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1. Introduction.

Let R be a hyperbolic Riemann surface and P a density on R, that is,
a non-negative Holder continuous function on R which depends on the
local parameter z=x+7y in such a way that the partial differential equa-
tion

0.1 Lru=—Au+Pu=0, A=0?/ox*+5*/oy*

is invariantly defined on R. A real valued function « is said to be a
P-harmonic function (or a P-solution) on an open set U of R, if « has
continuons partial derivatives up to the order 2 and satisfies the equation
(0.1) on U. Throughout this paper we assume that the density P is not
constantly zero on R. A density P on a Riemann surface R is called a
hyperbolic density if there exists a positive P-harmonic function on R
dominated by 1 on R. In this paper we shall consider two Martin
compactifications of a hyperbolic Riemann surface R, the first R¥ with
respect to a hyperbolic density P on R, the second R* with respect to
harmonic functions. Let KZ%(z,a), K(z,b) be Martin kernels on the
compactifications R¥, R* respectively. Let G(z,w) be the harmonic
Green’s function of R. For a minimal boundary point a of R# such that

0.2) AP(w)G(w,zl)KP(w,a)dudv< + o0

for some point z1 in R, there exists a unique minimal boundary point of
R*. Then we may define a mapping with the domain consisting points a
which satisfy the condition into the set of minimal boundary points
of R*.

In the special case where P is a bounded rotation free density on the
unit disk in complex plane C, two compactifications coincide with the
closed unit disk {z€C:|z2|<1}. In this case our mapping reduces to the
identity mapping of the unit circle (Remark in sec. 2). The purpose of
this paper is to show that a closed set £ in R is thin at a poinnt a with
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the condition if and only if E is thin at the minimal boundary point
of R* assigned to the point @ by the mapping. Therefore, fine neibor-
hoods of points a with and of the imagae of a by our mapping have
the same base the complement whose element is closed in R and thin at
the each point, where the first neiborhood is defined with respect to R%,
the second with respect to R* (Corollary 2.17).

Acknowledgement. The author wishes to express his hearty thanks
Professor S. Koshi for his encouragement and Professor M. Nakai for
his kind comments.

1. Linear spaces of P-harmonic functions.

By a regular region we shall always mean a connected open set in R
whose boundary is composed of at most a countable number of analytic
curves clustering nowhere in R. Let {R,} be an exhaustion of R, that is,
a sequnece of relatively compact regular regions in R such that c/(R.)C
Rn+1, R= U:’=1Rn.

The solution ez of (0.1) on R, with ef=1 on dR, is said the P-ellip-
tic measure of R,. The P-elliptic measures er form a monotone decreas-
ing sequence of positive P-solutions. This sequnece converges uniformly
to a non-negative P-solution e” on R, which is called the P-elliptic mea-
sure of R. The P-elliptic measure is either identically zero or else every-
where positive. In the second case we call the density P to be hyperbolic
provided P is not identically zero. We shall consider only hyperbolic den-
sities on R in the following.

LEMMA 1.1. If a density P on R satisfies the condition :
ﬁP(w)G(zl,w)dua’v< + oo

for some point z in R, then P is hyperbolic, wheve G(z,w) is the har-
monic Green’s function of R and w=u+v.

PROOF. Let G(Rnzw) be harmoonic Green’s function of R.. By
Green’s formula we have

(1.D /;nP(w)G(Rn,z,w)eﬁ(w)dudv=27r(1—eﬁ(z)).

If P is not a hyperbolic density, then Lebesque’s convergence theorem
gives tthe contradiction: 1=0. Q.E.D.

DEFINITION 1.2.  For a density P on R we denote by Py(R) the class
of all those P-harmonic functions u on R which satisfies the condition :
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ﬁ P(w)Gzn,w)|u(w)|dudy < + o

for some point z in R, where w=u-+1v.

For any density P the Green’s function on R for the equation (0.1)
always exists, which is denoted by G?(z,w) for z, w in R.

DEFINITION 1.3. For a density P on R we denote by Hp(R) the class
of all those havmonic functions h on R which satisfy the condition :

fR P(1)G? (z1,0)| 1) dudv < + oo

for some point z1 in R.

These definitions of Pu(R) and Hp(R) are independent of the choice
of the point z1 in R. And these class are real linear spaces with respect
to the usual definitions of addition and scalar multiplication of real num-
bers.

THEOREM 1.4. For a hyperbolic density P on R the P-elliptic mea-
sure e is a function contained in the linear space Pu(R) which is not
constantly zero.

PrROOF. From the equality (1.1) in the proof of it fol-
lows that

ﬁ P(w)G(z,w)e"(w) dudy

<lim infnm/}; P(w)G(Rn,z,w)ei(w)dudy
=217(1—ef(2))<2n.

For an exhaustion [R.] of R let G(R.z,w) and G?(Rnz,w) be the
harmonic Green’s function of K, and the Green’s function with respect to
the equation Lru=0 on R, respectively. For a relatively compact regular
region R, in R, we denote the transformations 7pyu and T#eph for real
valued bounded continuous functions # and /% defined on R, to functions
on R, as follows:

Q. E.D.

THu(z)=u(z) +—21;'/I;n P(w)G(Ra,z,w)u(w)dudv
Tiph(2)= (D)~ 5= [ P(w)G"(Ra,2,) h(w)dud.

By the Green’s formula for a P-harmonic function # and Green'’s func-
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tion of R, T u is a harmonic function with 7Psu=wu on 0R., and for a
harmonic function # on R, T¥ is a P-solution on R, with T#h=h on
oR,.

Let # be in Py(R). then, the linear transformation 7Tesu of u is
defined by

pru(z)=u(z)+2L/P(w)G(z,w)u(w)dudv
TJR
And, for % in Hp(R) Tuph is defined by

Typh(z)Ih(z)—El;'/RP(w)GP(z,w)h(w)dudv.

These transformations 7ry and Twr are extensively studied by many
authors (for example, Lahtinen [5], Nakai [8]). The next lemma has fun-
damental roles in our paper, especialy in [Theorem 1.8 and Theorem 2.9,
which is a consequence of Lebesque’s convergence theorem (for example,

Lahtinen [5]).

LEMMA 1.5. Let P be a density on R, u a P-solution on R and {un}
a sequence of P-solutions each defined on R so that lima-settn=u. If

there exists a positive function v on R such that |us|<v for each n and v
fulfils the condition :

fRP(w)G(zl,w)v(w)dudv< + o0

at some point z in R. Then Tenu is well-defined and satisfies
(1) limnam T}ZIH Un=— Teuu
(2) Trau is harmonic on R.

For the transformation 7Twp we may have the similar lemma.

LEMMA 1.6. The harmonic and P-harmonc Green’s functions have
the relation

G(z,w)= G”(z,w)+ﬁ
x [ P(6)G(2,0)G (w,©)ddn
=G (z,w)+ 5
x [ P(O)G(w,8)G™(2,0)dedn, §=6+in

PROOF. Applying Green’s formula for G*(R»,z,w) and G(Rn,z,w), we
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have
G(Rn,z,w)=G"(Ra,z,w)
+% ﬁ P(§)G(Rn2, ) G* (R0, £) diyde.

Takilng limit as #»— +o0, we get this lemma. Q. E.D.
THEOREM 1.7.  Teu is a linear mapping of Pu(R) into Hp(R).

PROOF. The inequality G"(z,w)<G(z,w) and the preceding lemma
give the inequality for some point z in R:

/}; P(2)G*(z1,2)| Trau(2)|dxdy
< f P(w0) Gz, w0) )| dudv.

This completes the proof. Q.E.D.

THEOREM 1.8. For a P-harmonic function u in Pu(R), we have

TurTenu=u, that is, Ten is an isomorphism between linear spaces Pu(R)
and Tru(Pu(R)) and Tup on Teu(Pu(R)) is the inverse of Ten.

PROOF. Since 7ryu is contained in Hp(R) and the sequecnce of
restrictions to R, of the function Tesu converges to Tesu on R as n— +©

gives that
Tur Tratt =1iMp- 00 Toip Truut.
Since in the equality
Tiie( Tene) = THe( Tonu— Thr )+ Tée Thiu

the last term equals to « for evry #, it is sufficient to prove that the first
term converges to 0 as n— + 0.

Let o7 be the P-harmonic measure of the region R.. which represents
the solution of Diriclet problem as integral. Then we have

Tie( Tenre — Thu u)(z)='/‘;e (Toure— Toyu)dok.
= /;R (Teure—u)dor,.
:%ﬁP(w){faRnG(-,w)dpﬁ,z}u(w)a’udv,

where the definition 7ryu# and Fubini’s theorem are used. The
gives
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[ GC.w)dot..
:faRnGP(-,w)d.Oﬁ,z
o [P(e] [ 67 0doka} Glw, ) dedn,

In this equality, applying
[aR GP(+,w)do7,.:<G"(z,w)

and
limnﬁm_/‘m GF (-, w)do}..=0,

which are results of properties of Green’s function, Lebesque’s convergence
theorem gives

lifMneson ﬁ G-, w)dpf..=0

and gives

[a  G(-,w)doh2< G(z,w).

Then, from Lebesque’s convergence theorem it follows that
limp-+ew THe( Tonre — Téu)=0. Q.E.D.

LEMMA 1.9. If f=g on R for f, g in Pu(R), then Teuf = Trug on R.
If u=v for u, v in He(R), then Turu=Turv on R.

PROOF. These are results of and the maximum principle.
Q.E.D.

It does not always hold that TexTwef=Ff for f in Hp(R) such that
THPf is in PH(R).

A positive P-solution # on R is said to be P-minimal provided that
for any P-solution v ,0<y<u implies v=au where «a is a constant.

THEOREM 1.10.  For a minimal function h in Ten(Pu(R)), Turh is a
P-minimal function contained in Pu(R).

Proor. This is evident by [Theorem 1.8 and Lemma 1.9 Q.E.D.

Let R be any metrizable compactification of the Riemann surface R
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and denote by A the ideal boundary of R in this compactification, that is,
A=R—R. For a P-harmonic function # on R and a compact set A in A
the reduced function of u relative to A is defined as the lower envelope of
the class of those P-superharmonic functions on R which majorize # on
the intersection of R and some neiborhood of A in R. This reduced func-
tion is denoted by (u)i. For a positive harmonic function f on R the
similar reduced function (f)5 is also defined. For reduced function we
refer to Brelot [1, 2].

Considering a decreasing sequence {F»} of closed neiborhoods of the
compact set A in R whic converges to A, we can prove, by Lebesque’s

convergence theorem, the following lemma, for whose detail proof we
refer to Sato [11].

LEMMA 1.11. Let A be a compact set in the ideal boundary of a

metrizable compactification R. For a positive P-haymonic function u in
Pu(R), we have

TPH(u)ﬁ:(TPHZ{)g on R.
And, for a positive harmonic function f in Hp(R) we have

THP(f)ilI:( THPf)i on R.

2. Thin sets on P-Martin compactification.

Let R* be the Martin compactification of a Riemann surface R
defined by Martin([6]) and A be its ideal boundary R*—R. The set of
minimal boundary points of A is denoted by A; and Martin’s kernel func-
tion with origin 2z in R is represented by K(z,6) or K,(z) for (z,6) in R X
R*.

Let R¥ be the Martin compactification of R with respect to the equa-
tion Lrpu=0 which can be constructed in the similar way to that of har-
monic case as was treated by Martin (for example, see Nakai [7]). Let
Ap be the ideal boundary R¥—R. The set of P-minimal boundary points
is denoted by Ap,. The P-Martin kernel with origin 2 in R is denoted
by K?(z,a) or Ki(z), (z,a)ERXR¥, which satisfies K?(z,a)=1 for a in
Ap, and is finitely continuous on RXAp. Let u be a P-superharmonic
function on R and A a compact subset of Ap. The reduced function (u)4
of u relative to A is defined as the lower envelope of class of positive
P-superharmonic functions v such that v=# on the intersection of a
neiborhood of A and R (see, for example. Brelot [1], [2]). This reduced
function will be also written by («)s4 simply. For a P-minimal harmonic
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function # on R, (u)4 is equal to 0 or u for every closed set A in Ap and
there exists at least one point @ in Ap, such that (#){z;=u« on R, which is
called the pole of the P-minimal function # on R¥ (Brelot [1]). In
P-Martin compactification every P-minimal function # has a unique pole
on Ap, and u=aK?, where « is the constant and « is the point in Ap,
(Brelot [1]).

In the last part of the preceding section we recalled the reduced func-
tion in a general metrizable compactification B of R. In this case, for a
P-minimal function # on R there exists at least one pole of # on the
boundary A, but # may have many poles on A. About the uniqueness of
u we can say the following, if we take the Martin’s compactification R*.

THEOREM 2.1. A P-harmonic function u in Pu(R) has a pole
uniquely determined on the set A1 of minimal boundary points of Martin’s
compactification R*. The harmonic function Teau is a minimal harmonic
Sfunction with the same pole as that of u.

ProoF. The reduced function of the positive harmonic function
Tewu with respect to a compact set A is represented by the canonical
measure supported by A. Letting A be the set {b} of any pole b of u on
the Martin’s boundary we have

( TPHu){b}: a'Kb,
where « is a positive constant. From [Lemma 1.11], it follows that

Tenu= TPH( u)fb}
:( TPHu){b}: aKs.

Let b1,b; be two poles of # on Ai. Then aK,,=BK,, from which it fol-
lows that b1=20,;, where @ and S are positive constants. Q. E.D.

About pole of a minimal harmonic function we may say the following
by the same way as above.

THEOREM 2.2. A minimal harmonic function f in Hp(R) has a pole
uniquely determined in Ap,, provided that Tuef is positive. The P-har-
monic function Tupf is P-minimal with the same pole as that of f.

Therefore we can make the following definitions.

DEFINITION 2.3. We define the subsets Apn of Apy and Awp, A¥r pf
Ay by

Ar={aSApr,: KL belongs to Pu(R)},
Aup={bEA:; Ky belongs to Hp(R)},
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A(I]-IP:{bEAHP : TurKs >0}.

For a point ¢ in Apy the transform 7psK? is a minimal function
contained in 7Tru(Pu(R)) by [Theorem 2.1. Then there exists a point bE
A; which is the pole of the function TruKZ.

DEFINITION 2.4.  To a point a in Apn assigning the point b in A
which is a pole of TeuK{ in Anp we define a mapping

ter » Apu— A
Let A(P) be the image of the mapping try.
LEMMA 2.5. A(P) is a subset of AYp.

PROOF.  This is a result of [Theorem 1.7 and [Theorem 1.8 Q.E.D.
It is evident from the definition that

TPHKef: TPHKf(Zo)KtPH(a) on K.

DEFINITION 2.6. For a point b in Ak assinging a point a which is
the pole of the P-minimal function TueKs itn Ap,y we define the mapping

tup . A%P_) Ap,i.
LEMMA 2.7. A(P)={bEA: K,E Tru(Pu(R))}.

PrOOF.  This is evident from the definition of 7ru(Py(R)) and Theo-
rem 1.12. Q.E.D.

LEMMA 2.8.  The vestriction of the mapping tuwr to A(P) is the
inverse mapping of tew : Apu— A(P).

PROOF.  This follows from [Theorem 1.8 and definitions of ftpu, fap.
Q.E.D.

LEMMA 2.9. Apx is a Borel measurable subset of Ap,..

PRrROOF.  The function
AP(w)G(zl,w)K”(w,a)dudv
of a in Ap,1 is the limit of an increasing sequence of continuous functions
/Rn P(w)G(Rn,21,w)KF(w,a)dudv

of a. Q.E.D.
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LEMMA 2.10.  The set A% is Borel measurable in A:.
Proor. This is evident. Q. E.D.

For any positive P-harmonic function # on R there exists a unique
measure # on Ap, such that x#(Ar—Ap,:1)=0 and

u(z)=/;P‘lKP(z,a)du(a), ZER.

This measure is called the canonical measure of #. Let x” is the canoni-
cal measure of the P-elliptic measure e”.

THEOREM 2.11.  Let u be a positive P-harmonic function on R which
belongs to the class Pu(R), and let p be the canonical measure of u.
Then the set Ap,i—Apn has p-measure zero.

PrOOF. For each positive integer #, let E, be a set of points ¢ in
Ap,1 such that

/RP(w)G(zl,w)KP(w,a)dudv >,

where z is a fixed point in R and E,. is a measurable set by the proof of
Lemma 2.6. By Fubini’s theorem we have

p(N3=1En) < p(En)
sin/E‘n{fRP(w)G(21,w)KP(w,a)a’udv}du(a)

s%/;P(w)G(zl,w)u(w)dudv,

by which #(Ap,1—Ar)=0 is obtained. Q.E.D.

COROLLARY 2.12. Let P be a hyperbolic density on R. Then we
have

xP(Ap)=e"(20) and x*(Ap,1—Apu)=0.

REMARK 2.13. Let R be an open unit disk {z€C:|z|<1} and we
take a density P(z)=¢(7) where ¢ is a bounded function of » and z=re”,
which is a hyperbolic density by [Lemma 1.1. In this case P-Martin
compactification of R is the closed disk {z€C :|z|<1} and the canonical
measure x° of the P-elliptic measure e” is kdf where K is a constant
dependent on P. Let K®(z,e*) be P-Martin kernel normalized at origin
O. Then for every 8, KF(z,e®) is contained in the class Px(R), because
from the inequality(Theorem 1.4))
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ﬂ P(w) G0, w) e (w)dudy
=k'/[;’m{j;P(w)G(O,w)KP(w,e"”)dudv}dﬁ< + o0
it follows that the rotation free function
6~ [ P(w)G(0,w) K" (w,e*)dxdy

is finite for every 6. Therefore we have Apm={zEC :|z|=1}.

Let D be a Lipschitz domain with a point z fixed in D. We say a
function # on D is a kernel function at ¢€dD if u is positive and har-
monic on D with #(z)=1 and u(z) vanishes continuously as z approches
to every boundary point b of the domain D with ##a. One fundamental
result of Hunt and wheeden is a uniform estimate for various approxi-
mations to kernel functions and another is the uniqueness of kernel func-
tions on D. And, for Lipshcitz domains they showed that Martin kernels
of D are exactly the unique kernel function. Then they identified the
Martin ideal boundary with the Euclidean boundary and showed that the
Martin topology is equivalent to the Euclidean topology. On the other
hand Taylor([12]) obtained the similar results for a uniformly bounded
second order elliptic operator on a Lipschitz domain as Hunt and
Wheeden. By these results we can show the following proposition :

PROPOSITION.  The transformation ten: Apu— A is the tdentity trans-
formation of {z€C :|z|=1}.

PROOF. For each integer # let N, be the neiborhood of a point e*
on the unit circle:

N,={z€C : |z—e”|<1/n)},
and R be the subset of unit disk :
{(z€C:|z|<1}—N..

Since the P-Martin kernel K?(z,e%) is P-harmonic on R, and may be
continuously extended on dR,— R with the boundary value zero by Propo-
sition 4.5 in J. C. Taylor ([12]), we have that

Th Kio(2)= K&o(2)
+% A P(w)G(Rn,z,w) Kéio(w) dudy

is harmonic on R, and continuously extended at each point on 0R,— R
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with the boundary value zero. Recall that K”(z.e”) belongs to Pu(R)
and from it follows that

lim o0 Tt Koio= TeuKoio

Then the functionn TeuK%(z,e?)/TeuKF(0,6) is a kernel function at ¢” by
Lemma 2.6 in Hunt and wheeden [4]. Since Martin kernel Ke» is also a
kernel function at ¢, the uniqueness of kernel functions at e* gives that

TeuKlio= TPHK;‘"(O) X Keio
= TpuKen(0) X Kipu(em).

Then we have ter(e”)=¢? for every 6, that is, fex is the identity transfor-
mation of the circle {z€C:|z|=1}. Q.E.D.

For a positive P-superharmonic function # on R the reduced function
(u)% (denoted also by (u)e) relative to a closed set E in R is defined as
the lower envelope of the class of positive P-superharmonic v such that
v=>u on E except for a set of capacity zero. For properties of reduced
functions we refer to [Naim [6], Brelot and Constantinescu and Cor-
nea [3]). For a P-minimal function % on R the reduced function (%)z
relative to E is # or a potential with kernel G°. Let E be a closed set in
R and a point @ in Ap,. The set E is said to be P-thin at @ provided
that (KZ)r is a potential, that is, (K2)r is not KZ. In the case where P is
constantly zero E is said to be thin at & in A; provided (K.)r is a Green
potential.

THEOREM 2.14. A closed set E in R is P-thin at a point aSAp of
and only if E is thin at the point teu(a).

PROOF. Let a point @ be in Apy. For a closed set E in R such that
(K))e=K: on R,
that is, E is not P-thin at a point a, we shall show that
(TeuKd)r=TeuKE on R,

which means that E is not thin at te(a).

If z is an interior point of E or a regular point for the open set R-E,
then the equality is evident.

For z in R—E the function (7rK?)r is the solution of Diriclet prob-
lem on the open set R—FE relative to the equation Az=0 with boundary
value TreuKE on d(R—E). Let of be the P-harmonic measure and o the
harmonic measure for the open set R—E, respectively. Then we have,
for zin R—F,
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(ToukDs(2)= [ TouKZ(+ )dos

() = Ka( + )dp-

d(R-E)

+ L [ P(w)G(+, w)K&w)dudv)dp..

(R-E) 2T

The first term of (%) may be written by as follows :

the first term= f KZdot
d(R—-E)

+L P(w)G(R—E,z,w){ﬁ(R_E)Kfa’pﬁ;}dudv,

2w Jr-E

where we denoted the Green’s function for the open set R—E by G(R—E,
z,w) and used

KPdof=1imn s / (KD)ndo?.0

d(R—E) 3(RnN(R—E))

each term of which is dominated by K{€ Pu(R), letting (K2)»=Ksi on Ry
NA(R—E) and =0 on dR.N(R—E), pk: be P-harmonic measure for the
open set R,N(R—E). The first terme of (%) is equal to, by unthinness
of £ at a,

(KD)e(2) +%/;_EP( w)G(R—E,z,w)(K)e(w)dudv

=KH(2)+5 [ P(w)Glz,w)KHw)dudy

1 P(w){/;(R_E)G(-, w)dpz}KéJ(w)dudv,

27 JrR-E

in which we used
G(R—E,z,w)=G(z,w)—L-(R_E)G(-, w)dp..
The second term of the equality (%) is decomposed as follows:

%APW)G(z,w)Kf(w)dudv

to [ P [ GO, w)dos| KEw)dud,

272' R—-E
Therefore we obtained that

(TruKd)e=TeuKZ for zin R—E,
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so that, this equality holds on R except for the set of irregular points of
the open set R—FE. From this equality we have that (TexKZ2)r= TexKE on
R, which is equivalent to

(Ktru(@)e = Kitrua) on R.
Similaly it may be verified that
(K2)i<Ki on R—E
implies
(TenK2)e< TruKi on R—E,

which means that if £ is P-thin at g, the set E is thin at #x(a). Q.E.D.

The class of open sets G in R such that R—G is P-thin at aSAp, is
denoted by ¢ “(a). In the case where P is identically zero, €%(4) or sim-
ply ¢(a) are used in stead of ¢ *(a) (Constantinescu and Cornea [3D).
< *(a) is a base of the fine neiborhood of a.

COROLLARY 2.15.  For a in Aen, 97(@)=%"(tex(a)).

By changing roles H and P in the proof of the preceding theorem we
obtain the following theorem.

THEOREM 2.16. A closed set E in R is thin at a point b in Ak if
and only if E is P-thin at tupr(b).

COROLLARY 2.17. For a point & in A%, €7(b)=%"(tur(b)).
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