An analogy of the theorem of Hector and Duminy

Kouichi Matsuda
(Received April 16, 1991, Revised July 30, 1991)

1. Introduction

In this paper, we intend to study qualitative properties of foliations of higher codimensions. For the first step, we consider some analogies of the theory of codimension one foliations.

Let \mathscr{F} be a transversely orientable, codimension one foliation of class C^{2} on a closed smooth manifold M. A leaf F of \mathscr{F} is semiproper if it is asymptotic to itself from at most one side. In particular, F is called a nonproper semiproper leaf if it is asymptotic from exactly one side and this side is called the nonproper side.

For nonproper semiproper leaves of \mathscr{F}, the following theorems are important.

ThEOREM (Sacksteder [6]). Let M, \mathscr{F} be as above and F a nonproper semiproper leaf of \mathscr{F}. Then the closure \bar{F} of F contains a leaf with a linearly contracting holonomy.

ThEOREM (Hector [4], Duminy (unpublished, but see Cantwell-Conlon [3])). Let M, \mathscr{F} be as above and F a nonproper semiproper leaf of \mathscr{F}. Then F has a germinal contracting holonomy on the nonproper side of F.

For the proof of these theorems, we use the holonomy pseudogroup of \mathscr{F} acting on the real line \boldsymbol{R}.

Let \mathscr{G} be a codimension q foliation on a manifold. A foliation \mathscr{G} is called transversely similar if all holonomy transition functions of \mathscr{G} are local similarity transformations of \boldsymbol{R}^{q}. Therefore, if \mathscr{G} is a transversely similar foliation of codimension q, we obtain the holonomy pseudogroup of \mathscr{G} which consists of local similarity transformations of \boldsymbol{R}^{q}. So we treat a pseudogroup of local similarity transformations of \boldsymbol{R}^{q}.

Recently, for such pseudogroups, an analogy of Sacksteder's theorem is obtained by Nishimori (see [5], or Section 2). Now we consider an analogy of the theorem of Hector-Duminy.

2. Similarity pseudogroups and statement of the result

In this section, we review about pseudogroups and state out result. For more informations about pseudogroups of our sense, see Nishimori [5].

Let $\Gamma_{q, *}^{r, *}(r=0,1, \ldots, \infty, \omega)$ be the set of orientation preserving local C^{r} diffeomorphisms $h: U \rightarrow V$ of \boldsymbol{R}^{q} satisfying that the domain U and the range V of h are both non-empty, bounded, convex open subsets of \boldsymbol{R}^{q}. We denote $D(h)=U$ and $R(h)=V$. Let $\Gamma_{q,+}^{r}=\Gamma_{q,+}^{r, *} \cup\left\{\operatorname{id}_{\boldsymbol{R}^{\imath}}, \mathrm{id}_{9}\right\}$, where id_{θ} is the unique transformation on the empty set \emptyset.

Definition 2.1. A subset Γ of $\Gamma_{q,+}^{r}$ is called a pseudogroup if it satisfies the following three conditions:
(1) $\operatorname{id}_{R^{*}} \in \Gamma$.
(2) If $f, g \in \Gamma$, then $f \circ g \in \Gamma$.
(3) If $f \in \Gamma$, then $f^{-1} \in \Gamma$.

For example, $\Gamma_{q,+}^{r}$ itself is a pseudogroup, but $\Gamma_{q,+}^{r, *}$ is not.
Definition 2.2. Let Γ_{0} be a subset of $\Gamma_{q,+}^{r, *}$.
(1) Γ_{0} is called symmetric if $h \in \Gamma_{0}$ implies $h^{-1} \in \Gamma_{0}$.
(2) Denote $\left\langle\Gamma_{0}\right\rangle$ the intersection of all the pseudogroups $\Gamma \subset \Gamma_{q,+}^{r}$ which contain Γ_{0}. Then $\left\langle\Gamma_{0}\right\rangle$ is also a pseudogroup, which is called the pseudogroup generated by Γ_{0}.

Let Γ_{0} be a symmetric subset of $\Gamma_{q,+}^{r, *}$ and $\Gamma=\left\langle\Gamma_{0}\right\rangle$. Denote $W\left(\Gamma_{0}\right)$ the set of all words with Γ_{0} as alphabet, that is, $W\left(\Gamma_{0}\right)=\amalg_{n=0}^{\infty}\left(\Gamma_{0}\right)^{n}$, where $\left(\Gamma_{0}\right)^{n}$ means n-direct product of Γ_{0} and $\left(\Gamma_{0}\right)^{0}$ the singleton which consists of the empty word (). This set $W\left(\Gamma_{0}\right)$ is useful to treat the pseudogroup $\left\langle\Gamma_{0}\right\rangle$, because

Proposition 2.3 ([5], Proposition 2.6). Define a map $\Phi: W\left(\Gamma_{0}\right) \rightarrow$ $\Gamma=\left\langle\Gamma_{0}\right\rangle$ by $\Phi(())=\mathrm{id}_{R^{\circ}}$ for the empty word () and $\Phi(w)=h_{m} \circ \cdots \circ h_{1}$ for a word $w=\left(h_{m}, \cdots, h_{1}\right)$. Then this map Φ is surjective.

For a word $w=\left(h_{m}, \cdots, h_{1}\right) \in W\left(\Gamma_{0}\right)$, we put $g_{w}=\Phi(w)=h_{m} \circ \cdots \circ h_{1}$. Note that for the inverse word $w^{-1}=\left(h_{1}^{-1}, \cdots, h_{m}^{-1}\right)$ of $w, g_{w}^{-1}=g_{w^{-1}}=\Phi\left(w^{-1}\right)=$ $h_{1}^{-1} \circ \cdots \circ h_{m}^{-1}$.

Definition 2.4. Let $x_{0} \in \boldsymbol{R}^{q}$. The Γ-orbit of x_{0} is the set $\Gamma\left(x_{0}\right)=$ $\left\{g\left(x_{0}\right) \mid g \in \Gamma, x_{0} \in D(g)\right\}$.

Af first, we consider in the case of $q=1$ and $r=2$, which is related to
holonomy pseudogroups of codimension one foliations of class C^{2}.
Let $\Gamma \subset \Gamma_{1,+}^{2}$ be a finitely generated pseudogroup, that is, a pseudogroup of local C^{2} diffeomorphisms of \boldsymbol{R}.

Definition 2.5. (1) The Γ-orbit $\Gamma\left(x_{0}\right) \subset \boldsymbol{R}$ of $x_{0} \in \boldsymbol{R}$ is called proper if for every $x \in \Gamma\left(x_{0}\right)$, the closure $\overline{\Gamma\left(x_{0}\right) \backslash\{x\}}$ does not contain x, that is, $\Gamma\left(x_{0}\right)$ is discrete. Otherwise, $\Gamma\left(x_{0}\right)$ is called nonproper.
(2) $\Gamma\left(x_{0}\right)$ is called exceptional if the closure $\overline{\Gamma\left(x_{0}\right)}$ is a perfect set with empty interior. Clearly, each exceptional orbit is nonproper.

To investigate the structure of the closure of a Γ-orbit is an important problem.

Definition 2.6. The Γ-orbit $\Gamma\left(x_{0}\right)$ of $x_{0} \in \boldsymbol{R}$ is called semiproper if for every $x \in \Gamma\left(x_{0}\right)$, there exists an open interval $J \subset \boldsymbol{R}$ such that x is a boundary point of J and $J \cap \Gamma\left(x_{0}\right)=\emptyset$. Therefore a semiproper orbit is either proper or exceptional.

Proposition 2.7. The Γ-orbit $\Gamma\left(x_{0}\right)$ of $x_{0} \in \boldsymbol{R}$ is exceptional if and only if for some (and thus any) $x \in \Gamma\left(x_{0}\right)$, there exists a compact neighborhood I_{x} of x in \boldsymbol{R} such that $\overline{\Gamma\left(x_{0}\right)} \cap I_{x}$ is a Cantor set. Furthermore, if $\Gamma\left(x_{0}\right)$ is a semiproper orbit of exceptional type, then for every $x \in \Gamma\left(x_{0}\right), x$ is a semi-isolated point of the Cantor set $\overline{\Gamma\left(x_{0}\right)} \cap I_{x}$.

For semiproper orbits, the following theorems are important (compare with theorems in Introduction) :

ThEOREM 2.8 (Sacksteder [6]). Suppose that $\Gamma \subset \Gamma_{1,+}^{2}$ is a pseudogroup generated by a finite, symmetric subset $\Gamma_{0} \subset \Gamma_{1,+}^{2, *}$ and $x_{0} \in \boldsymbol{R}$ satisfying that $\Gamma\left(x_{0}\right)$ is a nonproper, semiproper orbit and there exists a constant $\varepsilon>0$ such that the distance $\operatorname{dist}\left(\Gamma\left(x_{0}\right), \cup_{\left.h \in \Gamma_{0} \partial D(h)\right)}\right.$ is greater than ε. Then there exists $x \in \overline{\Gamma\left(x_{0}\right)}$ and $g \in \Gamma$ such that $x \in D(g), g(x)=x$ and g is a (hyperbolic) contraction to x, that is, the derivative $g^{\prime}(x)$ at x is less than 1.

Theorem 2.9 (Hector [4], Duminy (unpublished, but see Cantwell -Conlon [3])). On the same assumptions of Theorem 2.8, there exists $g \in$ Γ such that $x_{0} \in D(g), g\left(x_{0}\right)=x_{0}$ and g is a contraction to x_{0} on the nonproper side.

To consider analogies of these theorems for $q \geq 2$, we work in a restricted category of pseudogroups, namely, pseudogroups of local similarity transformations of \boldsymbol{R}^{q}.

Let $\Gamma_{q,+}^{s i m, *}$ be the subset of $\Gamma_{q, *}^{\omega, *}$ so that for every $h \in \Gamma_{q, *}^{\omega, *}$, there exists
an orientation preserving similarity transformation $\bar{h}: \boldsymbol{R}^{q} \rightarrow \boldsymbol{R}^{q}$ such that $\bar{h}(D(h))=R(h)$ and the restriction $\bar{h}_{D(h)}=h$. Such \bar{h} is determined uniquely by h, and is called the extension of h. Put $\Gamma_{q,+}^{\operatorname{sim}}=\Gamma_{q,+}^{\operatorname{sim}, *} \cup\left\{\mathrm{id}_{R}\right.$, $\left.\mathrm{id}_{\xi}\right\}$.

Let $\Gamma \subset \Gamma_{q,+}^{\text {sim }}$ be a finitely generated pseudogroup.
Definition 2.10. The Γ-orbit $\Gamma\left(x_{0}\right)$ of $x_{0} \in \boldsymbol{R}^{q}$ is called proper if for every $x \in \Gamma\left(x_{0}\right), \overline{\Gamma\left(x_{0}\right) \backslash\{x\}}$ does not contain x. Otherwise, $\Gamma\left(x_{0}\right)$ is called nonproper.

In order to consider analogies of the theorems of Sacksteder and Hec-tor-Duminy, we have to introduce a substitute concept of "semiproper Γ -orbits". As one attempt, Nishimori introduced the concept of " Γ-orbits with bubbles".

Definition 2.11 ([5], Definition 3.2). Let $x_{0} \in \boldsymbol{R}^{q}$. We say that the Γ-orbit $\Gamma\left(x_{0}\right)$ of x_{0} is with bubbles if for each $x \in \Gamma\left(x_{0}\right)$, there exists a non -empty, bounded, convex open subset B_{x} (called a bubble at x) of \boldsymbol{R}^{q} satisfying the following three properties:
(a) $x \in \partial B_{x}$, where ∂B_{x} denotes the boundary of B_{x}.
(b) If $x_{1}, x_{2} \in \Gamma\left(x_{0}\right)$ and $x_{1} \neq x_{2}$, then $B_{x_{1}} \cap B_{x_{2}}=\emptyset$.
(c) If $h \in \Gamma_{0}$ and $x \in D(h) \cap \Gamma\left(x_{0}\right)$ satisfying $h(x) \neq x$, then $\bar{h}\left(B_{x}\right)=$ $B_{h(x)}$, where \bar{h} is the extension of h.

Example. Let D^{q} be the unit disk in $\boldsymbol{R}^{q}, x_{0} \in \partial D^{q}=S^{q-1}$ and D_{1}, \cdots, $D_{n}(n \geq 2)$ mutually disjoint disks contained in D^{q} and $\partial D_{1} \ni x_{0}$. Let $\bar{h}_{i}(i$ $=1, \cdots, n$) be a similarity transformation which maps the unit disk D^{q} to the disk D_{i} and $\bar{h}_{1}\left(x_{o}\right)=x_{0}$. Let h_{i} be a suitable restriction of \bar{h}_{i} such that the domains of h_{i} are bounded, convex open neighborhoods of D^{q} and the ranges of h_{i} are mutually disjoint. (Clearly each h_{i} is a contraction.) Now we obtain a pseudogroup $\Gamma=\left\langle\Gamma_{0}\right\rangle \subset \Gamma_{q,+}^{s \mathrm{~s}}$, where $\Gamma_{0}=\left\{h_{1}, \ldots, h_{n}\right.$, $\left.h_{1}^{-1}, \ldots, h_{n}^{-1}\right\}$. Then the Γ-orbit $\Gamma\left(x_{0}\right)$ is with bubbles and the closure $\overline{\Gamma\left(x_{0}\right)}$ is a Cantor set in \boldsymbol{R}^{q}. Furthermore h_{1} is a contraction to $x_{0} \in \Gamma\left(x_{0}\right)$. This construction is closely related to that of exceptional minimal sets of Markov type for $q=1$ (see Cantwell-Conlon [2]).

Hereafter, we consider the following situation.
Let $\Gamma_{0} \subset \Gamma_{q,+}^{s i m, *}$ be a finite, symmetric subset, $\Gamma=\left\langle\Gamma_{0}\right\rangle$ and $x_{0} \in \boldsymbol{R}^{q}$ satisfying the following two properties:
(S1) There exists a constant $\epsilon>0$ such that the distance $\operatorname{dist}\left(\Gamma\left(x_{0}\right)\right.$, $\left.\cup_{h \in \Gamma_{0}} \partial D(h)\right)$ is greater than ϵ.
(S2) The Γ-orbit $\Gamma\left(x_{0}\right)$ of x_{0} is nonproper and with bubbles $\left\{B_{x}\right\}_{x \in \Gamma\left(x_{0}\right)}$.

Remark that if $x \in \Gamma\left(x_{0}\right) \cap D(h)$ for some $h \in \Gamma_{0}$, then by (S1), $U(x ; \epsilon) \subset D(h)$, where $U(x ; \epsilon)$ denotes the ϵ-neighborhood of x.

Then an analogy of Sacksteder's theorem is as follows.
Theorem 2.12 (Nishimori [5], Theorem 3.3). Let Γ be the pseudogroup generated by a finite, symmetric subset Γ_{0} of $\Gamma_{q,+}^{s \mathrm{sm}, *}$ and $x_{0} \in \boldsymbol{R}^{q}$ satisfying the assumptions (S1) and (S2). Then there exist $g \in \Gamma$ and $z \in$ $\overline{\Gamma\left(x_{0}\right)}$ such that $z \in D(g), g(z)=z$ and g is a contraction, that is, the similitude ratio of g is less than 1 .

We prove, in the rest of this paper, the following result which is a weak version of an analogy of the theorem of Hector-Duminy.

Theorem 2.13. Let Γ be the pseudogroup generated by a finite, symmetric subset Γ_{0} of $\Gamma_{q,++}^{s i m m}$ and $x_{0} \in \boldsymbol{R}^{q}$ satisfying the assumptions (S1) and (S2). Then there exists $g \in \Gamma$ such that $x_{0} \in D(g), g\left(x_{0}\right)=x_{0}$ and g is not the identity of $D(g)$.

Remark. Therefore, such g is possibly a rotation at x_{0}. We do not know whether there exists an example that all elements of Γ which fix x_{0} are rotations at x_{0}.

3. The proof of Theorem 2.13

Let Γ be the pseudogroup generated by a finite, symmetric subset Γ_{0} of $\Gamma_{q,+*}^{\operatorname{sim}, *}$ and $x_{0} \in \boldsymbol{R}^{q}$ satisfying the assumptions (S1) and (S2). Let $\left\{B_{x}\right\}_{x \in \Gamma\left(x_{0}\right)}$ be bubbles of $\Gamma\left(x_{0}\right)$.

At first, we prepare some notions which play an important role in the proof of Theorem 2. 13.

Definition 3.1. (1) For a word $w \in W\left(\Gamma_{0}\right),|w|$ denotes the word length of w, that is, $|w|=0$ for the empty word $w=(\quad)$ and $|w|=m$ for $w=\left(h_{m}, \ldots, h_{1}\right)$.
(2) For $x, y \in \boldsymbol{R}^{q}$ with $y \in \Gamma(x)$, put

$$
d_{\mathrm{\Gamma}_{0}}(x, y)=\min \left\{|w| \mid w \in W\left(\Gamma_{0}\right), x \in D\left(g_{w}\right) \text { and } g_{w}(x)=y\right\} .
$$

Then $d_{\Gamma_{0}}$ is a natural distance on the orbit $\Gamma(x)$.
Definition 3.2. Let $x, y \in \boldsymbol{R}^{q}$. A word $w \in W\left(\Gamma_{0}\right)$ is called a short -cut at x to y if $x \in D\left(g_{w}\right), g_{w}(x)=y$ and $|w|=d_{\Gamma_{0}}(x, y)$.

Remark that if $w=\left(h_{m}, \ldots, h_{1}\right) \in W\left(\Gamma_{0}\right)$ is a short-cut at x to y, then the inverse word $w^{-1}=\left(h_{1}^{-1}, \ldots, h_{m}^{-1}\right)$ of w is a short-cut at y to x and for every $k=1, \ldots, m-1$, the word $w_{k}=\left(h_{k}, \ldots, h_{1}\right)$ is a short-cut at x to $g_{w_{k}}(x)$
$=h_{k} \circ \cdots \circ h_{1}(x)$.
Following three lemmas are fundamental and for the proofs, see Nishimori [5].

Lemma 3.3 ([5], Lemma 4.3). Let $x \in \Gamma\left(x_{0}\right)$ and $w=\left(h_{m}, \ldots, h_{1}\right) \in$ $W\left(\Gamma_{0}\right)$ be a short-cut at x. Then $\bar{g}_{w}\left(B_{x}\right)=B_{g_{w}(x)}$, where $g_{w}=h_{m} \circ \cdots \circ h_{1}$ and \bar{g}_{w} is the extension of g_{w} (in the sense of Section 2). Therefore the similitude ratio of g_{w} is the ratio of the diameters of bubbles, $\operatorname{diam}\left(B_{g_{w}(x)}\right)$) $\operatorname{diam}\left(B_{x}\right)$. In particular, if $D\left(g_{w}\right) \supset U(x ; r)$, then

$$
g_{w}(U(x ; r))=U\left(g_{w}(x) ; r \cdot \frac{\operatorname{diam}\left(B_{g_{w}(x)}\right)}{\operatorname{diam}\left(B_{x}\right)}\right) .
$$

Lemma 3.4 ([5], Lemma 4.4, 4.5). (1) The union $\cup_{x \in \mathrm{r}\left(x_{0}\right)} B_{x}$ of bubbles is a bounded subset of \boldsymbol{R}^{q}.
(2) The total volume $\sum_{x \in \mathrm{\Gamma}\left(x_{0}\right)} \operatorname{vol}\left(B_{x}\right)$ of bubbles is bounded. So $\sum_{x \in \Gamma\left(x_{0}\right)}\left(\operatorname{diam}\left(B_{x}\right)\right)^{q}$ is also bounded.

Lemma 3.5 (The short-cut theorem. [5], Lemma 4.7). Let $w \in$ $W\left(\Gamma_{0}\right)$ be a short-cut at x_{0}. Then

$$
U\left(x_{0} ; \epsilon \cdot \frac{\operatorname{diam}\left(B_{x_{0}}\right)}{\delta}\right) \subset D\left(g_{w}\right),
$$

where $\delta=\sup \left\{\operatorname{diam}\left(B_{y}\right) \mid y \in \Gamma\left(x_{0}\right)\right\}$.
For the proof of our theorem, the following argument is essentially due to Hector [4, Théorème CIII 1] in the case of $q=1$.

Put $\Delta=\left\{y \in \Gamma\left(x_{0}\right) \mid \operatorname{diam}\left(B_{y}\right) \geqq \operatorname{diam}\left(B_{x_{0}}\right)\right\}$, then by Lemma 3.4, it is a non-empty, finite subset of $\Gamma\left(x_{0}\right)$ which contains x_{0}. Since the pseudogroup Γ is finitely generated and Δ is finite, so there exists a non-negative integer $N=\sup \left\{d_{\mathrm{r}_{0}}(x, y) \mid x, y \in \Delta\right\}$.

Lemma 3.6. There exists $\epsilon^{\prime}>0$ such that
(1) $\epsilon / 3 \geqq \epsilon^{\prime}>0$,
(2) $d_{\mathrm{r}_{0}}\left(x_{0}, z\right)>N$ for each $z \in U\left(x_{0} ; \epsilon^{\prime} \cdot \operatorname{diam}\left(B_{x_{0}}\right) / \delta\right)$ with $z \in \Gamma\left(x_{0}\right) \backslash\left\{x_{0}\right\}$. Therefore $z \notin \Delta$.

Proof. Since Γ is finitely generated, the set $\left\{y \in \Gamma\left(x_{0}\right) \mid d_{\mathrm{\Gamma}_{0}}\left(x_{0}, y\right) \leqq N\right\}$ is finite. By assumption, the orbit $\Gamma\left(x_{0}\right)$ is nonproper, so we can take $\epsilon^{\prime}>0$ satisfying (1) and (2).

Hereafter we assume that
(\#) for each $g \in \Gamma$ which fixes x_{0}, g is the identity on $D(g)$
and deduce a contradiction.
Lemma 3.7. Let $\epsilon^{\prime}>0$ be a constant as in Lemma 3.6 and $z \in$ $U\left(x_{0} ; \epsilon^{\prime} \cdot \operatorname{diam}\left(B_{x_{0}}\right) / \delta\right)$ with $z \in \Gamma\left(x_{0}\right) \backslash\left\{x_{0}\right\}$. Let $w \in W\left(\Gamma_{0}\right)$ be a short-cut at x_{0} to z. Then $x_{0} \in D\left(g_{w}^{-1}\right)$ and w^{-1} is a short-cut at x_{0} to $g_{w}^{-1}\left(x_{0}\right)$.

Proof. Note that the word length $|w|=d_{\Gamma_{0}}\left(z, x_{0}\right)>N$. By assumption, $w^{-1} \in W\left(\Gamma_{0}\right)$ is a short-cut at z to x_{0}.

We write $w^{-1}=\left(h_{m}, \ldots, h_{1}\right)\left(m \geqq 1, h_{i} \in \Gamma_{0}\right)$, and put $w_{k}^{-1}=\left(h_{k}, \ldots, h_{1}\right)$ and $g_{k}=g_{w_{k}}^{-1}=g_{w_{k}^{-1}}=h_{k} \circ \cdots \circ h_{1}$ for $k=1,2, \ldots, m$. And, for convention, $w_{0}^{-1}=(\quad)$ (the empty word) and $g_{0}=g_{w_{0}^{-1}}=\mathrm{id}_{R^{q}}$. Then w_{k}^{-1} is a short-cut at z to $g_{k}(z)$ for $k=0,1, \ldots, m$.

We prove the following assertions by induction on $k=0,1, \ldots, m$:
$(\mathrm{A})_{k}: \quad U\left(x_{0} ; \epsilon^{\prime} \cdot \frac{\operatorname{diam}\left(B_{x_{0}}\right)}{\delta}\right) \subset D\left(g_{k}\right)$.
$(\mathrm{B})_{k}$: The word w_{k}^{-1} is a short-cut at x_{0} to $g_{k}\left(x_{0}\right)$.
For $k=0$, all assertions are trivial.
Assume that the assertions $(\mathrm{A})_{k}$ and $(\mathrm{B})_{k}$ hold true for $k \geqq 0$. By the choice of $z \in U\left(x_{0} ; \epsilon^{\prime} \cdot \operatorname{diam}\left(B_{x_{0}}\right) / \delta\right)$ and $(\mathrm{A})_{k}$,

$$
\begin{aligned}
g_{k}(z) & \in g_{k}\left(U\left(x_{0} ; \epsilon^{\prime} \cdot \frac{\operatorname{diam}\left(B_{x_{0}}\right)}{\delta}\right)\right) \\
& =U\left(g_{k}\left(x_{0}\right) ; \epsilon^{\prime} \cdot\left(\frac{\operatorname{diam}\left(B_{x_{0}}\right)}{\delta}\right) \cdot\left(\frac{\operatorname{diam}\left(B_{g_{k}\left(x_{0}\right)}\right)}{\operatorname{diam}\left(B_{x_{0}}\right)}\right)\right) \\
& =U\left(g_{k}\left(x_{0}\right) ; \epsilon^{\prime} \cdot \frac{\operatorname{diam}\left(B_{g_{k}\left(x_{0}\right)}\right)}{\delta}\right) \\
& \subset U\left(g_{k}\left(x_{0}\right) ; \epsilon^{\prime}\right) .
\end{aligned}
$$

Since $g_{k}(x) \in D\left(h_{k+1}\right) \cap \Gamma\left(x_{0}\right), U\left(g_{k}(z) ; \epsilon\right) \subset D\left(h_{k+1}\right)$ by (S1). Therefore

$$
\begin{aligned}
g_{k}\left(U\left(x_{0} ; \epsilon^{\prime} \cdot \frac{\operatorname{diam}\left(B_{x_{0}}\right)}{\delta}\right)\right) & \subset U\left(g_{k}\left(x_{0}\right) ; \epsilon^{\prime}\right) \\
& \subset U\left(g_{k}(z) ; \epsilon\right) \\
& \subset D\left(h_{k+1}\right)
\end{aligned}
$$

Then $U\left(x_{0} ; \epsilon^{\prime} \cdot \operatorname{diam}\left(B_{x_{0}}\right) / \delta\right) \subset D\left(h_{k+1} \circ g_{k}\right)=D\left(g_{k+1}\right)$. This establishes the assertion (A) $)_{k+1}$.

In order to prove the assertion $(\mathrm{B})_{k+1}$, we take a short-cut $\zeta \in W\left(\Gamma_{0}\right)$ at x_{0} to $g_{k+1}\left(x_{0}\right)$. Then $g_{\zeta}^{-1} \circ g_{k+1}\left(x_{0}\right)=x_{0}$, so $g_{\zeta}=g_{k+1}$ on $D\left(g_{\zeta}\right) \cap D\left(g_{k+1}\right)$ by assumption (\#).

Since w_{k+1}^{-1} is a short-cut at z, then $z \in D\left(g_{k+1}\right)$ and by Lemma 3.5 and the choice of $\epsilon^{\prime}, z \in U\left(x_{0} ; \epsilon^{\prime} \cdot \operatorname{diam}\left(B_{x_{0}}\right) / \delta\right) \subset D\left(g_{\zeta}\right)$. Therefore
$z \in D\left(g_{\zeta}\right) \cap D\left(g_{k+1}\right)$.
By the definition of a short-cut,

$$
\left|w_{k+1}^{-1}\right|=d_{\Gamma_{0}}\left(z, g_{k+1}(z)\right) \leqq|\zeta|=d_{\Gamma_{0}}\left(x_{0}, g_{k+1}\left(x_{0}\right)\right) \leqq\left|w_{k+1}^{-1}\right|
$$

so $\left|w_{k+1}^{-1}\right|=d_{\Gamma_{0}}\left(x_{0}, g_{k+1}\left(x_{0}\right)\right)$, that is, w_{k+1}^{-1} is a short-cut at x_{0} to $g_{k+1}\left(x_{0}\right)$. This establishes the assertion (B) $)_{k+1}$, and completes the induction.

Now (B) $)_{m}$ is the desired result.
Remark that $g_{w}^{-1}\left(x_{0}\right) \notin \Delta$. This is because $d_{\Gamma_{0}}\left(x_{0}, g_{w}^{-1}\left(x_{0}\right)\right)=\left|w^{-1}\right|=$ $d_{\Gamma_{0}}\left(x_{0}, z\right)>N$.

By Lemma 3.7, the word w^{-1} is a short-cut at $z \notin \Delta$ to $x_{0} \in \Delta$ and is also a short-cut at $x_{0} \in \Delta$ to $g_{w}^{-1}\left(x_{0}\right) \notin \Delta$. Then, by Lemma 3. 3, the similitude ratio of g_{w}^{-1} is

$$
\frac{\operatorname{diam}\left(B_{x_{0}}\right)}{\operatorname{diam}\left(B_{z}\right)}=\frac{\operatorname{diam}\left(B_{g_{w}}^{-1} x_{x_{0}}\right)}{\operatorname{diam}\left(B_{x_{0}}\right)} .
$$

But the definition of the set Δ yields

$$
1<\frac{\operatorname{diam}\left(B_{x_{0}}\right)}{\operatorname{diam}\left(B_{z}\right)}=\frac{\operatorname{diam}\left(B_{g_{(}}^{-1} x_{0}\right)}{\operatorname{diam}\left(B_{x_{0}}\right)}<1,
$$

a contradiction. This completes the proof of Theorem 2.13.

References

[1] C. CAMAChO and A. Lins Neto, "Geometric theory of foliations", Birkhäuser Boston, Inc., Boston, Mass., 1985.
[2] J. Cantwell, and L. Conlon, Foliations and subshifts, Tôhoku Math. J. 40 (1988), 165-187.
[3] \qquad , Endsets of exceptional leaves : a theorem of G. Duminy, an account, informal notes (1989).
[4] G. HECTOR, Sur un théorème de structure des feuilletages de codimension un, thesis, Université Louis Pasteur, Strasbourg (1972).
[5] T. Nishimori, A qualitative theory of similarity pseudogroups and an analogy of Sacksteder's theorem, Hokkaido Math. J. 21 (1992), 141-150.
[6] R. Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965), 79-102.

