}\underline{\triangleleft}G by
Proposition 3. 5 (c). D^{G} is nilpotent. Thus D\leq D^{G}=N . Since D\leq H\cap K

\cap N , we have HN\neq G\neq KN . So HN and KN are p-supersolvable, by
Remark 3. Since C_{G}(N)=N , by Lemma 2. 1 H_{p}\underline{\triangleleft}H and K_{p}\underline{\triangleleft}K . By
Lemma 3. 7 (b) D is normalized by every p’-element of H and K.

Since D is a p-group, we have HK_{p}\neq G or KH_{p}\neq G . Suppose KH_{p}\neq

G . By Remark 3 KH_{p} is p-supersolvable and since N\leq KH_{p} , O_{p^{\gamma}}(KH_{p})=1 .
By Lemma 2. 1 H_{p}K_{p}\underline{\triangleleft}KH_{p} .

For g=hk\in G , h\in H , k\in K we have (H_{p})^{g}=(H_{p})^{hh}=(H_{p})^{k}\leq(H_{p}K_{p})^{k}=

H_{p}K_{p} . Therefore, H_{p}\leq(H_{p})^{G}=N . So H_{p} is abelian and hence D\underline{\triangleleft}H . So
N=(D)^{G}=(D)^{K}\leq K . This is a contradiction.

Thus HK_{p}\neq G , KH_{p}=G and H=H_{p}(H\cap K)=H_{p} . So HK_{p} is a Sylow
p subgroup of G .

For any g=kh\in G , k\in K , h\in H , K_{p}^{g}=K_{p}^{kh}=K_{p}^{h}\leq HK_{p} . Therefore K_{p}

\leq(K_{p})^{G}=N . So K_{p} is abelian and hence D\underline{\triangleleft}K and N\leq H . Let V be a
complement of N in G . Then H=UN and U\cap N=1 , where U=H\cap V

Further D=D(N\cap U)=N\cap DU\underline{\triangleleft}DU. So D\underline{\triangleleft}H and N=D, the final con-
tradiction. \blacksquare

Our Theorem C contains

COROLLARY 3 ([1]. Th. 3. 2). Suppose that H is a nilpotent, K a

supersolvable subgroup of G and G=HK. Suppose further that H and K
are mutually permutable. Then G is supersolvable.
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