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Blow up for some equations with semilinear dynamical

boundary conditions of parabolic and hyperbolic type

M. KIRANE
(Received March 1, 1990)

1. Introdution

In recent years several results have been published concerning
blow-up of solutions to semilinear parabolic and hyperbolic equations.
We mention here the works [1]-[7] and their references.

A special attention was given not only to the description of the set of
blow-up points but also to the description of the behaviour of the solutions
near the blow-up points as time tends to the blow-up time [3]-[6] .

All these papers dealt with semilinear parabolic and hyperbolic equa-
tions with classical boundary conditions, i . e , Dirichlet’s, Neumann’s and
Robin’s conditions.

In the present work blow-up results and characterization of the blowup
up set (Bus) in the case of particular geometries are established for
semilinear parabolic and hyperbolic equations of the following types:

\triangle u=0 in D\cross(0^{ },\infty) ,

(PI) \partial u/\partial t+k\partial u/\partial\eta=h(x, t, u) on S\cross(0, \infty) ,
u(x, 0)=u_{0}(x) on S .

\triangle u=0 in D\cross(0, \infty) ,
(P2) \partial^{2}u/\partial t^{2}+k\partial u/\partial\eta=f(u) on S\cross(0^{ },\infty) ,

u(x, 0)=u_{0}(x) on S ,
\partial u/\partial t(x, 0)=u_{1}(x) on S .
\partial u/\partial t-\triangle u=u^{1+a} in D\cross(0, \infty) ,

(P3) \partial u/\partial t+k\partial u/\partial\eta=u^{1+a} on S\cross(0, \infty) ,
u(x, 0)=u_{0}(x) in \overline{D} .

Here D is a bounded domain in R^{N}(N\geq 1) with smooth boundary S
and outer unit normal vector field \eta , \triangle is the Laplace operator with
respect to the space variables and \partial/\partial\eta the outward normal derivative to
S. The constants \alpha and k are assumed to be positive.

The functions h and f are assumed to satisfy:
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(HI) h(x, t, u)\in C(D\cross R^{+}XR, R)

(H2) h(x, t, u)\geq p(t)H(u) for (x, t, u)\in D\cross R^{+}\cross R

where H(u) is a continuous, convex and positive function on R^{+} and
satifying :

(H3) \int_{0}^{\infty}du/H(u)<+\infty ,

and p(t) is a continuous and positive function on R satisfying:

(P) \int_{0}^{t}p(s)ds\geq C(t) for t>0 and a positive function C such that C(t)

goes to infinity as t goes to infinity.

(F) f is a continuous, positive and convex function in R .

Problems of type (P2) can be used as models to describe the motion
of a fluid in a container or to describe the displacement of a fluid in a
medium without gravity (artificial satellite).

Problems of type (P3) occurs in describing the heat tranfer in a solid
in contact with a fluid [9].

It is worth noting that Gr\"oger [8] considered problems with dynami-
cal boundary conditions from semiconductor device theory.

2. Known facts and statment of the problems

Throughout the paper, we will consider problems (P1) and (P2) in
general bounded domains D and particulary in spherical domains
D =B_{R}(x)=(x\in R^{N} |x|<R) with boundary S =\partial D .

The following results concerning existence of local (in time) solutions
to problems (P1) , (P2) and (P3) are stated in [10].

A few words about notations. For p\in[1, +\infty] , we donote by L_{p}(D)

the space of measurable scalar functions on D for which

|u|_{p}=[ \int_{D}|u(x)|^{p}dx]^{1/p}<+\infty , for 1\leq p<\infty .
|u|_{\infty}=esssupx\in D|u(x)|<+\infty , for p=+\infty .

For s\in R and 1<p<\infty , we denote by H_{p}^{s}(D) and B_{pp}^{s}(S) the local
Bessel potential and Besov spaces with norms||\cdot||_{s,p,D} and ||\cdot||_{s,p,s} , respec-
tively. They are defined by restrictions from the following Bessel poten-
tial and Besov spaces:
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H_{p}^{s}(R^{N})=[\{u\in S’|\mathscr{P}^{\sim s}u\in L_{p}(R^{N}, C^{n})\}, ||[||_{s,p}] , ||u||_{s,p}=|ff^{s}u|_{p} ,

B_{pq}^{s}(R)^{N}=\{ (H_{p}^{k-1},H_{p}^{k+1})_{s/2,q}(H_{p}^{k},H_{p}^{k+1})_{s-k,q}
k<s<k+1 , k\in Z ,
k=s\in Z ;

Here \mathscr{T}^{s}=\mathfrak{F}^{-1}\Lambda^{s}(1, \zeta)\mathfrak{F}\in \mathfrak{L}(S’) , \Lambda^{s}(\eta, \zeta)=(|\eta|^{2}+|\zeta|^{2})^{s/2}\zeta\in R^{N}s\in R ,
\eta\in C and S’ denotes the space of C^{n_{-}}valued tempered distributions on R^{N}

and \mathfrak{F} denotes the Fourier transform in S’ For further informations we
refer to Triebel [13].

For simplicity, we put H^{s} :=H_{2}^{s}:=B_{pp}^{s} .

2.1 Facts
2.1.1 For each u_{0}\in B_{p\overline{p}}^{21/p}(S) , problem (P1) has a maximal solution

u\in C([0, T_{\max}), H_{p}^{2}(D))\cap C^{1}([0, T_{\max}) , H_{p}^{1}(D))

If there exists a function K\in C(R, R) such that
||u(t)||_{2,p,s}+||u(t)||_{2,p,D}\leq K(t) for any t\in[0, T_{\max})

then T_{\max}=+\infty ,

2.1.2 For each (u_{0}, u_{1})\in H^{s+1/2}(S)\cross H^{s}(S)(s>1) there exists a maximal
open interval J=(T^{-}. T^{+}) with O\in J and a unique weak solution to (P2)

u\in C([0, T^{+}), H^{s+1}(S))

with trace

\gamma_{0}u=u_{|S}\in C^{1}([0, T^{+}), H^{s+1}(S)) .

If there exists a function k\in C(R, R) such that
||\gamma_{0}u||_{s+1/2,2,S}+||d/dt (( \gamma_{0}u(t)||_{s,2,S}\leq k(t) , for any t\in[0, T^{+} ), then T^{+}=

+\infty (analogous result for T^{-} ).

2.1.3 Let p>N . For each u_{0}\in H^{2,p}(D) , problem (P3) has a unique max-
imal solution

u\in C([0, T_{\max}), H^{2,p}(D))\cap C^{1}((0, T_{\max}) , L^{p}(D))

for T_{\max}>0 .

Moreover, if u(t) , t\in[0, T_{\max}) , is bounded in H_{p}^{2-\epsilon}(D)(0<\epsilon<<1) ,
then the solution is global.

2.2 DEFINITION: A point x\in\overline{D} is a blow-up point if there exists
((x_{n}, t_{n})) such that t_{n} -arrow T_{\max} , x_{n} -arrow x
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and u(x_{n}, t_{n}) -arrow+\infty as narrow+\infty .

In the sequel, we are going to answer the following questions:

1 When do the solutions blow up in finite time ?
2. Where do the solutions blow up ?

THEOREM 1: Assume that u_{0}\in B^{2-1/p}(S) and tetu be the solution to
(P1) . If h satisfies (HI) and (H2) then u does not exist for all time.

PROOF: Let u(x, t) be the solution to problem (P1) , and consider
the function:

U(t)=|S|^{-1} \int_{s}u(\sigma, t)d\sigma , t>0

where |S|= \int_{s}1 , d\sigma .

Integrating (P1)_{2} on S , we get:

(3. 1) U’(t)=-k|S|^{-1} \int_{s}\partial u/\partial\eta d\sigma+|S|^{-1}\int_{s}h(\sigma, t, u)d\sigma

Green’s formula yields:

(3. 2) 0= \int_{D}\triangle udx=\int_{s}\partial u/\partial\eta d\sigma

From (H2) and Jensen’s inequality we obtain:

(3. 3) |S|^{-1} \int_{s}h(\sigma, t, u)d\sigma\geq|S|^{-1}\int_{s}p(t)H(u)d\sigma

\geq|S|^{-1}p(t)\int_{s}H(u)d\sigma\geq p(t)H(|S|^{-1}\int_{s}u(\sigma, t)d\sigma)

\geq p(t)H(U)

then from (3. 1), (3. 2) and (3. 3) it follows that:

U’(t)\geq p(t)H(U) , t>0 .

Since H(U)>0 , this implies that:

\int_{U(0)}^{U(t)}[H(\sigma)]^{-1}d\sigma\geq\int_{0}^{t}p(\sigma)d\sigma\geq C(t) ,

hence

(3. 4) C(t) \leq\int_{U(0)}^{\infty}[H(\sigma)]^{-1}d\sigma<\infty .

Then if global existence of a solution to (P1) is assumed, (3. 4) leads
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to a contradiction because C(t) goes to infinity as t goes to infinity.

REMARK 1: The result remains true even if H is not convex. In
this case H has to be replaced by H^{**}= \sup(H_{i}, i\in I) , H_{i} convex, H_{i}\leq H

and in this case, (*) reads \int^{\infty}du/H^{**}(u)<\infty .

The special case D=B_{R}(0) :
Now, assume that D=B_{R}(0)\subset R^{N} By the mean value theorem we

have:

u(0, t)=(1/N \omega_{N}R^{N-1})\int_{s}u(\sigma)d\sigma

where \omega_{N}(=2\pi^{N/2}/N\Gamma(N/2)) is the volume of the unit ball in R^{N} .

Hence u(0, l) -arrow\infty as t - T_{\max} .

On the other hand, as u is harmonic, u can not have a maximum in
an interior point of D without being constant in a neighborhood of this
point, thus :

u(x, t)arrow+\infty as tarrow T_{\max} in all D=B_{R}(0) .

REMARK 2: If D included in R^{2}(\simeq C) is a simply connected (no

holes) domain whose boundary consists of more than one point then

u(x, t)arrow+\infty as tarrow T_{\max} in D all D=B_{R}(0) .

because, in this case, by Riemann’s theorem D may be conformally
mapped onto the interior of the unit circle |W|<1 of the W-plane [11, p .
256], the Laplace equation is preserved in a conformal mapping and the
solution of the Dirichlet problem for the circle is obtained.

REMARK 3: The results remain true when:
\triangle u=0 is replaced by div(a(u)gradu)=0(0<\alpha_{0}\leq a(x)\leq\alpha_{1}<+\infty) which

can be rewritten by the Kirchhoff transform v= \int_{uo}^{u}a(s)ds into \triangle v=0 .

Now for further reference, let’s:

F(U)= \int_{0}^{U}f(s)ds and d=(U’(0))^{2}-2F(U(0)) .

THEOREM 2: Assume that (u_{0}, u_{1})\in H^{s+1/2}(S)\cross H^{s}(S) (s>1)u_{1}\geq

0 , u_{1}\not\equiv 0 and that \int_{U(0)}^{\infty}[d+2F(s)]^{-1/2}ds<+\infty then the (local) week solu-
tion u\in C([0, T_{\max}), H^{s+1}(D)) to problem (P2) Wows up in a finite time.
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Moreover if D=B_{R}(0) then Bus=D.

PROOF : Consider the function :

U(t)=|S|^{-1} \int_{s}u(\sigma, t)d\sigma .

By computation:

U’(t)=|S|^{-1} \int_{s}u_{tt}=-k|S|^{-1}\int_{s}\partial u/\partial\eta+|S|^{-1}\int_{s}f(u)

=|S|^{-1} \int_{s}f(u)\geq (by Jensen’s inequality) \geq f(U)\geq 0 .

Now, as U’(0) is positive and since U’ is nondecreasing, U’>0 for
any t\in[0, T_{\max}) .
So, multiplying (3. 5) by U’ yields:

(U’(t))^{2} \geq(U’(0))^{2}+2\int_{0}^{t}f(U(s))U’(s)ds .

Hence:

(U’(t))^{2}\geq(U’(0))^{2}+2F(U(t))-2F(U(0)) for t\in[0, T_{\max})

so:
U’(t)\geq ( d+2F(U(t))^{1/2} for t\in[0, T_{\max}).

An integration on (0, t) (t<T_{\max}) yields:

t \leq\int_{U(0)}^{U(t)}[d+2F(U(s))]^{-1/2}ds\leq T_{\max}<\infty ,

it follows then that a global solution can not exist for all t>0 .
Now, assume that D=B_{R}(0) then, as for the parabolic case, we have:

u(0, t)=(1/N \omega_{N}R^{N-1})\int_{s}u(\sigma)d\sigmaarrow+\infty as tarrow T_{\max} ,

and proceeding as above we have:

u(x, t)arrow+\infty as tarrow T_{\max} in D all D=B_{R}(0) .

THEOREM 3: Let u_{0}\in H_{p}^{2}(D) , u_{0}\geq 0 , u_{0}\not\equiv 0 in D. Then the unique
maximal solution :

u\in C([0, T_{\max}), H_{p}^{2}(D))\cap C^{1}((0, T_{\max}) , L_{p}(D)) , T_{\max}>0 ,

to problem (P3) Wows up in a finite time.
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For the proof of theorem 3 we need the following lemma.

Lemma 3. 1: Assume that u_{0}\in H_{p}^{2}(D) , u_{0}\geq 0 , u_{0}\not\equiv 0 in D, then u\geq 0

in \overline{D} and u>0 in D.

PROOF: We multiply the first equation of (P3) by u^{-}= \max(-u, 0)

=-u^{+} Integrating over D and using Green’s formula, we find:

\int_{D}u^{-}\partial u/\partial t=\int_{D}u^{-}(\partial u^{+}/\partial t-\partial u^{-}/\partial t)=-\int_{D}u^{-}\partial u^{-}/\partial t

=-d/dt[(1/2) \int_{D}|u^{-}|^{2}]

- \int_{D}\triangle u\cdot u^{-}= \int_{D}(\nabla u^{+}-\nabla u^{-})\cdot \nabla u^{-}-\int_{s}\partial u/\partial\eta\cdot u^{-}=-\int_{D}|\nabla u^{-}|^{2}

but:

- \int_{s}\partial u/\partial\eta\cdot u^{-}=-k^{-1} \int_{s}u^{1+a}u^{-}+k^{-1}\int_{s}\partial u/\partial t\cdot u^{-}

=-k^{-1} \int_{s}u^{1+a}u^{-}-(2k)^{-1}d/dt[\int_{s}|u^{-}|^{2}] .

From the previous identities we infer:

d/dt[ \int_{D}|u^{-}|^{2}+\int_{s}|u^{-}|^{2}]\leq 2k^{-1}\int_{s}|u^{1+a}u^{-}|+2\int_{D}|u^{1+a}u^{-}| .

For p large enough |u(t)|_{\infty} is bounded for any interval [0, T] with T
<T_{\max} .

Hence, there exists a constant C=C(T) such that:

\int_{D}|u^{1+a}u^{-}|\leq C\int_{D}|u^{-}|^{2} and \int_{s}|u^{1+a}u^{-}|\leq C\int_{s}|u^{-}|^{2}-

collecting all these estimates together, we get for t\in(0, T) :

d/dt[ \int_{D}|u^{-}|^{2}+\int_{s}|u^{-}|^{2}]\leq C(T)[\int_{D}|u^{-}|^{2}+\int_{s}|u^{-}|^{2}] .

Since u^{-}\in C([0, T];L_{2}) and u^{-}(0, x)=0 , Gronwall’s lemma now
implies:

\int_{D}|u^{-}|^{2}+\int_{s}|u^{-}|^{2}=0 for all t\in[0, T] .

Since T<T_{\max} is arbitrary, we see that u^{-}=0 for all t\in[0, T_{\max}) .
Hence u\geq 0 .

PROOF OF THEOREM 3 :
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Let G:= \int_{D}u+\int_{s}u ,

then:

G’=d \int_{D}\triangle u+\int_{D}u^{1+a}-d\int_{s}\partial u/\partial\eta+\int_{s}u^{1+a}

= \int_{D}u^{1+a}+\int_{s}u^{1+a}-

as u\geq 0 in \overline{D} ,

[ \int_{D}u]^{1+a}\leq|D|\int_{D}u^{1+a} . [ \int_{s}u]^{1+a}\leq|S|\int_{s}u^{1+a}

and (a+b)^{1+a}\leq 2^{a}(a^{1+a}+b^{1+a}) ,

we have:

G’ \geq\beta 2^{-a}[\int_{D}u+\int_{s}u]^{1+a}=\beta 2^{-a}G^{1+a}-

with \beta=\min(|D|^{-a_{7}}|S|^{-a}) . (For simplicity let us \beta 2^{-a}=1 ).

Or G’\geq G^{1+a} .

A simple computation yields:

G(t)^{a}\geq G(0)^{a}/(1-\alpha G(0)^{a}t)

which blows up at tarrow T^{\star}=\alpha^{-1}G(0)^{a}\blacksquare
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