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§1. Introduction.

Helson and Lowdenslager extended the classical F. and M. Riesz theo-
rem as follows.

THEOREM A (cf. [12, 8.2.3. Theorem]). Let G be a compact abelian
group with ordered dual, i. e., therve exsits a semigroup P in G such that
(i) PU(=P)=G and (it) PN(—P)={0}. Let p be a measure in M(G)
such that ((y)=0 for y<0. Then

(1) id7)=@as(y)=0 for y<0;

(I1) s(0)=0.

Theorem A (1) was extended, by the author ([13]) and Hewitt-Koshi
-Takahashi ([7]), to LCA groups as follows.

THEOREM B (cf. [13, Corollary], [ 7, Theorem D]).
Let G be a LCA group and P a semigroup in G such that PU(—P)=G.
Let u be a measure in My(G), where Mp(G)={veM(G): =0 on P°).
Then pe and us also belong to My(G).

In Theorem B we can not expect “/is(0)=0" in general. As pointed
out in the proof of [13, Corollary], Theorem B follows from the following
theorem.

THEOREM C (cf. [13, Main Theorem)). Let G be a LCA group and
P a closed semigroup in G such that PU(—P)=G. Let p be a measure in
Mp(G). Then pa and us also belong to Mp(G).

On the other hand, Forelli obtained the following theorem ([5]).

THEOREM D (cf. [5, Theorem 5]). Let (R, X) be a (topological)
transformation group, in which the reals R acts on a locally compact Haus-
dorff space X. Let o be a positive Radon wmeasure on X that is quasi
~invariant. Let pEM(X), and let p=pq+ s be the Lebesgue decomposi-
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tion of p with respect to 0. Suppose p is an analytic measure, i. e., the
spectrum of p is in [0, ). Then ue and us ave also analytic measures.

We need a comment on Analytic measures treated in [5,
Theorem 5] are bounded complex Baire measures. But every bounded
complex Baire measures on a locally compact Hausdorff space is uniquely
extended to a bounded complex, regular Borel measure. Thus Theorem D
follows from [5, Theorem 5].

Moreover the author extended Theorem A (1) to a compact transfor-
mation group as follows.

THEOREM E (cf. [15, Theorem 2.1]). Let (G X) be a transforma-
tion group, in which a compact abelian group G acts on a locally compact
Hausdorff space X. Let P be a semigroup in G such that PU(—P)=G.
Let 0 be a positive Radon measure on X that is quasi-invariant. Let 1 be
a measure in M(X), and let p=pa+ps be the Lebesgue decomposition of v

with vespect to o. Suppose sp(u)CP. Then sp(ua) and sp(us) are also
contained in P.

In this paper, we shall extend Theorems D and E to a transformation
group, in which a locally compact abelian (LCA) group acts on a locally
compact Hausdorff space. In section 2, we state definitions and our theo-
rems. In section 3, we give some results on a compact transformation
group, and we give the proofs of our theorems in section 4. We also

show that Theorem C follows from our theorems in section 4 (Remark 4.
2).

§ 2. Notations and results.

Let (G, X) be a (topological) transformation group, in which G is a
LCA group and X is a locally compact Hausdorff space. Suppose that
the action of G on X is given by (g, x) = ¢g-x, where g=G and x€X. Let
Co(X) and C.(X) be the Banach space of continuous functions on X
which vanish at infinity and the space of continuous functions on X with
compact supports respectively. Let M(X) be the Banach space of bound-
ed regular Borel measures on X with the total variation norm. Let
M*(X) be the set of nonnegative measures in M(X). For p€M(X) and f

eL'(Jul), we often write u(f):ﬁf(x)d/z(x). Let X' be another locally

compact Hausdorff space, and let S: X —» X be a continuous map. For u
eEM(X), let S(©)€M(X') be the continuous image of g under S. We
denote by % (X) the o-algebra of Borel sets in X. #«X) stands for the
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o-algebra of Baire sets in X. That is, #¢(X) is the o-algebra generated
by compact Gs-sets in X. A (Borel) measure ¢ on X is called quasi
-invariant if |¢|(F)=0 implies |o|(g- F)=0 for all g€ G.

Let G be the dual group of G. M(G) and LYG) denote the measure
algebra and the group algebra respectively. For A€ M(G), A denotes the

Fourier-Stieltjes transform of A, i.e., A(y)= ﬁ (—x, v)dA(x). m¢ stands

for the Haar measure of G. Let M.(G) be the set of measures in M(G)
which are absolutely continuous with respect to m¢c. Then by the Radon
-Nikodym theorem we can identify M.(G) with L'(G). For a subset E of
G, M:(G) denotes the space of measures in M(G) whose Fourier-stieltjes
transforms vanish off £. E~ denotes the closure of E. A closed subset
E of G is called a Riesz set if Me(G)CLYG). For a closed subgroup H
of G, H* denotes the annihilator of H.
Let f be a Borel measurable function on X. Then

2.1 (g,x) - f(g+x) is a Borel measurable function on G X X.
For A€M(G) and p=M(X), we can define AxpEM(X), by virtue of [4,
(7.23) Lemma and (7.27) Theorem], as follows.

@.2)  ruh)= [ [Ag-0)di9)dut0= [ [ flg-x)dutx)di(g)

for f€ Co(X).

REMARK 2.1. (2.2) holds for all bounded Borel functions f on X.
For & A€M(G) and pEM(X), the following hold.

2.3) sl < Al e,

@2.4) (A =(&xN)*p.

For a closed subgroup H of G, let J(x: H)={k€ L (H): k*xu=0}.

Set J(u)={h€L'(G): h* =0} (=]J(z:G)). Then, by (2.3) and (2. 4),
J(u: H) and J(u) are closed ideals in L'(H) and L*(G) respectively.

DEFINITION 2.1.  For pEM(X), define the spectrum of g by sp(u)=
M h='0). For a closed subgroup H of G, we also define spx(y) by

hej(#)
£7Y0).

kEJ(u: H)

For p, vEM(X), it follows from (2.4) and the definition of spectrum
that sp(ux+v)Csp(p)Usp(v) (cf. [5, Lemma 3]). Now we state our theo-
rems.

THEOREM 2.1. Let (G, X) be a tmansformation group, in which G is
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a LCA group and X is a locally compact Hausdorff space. Let P be a
closed semigroup in G such that PU(—P)=G. Let o be a positive Radon
measure on X that is quasi-invariant. Let pEM(X), and let p=pa+ s
be the Lebesgue decomposition of u with rvespect to 0. Suppose sp(u)P.
Then both sp(pe) and sp(us) are also contained in P.

THEOREM 2.2. Let (G X) and ¢ be as in Theovem 2.1. Let P be
a proper closed semigroup in G such that PU(—P)=G, and suppose that P
N(—P) is open. Let p€M(X), and suppose that sp(u)CP\(—P). Then
both sp(ua) and sp(us) are also contained in P\(—P).

Before closing this section, we state several lemmas which we shall
need later on. The following lemma is well-known.

LEMMA 2.1. For f€C(X) and g=G, define f,€C(X) by fo{x)=F(g
x). Then lgizrollLf—j;IIm=0.

LEMMA 2.2. Let p€ M(X), and suppose that k+*pu=0 for all
kELNG). Then u=0.

PROOF. Suppose #+0. Then there exists fE Co(X) such that
ﬁf(x)du(x)qto. For an open neighborhood V of 0 in G, let %v be a non-

negative function in C.(G) such that supp(4v)C V and |Av[i=1. It follows
from that

(1) lim|&v+f = fl-=0,

where hv*f(x)=/6f((—g)-x)hv(g)dmc(g). Set h¥(g)=hv(—g). Then, by
the hypothesis, we have

Jow£ydut)= [ [ 7(=9)-0)hlg)dmelg)du()

— [ F(0d(ht+)()
=),

which together with (1) yields /); f(x)du(x)=0. This contradicts the choice

of f, and the proof is complete.

_ LEMMA 2.3, Let A€ M(G) and p€ M(X). Then sp(A+ p)Cl{ye G:
Aly)=+0}".

PROOF. Suppose 7&{yEG: A(y)=+0}". Let U be an open neighbor-
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hood of 7 such that UO{yEG:: A(7)#0}"=¢. Let % be a function in
LY(G) such that %(7)#0 and #=0 on U°. Then %*A=0, and so /% *(} *

1)=(h*A)*p=0. Since 7(7)*0, we have yo&sp(A*x). This completes the
proof.

We shall use the following lemma frequently.

LEMMA 2.4 (cf. [12,7.25. (a)]). Let G be a LCA group. Let FE
LYG), and let I be a closed ideal in L\(G). Suppose that h@{h‘l(O) s n

the interior of F~Y0). Then FEI.

LEMMA 2.5.  Suppose G=H ®K, where H cmgz’ K are closed sub-
groups of G. Let E and F be closed subsets of H and K respectively.

Let pt€M(X), and suppose that spu(pr)TE and spx(p)CF. Then sp(u)C
EXF.

PROOF. For x€X, s€EH and t€K, denote (s,0)*x and (0, ¢)+x by
s*x and f-x respectively. Suppose (7, w)€EXF. Then y¢E or w¢F.

We may assume that y&E. Then there exist 2L (H) and k€ L(K)
such that

(1) h(7)#0,
2 k(w)#+0, and )
€)) E is in the interior of 47%0).

By (3) and the hypothesis, spx(x) is in the interior of 27(0). It follows
from that

(4) he](p: H).
Define FEL'(G) by F(s, t)=h(s)k(¢). For any f< CyX), we have

Foulf)= [ [ A, 0)2)F(s, Odmuex(s, t)du(x)
- j{ ﬁ [{ Fo(s+ %) h(s) dma(s)du() k(£ dmu ()

=/ J a0kt dma(t)
= kx(h* p1)(f)
0, (by (4))

where fi(x)=f(¢t-x) (t€K,xX). This shows that FEJ(x). On the

other hand, F(y, w)=i(y)E(w)+0. Hence (7, w)é sp(x), and we have
sp(¢)CE X F. This completes the proof.
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§3. Some results on compact transformation groups.

In this section, let (G, X) be a transformation group, in which G is a
compact abelian group and X is a locally compact Hausdorff space. For
yEG and pEM(X), we note that yEsp(p) if and only if y*u=+0 (cf. [14,
Remark 1.1 (I.1)]). Let 7: X—X/G be the canonical map. For x€X,
we define a continuous map Bx: G—G+x (CX) by Bx(g)=g*x. Set Gx=
{g€G: grx=x}. Then Gx is a closed subgroup of G. We define a map
Bx: G/Gx—G+x by Bx(g+Gx)=g*x. Then By is a homeomorphism.

DEFINITION 3.1. For x€X, put ¥ =xn(x). Define m:. €M*(X) by
Wlx:Bx(ch).

As noted in [14, Remark 1.2], m.: is well-defined because By(m¢)=
Bx(mge) for every yEx ' (x%). We state two conditions (D.I) and (D.II).

(D.D Let (G, X) be a transformation group, in which G is a metriza-
ble compact abelian group and X is a locally compact Hausdorff space.
For any peM*(X), put 7=n(x). Then there exists a family {A:}:ex/c of
measures in M*(X) with the following properties :

3.1 %—A:{f) is n-measurable for each bounded Baire function f on
X,
(3.2) 1A =1,

(3.3)  supp(A)Cxi (%),
(3.4 /l(f):’/;(/cﬂx'(f)dﬂ(X) for each bounded Baire function # on X.

(D,ID  Let (G, X) be as in (D.I). Let vEM*(X/G). Suppose {A.}iex/c
and {A%}:iex/c are families of measures in M(X) with the following prop-

erties :

(3.5) %—AL(f) is v-integrable for each bounded Baire function f on X
(1=1,2),
(3.6) supp(/li) cri(x) (1=1, 2),

3.7 [ Ai(f)a’u(X)=f A{f)dv(x) for each bounded Baire function
X/G X/G
f on X.

Then A,=2. v-a.axEX/G.

Let ueM(X) and 7€M*(X/G). By an p-disintegration of g, we
mean a family {A:}tex/c of measures in M(X) satisfying (3. 1) x—A(f)
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is n-integrable for each bounded Baire function f on X and (3. 3)-(3. 4) in
(D. I). If, in addition, p=n(|¢|) and ||/1i||=1 for all x € X/G, then we call

{A:}sex/c a canonical disintegration of x. Thus condition (D. I) says that
each € M*(X) has a canonical disintegration {A:}:ex/c with A:EM*(X).

REMARK 3.1. Let (G, X) be a transformation group, in which G is
a metrizable compact abelian group and X is a locally compact metric
space. Then (G, X) satisfies conditions (D.I) and (D.II) (cf. [14,
Remark 6. 1]).

LEMMA 3.1. Let (G, X) be a transformation group, in which G is a
metrizable compact abelian group and X is a locally compact Hausdorff
space. Suppose (G, X) satisfies conditions (D.I) and (D.II). Let P be a
semigroup in G such that (i) PU(—P)=G and (ii) PN(—P)={0}. Let o
be a positive Radon measure on X that is quasi-invaviant. Let v be a
measure in M(X) such that sp(v)CP and vLo. Then me*y Lo,

PROOF. Since v is bounded and regular, we may assume that ¢<
M*(X) (cf. [14, the proof of Theorem 1.1, p.311]). Put p=x(v|). By
(D.I), |v| has a canonical disintegration {A:}:ex/c with A EM*(X). Let 7
=7.+7s be the Lebesgue decomposition of 7 with respect to z(s). We
define w1, w: EM*(X) as follows:

©  wl)= [ A)dnax),
A 7)= [ MF)dns )

for f€Cy(X). We note that (1) holds for all bounded Baire functions f
on X. It is easy to verify that

(2) |v|= w1+ w2, and
(3) n(w2) L 7(0).

It follows from (2) and the hypothesis that w: Lo. Hence, by [14, Lemma
2.5 (I)], we have

(4) Ai Lmy no—a.a.x €X/G.

Let % be a unimodular Baire function on X such that v=~#|y|, and define
measures vi, 1,EM(X) as follows:

() w)= [ vsl) dnl)
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Vz(f)zﬁlcu;e(f)a’vs(x)

for f€ Co(X), where v:=hA:. Then
(6) y=u1+ Va.

We note that {v:}sex/c is a canonical disintegration of v. Since sp(v)CP,
it follows from [14, Lemma 2. 6] that

(7) sp(v:)CP p-aa. x€X/G;

hence
(8) sp(v:)CP pea.a. x€X/G.

Since supp(v:)Ca (%) and Bix: G/Gx—>G-x(=7r‘l(x))~is a homeomor-
phism, there exists a measure &;<M(G/Gx) such that Bx(&:)=v:, where
xEx ' (#). By(8) and [14, Proposition 1. 2], we have

(9) E:EMrnc{G/Gx) na-aa. XEX/G.
It follows from (4) and [14, Proposition 1.5] that
(10) £: Lmeioe Ne-a.a. x€X/G.
Hence we have, by (9), (10) and Theorem A (II),
(11) E:€EMpinnc{(G/Gx) ne-aa. xE€X/G,
which yields
(12) sp(v:)CP\{0} 7e-a.a. x€X/G
by [14, Proposition 1.2]. Hence
me*v:=0 7ps-a.a. x<EX/G,
which together with [14, Lemma 2. 3] yields
mern()= [ metvi(Fdnd()=0
for all /€ Co(X). This shows that
(13) me*1=0.
On the other hand, it is easy to verify that
(14) m(me*w2) = n(w2).

(3) and (14) imply that me*w2L o, and so me*v. Lo because me*ve< <
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me*@2. By (6) and (13), we have me*v=mc*v,. Hence we get me*v Lo,
and the proof is complete.

LEMMA 3.2. Let (G, X) be a transformation group, in which G is a
compact abelian group and X is a locally compact metric space. Then the
conclusion of Lemma 3.1 holds.

PROOF.  Let v be a measure in M(X) such that sp(v)CP and v_Lo.
Since v is bounded and regular, we may assume that X is o-compact and
cEM*(X). Suppose me*v and ¢ are not mutually singular. Let mg*v=
w+ & be the Lebesgue decomposition of me*y with respect to g, where w
<<o0 and {lo. Then w+0. By [14, Lemmas 2.11 and 2.13], there
exists a countable subgroup T" of G such that

(1) ma(w)+0,
(2) mu(|v]) L mu(0o), and
(3) mu(|&]) L mu(o),

where H=T* and 7w : X—X/H is the canonical map. Let (G/H, X/H)
be the transformation group induced by (G, X). By [14, Lemma 2. 9],
mu(me * v)=mem * ma(v). Since mu(w)< < 7o), it follows from (3) that
meu* mu(v)=na(w)+ 7a(¢) is the Lebesgue decomposition of #mcu*my(v)
with respect to 7x(0). Since ¢ is quasi-invariant, 7(¢) is quasi-invariant.
By [14, Lemma 2.10], we have sp(zx(v))CPNT. Since G/H and X/H
are metrizable, it follows from Remark 3.1 that (G/H, X/H) satisfies
conditions (D.I) and (D.II). Hence, by (2) and Lemma 3.1, we have
meu*n(v) Ly(o), which yvields 7x(w)=0. This contradicts (1), and the
proof is complete.

PROPOSITION 3.1.  Let (G, X) be a transformation group, in which G
is a compact abelian group and X is a locally compact Hausdorff space.
Let P be a semigroup in G such that i) PU(—P)=G and (ii) PN(—P)=
{0}. Let 0 be a positive Radon measure on X that is quasi-invariant. Let
v be a measure in M(X) such that sp(v)CP and vLo. Then mery Lo,

PROOF.  Since v is bounded and regular, we may assume that X is
o-compact and s=EM*(X). Suppose that ms*v and ¢ are not mutually
singular. Let mc*v=w+ ¢ be the Lebesgue decomposition of mc*y with
respect to o, where w<<o¢ and {Llo. Then w+0. By [15, Lemma 3.1],
there exists an equivalence relation “~” on X with the following prop-
erties :
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(1) X/~ is a o-compact metrizable, locally compact Hausdorff space
with respect to the quotient topology ;
(2) (G, X/~) becomes a transformation group by the action g-r(x)

=17(g+x) for g€G and x€X, where r: X— X/~ is the canonical map;
(3) r(w)=+0;
(4) r(lv|+¢]) L (o).

By [15, Lemma 2.1], (o) is quasi-invariant. By (4), (v) and (o) are
mutually singular. It follows from [15, Lemma 2. 2] that sp(z(v))C sp(v)
CP. Hence, by (1) and Lemma 3.2, we have mqe*r(v)Lz(o). On the
other hand, mc*r(v)=t(mec*v)=1(w)+ (). And (3)-(4) implies that 0+
r(w)<<r(o) and (&)L 1(c). Thus we have a contradiction. This com-
pletes the proof.

PROPOSITION 3.2. Let (G, X), P and ¢ be as in the previous proposi-
tion. Let p be a measurve in M(X) such that sp(p)C P\{0}. Let p=p.
+ s be the Lebesgue decomposition of p with respect to 0. Then both
sp(ua) and sp(us) ave also contained in P\{0}.

PROOF. We may assume that c€M*(X). It suffices to prove that
sp(us)C P\{0} because of [14, Remark 1.1 (II)]. Suppose sp(us)&P\{0}.
Since sp(¢)CP, it follows from [15, Theorem 2.1] that sp(us)C P ; hence
0€sp(us). Thus me*us+0. Since 0=mc*p=mec*pta+me*s, it follows
from [14, Lemma 1.1] that

0F me* pts=—Me*pta < <me*o0< < 0.

This contradicts [Proposition 3. 1, and the proof is complete.

§4. Proofs of Theorems 2.1 and 2. 2.

In this section we prove Theorems 2.1 and 2.2 Let (G, X) be a
transformation group, in which G is a LCA group and X is a locally com-
pact Hausdorff space. Suppose G is ordered, i.e., there exists a closed
semigroup P in G such that (i) PU(—P)=G and PN(—P)={0} (cf.
[12, 8.1]). If G is noncompact and not isomorphic with R, G is isomor-
phic with R® H and P={(x, d)ER®H : d >0, or d=0 and x>0}, where
H is a compact connected subgroup of G (cf. [12, 8.1.5. Theorem and 8.
1.6. Theorem]).

LEMMA 4.1.  Suppose G is ovdered and G is isomorphic with R® H,
wheve H is a compact conmected abelian group. Let P be the closed semi-
group in G which induces an order on G, and set Pu={d=H : d>0).
Let u=M(X), and suppose sp(u)CTP.  Then spu(p—mu* 1) C Pa\{0}.
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PROOF. Evidently PCR X Py.
Step 1. spu(u)C Pa.

Suppose d€H\Py. For any wEL(R), define FuEL(R®H) by Fu(s, ¢)
=w(s) (¢, d). Then sp(y) is in the interior of F30). It follows from
that Fu*p=0. For any f&€Co(X), put f{x)=s(s*x) (sER, x
€X). Then

0=Fw*/ut(f)='[(/l;w f((s, t)x)Fu(s, t)dmren(s, t)du(x)

6 = [ | [5:t2) (1, @)amut)du(x)o(s)ds
= [ (@mw)ufo(s)ds.

By Lemma 2.1, s—(dmu)*1(fs) is a bounded continuous function on R.
By (1), we have

(dmu)*p(fs)=0 aa. sER;
hence
(dmu)*u(f)=0 for all f€Co(X).
Hence (dmu)*1=0, and so d&spx(p). This shows that Step 1 holds.
Step 2. 0&spa(p—mu*p).

We note that mu*(u—mu*p)=mu*pp—(muxmu)*2=0. Since mu(0)=1, we
have 0&spu(—mu*p). Thus Step 2 is obtained.

Since J(u: H)CJ(mu*p: H), we have spu(mu*p)Cspa(y). Hence,
by Steps 1 and 2, we have spu(y—mu*u)CPy\{0}. This completes the
proof.

THEOREM 4.1. Let (G. X) be a transformation group, in which G is
a LCA group and X is a locally compact Hausdorff space. Suppose there
exists a closed semigroup in G such that (i) PU(—P)=G and (i) PN
(—=P)={0}. Let ¢ be a positive Radon wmeasure on X that is quasi-
invaviant. Let p€ M(X), and let p=po+ us be the Lebesgue decomposition

of 1 with respect to o. Suppose sp(u)CP. Then both sp(ua) and sp(us)
are also contained in P.

PROOF. By [12, 8.1.5. Theorem], we have
(a) G=R, (b) Gis compact, or (¢) G=R®H,
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where H is a compact connected subgroup of G.

Case 1. G=R.

In this case, the theorem follows from Theorem D.

Case 2. G is compact.

In this case, the theorem follows from Theorem E.

Case 3. G=R® H, where H is a compact connected subgroup of G.

As seen at the begining of this section, we have P={(x, d)ER®H : d >0,
or d=0 and x>0}, Put Ps={d€EH: d=0}. Set

(1) p=(p—mu*p) + mu* .

By Lemma 4.1, sps(u—mu*n)C Py\{0}. Hence [Proposition 3.2 implies
that

(2) spu((p—mu*)a), spa((—mu*p)s) C Pu\{0}.
‘Since RXx(P;\{0})CP, it follows from (2) and that
(3) sp((e—mu*p)a), sp((e—mu*2)s) CP.

Claim. spr(mu*n)CR*, where R* is the nonnegative real numbers.
For any x<R\R*, there exists a function %4 in L'(R) such that /& (x0)=0
and R' is in the interior of {xER: E(x)=0}. Define FEL'R®H) by
F(s, t)=k(s). Then sp(y) is in the interior of F~(0). It follows from
that

(4) F*u=0.

We note that k*(mu*p)=F=*u (see the proof of Lemma 2.5). Hence (4)
yields A*(mu*r)=0. Since £ (x0)*0, xo does not belong to spr(max*p).
This shows that the claim holds.

By Claim and Theorem D, we have

(5) spr((mu*p)a), spr((mu*p)s) CR".

By Lemma 2.3, we have spu(mu*r)C{0}, and {0} is a Riesz set in H.
Hence, by [15, Theorem 2. 4], we have

(6) spu((mu*pe)a), spal((mu*p)s) {0},
which together with (5) and yields
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(7) sp((mu*pt)a), sp((mu*p)s) TR X{0}C P.

It follows from (1), (3) and (7) that sp(u.)CP and sp(us)CP. This com-
pletes the proof.

We return to the general case. For peM(X), set Jue(p)={Ac
M(G) : Axu=0}.

DEFINITION 4.1. For p€M(X), define spucy(rr) by (N p*O,

AE]M(G)(#)

LEMMA 4.2. For p=EM(X), we have sp(1t)=spmc(1).

PROOF.  Since Jue)(1£)DJ (1), we have spue)(2)Tsp(r). Suppose y&
spu(u). Then there exists A€ Jue) () such that A(y)#0. Let £ be a
function in L'(G) such that £(7)#0. Then E*ASLNG), (k*A)*u=Fk*(A*y)
=0 and (£*A)"(7)*0. Hence y¢sp(y), and so sp(¢)CTspme)(x). This
completes the proof.

Suppose there exists a proper closed semigroup P in G such that PU
(—P)=G. Put A=PN(—P), and let r: G—G/A be the natural homomor-
phism. Let H=A*, and set P=7(P). Then P is a proper closed semi-
group in G/A such that () PU(-P)=G/A and PNn(—P)={0).
From [Proposition 4.1 through [Proposition 4.3, we assume that there
exists such a proper closed semigroup P in G.

PROPQSITION 4.1. Let E be a closed set in G such that E+A=FE,
and let E=1(E). Let 1 be a measure in M(X). Then the following are
equivalent.

(i) sou()CE ;
(i1) sp()CE.

PROOF. Since E4+A=E, we note that E is a closed set in G/A.

() (ii): Suppose y€E. Since E+A=E, (y)¢E, and so r(y)&
spa(2). Hence there exists f€L'H) such that f*z=0 and 7 (z(y))=0.
We can consider f as a measure in M(G). We denote it by A,. Then As*
p=f+p=0 and A,(y)=f(z())=0. It follows from that y<
spme(1)=sp(x). Hence we have sp(u)CE.

©(i): Suppose 7(y)&E (y&E). Let V be a compact neighbor-
hood of 7(y) such that VN E=¢. Then there exists f&L(H) such that

F(z(9)*#0 and supp(f)C V. Let u be the measure in M(G) correspond-
ing to /. Then

(1) A#(r)= F (z(y))*0.
We note that
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(2) supp(A,)C (V).
Since E+A=E, we have r"{(E)=E. This together with VN E=¢ yields
(3) r(V)NE=4.
It follows from [(ii), (2) and (3) that
(4) sp(u) is in the interior of A,7%(0).
Claim. As*p=0.

For any #€L'G), h*A,<L'(G), and (4) implies that sp(x) is in the inte-
rior of {y€G: (h*A,)"(7)=0}. It follows from that Zx(A,*p)=
(h*As)*n=0. Hence, by Lemma 2.2, we have A,*x=0, and the claim is
obtained.

By Claim, f*x=0, and fF(z(y))#0. Hence r(y)&spu(x). This shows
that spx(¢)C E, and the proof is complete.

The following two propositions follow from the previous proposition.

PROPOSITION 4.2. Let p¢ be a measure in M(X). Then the following
are equivalent.

(i) sou(w)C P ;
(ii) sp()CP.

PROOF. Since P+A=P, the proposition follows from Proposition 4.

PROPOSITION 4.3. Let p be a measure in M(X). If A is open, then
the following arve equivalent.

(i) spu()C P\{0} ;
(ii) sp(u) CP\(—P).

PrROOF. P\(—P) is closed because P\(—P)=P\A. It is easy to ver-
ify that P\(—P)+A=P\(—P) and r(P\(—P))=P\{0}. Hence the propo-
sition follows from [Proposition 4. 1.

Now we prove [lheorem 2.1l We may assume that P is a proper
closed semigroup in G. Put A=PN(—P) and H=A* Let r: G~G/A
be the natural homomorphism, and set P=7(P). Then P is a closed
semigroup in G/A such that PU(—P)=G/A and PN(—P)={0}. Since
sp(u)C P, it follows from [Proposition 4.2 that spa(u)C P. We note that
H=G/A. Hence Theorem 4.1 implies that

SpH(ﬂd)’ SpH(ﬂS)Cﬁy
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which together with [Proposition 4.2 yields that sp(ua), sp(us)CP. This
completes the proof of [Theorem 2. 1.

Next we prove [Theorem 2.2. Notations are as in the proof of Theo-
rem 2.1. Since sp(#)CP\(—P), it follows from [Proposition 4.3 that
spu()C P\{0}. Since PN(—P) is open, H is a compact subgroup of G.
It follows from [Proposition 3.2 that spu(ua), spa(us)C P\{0}. Hence, by
[Proposition 4.3, we have sp(ua), sp(us)CP\(—P). This completes the
proof of [Theorem 2. 2.

REMARK 4.1. Let G be a LCA group. Then we get a transformg-
tion group (G, G). Let x€M(G), and let E be a closed subset of C.
The following are equivalent.

(i) ¢ vanishes on E°¢:
(ii) sp(1)CE.

In fact, “(i))©(ii) ” is not difficult, and “ (ii))©(@) ” is obtained as follows
Let y€E°. Then there exists /&€ LYG) such that 7(y)=1 and E is in the
interior of 77%(0). By [ii), sp(x) is in the interior of 7~Y(0). By
2.4, we have f*p=0. Hence 0= 7(y)u(»)=x(y). This shows that (i)
holds.

REMARK 4.2.  Theorem C follows from Theorems Z.1 and 2.2 In
fact, let # be a measure in Mpc(G). We may assume that P is a proper
closed semigroup in G. First we consider the case that PN(—P) is not
open. Since p#E Mp(G), 1 belongs to M—p»(G). It follows from
2.1 and Remark 4.1 that us, EM-p)(G). Since (—P)° is dense in P, we
have pa, 1sEMp(G). Next we consider the case that PN(—P) is open.
Since P°=(—P)\P is closed, 4= Mp(G) imolies that sp(u)C P°=(—P)\P,
by Remark 4.1. Hence, by [Theorem 2.2 and Remark 4.1, we have ua, s
EMp(G).

REMARK 4.3. Let (R, X) be a transformation group, in which the
reals R acts on a locally compact Hausdorff space X. Let ¢ be a quasi-
invariant, positive Radon measure on X. Let x be an analytic measure
on X, and let x=p,+ us be the Lebesgue decomposition of x with respect

to 0. In [5 Theorem 5], Forelli showed that sp(za) and  sp(us)
are contained in sp(x). This result seems to depend on the fact that the
semigroup [0, o) is a Riesz set (cf. [15, Theorem 2. 4]). In general, this
result does not hold for another transformation group. We give an exam-
ple: Let G be a compact connected abelian group which is not isomor-
phic to the circle group T, and let P be a semigroup in G such that PU
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(—P)=G and PN(—P)={0}. We consider the transformation group (G,
G). We take m¢ as a quasi-invariant measure. Since G is not isomor-
phic to T, there exists a nonzero singular measure £ Mp(G). Then there
exists 70€ P such that &(y)#0. Let u=&(y)mc—&. Then u(y)=0 and
us(70)=—E(y)#0. It follows from Remark 4.1 and [14, Remark 1.1 (IL
1)] that sp(x#)C P and sp(us)Zsp(u).

(1]
[2]
(3]
[4]
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