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\S 1. Introduction.

Helson and Lowdenslager extended the classical F. and M. Riesz the0-
rem as follows.

THEOREM A (cf. [12, 8. 2. 3. Theorem]). Let G be a compact abelian
group with ordered dual, i. e. , there exsits a semigroup P in \hat{G} such that
(i) P\cup(-P)=\overline{G} and (i) P\cap(-P)=\{0\} . Let \mu be a measure in M(G)

such that \hat{\mu}(\gamma)=0 for \gamma<0 . Then
(I) \hat{\mu}_{a}(\gamma)=\hat{\mu}_{S}(\gamma)=0 for \gamma<0 ;
(II) \hat{\mu}_{S}(0)=0 .

Theorem A ( I) was extended, by the author ([13]) and Hewitt-Koshi
-Takahashi ([7]), to LCA groups as follows.

THEOREM B (cf. [13, Corollary], [7- Theorem D] ).
Let G be a LCA group and P a semigroup in \hat{G} such that P\cup(-P)=\hat{G} .
Let \mu be a measure in M_{p}(G) , where M_{p}(G)= { \nu\in M(G):f/=0\wedge on P^{c}}.
Then \mu_{a} and \mu_{s} also belong to M_{p}(G) .

In Theorem B we can not expect “
\hat{\mu}_{S}(0)=0’

’ in general. As pointed
out in the proof of [13, Corollary], Theorem B follows from the following
theorem.

THEOREM C (cf. [13, Main Theorem]). Let G be a LCA group and
P a closed semigroup in \hat{G} such that P\cup(-P)=\hat{G}. Let \mu be a measure in
M_{pc}(G) . Then \mu_{a} and \mu_{s} also belong to M_{pc}(G) .

On the other hand, Forelli obtained the following theorem ([5]).

THEOREM D (cf. [5, Theorem 5]). Let (R, X) be a (topological)

transformation group, in which the reals R acts on a locally compact Haus-
dorff space X. Let \sigma be a positive Radon measure on X that is quasi
-invariant. Let \mu\in M(X) , and let \mu=\mu_{a}+\mu_{s} be the Lebesgue decomposi-
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tion of \mu with respect to \sigma. Suppose \mu is an analytic measure, i. e. , the
spectrum of \mu is in [0, \infty) . Then \mu_{a} and \mu_{s} are also analytic measures.

We need a comment on Theorem D. Analytic measures treated in [5,
Theorem 5] are bounded complex Baire measures. But every bounded
complex Baire measures on a locally compact Hausdorff space is uniquely
extended to a bounded complex, regular Borel measure. Thus Theorem D
follows from [5, Theorem 5].

Moreover the author extended Theorem A ( I) to a compact transfor-
mation group as follows.

THEOREM E (cf. [15, Theorem 2. 1]). Let (G, X) be a transforma-
tion group, in which a compact abelian group G acts on a locally compact
Hausdorff space X. Let P be a semigroup in \hat{G} such that P\cup(-P)=\hat{G}.
Let \sigma be a positive Radon measure on X that is quasi-invariant. Let \mu be
a measure in M(X), and let \mu=\mu_{a}+\mu_{s} be the Lebesgue decomposition of \mu

with respect to \sigma. Suppose sp(\mu)\subset P. Then \Phi(\mu_{a}) and \Phi(\mu_{s}) are also
contained in P.

In this paper, we shall extend Theorems D and E to a transformation
group, in which a locally compact abelian (LCA) group acts on a locally
compact Hausdorff space. In section 2, we state definitions and our the0-
rems. In section 3, we give some results on a compact transformation
group, and we give the proofs of our theorems in section 4. We also
show that Theorem C follows from our theorems in section 4 (Remark 4.
2).

\S 2. Notations and results.

Let (G, X) be a (topological) transformation group, in which G is a
LCA group and X is a locally compact Hausdorff space. Suppose that
the action of G on X is given by (g, x)arrow g\cdot x , where g\in G and x\in X . Let
C_{0}(X) and C_{c}(X) be the Banach space of continuous functions on X
which vanish at infinity and the space of continuous functions on X with
compact supports respectively. Let M(X) be the Banach space of bound-
ed regular Borel measures on X with the total variation norm. Let
M^{+}(X) be the set of nonnegative measures in M(X) . For \mu\in M(X) and f
\in L^{1}(|\mu|) , we often write \mu(f)=\int_{X}f(x)d\mu(x) . Let X’ be another locally

compact Hausdorff space, and let S:Xarrow X’ be a continuous map. For \mu

\in M(X) , let S(\mu)\in M(X’) be the continuous image of \mu under S . We
denote by \mathscr{B}(X) the \sigma-algebra of Borel sets in X. \mathscr{B}_{0}(X) stands for the
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\sigma-algebra of Baire sets in X. That is, \mathscr{B}_{0}(X) is the \sigma-algebra generated
by compact G_{8^{-}}sets in X. A (Borel) measure \sigma on X is called quasi
-invariant if |\sigma|(F)=0 implies |\sigma|(g\cdot F)=0 for all g\in G .

Let \hat{G} be the dual group of G. M(G) and L^{1}(G) denote the measure
algebra and the group algebra respectively. For \lambda\in M(G),\overline{\lambda} denotes the
Fourier-Stieltjes transform of \lambda , i . e.,\overline{\lambda}(\gamma)=\int_{G}(-x, \gamma)d\lambda(x) . m_{G} stands

for the Haar measure of G . Let M_{a}(G) be the set of measures in M(G)
which are absolutely continuous with respect to m_{G} . Then by the Radon
-Nikodym theorem we can identify M_{a}(G) with L^{1}(G) . For a subset E of
\overline{G} , M_{E}(G) denotes the space of measures in M(G) whose Fourier-stieltjes
transforms vanish off E. E^{-} denotes the closure of E . A closed subset
E of \overline{G} is called a Riesz set if M_{E}(G)\subset L^{1}(G) . For a closed subgroup H
of G, H^{\perp} denotes the annihilator of H.

Let f be a Borel measurable function on X. Then

(2. 1) (g, x)arrow f(g\cdot x) is a Borel measurable function on G\cross X.
For \lambda\in M(G) and \mu\in M(X) , we can define \lambda*\mu\in M(X) , by virtue of [4,
(7. 23) Lemma and (7. 27) Theorem], as follows.

(2. 2) \lambda*\mu(f)=\int_{X}\int_{G}f(g\cdot x)d\lambda(g)d\mu(x)=\int_{G}\int_{X}f(g\cdot x)d\mu(x)d\lambda(g)

for f\in C_{0}(X) .

REMARK 2. 1. (2. 2) holds for all bounded Borel functions f on X.
For \xi , \lambda\in M(G) and \mu\in M(X) , the following hold.

(2. 3) ||\lambda*\mu||\leq||\lambda||||\mu|| ,
(2. 4) \xi*(\lambda*\mu)=(\xi*\lambda)*\mu .

For a closed subgroup H of G, let J(\mu:H)=\{k\in L^{1}(H):k*\mu=0\} .
Set J(\mu)=\{h\in L^{1}(G):h*\mu=0\}(=J(\mu: G)) . Then, by (2. 3) and (2. 4),
J(\mu:H) and J(\mu) are closed ideals in L^{1}(H) and L^{1}(G) respectively.

DEFINITION 2. 1. For \mu_{c}^{=}M(X) , define the spectrum of \mu by sp(\mu)=

\bigcap_{h\in f(\mu)}\overline{h}^{-1}(0) . For a closed subgroup H of G , we also define sp_{H}(\mu) by

k \in f(\mu\bigcap_{H)}\overline{k}^{-1}(0) .

For \mu , \nu\in M(X) , it follows from (2. 4) and the definition of spectrum
that sp(\mu+\nu)\subset sp(\mu)\cup sp(1’) (cf. [5, Lemma 3]). Now we state our the0-
rems.

THEOREM 2. 1. Let (G, X) be a tmansformation group, in which G is



352 H. Yamaguchi

a LCA group and X is a locally compact Hausdorff space. Let P be a

closed semigroup in \overline{G} such that P\cup(-P)=\hat{G}. Let \sigma be a positive Radon
measure on X that is quasi-invariant. Let \mu\in M(X) , and let \mu=\mu_{a}+\mu_{s}

be the Lebesgue decomposition of \mu with respect to \sigma. Suppose \Phi(\mu)\subset P.
Then both sp(\mu_{a}) and sp(\mu_{s}) are also contained in P.

THEOREM 2. 2. Let (G, X) and \sigma be as in Theorem 2. 1. Let P be
a proper closed semigroup in \hat{G} such that P\cup(-P)=\hat{G}, and suppose that P
\cap(-P) is open. Let \mu\in M(X) , and suppose that \Phi(\mu)\subset P\backslash (-P) . Then
both \Phi(\mu_{a}) and sp(\mu_{s}) are also contained in P\backslash (-P) .

Before closing this section, we state several lemmas which we shall
need later on. The following lemma is well-known.

LEMMA 2. 1. For f\in G(X) and g\in G, define f_{g}\in G(X) by f_{g}(x)=f(g

.x) . Then \lim_{garrow 0}|\int-f_{g}||_{\infty}=0 .

LEMMA 2. 2. Let \mu\in M(X) , and suppose that k*\mu=0 for all
k\in L^{1}(G) . Then \mu=0 .

PROOF. Suppose \mu\neq 0 . Then there exists f\in C_{0}(X) such that
\int_{X}f(x)d\mu(x)\neq 0 . For an open neighborhood V of 0 in G, let h_{V} be a non-
negative function in C_{c}(G) such that supp(h_{V})\subset V and ||h_{V}||_{1}=1 . It follows
from Lemma 2.1 that

(1) \lim_{V}||h_{V}*f-f||_{\infty}=0 ,

where h_{V}*f(x)= \int_{G}f((-g)\cdot x)h_{V}(g)dm_{G}(g) . Set h_{V}^{*}(g)=h_{V}(-g) . Then, by

the hypothesis, we have

\int_{X}h_{V}*f(x)d\mu(x)=\int_{X}\int_{G}f((-g)\cdot x)h_{V}(g)dm_{G}(g)d\mu(x)

= \int_{X}f(x)d(h_{V}^{*}*\mu)(x)

=0,

which together with (1) yields \int_{X}f(x)d\mu(x)=0 . This contradicts the choice

of f, and the proof is complete.

LEMMA 2. 3. Let \lambda\in M(G) and \mu\in M(X) . Then \Phi(\lambda*\mu)\subset\{\gamma\in\overline{G} :
\overline{\lambda}(\gamma)\neq 0\}^{-}

PROOF. Suppose \gamma_{0}\not\in\{\gamma\in\hat{G}:\hat{\lambda}(\gamma)\neq 0\}^{-} Let U be an open neighbor-
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hood of \gamma_{0} such that U\cap\{\gamma\in\hat{G}: \hat{\lambda}(\gamma)\neq 0\}^{-}=\phi . Let h be a function in
L^{1}(G) such that \hat{h}(\gamma_{0})\neq 0 and \hat{h}=0 on U^{c}\wedge Then h*\lambda=0 , and so h*(\lambda*

\mu)=(h*\lambda)*\mu=0 . Since \hat{h}(\gamma_{0})\neq 0 , we have \gamma_{0}\not\in sp(\lambda*\mu) . This completes the
proof.

We shall use the following lemma frequently.

LEMMA 2. 4 (cf. [12, 7.2.5. (a)]). Let G be a LCA group. Let F\in
L^{1}(G) , and let I be a closed ideal in L^{1}(G) . Suppose that \bigcap_{h\in I}\hat{h}^{-1}(0) is in
the interior of \overline{F}^{-1}(0) . Then F\in I.

LEMMA 2. 5. Suppose G=H\oplus K, where H and K are closed sub-
groups of G. Let E and F be closed subsets of \overline{H} and \overline{K} respectively.
Let \mu\in M(X)_{y} and suppose that \Phi H(\mu)\subset E and \Phi K(\mu)\subset F. Then sp(\mu)\subset

E\cross F.

PROOF. For x\in X, s\in H and t\in K , denote (s, O)\cdot x and (0, t) \cdot x by
s\cdot x and t\cdot x respectively. Suppose (\gamma, \omega)\not\in E\cross F . Then \gamma\not\in E or \omega\not\in F .
We may assume that \gamma\not\in E . Then there exist h\in L^{1}(H) and k\in L^{1}(K)

such that

(1) \overline{h}(\gamma)\neq 0 ,
(2) \overline{k}(\omega)\neq 0 , and
(3) E is in the interior of \hat{h}^{-1}(0) .

By (3) and the hypothesis, sp_{H}(\mu) is in the interior of \hat{h}^{-1}(0) . It follows
from Lemma 2.4 that

(4) h\in J(\mu:H) .

Define F\in L^{1}(G) by F(s, t)=h(s)k(t) . For any f\in C_{0}(X) , we have

F* \mu(f)=\int_{X}\int_{H\oplus K}f((s, t)\cdot x)F(s, t)dm_{H\oplus K}(s, t)d\mu(x)

= \int_{K}\int_{X}\int_{H}f_{t}(s\cdot x)h(s)dm_{H}(s)d\mu(x)k(t)dm_{K}(t)

= \int_{K}\int_{X}f_{t}(x)d(h*\mu)(x)k(t)dm_{K}(t)

=k*(h*\mu)(f)

=0, (by (4))

where f_{t}(x)=f(t\cdot x)(t\in K, x\in X) . This shows that F\in J(\mu) . On the
other hand, \overline{F}(\gamma, \omega)=\hat{h}(\gamma)\hat{k}(\omega)\neq 0 . Hence (\gamma, \omega)\not\in sp(\mu) , and we have
sp(\mu)\subset E\cross F . This completes the proof.
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\S 3. Some results on compact transformation groups.

In this section, let (G, X) be a transformation group, in which G is a
compact abelian group and X is a locally compact Hausdorff space. For
\gamma\in\overline{G} and \mu\in M(X) , we note that \gamma\in sp(\mu) if and only if \gamma*\mu\neq 0 (cf. [14,
Remark 1.1 (II.1) ]) . Let \pi:Xarrow X/G be the canonical map. For x\in X ,

we define a continuous map B_{x} : Garrow G\cdot x(\subset X) by B_{x}(g)=g\cdot x . Set G_{x}=

\{g\in G:g\cdot x=x\} . Then G_{x} is a closed subgroup of G. We define a map
\overline{B}_{x} : G/G_{x}arrow G\cdot x by \tilde{B}_{x}(g+G_{x})=g\cdot x . Then \tilde{B}_{x} is a homeomorphism.

DEFINITION 3. 1. For x\in X , put \dot{x}=\pi(x) . Define m_{x}\in M^{+}(X) by
m_{x}=B_{x}(m_{G}) .

As noted in [14, Remark 1.2], m_{x} is well-defined because B_{y}(m_{G})=

B_{x}(m_{G}) for every y\in\pi^{-1}(\dot{x}) . We state two conditions (D. I) and (D. II).

(D. I) Let (G, X) be a transformation group, in which G is a metriza-
ble compact abelian group and X is a locally compact Hausdorff space.
For any \mu\in M^{+}(X) , put \eta=\pi(\mu) . Then there exists a family \{\lambda_{x}\}_{x\in X/G} of
measures in M^{+}(X) with the following properties:

(3. 1) \dot{x}arrow\lambda_{x}(f) is \eta -measurable for each bounded Baire function f on
X,

(3. 2) ||\lambda_{x}||=1 ,
(3. 3) supp(\lambda_{x})\subset\pi^{-1}(\dot{x}) ,

(3. 4) \mu(f)=\int_{x/c}\lambda_{x}(f)d\eta(\dot{x}) for each bounded Baire function f on X.

(D, II) Let (G, X) be as in (D. I). Let f\nearrow\in M^{+}(X/G) . Suppose \{\lambda_{x}^{1}\}_{x\in X/G}

and \{\lambda_{x}^{2}\}_{x\in X/G} are families of measures in M(X) with the following prop-
erties:

(3. 5) \dot{x}arrow\lambda_{x}^{l}(f) is \nu -integrable for each bounded Baire function f on X
(i=1,2) ,

(3. 6) supp(\lambda_{\dot{x}}^{\iota})\subset\pi^{-1}(\dot{x})(i=1,2) ,

(3. 7) \int_{X/G}\lambda_{x}^{1}(f)d\nu(\dot{x})=\int_{X/G}\lambda_{x}^{2}(f)dl/(x.) for each bounded Baire function

f on X.

Then \lambda_{x}^{1}=\lambda_{x}^{2}\nu- a.a.\dot{x}\in X/G .

Let \mu\in M(X) and \eta\in M^{+}(X/G) . By an \eta -disintegration of \mu , we
mean a family \{\lambda_{x}\}_{x\in X/G} of measures in M(X) satisfying (3. 1)’\dot{x}arrow\lambda_{x}(f)
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is \eta -integrable for each bounded Baire function f on X and (3. 3)-(3.4) in
(D. I). If, in addition, \eta=\pi(|\mu|) and ||\lambda_{x}^{1}||=1 for all \dot{x}\in X/G , then we call
\{\lambda_{x}\}_{x\in X/G} a canonical disintegration of \mu . Thus condition (D. I) says that
each \mu\in M^{+}(X) has a canonical disintegration \{\lambda_{x}\}_{x\in X/G} with \lambda_{x}\in M^{+}(X) .

REMARK 3. 1. Let (G, X) be a transformation group, in which G is
a metrizable compact abelian group and X is a locally compact metric
space. Then ( G, X) satisfies conditions (D. I) and (D. II ) (cf. [14,
Remark 6. 1]).

LEMMA 3. 1. Let (G, X) be a transformation group, in which G is a
metrizable compact abelian group and X is a locally compact Hausdorff
space. Suppose (G, X) satisfies conditions (D. I ) and (D. II ). Let P be a
semigroup in \overline{G} such that (i) P\cup(-P)=\overline{G} and (ii) P\cap(-P)=\{0\} . Let \sigma

be a positive Radon measure on X that is quasi-invariant. Let \nu be a
measure in M(X) such that sp(\nu)\subset P and \nu\perp\sigma. Then m_{G}*\nu\perp\sigma.

PROOF. Since \nu is bounded and regular, we may assume that \sigma\in

M^{+}(X) (cf. [14, the proof of Theorem 1. 1, p. 311]). Put \eta=\pi(|\iota\nearrow|) . By
(D. I ), |1\nearrow| has a canonical disintegration \{\lambda_{x}\}_{x\in X/G} with \lambda_{x}\in M^{+}(X) . Let \eta

=\eta_{a}+\eta_{s} be the Lebesgue decomposition of \eta with respect to \pi(\sigma) . We
define \omega_{1} , \omega_{2}\in M^{+}(’X) as follows:

(1) \omega_{1}(f)=\int_{x/c}\lambda_{x}(f)d\eta_{a}(\dot{x}) ,

\omega_{2}(f)=\int_{x/c}\lambda_{x}(f)d\eta_{s}(\dot{x})

for f\in C_{0}(X) . We note that (1) holds for all bounded Baire functions f
on X. It is easy to verify that

(2) |\nu|=\omega_{1}+\omega_{2} , and
(3) \pi(\omega_{2})\perp\pi(\sigma) .

It follows from (2) and the hypothesis that \omega_{1}\perp\sigma . Hence, by [14, Lemma
2. 5 (II) ] , we have

(4) \lambda_{x}\perp m_{x}\eta_{a}-a.a.\dot{x}\in X/G .

Let h be a unimodular Baire function on X such that \iota/=h|\nu| , and define
measures \nu_{1},1/_{2}\in M(X) as follows:

(5) \nu_{1}(f)=\int_{x/c^{fJ\chi}}(f)d\eta_{a}(\dot{x}) ,
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\iota/_{2}(f)=\int_{X/c^{1J\chi}}(f)d\eta_{s}(\dot{x})

for f\in C_{0}(X) , where 1/_{x}=h\lambda_{x} . Then

(6) \nu^{=}1_{J_{1}} + \nu_{2} .

We note that \{\nu_{x}\}_{x\in X/G} is a canonical disintegration of \nu . Since sp(1/)\subset P ,

it follows from [14, Lemma 2. 6] that

(7) sp(1/\chi)\subset P\eta- a.a.\dot{x}\in X/G,\cdot

hence
(8) sp(l\prime_{x})\subset P\eta_{a}- a . a.\dot{x}\in X/G .

Since supp(\nu_{x})\subset\pi^{-1}(\dot{x}) and \overline{B}_{\chi} : G/G_{x}arrow G\cdot x(=\pi^{-1}(\dot{x})) is a homeomor-
phism, there exists a measure \xi_{x}\in M(G/G_{x}) such that \overline{B}_{x}(\xi_{x})=\nu_{x} , where
x\in\pi^{-1}(\dot{x}) . By(8) and [14, Proposition 1. 2], we have

(9) \xi_{x}\in M_{P\cap G\chi}\perp(G/G_{x})\eta_{a}- a.a.\dot{x}\in X/G .

It follows from (4) and [14, Proposition 1. 5] that

(10) \xi_{x}\perp m_{G/G_{X}}\eta_{a}- a.a.\dot{x}\in X/G .

Hence we have, by (9), (10) and Theorem A (II),

(11) \xi_{x}\in M_{(P\backslash \{0\})\cap G\chi}\perp(G/G_{x})\eta_{a}- a.a.\dot{x}\in X/G ,

which yields

(12) sp(\nu_{x})\subset P\backslash \{0\}\eta_{a}- a.a.\dot{x}\in X/G

by [14, Proposition 1. 2]. Hence

m_{G}*\nu_{x}=0\eta_{a}- a.a.\dot{x}\in X/G ,

which together with [14, Lemma 2. 3] yields

mc l*J_{1}(f)=\int_{x/G}mc^{*}\}y_{x}(f)d\eta_{a}(\dot{x})=0

for all f\in C_{0}(X) . This shows that

(13) m_{G^{*}}\nu_{1}=0 .

On the other hand, it is easy to verify that

(14) \pi(m_{G}*\omega_{2})=\pi(\omega_{2}) .

(3) and (14) imply that m_{G^{*}}\omega_{2}\perp\sigma , and so m_{G^{*}}\nu_{2}\perp\sigma because m_{G}*\nu_{2}<<
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m_{G}*\omega_{2} . By (6) and (13), we have m_{G}*\nu=m_{G}*\nu_{2} . Hence we get m_{G^{*}}1\nearrow\perp\sigma ,
and the proof is complete.

LEMMA 3. 2. Let (G, X) be a transformation group, in which G is a
compact abelian group and X is a locally compact metric space. Then the
conclusion of Lemma 3. 1 holds.

PROOF. Let \nu be a measure in M(X) such that sp(\nu)\subset P and \iota/\perp\sigma .
Since f/ is bounded and regular, we may assume that X is \sigma compact and
\sigma\in M^{+}(X) . Suppose m_{G}*\nu and \sigma are not mutually singular. Let m_{G}*\nu=

\omega+\zeta be the Lebesgue decomposition of m_{G}*\nu with respect to \sigma , where \omega

<<\sigma and \zeta\perp\sigma . Then \omega\neq 0 . By [14, Lemmas 2. 11 and 2. 13], there
exists a countable subgroup \Gamma of \hat{G} such that
(1) \pi_{H}(\omega)\neq 0 ,
(2) \pi_{H}(|1/|)\perp\pi_{H}(\sigma) , and
(3) \pi_{H}(|\zeta|)\perp\pi_{H}(\sigma) ,

where H=\Gamma^{\perp} and \pi_{H} : Xarrow X/H is the canonical map. Let (G/H, X/H)
be the transformation group induced by (G, X) . By [14, Lemma 2. 9],
\pi_{H}(m_{G}*1’)=m_{G/H}*\pi_{H}(\nu) . Since \pi_{H}(\omega)<<\pi_{H}(\sigma) , it follows from (3) that
m_{G/H}*\pi_{H}(\nu)=\pi_{H}(\omega)+\pi_{H}(\zeta) is the Lebesgue decomposition of m_{G/H}*\pi_{H}(\nu)

with respect to \pi_{H}(\sigma) . Since \sigma is quasi-invariant, \pi_{H}(\sigma) is quasi-invariant.
By [14, Lemma 2. 10], we have sp(\pi_{H}(\nu))\subset P\cap\Gamma Since G/H and X/H
are metrizable, it follows from Remark 3. 1 that (G/H, X/H) satisfies
conditions (D. I) and (D. II ). Hence, by (2) and Lemma 3. 1, we have
m_{G/H}*\pi(\iota/)\perp\pi_{H}(\sigma) , which yields \pi_{H}(\omega)=0 . This contradicts (1), and the
proof is complete.

PROPOSITION 3. 1. Let (G, X) be a transformation group, in which G
is a compact abelian group and X is a locally compact Hausdorff space.
Let P be a semigroup in \hat{G} such that (i) P\cup(-P)=\hat{G} and (ii) P\cap(-P)=
\{0\} . Let \sigma be a positive Radon measure on X that is quasi-invariant. Let
1\nearrow be a measure in M(X) such that sp(J’)\subset P and \nu\perp\sigma. Then m_{G^{*}}\nu\perp\sigma.

PROOF. Since \nu is bounded and regular, we may assume that X is
\sigma compact and \sigma\in M^{+}(X) . Suppose that m_{G}*\nu and \sigma are not mutually
singular. Let m_{G}*\nu=\omega+\zeta be the Lebesgue decomposition of m_{G}*\nu with
respect to \sigma , where \omega<<\sigma and \zeta\perp\sigma . Then \omega\neq 0 . By [15, Lemma 3. 1],
there exists an equivalence relation ”\sim ” on X with the following prop-
erties:
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(1) X/- is a \sigma-compact metrizable, locally compact Hausdorff space
with respect to the quotient topology;
(2) (G, X/-) becomes a transformation group by the action g\cdot\tau(x)

=\tau(g\cdot x) for g\in G and x\in X , where \tau:Xarrow X/- is the canonical map;
(3) \tau(\omega)\neq 0 ;
(4) \tau(|\nu|+|\zeta|)\perp\tau(\sigma) .

By [15, Lemma 2. 1], \tau(\sigma) is quasi-invariant. By (4), \tau(1/) and \tau(\sigma) are
mutually singular. It follows from [15, Lemma 2. 2] that sp(\tau(\nu))\subset sp(\nu)

\subset P . Hence, by (1) and Lemma 3. 2, we have m_{G}*\tau(1’)\perp\tau(\sigma) . On the
other hand, m_{G}*\tau(\nu)=\tau(mc*1/)=\tau(\omega)+\tau(\zeta) . And (3)-(4) implies that 0\neq

\tau(\omega)<<\tau(\sigma) and \tau(\zeta)\perp\tau(\sigma) . Thus we have a contradiction. This com-
pletes the proof.

PROPOSITION 3. 2. Let (G, X) , P and \sigma be as in the previous proposi-
tion. Let \mu be a measure in M(X) such that sp(\mu)\subset P\backslash \{0\} . Let \mu=\mu_{a}

+\mu_{s} be the Lebesgue decomposition of \mu with respect to \sigma. Then both
sp(\mu_{a}) and sp(\mu_{s}) are also contained in P\backslash \{0\} .

PROOF. We may assume that \sigma\in M^{+}(X) . It suffices to prove that
sp(\mu_{s})\subset P\backslash \{0\} because of [14, Remark 1. 1 (II)]. Suppose sp(\mu_{s})\not\subset P\backslash \{0\} .
Since sp(\mu)\subset P , it follows from [15, Theorem 2. 1] that sp(\mu_{s})\subset P : hence
0\in sp(\mu_{s}) . Thus m_{G}*\mu_{s}\neq 0 . Since 0=m_{G}*\mu=m_{G}*\mu_{a}+m_{G}*\mu_{s} , it follows
from [14, Lemma 1. 1] that

0\neq m_{G}*\mu_{s}=-m_{G}*\mu_{a}<<m_{G}*\sigma<<\sigma .

This contradicts Proposition 3. 1, and the proof is complete.

\S 4. Proofs of Theorems 2. 1 and 2. 2.

In this section we prove Theorems 2.1 and 2. 2. Let (G, X) be a
transformation group, in which G is a LCA group and X is a locally com-
pact Hausdorff space. Suppose \overline{G} is ordered, i.e., there exists a closed
semigroup P in \overline{G} such that (i) P\cup(-P)=\overline{G} and (ii) P\cap(-P)=\{0\} (cf.
[12, 8. 1] ) . If G is noncompact and not isomorphic with R, G is isomor-
phic with R\oplus H and P= {(x , d)\in R\oplus\overline{H} : d>0 , or d=0 and x\geq 0 }, where
H is a compact connected subgroup of G (cf. [12, 8. 1. 5. Theorem and 8.
1. 6. Theorem]).

LEMMA 4. 1. Suppose \hat{G} is ordered and G is isomorphic with R\oplus H,

where H is a compact connected abelian group. Let P be the closed scmi-
group in \overline{G} which induces an order on \overline{G}, and set P_{H}=\{d\in\hat{H} : d\geq 0\} .
Let \mu\in M(X) , and suppose sp(\mu)\subset P. Then Sp_{H}(\mu-m_{H}*\mu)\subset P_{H}\backslash \{0\} .
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PROOF. Evidently P\subset R\cross P_{H} .

Step 1. sp_{H}(\mu)\subset P_{H} .

Suppose d\in\hat{H}\backslash P_{H} . For any \omega\in L^{1}(R) , define F_{\omega}\in L^{1}(R\oplus H) by F_{\omega}(s, t)

=\omega(s)(t, d) . Then sp(\mu) is in the interior of \hat{F}_{\omega}^{-1}(0) . It follows from
Lemma 2.4 that F_{\omega}*\mu=0 . For any f\in C_{0}(X) , put f_{s}(x)=f(s\cdot x)(s\in R, x
\in X) . Then

0=F_{\omega}* \mu(f)=\int_{X}\int_{R\oplus H}f((s, t)\cdot x)F_{\omega}(s, t)dm_{R\oplus H}(s, t)d\mu(x)

(1) = \int_{R}\int_{X}\int_{H}f_{s}(t\cdot x)(t, d)dm_{H}(t)d\mu(x)\omega(s)ds

= \int_{R}(dm_{H})*\mu(f_{s})\omega(s)ds .

By Lemma 2. 1, sarrow(dm_{H})*\mu(f_{s}) is a bounded continuous function on R.
By (1), we have

(dm_{H})*\mu(f_{s})=0 a.a . s\in R :

hence

(dm_{H})*\mu(f)=0 for all f\in C_{0}(X) .

Hence (dm_{H})*\mu=0 , and so d\not\in sp_{H}(\mu) . This shows that Step 1 holds.
Step 2. 0\not\in sp_{H}(\mu-m_{H}*\mu) .

We note that m_{H}*(\mu-m_{H}*\mu)=m_{H}*\mu-(m_{H}*m_{H})*\mu=0 . Since \hat{m}_{H}(0)=1 , we
have 0\not\in sp_{H}(\mu-m_{H}*\mu) . Thus Step 2 is obtained.

Since J(\mu:H)\subset J(m_{H}*\mu:H) , we have sp_{H}(m_{H}*\mu)\subset sp_{H}(\mu) . Hence,
by Steps 1 and 2, we have sp_{H}(\mu-m_{H}*\mu)\subset P_{H}\backslash \{0\} . This completes the
proof.

THEOREM 4. 1. Let (G. X) be a transformation group, in which G is
a LCA group and X is a locally compact Hausdorff space. Suppose there
exists a closed semigroup in \hat{G} such that (i) P\cup(-P)=\hat{G} and (ii) P\cap

(-P)=\{0\} . Let \sigma be a positive Radon measure on X that is quasi-
invariant. Let \mu\in M(X) , and let \mu=\mu_{a}+\mu_{s} be the Lebesgue decomposition
of \mu with respect to \sigma. Suppose sp(\mu)\subset P. Then both \Phi(\mu_{a}) and sp(\mu_{s})

are also contained in P.

PROOF. By [12, 8. 1. 5. Theorem], we have
(a) G\cong R , ( b) G is compact, or ( c) G\cong R\oplus H ,
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where H is a compact connected subgroup of G .

Case 1. G\cong R .

In this case, the theorem follows from Theorem D.

Case 2. G is compact.

In this case, the theorem follows from Theorem E.

Case 3. G\cong R\oplus H , where H is a compact connected subgroup of G .

As seen at the begining of this section, we have P=\{(x, d)\in R\oplus\hat{H} : d>0 ,

or d=0 and x\geq 0 }. Put P_{H}=\{d\in\hat{H} : d\geq 0\} . Set

(1) \mu=(\mu-m_{H}*\mu)+m_{H}*\mu .

By Lemma 4.1, sp_{H}(\mu-m_{H}*\mu)\subset P_{H}\backslash \{0\} . Hence Proposition 3. 2 implies
that

(2) sp_{H}((\mu-m_{H}*\mu)_{a}) , sp_{H}((\mu-m_{H}*\mu)_{s})\subset P_{H}\backslash \{0\} .

Since R\cross(P_{H}\backslash \{0\})\subset P , it follows from (2) and Lemma 2. 5 that

(3) sp((\mu-m_{H}*\mu)_{a}) , sp((\mu-m_{H}*\mu)_{s})\subset P .

Claim. sp_{R}(m_{H}*\mu)\subset R^{+} , where R^{+} is the nonnegative real numbers.
For any x_{0}\in R\backslash R^{+} . there exists a function k in L^{1}(R) such that \hat{k}(x_{0})\neq 0

and R^{+} is in the interior of \{x\in R:\overline{k}(x)=0\} . Define F\in L^{1}(R\oplus H) by
F(s, t)=k(s) . Then sp(\mu) is in the interior of \hat{F}^{-1}(0) . It follows from
Lemma 2. 4 that

(4) F*\mu=0 .

We note that k*(m_{H}*\mu)=F*\mu (see the proof of Lemma 2. 5). Hence (4)
yields k*(m_{H}*\mu)=0 . Since \hat{k}(x_{0})\neq 0 , x_{0} does not belong to sp_{R}(m_{H}*\mu) .
This shows that the claim holds.
By Claim and Theorem D, we have

(5) sp_{R}((m_{H}*\mu)_{a}) , sp_{R}((m_{H}*\mu)_{s})\subset R^{+}-

By Lemma 2. 3, we have sp_{H}(m_{H}*\mu)\subset\{0\} , and {0} is a Riesz set in \hat{H} .
Hence, by [15, Theorem 2. 4], we have

(6) sp_{H}((m_{H}*\mu)_{a}) , sp_{H}((m_{H}*\mu)_{s})\subset\{0\} ,

which together with (5) and Lemma 2.5 yields
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(7) sp((m_{H}*\mu)_{a}) , sp((m_{H}*\mu)_{s})\subset R^{+}\cross\{0\}\subset P .

It follows from (1), (3) and (7) that sp(\mu_{a})\subset P and sp(\mu_{s})\subset P . This com-
pletes the proof.

We return to the general case. For \mu\in M(X) , set J_{M(G)}(\mu)=\{\lambda\in

M(G) : \lambda*\mu=0}.

DEFINITION 4. 1. For \mu\in M(X) , define sp_{M(G)}(\mu) by \bigcap_{\lambda\in J_{M(G)}(\mu)}\mu^{\overline{\lambda}^{-1}(0)} .

LEMMA 4. 2. For \mu\in M(X) , we have \Phi(\mu)=\Phi M(G)(\mu) .

PROOF. Since J_{M(G)}(\mu)\supset J(\mu) , we have sp_{M(G)}(\mu)\subset sp(\mu) . Suppose \gamma\not\in

sp_{M(G)}(\mu) . Then there exists \lambda\in J_{M(G)}(\mu) such that \overline{\lambda}(\gamma)\neq 0 . Let k be a
function in L^{1}(G) such that \hat{k}(\gamma)\neq 0 . Then k*\lambda\in L^{1}(G) , (k*\lambda)*\mu=k*(\lambda*\mu)

=0 and (k*\lambda)^{\wedge}(\gamma)\neq 0 . Hence \gamma\not\in sp(\mu) , and so sp(\mu)\subset sp_{M(G)}(\mu) . This
completes the proof.

Suppose there exists a proper closed semigroup P in \hat{G} such that P\cup

(-P)=\overline{G} . Put \Lambda=P\cap(-P) , and let \tau:\hat{G}arrow\overline{G}/\Lambda be the natural homomor-
phism. Let H=\Lambda^{\perp} , and set \tilde{P}=\tau(P) . Then \tilde{P} is a proper closed semi-
group in \hat{G}/\Lambda such that (i) \tilde{P}\cup(-P)=\overline{G}/\Lambda and (ii) \tilde{P}\cap(-\tilde{P})=\{0\} .
From Proposition 4. 1 through Proposition 4. 3, we assume that there
exists such a proper closed semigroup P in \hat{G} .

PROPOSITION 4. 1. Let E be a closed set in \hat{G} such that E+\Lambda=E,
and let \tilde{E}=\tau(E) . Let \mu be a measure in M(X) . Then the following are
equivalent.

(i) \Phi H(\mu)\subset\tilde{E} :
(ii) \Phi(\mu)\subset E.

PROOF. Since E+\Lambda=E , we note that \tilde{E} is a closed set in \hat{G}/\Lambda .
(i)D(ii) : Suppose \gamma\not\in E . Since E+\Lambda=E , \tau(\gamma)\not\in\tilde{E} , and so \tau(\gamma)\not\in

sp_{H}(\mu) . Hence there exists f\in L^{1}(H) such that f*\mu=0 and \overline{f}(\tau(\gamma))\neq 0 .
We can consider f as a measure in M(G) . We denote it by \lambda_{f} . Then \lambda_{f}*

\mu=f*\mu=0 and \hat{\lambda}_{f}(\gamma)=\hat{f}(\tau(\gamma))\neq 0 . It follows from Lemma 4. 2 that \gamma\not\in

sp_{M(G)}(\mu)=sp(\mu) . Hence we have sp(\mu)\subset E .
(ii) D(i) : Suppose \tau(\gamma)\not\in\tilde{E}(\gamma\not\in E) . Let \tilde{V} be a compact neighbor-

hood of \tau(\gamma) such that \tilde{V}\cap\overline{E}=\phi . Then there exists f\in L^{1}(H) such that
\hat{f}(\tau(\gamma))\neq 0 and supp(\hat{f})\subset\tilde{V} Let \mu f be the measure in M(G) correspond-
ing to f. Then

(1) \hat{\lambda}_{f}(\gamma)=\hat{f}(\tau(\gamma))\neq 0 .

We note that
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(2) supp(\hat{\lambda}_{f})\subset\tau^{-1}(\overline{V}) .

Since E+\Lambda=E , we have \tau^{-1}(\tilde{E})=E . This together with \overline{V}\cap\overline{E}=\phi yields

(3) \tau^{-1}(\overline{V})\cap E=\phi .

It follows from (ii), (2) and (3) that

(4) sp(\mu) is in the interior of \overline{\lambda}_{f}^{-1}(0) .

Claim. \lambda_{f}*\mu=0 .

For any h\in L^{1}(G) , h*\lambda_{f}\in L^{1}(G) , and (4) implies that sp(\mu) is in the inte-
rior of \{\gamma\in\hat{G}:(h*\lambda_{f})^{\wedge}(\gamma)=0\} . It follows from Lemma 2. 4 that h*(\lambda_{f}*\mu)=

(h*\lambda_{f})*\mu=0 . Hence, by Lemma 2. 2, we have \lambda_{f}*\mu=0 , and the claim is
obtained.

By Claim, f*\mu=0 , and \hat{f}(\tau(\gamma))\neq 0 . Hence \tau(\gamma)\not\in sp_{H}(\mu) . This shows
that sp_{H}(\mu)\subset\overline{E} , and the proof is complete.

The following two propositions follow from the previous proposition.

PROPOSITION 4.2. Let \mu be a measure in M(X) . Then the following
are equivalent.

(i) \Phi H(\mu)\subset\overline{P} ;
(ii) \phi(\mu)\subset P.

PROOF. Since P+\Lambda=P , the proposition follows from Proposition 4.
1.

PROPOSITION 4. 3. Let \mu be a measure in M(X) . If \Lambda is open, then
the following are equivalent,

(i) \Phi H(\mu)\subset\tilde{P}\backslash \{0\} ;
(ii) \Phi(\mu)\subset P\backslash (-P) .

PROOF. P\backslash (-P) is closed because P\backslash (-P)=P\backslash \Lambda . It is easy to ver-
ify that P\backslash (-P)+\Lambda=P\backslash (-P) and \tau(P\backslash (-P))=\overline{P}\backslash \{0\} . Hence the prop0-

sition follows from Proposition 4. 1.
Now we prove Theorem 2. 1. We may assume that P is a proper

closed semigroup in \overline{G} . Put \Lambda=P\cap(-P) and H=\Lambda^{\perp} . Let \tau:\hat{G}arrow\hat{G}/\Lambda

be the natural homomorphism, and set \overline{P}=\tau(P) . Then \tilde{P} is a closed
semigroup in \overline{G}/\Lambda such that \tilde{P}\cup(-P)=\overline{G}/\Lambda and \tilde{P}\cap(-\tilde{P})=\{0\} . Since
sp(\mu)\subset P , it follows from Proposition 4. 2 that sp_{H}(\mu)\subset\overline{P} . We note that
\overline{H}\cong\overline{G}/\Lambda . Hence Theorem 4.1 implies that

sp_{H}(\mu_{a}) , sp_{H}(\mu_{s})\subset\overline{P} ,
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which together with Proposition 4. 2 yields that sp(\mu_{a}) , sp(\mu_{s})\subset P . This
completes the proof of Theorem 2. 1.

Next we prove Theorem 2. 2. Notations are as in the proof of TheO-
rem 2. 1. Since sp(\mu)\subset P\backslash (-P) , it follows from Proposition 4.3 that
sp_{H}(\mu)\subset\overline{P}\backslash \{0\} . Since P\cap(-P) is open, H is a compact subgroup of G .
It follows from Proposition 3. 2 that sp_{H}(\mu_{a}) , sp_{H}(\mu_{s})\subset\overline{P}\backslash \{0\} . Hence, by
Proposition 4. 3, we have sp(\mu_{a}) , sp(\mu_{s})\subset P\backslash (-P) . This completes the
proof of Theorem 2. 2.

REMARK 4. 1. Let G be a LCA group. Then we get a transforma-
tion group (G, G) . Let \mu\in M(G) , and let E be a closed subset of \overline{G} .
The following are equivalent.

(i) \overline{\mu} vanishes on E^{c} ;
(ii) sp(\mu)\subset E .

In fact, “ (i)D(ii) ” is not difficult, and “ (ii)D(i) ” is obtained as follows:
Let \gamma\in E^{c} . Then there exists f\in L^{1}(G) such that \hat{f}(\gamma)=1 and E is in the
interior of \hat{f}^{-1}(0) . By (ii), sp(\mu) is in the interior of \hat{f}^{-1}(0) . By Lemma
2.4, we have f*\mu=0 . Hence 0=\hat{f}(\gamma)\overline{\mu}(\gamma)=\hat{\mu}(\gamma) . This shows that (i)
holds.

REMARK 4. 2. Theorem C follows from Theorems 2. 1 and 2. 2. In
fact, let \mu be a measure in M_{pc}(G) . We may assume that P is a proper
closed semigroup in \overline{G} . First we consider the case that P\cap(-P) is not
open. Since \mu\in M_{pc}(G) , \mu belongs to M_{(-p)}(G) . It follows from Theorem
2. 1 and Remark 4. 1 that \mu_{a} , \mu_{s}\in M_{(-P)}(G) . Since (-P)^{c} is dense in P, we
have \mu_{a} , \mu_{s}\in M_{P^{C}}(G) . Next we consider the case that P\cap(-P) is open.
Since P^{c}=(-P)\backslash P is closed, \mu\in M_{P^{C}}(G) imolies that sp(\mu)\subset P^{c}=(-P)\backslash P ,
by Remark 4. 1. Hence, by Theorem 2.2 and Remark 4. 1, we have \mu_{a} , \mu_{s}

\in M_{P^{C}}(G) .

REMARK 4. 3. Let (R, X) be a transformation group, in which the
reals R acts on a locally compact Hausdorff space X. Let \sigma be a quasi-
invariant, positive Radon measure on X. Let \mu be an analytic measure
on X, and let \mu=\mu_{a}+\mu_{s} be the Lebesgue decomposition of \mu with respect
to \sigma . In [5, Theorem 5], Forelli showed that sp(\mu_{a}) and sp(\mu_{s})

are contained in sp(\mu) . This result seems to depend on the fact that the
semigroup [o, \infty) is a Riesz set (cf. [15, Theorem 2. 4]). In general, this
result does not hold for another transformation group. We give an exam-
ple : Let G be a compact connected abelian group which is not isomor-
phic to the circle group T. and let P be a semigroup in \hat{G} such that P\cup
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(-P)=\overline{G} and P\cap(-P)=\{0\} . We consider the transformation group (G,
G) . We take m_{G} as a quasi-invariant measure. Since G is not isomor-
phic to T. there exists a nonzero singular measure \xi\in M_{P}(G) . Then there
exists \gamma_{0}\in P such that \overline{\xi}(\gamma_{0})\neq 0 . Let \mu=\hat{\xi}(\gamma_{0})m_{G}-\xi . Then \hat{\mu}(\gamma_{0})=0 and
\hat{\mu}_{s}(\gamma_{0})=-\hat{\xi}(\gamma_{0})\neq 0 . It follows from Remark 4.1 and [14, Remark 1.1 (II .
1)] that sp(\mu)\subset P and sp(\mu_{s})\not\subset sp(\mu) .
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