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1. Introduction

In this paper, we intend to study qualitative properties of foliations of
higher codimensions. For the first step, we consider some analogies of the
theory of codimension one foliations.

Let \mathscr{F} be a transversely orientable, codimension one foliation of class
C^{2} on a closed smooth manifold M. A leaf F of \mathscr{I}^{-} is semiproper if it is
asymptotic to itself from at most one side. In particular, F is called a
nonproper semiproper leaf if it is asymptotic from exactly one side and
this side is called the nonproper side.

For nonproper semiproper leaves of \mathscr{I}^{-}.\cdot the following theorems are
important.

THEOREM (Sacksteder [6]). Let M, \mathscr{F} be as above and F a non-
proper semiproper leaf of \mathscr{F} Then the closure \overline{F} of F contains a leaf
with a linearly contracting holonomy.

THEOREM (Hector [4], Duminy (unpublished, but see Cantwell-Conlon
[3] )) . Let M, \mathscr{F} be as above and F a nonproper semiproper leaf of \mathscr{F}.
Then F has a germinal contracting holonomy on the nonproper side of F.

For the proof of these theorems, we use the holonomy pseudogroup of
\mathscr{F} acting on the real line R.

Let \mathscr{C} be a codimension q foliation on a manifold. A foliation \mathscr{C} is
called transversely similar if all holonomy transition functions of \mathscr{C} are
local similarity transformations of R^{q} . Therefore, if \mathscr{C} is a transversely
similar foliation of codimension q , we obtain the holonomy pseudogroup
of \mathscr{C} which consists of local similarity transformations of R^{q} . So we
treat a pseudogroup of local similarity transformations of R^{q} .

Recently, for such pseudogroups, an analogy of Sacksteder’s theorem
is obtained by Nishimori (see [5], or Section 2). Now we consider an
analogy of the theorem of Hector-Duminy.
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2. Similarity pseudogroups and statement of the result

In this section, we review about pseudogroups and state out result.
For more informations about pseudogroups of our sense, see Nishimori
[5].

Let \Gamma rq,’+* (r=0,1, \ldots, \infty, \omega) be the set of orientation preserving local
C^{r} diffeomorphisms h:Uarrow V of R^{q} satisfying that the domain U and
the range V of h are both non-empty, bounded, convex open subsets of
R^{q} . We denote D(h)=U and R(h)=V. Let \Gamma_{q,+}^{r}=\Gamma_{q,+}^{r,*}\cup\{id_{R^{q}}, id_{\emptyset}\} , where
ide is the unique transformation on the empty set \emptyset .

DEFINITION 2. 1. A subset \Gamma of \Gamma_{q,+}^{r} is called a pseudogroup if it
satisfies the following three conditions:

(1) id_{R^{q}}\in\Gamma .
(2) If f, g\in\Gamma . then f\circ g\in\Gamma .
(3) If f\in\Gamma . then f^{-1}\in\Gamma-

For example, \Gamma_{q,+}^{r} itself is a pseudogroup, but \Gamma_{q,+}^{r,*} is not.

DEFINITION 2. 2. Let \Gamma 0 be a subset of \Gamma_{q,+}^{r,*} .

(1) \Gamma 0 is called symmetric if h\in\Gamma_{0} implies h^{-1}\in\Gamma_{0} .
(2) Denote \langle\Gamma_{0}\rangle the intersection of all the pseudogroups \Gamma\subset\Gamma_{q,+}^{r}

which contain \Gamma_{0} . Then \langle\Gamma_{0}\rangle is also a pseudogroup, which is called the
pseudogroup generated by \Gamma_{0} .

Let \Gamma 0 be a symmetric subset of \Gamma_{q,+}^{r,*} and \Gamma=\langle\Gamma_{0}\rangle . Denote W(\Gamma_{0})

the set of all words with \Gamma_{0} as alphabet, that is, W(\Gamma_{0})=L_{n=0}^{\infty}(\Gamma_{0})^{n} . where
(\Gamma_{0})^{n} means n-direct product of \Gamma_{0} and (\Gamma_{0})^{0} the singleton which consists
of the empty word ( ) . This set W(\Gamma_{0}) is useful to treat the pseud0-
group \langle\Gamma_{0}\rangle , because

PROPOSITION 2. 3 ([5], Proposition 2. 6). Define a map \Phi:W(\Gamma_{0}) -

\Gamma=\langle\Gamma_{0}\rangle by \Phi( ( ) )=id_{R^{q}} for the empty word ( ) and \Phi(w)=h_{m}\circ\cdots\circ h_{1}

for a word w=(h_{m^{ }},\cdots, h_{1}) . Then this map \Phi is surjective.

For a word w=(h_{m^{ }},\cdots, h_{1})\in W(\Gamma_{0}) , we put g_{w}=\Phi(w)=h_{m}\circ\cdots\circ h_{1} .
Note that for the inverse word w^{-1}=(h_{1}^{-1_{ }}.\cdots, h_{\overline{m}}^{1}) of w , g_{\overline{w}^{1}}=g_{w- 1}=\Phi(w^{-1})=

h_{1}^{-1}\circ\cdots\circ h_{\overline{m}}^{1} .

DEFINITION 2. 4. Let x_{0}\in R^{q} . The \Gamma- orbit of x_{0} is the set \Gamma(x_{0})=

\{g(x_{0})|g\in\Gamma. x_{0}\in D(g)\} .

Af first, we consider in the case of q=1 and r=2, which is related to
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holonomy pseudogroups of codimension one foliations of class C^{2} .
Let \Gamma\subset\Gamma_{1,+}^{2} be a finitely generated pseudogroup, that is, a pseud0-

group of local C^{2} diffeomorphisms of R.

DEFINITION 2. 5. (1) The \Gamma-orbit \Gamma(x_{0})\subset R of x_{0}\in R is called proper
if for every x\in\Gamma(x_{0}) , the closure \overline{\Gamma(x_{0})\backslash \{x\}} does not contain x , that is,
\Gamma(x_{0}) is discrete. Otherwise, \Gamma(x_{0}) is called nonproper.

(2) \Gamma(x_{0}) is called exceptional if the closure \overline{\Gamma(x_{0})} is a perfect set
with empty interior. Clearly, each exceptional orbit is nonproper.

To investigate the structure of the closure of a \Gamma-orbit is an impor-
tant problem.

DEFINITION 2. 6. The \Gamma-orbit \Gamma(x_{0}) of x_{0}\in R is called semiproper if
for every x\in\Gamma(x_{0}) , there exists an open interval J\subset R such that x is a
boundary point of J and J\cap\Gamma(x_{0})=\emptyset . Therefore a semiproper orbit is
either proper or exceptional.

PROPOSITION 2. 7. The \Gamma- orbit \Gamma(x_{0}) of x_{0}\in R is exceptional if and
only if for some {and thus any) x\in\Gamma(x_{0}) , there exists a compact neighbor-
hood I_{x} of x in R such that \overline{\Gamma(x_{0})}\cap I_{x} is a Cantor set. Furthermore, if
\Gamma(x_{0}) is a semiproper orbit of exceptional type, then for every x\in\Gamma(x_{0}) , x

is a semi-isolated point of the Cantor set \overline{\Gamma(x_{0})}\cap I_{x} .

For semiproper orbits, the following theorems are important (compare
with theorems in Introduction):

THEOREM 2. 8 (Sacksteder [6]). Suppose that \Gamma\subset\Gamma_{1,+}^{2} is a pseudO-
group generated by a finite, symmetric subset \Gamma_{0}\subset\Gamma_{1,+}^{2,*} and x_{0}\in R satisfying
that \Gamma(x_{0}) is a nonproper, semiproper orbit and there exists a constant \epsilon>0

such that the distance dist(\Gamma(x_{0}), \bigcup_{h\in\Gamma 0}\partial D(h)) is greater than \epsilon . Then
there exists x\in\overline{\Gamma(x_{0})} and g\in\Gamma such that x\in D(g) , g(x)=x and g is a
(hyperbolic) contraction to x, that is, the derivative g’(x) at x is less than
1.

THEOREM 2. 9 (Hector [4], Duminy (unpublished, but see Cantwell
-Conlon [3] )) . On the same assumptions of Theorem 2.8, there exists g\in

\Gamma such that x_{0}\in D(g) , g(x_{0})=x_{0} and g is a contraction to x_{0} on the non-
proper side.

To consider analogies of these theorems for q\geq 2 , we work in a
restricted category of pseudogroups, namely, pseudogroups of local simi-
larity transformations of R^{q} .

Let \Gamma_{q,+}^{s1m,*} be the subset of \Gamma_{q,+}^{\omega,*} so that for every h\in\Gamma_{q,+}^{\omega,*} , there exists
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an orientation preserving similarity transformation \overline{h}:R^{q}arrow R^{q} such that
\overline{h}(D(h))=R(h) and the restriction h\neg_{D(h)}=h . Such \overline{h} is determined uniquely
ly by h , and is called the extension of h . Put \Gamma_{q,+}^{s1m}=\Gamma_{q,+}^{s1m,*}\cup\{id_{R}, id_{\emptyset}\} .

Let \Gamma\subset\Gamma_{q,+}^{s1m} be a finitely generated pseudogroup.

DEFINITION 2. 10. The \Gamma-orbit \Gamma(x_{0}) of x_{0}\in R^{q} is called proper if
for every x\in\Gamma(x_{0}) , \Gamma(x_{0})\backslash \{x\} does not contain x . Otherwise, \Gamma(x_{0}) is
called nonproper.

In order to consider analogies of the theorems of Sacksteder and Hec-
tor-Duminy, we have to introduce a substitute concept of “semiproper \Gamma

-0rbits” As one attempt, Nishimori introduced the concept of “
\Gamma-orbits

with bubbles”.

DEFINITION 2. 11 ([5], Definition 3. 2). Let x_{0}\in R^{q} . We say that the
\Gamma-orbit \Gamma(x_{0}) of xo is with bubbles if for each x\in\Gamma(x_{0}) , there exists a non
-empty, bounded, convex open subset B_{\chi} (called a bubble at x) of R^{q} sat-
isfying the following three properties:

(a) x\in\partial B_{\chi} , where \partial B_{x} denotes the boundary of B_{x} .
(b) If x_{1} , x_{2}\in\Gamma(x_{0}) and x_{1}\neq x_{2} , then B_{x_{1}}\cap B_{x_{2}}=\emptyset .
(c) If h\in\Gamma_{0} and x\in D(h)\cap\Gamma(x_{0}) satisfying h(x)\neq x , then \overline{h}(B_{x})=

B_{h(x)} , where \overline{h} is the extension of h .

EXAMPLE. Let D^{q} be the unit disk in R^{q} , x_{0}\in\partial D^{q}=S^{q-1} and D_{1} , \cdots ,
D_{n}(n\geq 2) mutually disjoint disks contained in D^{q} and \partial D_{1}\ni x_{0} . Let \overline{h}_{i}(i

=1 , \cdots , n ) be a similarity transformation which maps the unit disk D^{q} to
the disk D_{i} and \overline{h}_{1}(x_{0})=x_{0} . Let h_{i} be a suitable restriction of \overline{h}_{i} such
that the domains of h_{i} are bounded, convex open neighborhoods of D^{q}

and the ranges of h_{i} are mutually disjoint. (Clearly each h_{i} is a contrac-
tion.) Now we obtain a pseudogroup \Gamma=\langle\Gamma_{0}\rangle\subset\Gamma_{q,+}^{s1m} , where \Gamma_{0}=\{h_{1} , \ldots , h_{n} ,
h_{1-}^{-1}\ldots , h_{\overline{n}}^{1} }. Then the \Gamma-orbit \Gamma(x_{0}) is with bubbles and the closure \Gamma(x_{0})

is a Cantor set in R^{q} . Furthermore h_{1} is a contraction to x_{0}\in\Gamma(x_{0}) .
This construction is closely related to that of exceptional minimal sets of
Markov type for q=1 (see Cantwell-Conlon [2]).

Hereafter, we consider the following situation.
Let \Gamma_{0}\subset\Gamma_{q,+}^{s1m,*} be a finite, symmetric subset, \Gamma=\langle\Gamma_{0}\rangle and x_{0}\in R^{q} satis-

fying the following two properties:
(51) There exists a constant \epsilon>0 such that the distance dist(\Gamma(x_{0}) ,

\bigcup_{h\in\Gamma_{0}}\partial D(h)) is greater than \epsilon .
(52) The \Gamma-orbit \Gamma(x_{0}) of xo is nonproper and with bubbles

\{B_{x}\}_{x\in\Gamma(x_{0})} .
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Remark that if x\in\Gamma(x_{0})\cap D(h) for some h\in\Gamma 0 , then by (S1),
U(xj\epsilon)\subset D(h) , where U(x;\epsilon) denotes the \epsilon^{-}neighborhood of x .

Then an analogy of Sacksteder’s theorem is as follows.

THEOREM 2. 12 (Nishimori [5], Theorem 3.3). Let \Gamma be the pseudO-
group generated by a finite, symmetric subset \Gamma_{0} of \Gamma_{q,+}^{s1m,*} and x_{0}\in R^{q} sat-
isfying the assumptions (SI) and (S2). Then there exist g\in\Gamma and z\in

\overline{\Gamma(x_{0})} such that z\in D(g) , g(z)=z and g is a contraction, that is, the simil-
itude ratio of g is less than 1.

We prove, in the rest of this paper, the following result which is a
weak version of an analogy of the theorem of Hector-Duminy.

THEOREM 2. 13. Let \Gamma be the pseudogroup generated by a finite, sym-

metric subset \Gamma_{0} of \Gamma_{q,+}^{s1m,*} and x_{0}\in R^{q} satisfying the assumptions (SI) and
(SI). Then there exist g\in\Gamma such that x_{0}\in D(g) , g(x_{0})=x_{0} and g is not
the identity of D(g) .

REMARK. Therefore, such g is possibly a rotation at xo . We do not
know whether there exists an example that all elements of \Gamma which fix xo

are rotations at xo .

3. The proof of Theorem 2.13

Let \Gamma be the pseudogroup generated by a finite, symmetric subset \Gamma_{0}

of \Gamma s1m,*q,+andx_{0}\in R^{q} satisfying the assumptions (SI) and (SI). Let
\{B_{x}\}_{x\in\Gamma(x_{0})} be bubbles of \Gamma(x_{0}) .

At first, we prepare some notions which play an important role in the
proof of Theorem 2. 13.

DEFINITION 3. 1. (1) For a word w\in W(\Gamma_{0}) , |w| denotes the word
length of w , that is, |w|=0 for the empty word w=( ) and |w|=m for
w=(h_{m}, \ldots, h_{1}) .
(2) For x , y\in R^{q} with y\in\Gamma(x) , put

d_{\Gamma_{0}}(x, y)= \min{ |w||w\in W(\Gamma_{0}) , x\in D(g_{w}) and g_{w}(x)=y}.

Then d_{\Gamma 0} is a natural distance on the orbit \Gamma(x) .

DEFINITION 3. 2. Let x , y\in R^{q} . A word w\in W(\Gamma_{0}) is called a short
-cut at x to y if x\in D(g_{w}) , g_{w}(x)=y and |w|=d_{\Gamma_{0}}(x, y) .

Remark that if w=(h_{m}, \ldots, h_{1})\in W(\Gamma_{0}) is a short-cut at x to y , then
the inverse word w^{-1}=(h_{1}^{-1},\ldots, h_{m}^{-1}) of w is a short-cut at y to x and for
every k=1 , \ldots , m-1 , the word w_{k}=(h_{k}, \ldots, h_{1}) is a short-cut at x to g_{w_{k}}(x)
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=h_{k}\circ\cdots\circ h_{1}(x) .
Following three lemmas are fundamental and for the proofs, see Ni-

shimori [5].

LEMMA 3. 3 ([5], Lemma 4. 3). Let x\in\Gamma(x_{0}) and w=(h_{m_{ }},\ldots, h_{1})\in

W(\Gamma_{0}) be a short-cut at x. Then \overline{g}_{w}(B_{x})=B_{gw(x\rangle} , where g_{w}=h_{m}\circ\cdots\circ h_{1}

and \overline{g}_{w} is the extension of g_{w} {in the sense of Section 2). Therefore the
similitude ratio of g_{w} is the ratio of the diameters of bubbles, diam(B_{gw(X)})/

diam(B\chi ). In particular, if D(g_{w})\supset U(x;r) , then

g_{w}(U(x:r))=U(g_{w}(x);r \cdot\frac{diam(B_{gw(x)})}{diam(B_{x})}) .

LEMMA 3. 4 ([5], Lemma 4.4, 4.5). (1) The union \bigcup_{x\in\Gamma(x_{0})}B_{x} of
bubbles is a bounded subset of R^{q} .
(2) The total volume \Sigma_{x\in\Gamma(x_{0})}vol(B_{x}) of bubbles is bounded. So
\Sigma_{x\in\Gamma(x_{0})}(diam(B_{x}))^{q} is also bounded.

LEMMA 3. 5 (The short-cut theorem. [5], Lemma 4. 7). Let w\in
W(\Gamma_{0}) be a short-cut at x . Then

U( x_{0} ; \epsilon\cdot[mathring]_{\frac{diam(B_{x})}{\delta}})\subset D(g_{w}) ,

where \delta=\sup\{diam(B_{y})|y\in\Gamma(x_{0})\} .

For the proof of our theorem, the following argument is essentially
due to Hector [4, Th\’eor\‘eme CIII 1] in the case of q=1 .

Put \Delta=\{y\in\Gamma(x_{0})|diam(B_{y})\geqq diam(B_{x_{0}})\} , then by Lemma 3. 4, it is a
non-empty, finite subset of \Gamma(x_{0}) which contains x_{1} . Since the pseud0-
group \Gamma is finitely generated and \Delta is finite, so there exists a non-negative
integer N= \sup\{d_{\Gamma_{0}}(x, y)|x, y\in\Delta\} .

LEMMA 3. 6. There exists \epsilon’>0 such that
(1) \epsilon/3\geqq\epsilon’>0 ,
(2) d_{\Gamma_{0}}(x_{0}, z)>N for each z\in U(x_{0} ; \epsilon’\cdot diam(B_{x_{0}})/\delta) with

z\in\Gamma(x_{0})\backslash \{x_{0}\} . Therefore z\not\in\Delta .

PROOF. Since \Gamma is finitely generated, the set \{y\in\Gamma(x_{0})|d_{\Gamma_{0}}(x_{0}, y)\leqq N\}

is finite. By assumption, the orbit \Gamma(x_{0}) is nonproper, so we can take
\epsilon’>0 satisfying (1) and (2). \square

Hereafter we assume that
(\#) for each g\in\Gamma which fixes xo, g is the identity on D(g)
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and deduce a contradiction.

LEMMA 3. 7. Let \epsilon’>0 be a constant as in Lemma 3. 6 and z\in

U (x_{0} : \epsilon’\cdot diam(B_{x_{0}})/\delta) with z\in\Gamma(x_{0})\backslash \{x_{0}\} . Let w\in W(\Gamma_{0}) be a short-cut
at xo to z. Then x_{0}\in D(g_{\overline{w}^{1}}) and w^{-1} is a short-cut at xO to g_{\overline{w}^{1}}(x_{0}) .

PROOF. Note that the word length |w|=d_{\Gamma 0}(z, x_{0})>N . By assump-
tion, w^{-1}\in W(\Gamma_{0}) is a short-cut at z to x_{0} .

We write w^{-1}=(h_{m_{ }},\ldots, h_{1})(m\geqq 1, h_{i}\in\Gamma_{0}) , and put w_{k}^{-1}=(h_{k}, \ldots, h_{1})

and g_{k}=g_{\overline{w}_{k}^{1}}=g_{w_{k}^{-1}}=h_{k}\circ\cdots\circ h_{1} for k=1,2 , \ldots , m . And, for convention,
w_{0}^{-1}=( ) (the empty word) and g_{0}=g_{w_{0}^{-1}}=id_{R^{q}} . Then w_{k}^{-1} is a short-cut at
z to g_{k}(z) for k=0,1 , \ldots , m .

We prove the following assertions by induction on k=0,1 , \ldots , m :

(A)_{k} : U(x_{0} ; \epsilon’\cdot[mathring]_{\frac{diam(B_{x})}{\delta}})\subset D(g_{k}) .
(B)_{k} : The word w_{k}^{-1} is a short-cut at xO to g_{k}(x_{0}) .

For k=0, all assertions are trivial.
Assume that the assertions (A)_{k} and (B)_{k} hold true for k\geqq 0 . By the

choice of z\in U(x_{0};\epsilon’\cdot diam(B_{x_{0}})/\delta) and (A)_{k} ,

g_{k}(z)\in g_{k}(U( x_{0} ; \epsilon’\cdot[mathring]_{\frac{diam(B_{x})}{\delta}}))
=U(g_{k}(x_{0}); \epsilon’\cdot(\frac{diam(B_{x_{0}})}{\delta})\cdot([mathring]_{\frac{diam(B_{gk(x)})}{diam(B_{xo})}}))

=U(g_{k}(x_{0});\epsilon’\cdot[mathring]_{\frac{diam(B_{gk(x)})}{\delta}})

\subset U(g_{k}(x_{0});\epsilon’) .

Since g_{k}(x)\in D(h_{k+1})\cap\Gamma(x_{0}) , U(g_{k}(z) : \epsilon)\subset D(h_{k+1}) by (SI). Therefore

g_{k}( U(x_{0} ; \epsilon’\cdot[mathring]_{\frac{diam(B_{x})}{\delta}}))\subset U(g_{k}(x_{0});\epsilon’)

\subset U(g_{k}(z);\epsilon)

\subset D(h_{k+1}) .

Then U(x_{0} ; \epsilon’\cdot diam(B_{xo})/\delta)\subset D(h_{k+1}\circ g_{k})=D(g_{k+1}) . This establishes the
assertion (A)_{k+1} .

In order to prove the assertion (B)_{k+1} , we take a short-cut \zeta\in W(\Gamma_{0})

at x_{0} to g_{k+1}(x_{0}) . Then g_{\zeta}^{-1}\circ g_{k+1}(x_{0})=x_{0} , so g_{\zeta}=g_{k+1} on D(g_{\zeta})\cap D(g_{k+1}) by
assumption (\#) .

Since w_{k+1}^{-1} is a short-cut at z, then z\in D(g_{k+1}) and by Lemma 3. 5
and the choice of \epsilon’ . z\in U(x_{0} ; \epsilon’\cdot diam(B_{x_{0}})/\delta)\subset D(g_{\zeta}) . Therefore
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z\in D(g_{\zeta})\cap D(g_{k+1}) .
By the definition of a short-cut,

|w_{k+1}^{-1}|=d_{\Gamma 0}(z, g_{k+1}(z))\leqq|\zeta|=d_{\Gamma_{0}}(x_{0}, g_{k+1}(x_{0}))\leqq|w_{k+1}^{-1}| ,

so |w_{k+1}^{-1}|=d_{\Gamma_{0}}(x_{0}, g_{k+1}(x_{0})) , that is, w_{k+1}^{-1} is a short-cut at x_{0} to g_{k+1}(x_{0}) .
This establishes the assertion (B)_{k+1} , and completes the induction.

Now (B)_{m} is the desired result. \square

Remark that g_{\overline{w}^{1}}(x_{0})\not\in\Delta . This is because d_{\Gamma_{0}}(x_{0}, g_{\overline{w}^{1}}(x_{0}))=|w^{-1}|=

d_{\Gamma_{0}}(x_{0}, z)>N .
By Lemma 3. 7, the word w^{-1} is a short-cut at z\not\in\Delta to x_{0}\in\Delta and is

also a short-cut at x_{0}\in\Delta to g_{w}^{-1}(x_{0})\not\in\Delta . Then, by Lemma 3. 3, the simili-
tude ratio of g_{\overline{w}^{1}} is

\frac{diam(B_{x_{0}})}{diam(B_{z})}=\frac{diam(B_{gw(x_{0})}^{-1})}{diam(B_{xo})} .

But the definition of the set \Delta yields

1<[mathring]_{\frac{diam(B_{x})}{diam(B_{z})}}= \frac{diam(B_{gw(x_{0})}^{-1})}{diam(B_{x_{0}})}<1 ,

a contradiction. This completes the proof of Theorem 2. 13.
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