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Martin boundaries and thin sets for \Delta u=Pu
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0. Introduction.

Let R be a hyperbolic Riemann surface and P a density on R, that is,
a non-negative H\"older continuous function on R which depends on the
local parameter z=x+iy in such a way that the partial differential equa-
tion

(0. 1) L_{P}u\equiv-\Delta u+Pu=0 , \Delta=\partial^{2}/\partial x^{2}+\partial^{2}/\partial y^{2}

is invariantly defined on R. A real valued function u is said to be a
P-harmonic function (or a P-solution) on an open set U of R , if u has
continuons partial derivatives up to the order 2 and satisfies the equation
(0.1) on U. Throughout this paper we assume that the density P is not
constantly zero on R . A density P on a Riemann surface R is called a
hyperbolic density if there exists a positive P-harmonic function on R
dominated by 1 on R. In this paper we shall consider two Martin
compactifications of a hyperbolic Riemann surface R, the first R_{P}^{*} with
respect to a hyperbolic density P on R, the second R^{*} with respect to
harmonic functions. Let K^{P}(z,a) , K(z,b) be Martin kernels on the
compactifications R_{P}^{*} , R^{*} respectively. Let G(z,w) be the harmonic
Green’s function of R . For a minimal boundary point a of R_{P}^{*} such that

(0.2) \int_{R}P(w)G(w,z_{1})K^{P}(w,a)dudv<+\infty

for some point z_{1} in R , there exists a unique minimal boundary point of
R^{*} . Then we may define a mapping with the domain consisting points a
which satisfy the condition (0.2) into the set of minimal boundary points
of R^{*} .

In the special case where P is a bounded rotation free density on the
unit disk in complex plane C, two compactifications coincide with the
closed unit disk \{z\in C:|z|\leq 1\} . In this case our mapping reduces to the
identity mapping of the unit circle (Remark in sec . 2). The purpose of
this paper is to show that a closed set E in R is thin at a poinnt a with
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the condition (0.2) if and only if E is thin at the minimal boundary point
of R^{*} assigned to the point a by the mapping. Therefore, fine neibor-
hoods of points a with (0.2) and of the imagae of a by our mapping have
the same base the complement whose element is closed in R and thin at
the each point, where the first neiborhood is defined with respect to R_{P}^{*} ,
the second with respect to R^{*} (Corollary 2.17).

Acknowledgement. The author wishes to express his hearty thanks
Professor S. Koshi for his encouragement and Professor M. Nakai for
his kind comments.

1. Linear spaces of P-harmonic functions.

By a regular region we shall always mean a connected open set in R
whose boundary is composed of at most a countable number of analytic
curves clustering nowhere in R. Let \{R_{n}\} be an exhaustion of R, that is,
a sequnece of relatively compact regular regions in R such that ct(R_{n})\subset

R_{n+1} , R=U_{n=1}^{\infty}R_{n} .
The solution e_{n}^{P} of (0.1) on R_{n} with e_{n}^{P}=1 on \partial R_{n} is said the P-ellip-

tic measure of R_{n} . The P-elliptic measures e_{n}^{P} form a monotone decreas-
ing sequence of positive P-solutions. This sequnece converges uniformly
to a non-negative P-solution e^{P} on R, which is called the P-elliptic mea-
sure of R . The P-elliptic measure is either identically zero or else every-
where positive. In the second case we call the density P to be hyperbolic
provided P is not identically zero. We shall consider only hyperbolic den-
sities on R in the following.

LEMMA 1. 1. If a density P on R satisfifies the condition:
\int_{R}P(w)G(z_{1},w)dudv<+\infty

for some point z_{1} in R, then P is hyperbolic, where G(z,w) is the har-
monic Green ’s function of R and w=u+iv.

PROOF. Let G(R_{n},z,w) be harmoonic Green’s function of R_{n} . By
Green’s formula we have

(1. 1) \int_{Rn}P(w)G(R_{n},z,w)e_{n}^{P}(w)dudv=2\pi(1-e_{n}^{P}(z)) .

If P is not a hyperbolic density, then Lebesque’s convergence theorem
gives tthe contradiction: 1=0. Q. E. D.

DEFINITION 1. 2. For a density P on R we denote by P_{H}(R) the class
of all those P-harmonic functions u on R which satisfifies the condition:



Martin boundaries and thin sets for \Delta u=Pu on Riemann surfaces 321

\int_{R}P(w)G(z_{1},w)|u(w)|dudv<+\infty

for some point z_{1} in R, where w=u+iv.

For any density P the Green’s function on R for the equation (0.1)

always exists, which is denoted by G^{P}(z,w) for z, w in R.

DEFINITION 1. 3. For a density P on R we denote by H_{P}(R) the class
of all those harmonic functions h on R which satisfy the condition:

\int_{R}P(w)G^{P}(z_{1},w)|h(w)|dudv<+\infty

for some point z_{1} in R.

These definitions of P_{H}(R) and H_{P}(R) are independent of the choice
of the point z_{1} in R . And these class are real linear spaces with respect
to the usual definitions of addition and scalar multiplication of real num-
bers.

THEOREM 1. 4. For a hyperbolic density P on R the P -elliptic mea-
sure e^{P} is a function contained in the linear space P_{H}(R) which is not
constantly zero.

PROOF. From the equality (1.1) in the proof of Lemma 1.1 it fol-
lows that

\int_{R}P(w)G(z,w)e^{P}(w)dudv

\leq\lim\inf_{narrow\infty}\int_{Rn}P(w)G(R_{n},z,w)e_{n}^{P}(w)dudv

Q. E. D.
=2\pi(1-e^{P}(z))\leq 2\pi .

For an exhaustion [R_{n}] of R let G(Rn,z,w) and G(Rn,z,w) be the
harmonic Green’s function of R_{n} and the Green’s function with respect to
the equation L_{P}u=0 on R_{n} respectively. For a relatively compact regular
region R_{n} in R , we denote the transformations T_{PH}^{n}u and T_{HP}^{n}h for real
valued bounded continuous functions u and h defined on R_{n} to functions
on R_{n} as follows:

T_{PH}^{n}u(z)=u(z)+ \frac{1}{2\pi}\int_{Rn}P(w)G(R_{n},z,w)u(w)dudv

T_{HP}^{n}h(z)=h(z)- \frac{1}{2\pi}\int_{Rn}P(w)G^{P}(R_{n},z,w)h(w)dudv .

By the Green’s formula for a P-harmonic function u and Green’s func-
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tion of R_{n}T_{PH}^{n}u is a harmonic function with T_{PH}^{n}u=u on \partial R_{n} , and for a
harmonic function h on R_{n}T_{HP}^{n} is a P-solution on R_{n} with T_{HP}^{n}h=h on
\partial R_{n} .

Let u be in P_{H}(R) . then, the linear transformation T_{PH}u of u is
defined by

T_{PH}u(z)=u(z)+ \frac{1}{2\pi}\int_{R}P(w)G(z,w)u(w)dudv

And, for h in H_{P}(R)T_{HP}h is defined by

T_{HP}h(z)=h(z)- \frac{1}{2\pi}\int_{R}P(w)G^{P}(z,w)h(w)dudv .

These transformations T_{PH} and T_{HP} are extensively studied by many
authors (for example, Lahtinen [5], Nakai [8]). The next lemma has fun-
damental roles in our paper, especialy in Theorem 1.8 and Theorem 2.9,
which is a consequence of Lebesque’s convergence theorem (for example,
Lahtinen [5] ) .

LEMMA 1. 5. Let P be a density on R, u a P -solution on R and \{u_{n}\}

a sequence of P-solutions each defifined on R_{n} so that \lim_{narrow+\infty}u_{n}=u . If
there exists a positive function v on R such that |u_{n}|\leq v for each n and v

futfifits the condition:

\int_{R}P(w)G(z_{1},w)v(w)dudv<+\infty

at some point z_{1} in R. Then T_{PH}u is wett-defifined and satisfifies
(1) \lim_{narrow+\infty}T_{PH}^{n}u_{n}=T_{PH}u

(2) T_{PH}u is harmonic on R.

For the transformation T_{HP} we may have the similar lemma.

LEMMA 1. 6. The harmonic and P-harmonc Green ’s functions have
the relation :

G(z,w)=G^{P}(z,w)+ \frac{1}{2\pi}

\cross\int_{R}P(\zeta)G(z,\zeta)G^{P}(w,\zeta)d\xi d\eta

=G^{P}(z,w)+ \frac{1}{2\pi}

\cross\int_{R}P(\zeta)G(w,\zeta)G^{P}(z,\zeta)d\xi d\eta, \zeta=\xi+i\eta .

PROOF. Applying Green’s formula for Gp\{Rn,z,w ) and G(R_{n},z,w) , we
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have

G(R_{n},z,w)=G^{P}(R_{n},z,w)

+ \frac{1}{2\pi}\int_{Rn}P(\zeta)G(R_{n},z,\zeta)G^{P}(R_{n},w,\zeta)d\eta d\xi .

Takilng limit as narrow+\infty , we get this lemma. Q. E. D.

THEOREM 1. 7. T_{PH} is a linear mapping of P_{H}(R) into H_{P}(R) .

PROOF. The inequality G^{P}(z,w)<G(z,w) and the preceding lemma
give the inequality for some point z_{1} in R :

\int_{R}P(z)G^{P}(z_{1},z)|T_{PH}u(z)|dxdy

\leq\int_{R}P(w)G(z_{1},w)|u(w)|dudv .

This completes the proof. Q. E. D.

THEOREM 1. 8. For a P-harmonic function u in P_{H}(R) , we have
T_{HP}T_{PH}u=u, that is, T_{PH} is an isomorphism between linear spaces P_{H}(R)

and T_{PH}(P_{H}(R)) and T_{HP} on T_{PH}(P_{H}(R)) is the inverse of T_{PH} .

PROOF. Since T_{PH}uAis contained in H_{P}(R) and the sequecnce of
restrictions to R_{n} of the function T_{PH}u converges to T_{PH}u on R as narrow+\infty

Lemma 1.5 gives that

T_{HP} T_{PH}u= \lim_{narrow+\infty}T_{HP}^{n} TPH .

Since in the equality

T_{HP}^{n}(T_{PH}u)=T_{HP}^{n}(T_{PH}u-T_{HP}^{n}u)+T_{HP}^{n}T_{PH}^{n}u

the last term equals to u for evry n, it is sufficient to prove that the first
term converges to 0 as narrow+\infty .

Let \rho_{n}^{P} be the P-harmonic measure of the region R_{n} . which represents
the solution of Diriclet problem as integral. Then we have

T_{HP}^{n}( T_{PH}u-T_{PH}^{n}u)(z)= \int_{\partial Rn}(T_{PH}u-T_{PH}^{n}u)d\rho_{n,z}^{P}

= \int_{\partial Rn}(T_{PH}u-u)d^{P}\rho_{n,z}

= \frac{1}{2\pi}\int_{R}P(w)\{\int_{\partial Rn}G(\cdot,w)d^{P}\rho_{n,z}\}u(w)dudv ,

where the definition T_{PH}u and Fubini’s theorem are used. The Lemma 1.6
gives
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\int_{\partial Rn}G(\cdot,w)d\rho_{n,z}P

= \int_{\partial Rn}G^{P}(\cdot,w)d\rho_{n,z}P

+ \frac{1}{2\pi}\int_{R}P(\zeta\{\int_{\partial Rn}G^{P}(\cdot,\zeta)d\rho_{n,z}P\}G(w,\zeta)d\xi d\eta .

In this equality, applying

\int_{\partial Rn}G^{P}(\cdot,w)d\rho_{n,z}^{P}\leq G^{P}(z,w)

and

\lim_{narrow+\infty}\int_{\partial Rn}G^{P}(\cdot,w)d^{P}\rho_{n,z}=0 ,

which are results of properties of Green’s function, Lebesque’s convergence
theorem gives

\lim_{narrow+\infty}\int_{\partial Rn}G(\cdot,w)d^{P}\rho_{n,z}=0

and Lemma 1.6 gives

\int_{\partial Rn}G(\cdot,w)d\rho_{n,z}^{P}\leq G(z,w) .

Then, from Lebesque’s convergence theorem it follows that

\lim_{narrow+\infty}T_{HP}^{n}(T_{PH}u-T_{PH}^{n})=0 . Q. E. D.

LEMMA 1. 9. If f\geq g on R for f, g in P_{H}(R) , then T_{PH}f\geq T_{PH}g on R.
If u\geq v for u, v in H_{P}(R) , then T_{HP}u\geq T_{HP}v on R.

PROOF. These are results of Lemma 1.5 and the maximum principle.
Q. E. D.

It does not always hold that T_{PH}T_{HP}f=f for f in H_{P}(R) such that
T_{HP}f is in P_{H}(R) .

A positive P-solution u on R is said to be P-minimal provided that
for any P-solution v , 0<v\leq u implies v=\alpha u where \alpha is a constant.

THEOREM 1. 10. For a minimal function h in T_{PH}(P_{H}(R)) , T_{HP}h is a

P -minimal function contained in P_{H}(R) .

PROOF. This is evident by Theorem 1.8 and Lemma 1.9. Q. E. D.

Let \overline{R} be any metrizable compactification of the Riemann surface R
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and denote by \Delta the ideal boundary of R in this compactification, that is,
\Delta=\overline{R}-R . For a P-harmonic function u on R and a compact set A in \Delta

the reduced function of u relative to A is defined as the lower envelope of
the class of those P-superharmonic functions on R which majorize u on
the intersection of R and some neiborhood of A in \overline{R} . This reduced func-
tion is denoted by (u)_{A}^{P} . For a positive harmonic function f on R the
similar reduced function (f)_{A}^{H} is also defined. For reduced function we
refer to Brelot [1, 2] .

Considering a decreasing sequence \{F_{n}\} of closed neiborhoods of the
compact set A in \overline{R} whic converges to A, we can prove, by Lebesque’s
convergence theorem, the following lemma, for whose detail proof we
refer to Sat\={o} [11].

LEMMA 1. 11. Let A be a compact set in the ideal boundary of a
metrizable compactifification \overline{R}. For a positive P-harmonic function u in
P_{H}(R) , we have

T_{PH}(u)_{A}^{P}=(T_{PH}u)_{A}^{H} on R.

And, for a positive harmonic function f in H_{P}(R) we have
T_{HP}(f)_{A}^{H}=(T_{HP}f)_{A}^{P} on R.

2. Thin sets on P-Martin compactification.

Let R^{*} be the Martin compactification of a Riemann surface R
defined by Martin([6]) and \Delta be its ideal boundary R^{*}-R . The set of
minimal boundary points of \Delta is denoted by \Delta_{1} and Martin’s kernel func-
tion with origin zo in R is represented by K(z,b) or K_{b}(z) for (z,b) in R\cross

R^{*} .
Let R_{P}^{*} be the Martin compactification of R with respect to the equa-

tion L_{P}u=0 which can be constructed in the similar way to that of har-
monic case as was treated by Martin (for example, see Nakai [7]). Let
\Delta_{P} be the ideal boundary R_{P}^{*}-R . The set of P-minimal boundary points
is denoted by \Delta_{P,1} . The P-Martin kernel with origin Zo in R is denoted
by Kp(z,a) or K_{a}^{P}(z) , (z,a)\in R\cross R_{P}^{*} , which satisfies K^{P}(z_{0},a)=1 for a in
\Delta_{P} , and is finitely continuous on R\cross\Delta_{P} . Let u be a P-superharmonic
function on R and A a compact subset of \Delta_{P} . The reduced function (u)_{A}^{P}

of u relative to A is defined as the lower envelope of class of positive
P-superharmonic functions v such that v\geq u on the intersection of a
neiborhood of A and R (see, for example. Brelot [1], [2]). This reduced
function will be also written by (u)_{A} simply. For a P-minimal harmonic
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function u on R, (u)_{A}^{P} is equal to 0 or u for every closed set A in \Delta_{P} and
there exists at least one point a in \Delta_{P,1} such that (u)_{\{a\}}^{P}=u on R , which is
called the pole of the P-minimal function u on R_{P}^{*} (Brelot [1]). In
P-Martin compactification every P-minimal function u has a unique pole
on \Delta_{P,1} and u=\alpha K_{a}^{P}, where \alpha is the constant and a is the point in \Delta_{P,1}

(Brelot [1]).
In the last part of the preceding section we recalled the reduced func-

tion in a general metrizable compactification \overline{R} of R . In this case, for a
P-minimal function u on R there exists at least one pole of u on the
boundary \Delta , but u may have many poles on \Delta . About the uniqueness of
u we can say the following, if we take the Martin’s compactification R^{*} .

THEOREM 2. 1. A P-harmonic function u in P_{H}(R) has a pole
uniquely determined on the set \Delta_{1} of minimal boundary points of Martin ’s
compactifification R^{*} . The harmonic function T_{PH}u is a minimal harmonic
function with the same pole as that of u.

PROOF. The reduced function of the positive harmonic function
T_{PH}u with respect to a compact set A is represented by the canonical
measure supported by A. Letting A be the set \{b\} of any pole b of u on
the Martin’s boundary we have

(T_{PH}u)_{\{b\}}=\alpha K_{b} ,

where \alpha is a positive constant. From Lemma 1.11, it follows that

T_{PH}u=T_{PH}(u)_{\{b\}}^{P}

=(T_{PH}u)_{\{b\}}=\alpha K_{b} .

Let b_{1},b_{2} be two poles of u on \Delta_{1} . Then \alpha K_{b_{1}}=\beta K_{b_{2}} , from which it fol-
lows that b_{1}=b_{2} , where \alpha and \beta are positive constants. Q. E. D.

About pole of a minimal harmonic function we may say the following
by the same way as above.

THEOREM 2. 2. A minimal harmonic function f in H_{P}(R) has a pole
uniquely determined in \Delta_{P,1} , provided that T_{HP}f is positive. The P-har-
monic function T_{HP}f is P-minimal with the same pole as that of f.

Therefore we can make the following definitions.

DEFINITION 2. 3. We defifine the subsets \Delta_{PH} of \Delta_{P,1} and \Delta_{HP}, \Delta_{HP}^{0}pf

\Delta_{1} by

\Delta_{PH}= { a\in\Delta_{P,1} : K_{a}^{P} belongs to P_{H}(R)},
\Delta_{HP}= { b\in\Delta_{1} : K_{b} belongs to H_{P}(R)},



Martin boundaries and thin sets for \Delta u=Pu on Riemann surfaces 327

\Delta_{HP}^{0}=\{b\in\Delta_{HP} : T_{HP}K_{b}>0\} .

For a point a in \Delta_{PH} the transform T_{PH}K_{a}^{P} is a minimal function
contained in T_{PH}(P_{H}(R)) by Theorem 2.1. Then there exists a point b\in

\Delta_{1} which is the pole of the function T_{PH}K_{a}^{P}.

DEFINITION 2. 4. To a point a in \Delta_{PH} assigning the point b in \Delta_{1}

which is a pole of T_{PH}K_{a}^{P} in \Delta_{HP} we define a mapping

t_{PH} : \Delta_{PH}arrow\Delta_{1}

Let \Delta(P) be the image of the mapping t_{PH} .

LEMMA 2. 5. \Delta(P) is a subset of \Delta_{HP}^{0} .

PROOF. This is a result of Theorem 1.7 and Theorem 1.8. Q. E. D.
It is evident from the definition that

T_{PH}K_{a}^{P}=T_{PH}K_{a}^{P}(z_{0})K_{t_{PH}(a)} on R.

DEFINITION 2. 6. For a point b in \Delta_{HP}^{0} assinging a point a which is
the pole of the P-minimal function T_{HP}K_{b} in \Delta_{P,1} we defifine the mapping

t_{HP} : \Delta_{HP}^{0}arrow\Delta_{P,1} .

LEMMA 2. 7. \Delta(P)=\{b\in\Delta_{1} : K_{b}\in Tph(Ph(R))\} .
PROOF. This is evident from the definition of T_{PH}(P_{H}(R)) and Then

rem 1.12. Q. E. D.

LEMMA 2. 8. The restriclion of the mapping t_{HP} to \Delta(P) is the
inverse mapping of t_{PH} : \Delta_{PH}arrow\Delta(P) .

PROOF. This follows from Theorem 1.8 and definitions of t_{PH} , t_{HP} .
Q. E. D.

LEMMA 2. 9. \Delta_{PH} is a Borel measurable subset of \Delta_{P.1} .

PROOF. The function

\int_{R}P(w)G(z_{1},w)K^{P}(w,a)dudv

of a in \Delta_{P,1} is the limit of an increasing sequence of continuous functions

\int_{Rn}P(w)G(Rnyzhw)Kp(wya)dudv

of a . Q. E. D.
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LEMMA 2. 10. The set \Delta_{HP}^{0} is Borel measurable in \Delta_{1} .

PROOF. This is evident. Q. E. D.

For any positive P-harmonic function u on R there exists a unique
measure \mu on \Delta_{P.1} such that \mu(\Delta_{P}-\Delta_{P,1})=0 and

u(z)= \int_{\Delta_{P1}}K^{P}(z,a)d\mu(a) , z\in R .

This measure is called the canonical measure of u . Let \chi^{P} is the canoni-
cal measure of the P-elliptic measure e^{P}

THEOREM 2. 11. Let u be a positive P-harmonic function on R which
belongs to the class P_{H}(R) , and let \mu be the canonical measure of u.
Then the set \Delta_{P,1}-\Delta_{PH} has \mu- measure zero.

PROOF. For each positive integer n , let E_{n} be a set of points a in
\Delta_{P.1} such that

\int_{R}P(w)G(z_{1},w)K^{P}(w,a)dudv>n ,

where z_{1} is a fixed point in R and E_{n} is a measurable set by the proof of
Lemma 2.6. By Fubini’s theorem we have

\mu(\bigcap_{n=1}^{\infty}E_{n})\leq\mu(E_{n})

\leq\frac{1}{n}\int_{En}\{\int_{R}P(w)G(z_{1},w)K^{P}(w,a)dudv\}d\mu(a)

\leq\frac{1}{n}\int_{R}P(w)G(z_{1},w)u(w)dudv ,

by which \mu(\Delta_{P,1}-\Delta_{PH})=0 is obtained. Q. E. D.

COROLLARY 2. 12. Let P be a hyperbolic density on R. Then we
have

x^{P}(\Delta_{PH})=e^{P}(a) and x^{P}(\Delta_{P,1}-\Delta_{PH})=0 .

REMARK 2. 13. Let R be an open unit disk \{z\in C:|z|<1\} and we
take a density P(z)=\phi(r) where \phi is a bounded function of r and z=re^{i\theta}-

which is a hyperbolic density by Lemma 1.1. In this case P-Martin
compactification of R is the closed disk \{z\in C:|z|\leq 1\} and the canonical
measure \chi^{P} of the P-elliptic measure e^{P} is kd\theta where K is a constant
dependent on P. Let K^{P}(z,e^{i\theta}) be P-Martin kernel normalized at origin
O . Then for every \theta , K^{P}(z,e^{i\theta}) is contained in the class P_{H}(R) , because
from the inequality(Theorem 1.4)
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\int_{R}P(w)G(0,w)e^{P}(w)dudv

=k \int_{[0,2\pi]}\{\int_{R}P(w)G(0,w)K^{P}(w,e^{i\theta})dudv\}d\theta<+\infty

it follows that the rotation free function

\thetaarrow\int_{R}P(w)G(0,w)K^{P}(w,e^{i\theta})dxdy

is finite for every \theta . Therefore we have \Delta_{PH}=\{z\in C:|z|=1\} .
Let D be a Lipschitz domain with a point z_{1} fixed in D. We say a

function u on D is a kernel function at a\in\partial D if u is positive and har-
monic on D with u(z_{1})=1 and u(z) vanishes continuously as z approches
to every boundary point b of the domain D with b\neq a . One fundamental
result of Hunt and wheeden [4] is a uniform estimate for various approxi-
mations to kernel functions and another is the uniqueness of kernel func-
tions on D. And, for Lipshcitz domains they showed that Martin kernels
of D are exactly the unique kernel function. Then they identified the
Martin ideal boundary with the Euclidean boundary and showed that the
Martin topology is equivalent to the Euclidean topology. On the other
hand Taylor([12]) obtained the similar results for a uniformly bounded
second order elliptic operator on a Lipschitz domain as Hunt and
Wheeden. By these results we can show the following proposition:

PROPOSITION. The transformation t_{PH} : \Delta_{PH}arrow\Delta_{1} is the identity trans-
formation of \{z\in C : |z|=1\} .

PROOF. For each integer n let N_{n} be the neiborhood of a point e^{i\theta}

on the unit circle:

N_{n}=\{z\in C:|z-e^{i\theta}|<1/n\} ,

and R_{n} be the subset of unit disk:
\{z\in C:|z|<1\}-N_{n} .

Since the P-Martin kernel K^{P}(z,e^{i\theta}) is P-harmonic on R_{n} and may be
continuously extended on \partial R_{n}-R with the boundary value zero by PropO-
sition 4.5 in J. C. Taylor ([12]), we have that

T_{PH}^{n}K_{e^{i\theta}}^{P}(z)=K_{e^{i\theta}}^{P}(z)

+ \frac{1}{2\pi}\int_{Rn}P(w)G(R_{n},z,w)K_{e^{i\theta}}^{P}(w)dudv

is harmonic on R_{n} and continuously extended at each point on \partial R_{n}-R
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with the boundary value zero. Recall that K^{P}(z.e^{i\theta}) belongs to P_{H}(R)

and from Lemma 1.5 it follows that
\lim_{narrow\infty}T_{PH}^{n}K_{e^{i\theta}}^{P}=T_{PH}K_{e^{i\theta}}^{P}

Then the functionn T_{PH}K^{P}(z,e^{i\theta})/T_{PH}K^{P}(0,e^{i\theta}) is a kernel function at e^{i\theta} by
Lemma 2.6 in Hunt and wheeden [4]. Since Martin kernel K_{e^{i\theta}} is also a
kernel function at e^{i\theta} . the uniqueness of kernel functions at e^{i\theta} gives that

T_{PH}K_{e^{i\theta}}^{P}=T_{PH}K_{e^{i\theta}}^{P}(0)\cross K_{e^{i\theta}}=T_{PH}K_{e^{i\theta}}^{P}(0)\cross K_{t_{PH}(e^{i\theta})}

.

Then we have t_{PH}(e^{i\theta})=e^{i\theta} for every \theta , that is, t_{PH} is the identity transfor-
mation of the circle \{z\in C:|z|=1\} . Q. E. D.

For a positive P-superharmonic function u on R the reduced function
(u)_{E}^{P} (denoted also by (u)_{E} ) relative to a closed set E in R is defined as
the lower envelope of the class of positive P-superharmonic v such that
v\geq u on E except for a set of capacity zero. For properties of reduced
functions we refer to [Naim [6], Brelot [1] and Constantinescu and Cor-
nea [3] ) . For a P-minimal function u on R the reduced function (u)_{E}

relative to E is u or a potential with kernel G^{P} . Let E be a closed set in
R and a point a in \Delta_{P,1} . The set E is said to be P-thin at a provided
that (K_{a}^{P})_{E} is a potential, that is, (K_{a}^{P})_{E} is not K_{a}^{P}. In the case where P is
constantly zero E is said to be thin at b in \Delta_{1} provided (K_{a})_{E} is a Green
potential.

THEOREM 2. 14. A closed set E in R is P-thin at a point a\in\Delta_{PH} if
and only if E is thin at the point t_{PH}(a) .

PROOF. Let a point a be in \Delta_{PH} . For a closed set E in R such that

(K_{a}^{P})_{E}=K_{a}^{P} on R,

that is, E is not P-thin at a point a , we shall show that

(T_{PH}K_{a}^{P})_{E}=T_{PH}K_{a}^{P} on R ,

which means that E is not thin at t_{PH}(a) .
If z is an interior point of E or a regular point for the open set R-E,

then the equality is evident.
For z in R-E the function ( T_{PH}K_{a}^{P})_{E} is the solution of Diriclet prob-

lem on the open set R-E relative to the equation \Delta u=0 with boundary
value T_{PH}K_{a}^{P} on \partial(R-E) . Let \rho_{z}^{P} be the P-harmonic measure and \rho_{z} the
harmonic measure for the open set R-E, respectively. Then we have,
for z in R-E,
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(T_{PH}K_{a}^{P})_{E}(z)= \int_{\partial(R-E)}T_{PH}K_{a}^{P}(\circ)d\rho_{z}

(*) = \int_{\partial(R-E)}K_{a}^{P}(\circ)d\rho_{z}

+ \int_{\partial(R-E)}\{\frac{1}{2\pi}\int_{R}P(w)G(\cdot, w)K_{a}^{P}(w)dudv\}d\rho_{z} .

The first term of (*) may be written by Lemma 1.5 as follows:

the first term = \int_{\partial(R-E)}K_{a}^{P}d\rho_{z}^{P}

+ \frac{1}{2\pi}\int_{R-E}P(w)G(R-E,z,w)\{\int_{\partial(R-E)}K_{a}^{P}d\rho_{w}\}Pdudv ,

where we denoted the Green’s function for the open set R-E by d(R-E)
z,w) and used

\int_{\partial(R-E)}K_{a}^{P}d^{P}\rho_{z}=\lim_{narrow+\infty\int_{\partial(Rn\cap(R-E\rangle)}(K_{a}^{P})_{n}d\rho_{n,z}}P

each term of which is dominated by K_{a}^{P}\in P_{H}(R) , letting (K_{a}^{P})_{n}=K_{a}^{P} on R_{n}

\cap\partial(R-E) and =0 on \partial R_{n}\cap(R-E) , \rho_{n,z}^{P} be P-harmonic measure for the
open set R_{n}\cap(R-E) . The first terme of (*) is equal to, by unthinness
of E at a ,

(K_{a}^{P})_{E}(z)+ \frac{1}{2\pi}\int_{R-E}P(w)G(R-E,z,w)(K_{a}^{P})_{E}(w)dudv

=K_{a}^{P}(z)+ \frac{1}{2\pi}\int_{R-E}P(w)G(z,w)K_{a}^{P}(w)dudv

- \frac{1}{2\pi}\int_{R-E}P(w)\{\int_{\partial}G(\cdot, w)d\rho_{z}\}K_{a}^{P}(w)dudv ,

in which we used

G(R-E,z,w)=G(z,w)- \int_{\partial(R-E)}G(\cdot, w)d\rho_{z} .

The second term of the equality (*) is decomposed as follows:

\frac{1}{2\pi}\int_{E}P(w)G(z,w)K_{a}^{P}(w)dudv

+ \frac{1}{2\pi}\int_{R-E}P(w)\{\int_{\partial(R-E)}G(\cdot, w)d\rho_{z}\}K_{a}^{P}(w)dudv ,

Therefore we obtained that

(T_{PH}K_{a}^{P})_{E}=T_{PH}K_{a}^{P} for z in R-E,
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so that, this equality holds on R except for the set of irregular points of
the open set R-E. From this equality we have that ( T_{PH}K_{a}^{P})_{E}=T_{PH}K_{a}^{P} on
R, which is equivalent to

(K_{t_{PH}(a)})_{E}=K_{t_{PH}(a)} on R.

Similaly it may be verified that
(K_{a}^{P})_{E}^{P}<K_{a}^{P} on R-E

implies

(T_{PH}K_{a}^{P})_{E}<T_{PH}K_{a}^{P} on R-E,

which means that if E is P-thin at a , the set E is thin at t_{PH}(a) . Q. E. D.
The class of open sets G in R such that R-G is P-thin at a\in\Delta_{P,1} is

denoted by \mathscr{C}^{P}(a) . In the case where P is identically zero, \mathscr{C}^{H}(a) or sim-
ply \mathscr{C}(a) are used in stead of \mathscr{C}^{P}(a) (Constantinescu and Cornea [3]).
\mathscr{C}^{P}(a) is a base of the fine neiborhood of a .

COROLLARY 2. 15. For a in \Delta_{PH}, \mathscr{C}^{P}(a)=\mathscr{C}^{H}(t_{PH}(a)) .

By changing roles H and P in the proof of the preceding theorem we
obtain the following theorem.

THEOREM 2. 16. A closed set E in R is thin at a point b in \Delta_{HP}^{0} if
and only if E is P-thin at t_{HP}(b) .

COROLLARY 2. 17. For a point b in \Delta_{HP}^{0} , \mathscr{C}^{H}(b)=\mathscr{C}^{P}(t_{HP}(b)) .
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