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Introduction. Injective modules, specially self-injective rings, occupy a
prominent position in ring theory and have drawn the attention of many
authors since several years (cf. for example the bibliography of [1], [3],
[4], [6] ) . Well-known examples of self-injective rings are self-injective
regular rings, quasi-Frobeniusean rings and pseud0-Frobeniusean rings.
The purpose of this note is to consider several nice conditions for rings to
be self-injective. Test modules are given to ensure that rings are left self
-injective regular with non-zero socle. Sufficient conditions for rings to
be pseud0-Frobeniusean and quasi-Frobeniusean follow. Strongly regular
rings with non-zero socle are characterized. The following are among the
results proved for a ring A:(1) If A contains an injective maximal left
ideal Y such that r(Y) is a minimal right ideal, then A is left self-in-
jective; (2) A is left self-injective if A is weakly right duo containing an
injective maximal left ideal; (3) A is left pseud0-Frobeniusean if A is left
p -injective left Kasch containing an injective maximal left ideal.

Throughout, A denotes an asscoiative ring with identity and A-mod-
ules are unital. J, Z will stand respectively for the Jacobson radical and
the left singular ideal of A. A is called left non-singular iff Z=0. An
ideal of A will always mean a tw0-sided ideal. Following E. H. FEL-
LER, A is called a left duo ring if every left ideal of A is an ideal. A left
(right) ideal of A is called reduced if it contains no non-zero nilpotient
element. For any subset B of A, r(B) (resp. 1(B)) denotes the right
(resp. left) annihilator of B.

\S 1. Self-injective rings.

PROPOSITION 1. 1. Let A have an injective maximal left ideal Y such
that r(Y) is a reduced ideal of A. Then A is left self-injective.

PROOF. We have A=Y\oplus U , where Y=Ae , e=e^{2}\in A , U=Au ,
where u=1-e isalso an idempotent and U is a minimal left ideal of A.
Since uA=r(Y) is an ideal of A, then YAuA=YuA=0 implies that YA
=1(u)=Y- whence Y is a maximal right ideal of A. Now uA=AuA
and eA\subseteq AeA=Ae . If uA\cap Aa\neq 0 , let 0\neq ua_{0}=a_{1}u , where a_{0} , a_{1}\in A .
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Then ea_{1}e=eua_{0}=0 implies that a_{1}e is a non-zero nilpotent element of
r(Y) , which contradicts r(Y) reduced. This proves that uA\cap Ae=0 and
since Y=Ae is a maximal right ideal of A, then A=Y\oplus uA . Therefore
A/Y_{A} is projective which implies that AA/Y is injective by [10, Lemma 1].

Since A U\approx_{A}A/Y . then A=Y\oplus U is an injective left A-module which
proves the proposition.

REMARK 1. If Y is a maximal left ideal of A which is a left anni-
hilator such that r(Y) is a minimal right ideal of A satisfying r(Y)\cap Y=

0 , then r(Y) is reduced.
Proposition 1. 1. and Remark 1 may be used to prove the next the0-

rem. The present independent proof is due to the referee. [8, Lemma
4(2) ] and [13, Remark 9(2) ] are strengthened.

THEOREM 1. 2. Let A have an injective mmimal left ideal Y such
that r(Y) is a minimal right ideal of A. Then A is left self-injective.

PROOF. Since A Y is injective and maximal, A=Y\oplus V with a mini-
mal left ideal V of A. We need only to show that A V is injective. Let 1
=e+f, where e\in Y . f\in V . Then e and f(=1-e) are idempotents of A
satisfying Ae=Y and Af=V, and it follows that r(Y)=fA. First sup-
pose that YV=0. Then Y is an ideal of A, since YA=Y(Y+V)=YY
+YV=YY\subseteq Y Therefore r(Y) is also an ideal of A, and so V=Af\subseteq

r(Y) whence A=Y+r(Y) . Since r(Y) is a minimal right ideal, we
have that Y\cap r(Y)=0 (because otherwise Y\cap r(Y)=r(Y) whence f\in Y

a contradiction !). Thus A=Y\oplus r(Y) . This implies that (A/Y)_{A} is
isomorphic to r(Y)_{A} (and V=AfA=r(Y)) and hence (A/Y)_{A} is simple
and projective. Therefore, by [10, Lemma 1], A(A/Y) and hence AV is
injective. Next suppose that YV\neq 0 . Let v\in V be such that Yv\neq 0 .
Then, since A V is simple, Yv=Vr and indeed the mapping yarrow yv(y\in Y)

gives an epimorphism AYarrow_{A}V . Since however AV is projective, the
epimorphism splits and so A Y has a direct summand isomorphic to A V.

Since A Y is injective, its direct summand and hence A V must be injective
too. This completes the proof.

COROLLARY 1. 3. Let A be a left Kasch ring containing an injective
maximal left ideal Y such that r(Y) is a minimal right ideal. Then A is
left pseudO-Frobeniusean. Consequently, a left duo left Kasch ring contain-
ing an injective maximal left ideal is left pseudO-Frobeniusean. In that
case, the maximal right ideals of A coincide with the maximal left ideals
of A .
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We are now in a position to give “test modules” for a ring to be left
self-injective regular with non-zero socle.

THEOREM (MY). The following conditions are equivalent: (1) A is
left self-injective regular with non-zero socle;

(2) A has an injective maximal left ideal Y such that r(Y)is a mini-
mal right ideal and, for every b\in J , A/Yb is a flat left A-module;

(3) A has a non-singular injective maximal left ideal Y such that
r(Y) is a minimal right ideal of A .

PROOF. Assume (1). Then A has a minimal left ideal V. Since V
is cyclic, there exists an idempotent f such that V=Af. If we put e=1
-f, then e is also an idempotent and we have a direct decomposition A=
Ae\oplus V Therefore Ae an injective maximal left ideal of A. Since A is
regular, J=Z=0 and r(Ae)=fA is a minimal right ideal. Since the regu-
larity of A implies that every left A-module is flat, we have (2), while
since Z=0, every left ideal of A is non-singular and so we have (3).

Now assume (2). Then A is left self-injective by Theorem 1. 2. Let b

be any element of J . Then A(A/Yb) is flat. It is known that for any left
ideal I of A, A(A/I) is flat if, and only if, a\in aI for every a\in I . there
fore, for every y\in Y,yb=ybzb for some z\in Y It follows that yb(1-zb)=
0 . But since b is, whence zb is, in J, 1-zb is invertible in A and it fol-
lows that yb=0. Thus we have Yb=0, or equivalently, b\in r(Y)\cap J . On
the other hand, since Y is an injective left ideal, Y is a direct summand
of AA and hence Y=Ae for an idempotent e of A. If we put f=1-e ,
then f is also an idempotent and we have r(Y)=fA. Thus we know that
b\in r(Y)\cap J=fJ . But since r(Y)_{A} is simple, it follows that fJ=r(Y)J=0,
whence b=0. This shows that J=0 and A is therefore regular by [3,
Corollary 19.28]. Moreover, since A=Y\oplus Af and Y is a maximal left
ideal, Af is a minimal left ideal. This shows that (2) implies (1).

Assume finally (3). Then A=Y\oplus Af for a minimal left ideal Af
with idempotent f as seen above. But Af is and hence A is non-singular.
So (1) follows from Theorem 1.2 and [3, Corollary 19.28].

[13, Remark 11] is extended to the non-commutative case by condi-
tion (3) in the above theorem.

COROLLARY 1. 4. A left duo ring containing a non-singular injective
maximal left ideal is left and right self-injective strongly regular with non
-zero socle.

If A is prime, Y a maximal left ideal generated by an idempotent,
then it is clear that r(Y) is a minimal right ideal. If, further, A has
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non-zero socle, then Z=0. The following interesting result then follows
immediately from Theorem (MY).

COROLLARY 1. 5. If A is a prime ring containing an injective maxi-
mal left ideal, then A is primitive left self-injective regular with non-zero
socle. Consequently, A is simple Artinian iff A is a prime ring containing
an injective mmimal left and an injective maximal right ideals.

Recall that a left A-module M is p-injective if, for any principal left
ideal P of A, every left A-homomorphism of P into M extends to A. As
in the definition of left self-injective rings, A is called left p- injective if
AA is p-injective. A theorem of M. Ikeda-T. Nakayama guarantees that
A is left p-injective iff every principal right ideal of A is a right anni-
hilator [5, Theorem 1]. We now turn to von Neumann regular rings with
non-zero socle. Note that a finitely generated p-injective left ideal of A
is generated by an idempotent.

The proof of Theoren 1.2 yields an analogous p-injective result.

PROPOSITION 1. 6. Let A have a fifinitety generated p- injective maxi-
mal left ideal Y such that r(Y) is a minimal right ideal. Then A is left
p- injective

A characterization of regular rings with non-zero socle follows.

COROLLARY 1. 7. The following conditions are equivalent:
(1) A is regular with non-zero socle;
(2) Every principal left ideal of A is projective and A contains a fifinitety
generated p -injective mmimal left ideal Y such that r(Y) is a minimal
right ideal.

At this point, let us give a sufficient condition for p-injective rings to
be self-inj ective.

PROPOSITION 1. 8. Let A be a left p -injective ring containing an in-
jective mmimal left ideal Y. Then r(Y) is a minimal right ideal and
consequently, A is left self-injective.

PROOF. Since A Y is injective, A=Y\oplus V , where V=Av , v=v^{2}\in A ,
Y=Ae , e=1-v , and r(Y)=vA. For any 0\neq u\in vA , since Y is a maxi-
mal left ideal, Y=1(uA) . In as much as Y=1(vA) , since A is left p-in-
jective, by [5, Theorem 1], vA=r(1(vA))=r(1(uA))=uA which proves
that r(Y)=vA is a minimal right ideal of A. The fact that A is left self
-injective is a direct consequence of Theorem 1.2.

Applying [3, Corollary 24.22], we get

COROLLARY 1. 9. Let A have an injective mmimal left ideal. Then
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A is quasi-Frobeniusean iff A is left p- injective satisfying either the maxi-
mum or the minimum condition on left annihilators.

Proposition 1.8. also yields

COROLLARY 1. 10. A left p -injective left Kasch ring containing an
injective maximal left ideal is left pseudO-Frobeniusean.

If A is left pseud0-Frobeniusean, then it is well-known that every left
ideal of A is a left annihilator. Note that left pseud0-Frobeniusean rings
need not be right pseud0-Frobeniusean [2].

However, the next result holds.

COROLLARY 1. 11. If A is left pseudO-Frobeniusean containing an in-
jective maximal right ideal, then A is right pseudO-Frobeniusean.

Left FP-injective rings are mentioned in [3, P. 108]. The next
remark follows from Proposition 1.8.

REMARK 2. If A contains an injective maximal left ideal, then A is
left self-injective iff A is left FP injective

\S 2. A generalization of duo rings.

Recall that A is WRD (weakly right duo) [9) if, for any a\in A , there
exists a positive integer n such that a^{n}A is an ideal of A. WRD rings
generalize effectively right duo rings. For example, if

K=Z/2Z,R=\{\begin{array}{lll}O O OK O OK K O\end{array}\}

’

A the ring generated by R and identity, then A is WRD but not right duo.

PROPOSITION 2. 1. Let A be a WRD ring containing an injective
maximal left ideal. Then A is left self-injective.

PROOF. Let Y be an injective maximal left ideal. Then A=Y\oplus U ,
where Y=Av, v=v^{2}\in A , U=Au , u=1-v . Suppose that Y is not an
ideal of A : we have then A=YA=AvA and since A is WRD, vA=AvA
which yields A=vA, whence 1=vb for some b\in A . Therefore u=uvb=0,
which is impossible ! This proves that Y must be an ideal of A. Now Y
=Av=AvA and since A is WRD, Y=vA which implies that uA is a
minimal right ideal of A. Therefore A/Y_{A}\approx uA_{A} is projective which
implies that AA/Y is injective by [10, Lemma 1]. Thus A U is injective
and it follows that A is a left self-injective ring.

The proof of Proposition 2.1 shows the validity of the next proposi-
tion.
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PROPOSITION 2. 2. (1) A is right self-injective if A is WRD contain-
ing an injective maximal right ideal;
(2) A is right self-injective if A contains an injective maximal right ideal
and every complement right ideal of A is an ideal of A ;
(3) A is left self-injective if A contains an injective maximal left ideal and
every complement right ideal of A is an ideal of A .

We know that A is a reduced ring if A contains a reduced maximal
left ideal. Applying [14, Proppsition 7] and Lemma 1.2, we get

COROLLARY 2. 3. The following conditions are equivalent:
(1) A is left and right self-injective strongly regular with non-zero socle;
(2) A is a right duo ring containing a non-singular injective maximal left
ideal :
(3) A is a WRD ring containing a non-singular injective mmimal left
ideal :
(4) A is a WRD ring containing a non-singular injective maximal right
ideal ;
(5) A contains a non-singular injective mmimal right ideal and every com-
plement right ideal of A is an ideal;
(6) A contains a non-singular injective maximal left ideal and every com-
plement right ideal of A is an ideal:
(7) A contains a reduced injective maximal left ideal.

If A is left p-injective, then Z=J by [12, Proposition 3]. [14, PropO-
sitions 2 and 7] together with the proof of Proposition 2.1 yield the fol-
lowing p- injective analogue of Corollary 2.3.

PROPOSITION 2. 4. The following condiions are equivalent:
(1) A is strongly regular with non-zero socle;
(2) A is WRD containing a non-singular fifinitely generated p injective
maximal left ideal :
(3) A is WRD containing a non-singular fifinitely generated p injective
maximal right ideal ;
(4) A contains a non-singular fifinitely generated p- injective maximal right
ideal and every complement right ideal of A is an ideal;
(5) A contains a non-singular fifinitely generated p -injective maximal left
ideal and every complement right ideal of A is an ideal;
(6) A contains a reduced fifinitely generated p -injective maximal left ideal.

Following [7], a left A-module M is called semi-simple if the intersec-
tion of all maximal submodules of M is zero. Thus A is semi-simple iff J
=0 . A is called a left V-ring if every simple left A-module is injective.
Then A is a left V-ring iff every left A module is semi-simple [7, TheO-
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rem 2.1]. Recall also that A is von Neumann regular iff every left
A-module is p-injective.

Connecting semi-simplicity with p-injectivity, we have

REMARK 3. A is a regular left F-ring iff the cyclic semi-simple left
A-modules coincide with the cyclic p-injective left A-modules.

Rings whose simple left modules are either p-injective or flat need not
be regular (they need not be even simi-prime).

If K=Z/2Z, set
A=\{\begin{array}{ll}K KO K\end{array}\}

. Then the simple

left A-modules are either p-injective or flat but A is not semi-prime.
We finally consider a sufficient condition for A/J to be strongly regu-

lar.

PROPOSITION 2. 5. Let A be a ring whose cyclic semi-simple left
modules are either p- injective or flat. If every mmimal left ideal of A is
an ideal, then A/J is strongly regular and every simple right A -module is
either injective or flat.

PROOF. Set B=A/J. Since AB is semi-simple, AB is either p-in-
jective or flat. First suppose that AB is p-injective. Then B is a left
p-injective ring. Since B is semi-simple and every maximal left ideal of
B is an ideal, then B is a reduced ring [11, P. 27]. Now B, being a
reduced left p-injective ring, is strongly regular.

Therefore every maximal right ideal of A is an ideal and every simple
right A-modules is injective or flat by [10, Lemma 1]. Now suppose that
AB is flat. For any u\in J , u=uv for some v\in J . There exists w\in A such
that (1-v)w=1. Then 0=u(1-v)=u(1-v)w=u implies that J=0 .
Therefore A is reduced [11, P. 27] and every simple left A-module is flat
or p-injective. Let Y be a maximal left ideal of A. If AA/Y is flat, for
any y\in Y . y=yz for some z\in Y Then 1-z\in r(y)=1(y) (because A is
reduced) which implies that A/Y_{A} is flat, whence AA/Y is p-injective [10,

Lemma 1]. This proves that every simple left A-module is p-injective.
Since every maximal left ideal of A is an ideal, then A is strongly regu-
lar. This proves the proposition.

COROLLARY 2. 6. Suppose that every cyclic semi-simple left A-module
is either p- injective or flat. The following are then equivalent : (a) A is
left Artinian and A/J is a fifinite direct sum of division rings; (b) A is left
Noetherian, J is left T-nilpotent and every maximal left ideal of A is an
ideal.
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