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A qualitative theory of similarity pseudogroups
and
an analogy of Sacksteder’s theorem

Toshiyuki NISHIMORI
(Received April 16, 1991)

1. Introducion

The qualitative theory of foliations has been developed for foliations of
codimension one (see Sacksteder [7], Cantwell-Conlon and Hector [4]
for example). Now we intend to study qualitative properties of foliations
of higher codimensions. Note that all the non-singular dynamical systems
can be considered as foliations and there are numberless researches on the
qualitative theory of dynamical systems. Such researches are not our
intention. So we must make our purpose more concrete. The most typi-
cal result in the qualitative theory of codimension one foliations is the
following theorem.

THEOREM (Sacksteder’s Theorem, see Sacksteder [7]). Let ¥ be a
codimension one C? foliation of a closed manifold M, and # M an excep-
tional minimal set with respect to % . Then there exists a leaf F of 5
contained in A such that F has a contracting element in ils linear
holonomy group LHOI(F).

We demand that our intended study should contain an analogy of the
above theorem, and look for an appropriate and simple category of folia-
tions on which we should work. A natural idea is to.consider foliations
with transverse geometric structure (see Godbillon for example). The
automorphism groups of the appropriate geometric structures are request-
ed to contain contracting elements for an expected analogy of Sacksteder’s
theorem. These considerations guide us to investigate foliations with
transverse similarity structure (see Ghys and Nishimori [6]).

In this paper, we are going to treat similarity pseudogroups I' on R’
in place of codimension ¢ foliations .# with tranverse similarity structure.
As is well known, there exist natural correspondences between the terms
in the qualitative theories of these objects. For example, one considers
[C-orbits in place of leaves of %, and the stabilizer at a point in a I'-orbit
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in place of the holonomy group of a leaf of #. It is easy to translate
results on pseudogroups to those on foliations. The reason why we treat
pseudogroups is to avoid the ambiguities completely and to make the skel-
eton of our arguments simple and apparent.

The plan of this paper is as follows. In §2 we give our formulation
for similarity pseudogroups. In §3, we introduce a concept “ I'-orbits with
bubbles ” and state our main theorem (Theorem 3.3), which is an analogy
of Sacksteder’s theorem. In §4, we prove this theorem.

2. Similarity pseudogroups and the qualitative theory

In this section, we give a convenient formulation of similarity pseudo-
groups for our purpose. This formulation makes the arguments simple
and avoids the ambiguities (for example, those on the domains of ele-
ments of pseudogroups) but does not lose the generality of phenomena in
the view point of the qualitative theory.

DEFINITION 2.1. (1) Denote by I'§"+* the set of homeomorphisms % :
U — V satisfying the following conditions :

(a) The domain U and the range V of % are non-empty, bounded,
convex, open subsets of R?. (We denote D(4)=U and R(k)=
V)

(b) There exists an orientation_preserving similarity transforma-
tion % : R?— R? such that Z#(U)=V and %|v=h. (Such 7% is
determined uniquely by % and we call % the extension of h.)

(2) Let Iy =T3%*U{ide:, ids}, where ids is the unique transformation on
the empty set §. (We bring in the transformation ids in order that we can
cosider the composition for any paris of elements of pseudogroups and
make the description simple.)

DEFINITION 2.2. (1) For f,g=T%% let U=g Y (R(g)ND(f)) and V
=f(R(g)ND(¥)), and difine the composition fog: U — V by

(fog)(x)=f(g(x)) for all xEU.

(2) For f€rys, let U=R(f) and V=D(f), and define the inverse f*: U
— V by

FY{f(x)=x forall xEV.
(Note that if f, gET'S% then fog, flerym.

DEFINITION 2.3. A subset T' of I'y% is called a pseudogroup if it
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satisfies the following conditions :

(a) idg-€T.
(b) If £, g<T, then feg&<r.
(c) If f€T, then f'erl.

(Noe that T'$" is itself a pseudogroup.)

DEFINITION 2.4. Let I'o be a subset of T'm%*.
(1) Ty is called symmetric if h<T implies A '&T.
(2) Denote by <I'o> the intersection of all the pseudogroups I'CI'y% which
contain T. (Cleary <To> is a pseudogroup.) We call <T'¢»> the pseudo-
group gemevated by To.

Hereafter let To be a symmetric subset of T3%*, and T'=<T.

DEFINITION 2.5. (1) Denote by W(I'o) the set of words with Ty as
the alphabet. In order to distinguish a word from a composition, we pre-
fer to write a word w& W(I'o) in such a way as w=(ln, k) rather

than w=hn - k.. In this way, we identify W(T'y) with the disjoint union
IT 5-o(T'0)™, where (I'0)” denotes the product of m-copies of T'o and (I'o)° is
the singleton consisting of the empty word ( ).

(2) For w=(hm, - h)ET0)™(m=1), let go=hmn° - °h.. For the empty
word ( ), let g.,=idg-

The following proposition gives a description of elements of the
pseudogroup I' generated by the symmetric subset ToCI'g*.

PROPOSITION 2.6. (1) For each wE W (), goEI=<T0.
(2) The map ®: W(Tw) — T defined by

O(w)=guw for all we W (To)
1S suvjective.

PROOF: (1) is clear. (2) follows from the assumption that T is
symmetric. []

The terms in the qualitative theory are defined as follows.
DEFINITION 2.7. For x&R? we call
I'(x)={g9(x): €T, xED(9)}

the T-o7bit of x. (Note that xETI'(x).)
(2) A subset E of RY is called a I'-orbit if there exists x€R? with E=
I'(x).
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DEFINITION 2.8. A subset ACR? is called T'-invariant if, for any
xE A, the T'-orbit I'(x) is contained in A.

DEFINITION 2.9. A subset # CR? is called a I'-minimal set if # is a
minimal element of the set of closed, non-empty, I'-invariant subsets of
R? partially ordered by the inclusions.

The concept for a I'-orbit corresponding to the limit set of a leaf of a
foliation is the derived set in the following.

DEFINITION 2.10. For a subset A of R? denote by Der(A) the set of
the points yER? such that there exists a sequence x1, xz, -+ EA—{y} with
y=liMn-ox». We call Der(A) the derived set of A.

DEFINITION 2.11. A T-orbit E is called infinite if #(E)=c0, bound-
ed if E is bounded as a subset of R%, and proper if ENDer(E)=4.

We give the following propositions as typical examples of the proposi-
tions in the qualitative theory of similarity pseudogroups, and omit the
other natural propositions in it.

PROPOSITION 2.12. If a subset A of R? is T'-invariant, then so arve
the intevior Int(A), the closure A and the derived set Der(A).

PROOF: This follows from the standard arguments. []

PROPOSITION 2.13. If a T-orbit E is infinite and bounded, then the
dervived set Der(E) contains a compact T-minimal set.

PROOF: The assumption implies that the derived set Der(E) is non
-empty, compact and I'-invariant. Hence the proposition follows from
Zorn’s lemma. [

3. Statement of the main theorem

The purpose of this section is to describe briefly how we reach the concept
“T-orbits with bubbles ” and to state our main result.

We are going to find an object corresponding to an exceptional
mimimal set .# of a codimension one foliation. Note that a boundary leaf
of such _z is non-compact, non-proper and semi-proper. We begin by des-
cribing a I'-orbit which may be considered as an analogy of such a leaf.

Hereafter let T be the pseudogroup gemevated by a finite symmetric sub-
set To of T9%* and xo a point in the bounded T-invariant open subset Q)
: =Uer.D(h) of R such that the T-orbit T(xo) is infinite and non-proper.
Since T'(x0)CQ, it follows that I'(xo) is bounded.
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An observation on the holonomy pseudogroup of an exceptional mini-
mal set of a codimension one foliation leads us to make the following
natural assumption, which can always be satisfied for such a holonomy
pseudogroup.

ASSUMPTION (S).  There exists a constant €>0 such that the distance
dist(T(w), A) is greater than e, where A=Uier,0D(ho).

Note that A is a compact subset of R?. This assumption (S) implies
that the closure I'(xo) is compact and contained in the open subset Q—A of
R°.

In order to obtain a result analogous to Sacksteder’s theorem on
codimension one foliations, we must look for a point x in the closure
T(xo) such that there exists a contracting element in the stabilizer I'x: ={g
T :x€D(g), g(x)=x}, which is the concept for the I'-orbit I'(x) corre-
sponding to the holonomy group of a leaf of a codimension one foliation.
Here we investigate the following two examples.

EXAMPLE 3.1. Consider the case ¢=2.
(1) Let U=]—¢,1+e[X]—¢, 1+¢[ for some e€]0,1/100[. Take four
points

x0=(0, O), x1=(1, 0), X2=(1, 1), x3=(0, 1)ER2

and define similarity transformations %o, %1, %2, h3: R? —> R? by
¥ (x)=%(x—x,~)+x,- for all x€R?,

and let #;=hu: U — hi{U). Denote by T the pseudogroup generated by
the finite symmetric subset

To: ={ho, =+ hs, ha', - ,ha'}CTET*.

It is easy to see that T(xo) =T(x1) =T(x2) =T(x3)=CXC, where C is the
standard Cantor set. Note that the stabilizer I'x, contains the contracting
element /..

(2) Let U={xER?:|x|<l+¢} for some e<]0, 1/100[. Take an ir-
rational rotation % : R? — R? fixing the origin 0ER? and let A= h|v: U —
U. Denote by T the pseudogroup generated by I'o: ={%, 27!} and put xo=
(1, 0)=R? Then we see that

T(x)=S': ={x=R*: |x|=1}.

Clearly the stabilizer I'x, contains no contracting element.
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The first example is affirmative for our problem but the second one is
not. By watching carefully these examples (and also boundary leaves of
exceptional minimal sets of codimension one foliations), we find the
difference : the first example admits “ bubbles ” defined below and the sec-
ond one does not.

DEFINITION 3.2. A T-orbit ECR? is called with bubbles if, for each
xEE, there exists a non-empty, bounded, convex, open subset Bx (called
a bubble at x) of R’ satisfying the following conditions :

(a) xE0Bx, where 0By: = Bx— Bx.

(b) BxNBy=§if x+y.

(c) If hETo and xED(h)NE satisfy h(x)*x, then & (Bx)= B,
where % is the extension of 4.

One can easily find “bubbles ” for the I'-orbit I'(xo) in Example 3.1
(1) and cannot in the case of Example 3.1 (2). Our main result is the
following theorem.

THEOREM 3.3  (An Analogy of Sacksteder’s [Theorem). Let T be the
pseudogroup generated by a finite symmetric subset To of TS™* and xo a
point in the union Q:=Uier, D(h) such that the T-orbit T'(xo) is infinite
and non-proper. Suppose that the condition (S) is satisfied and the T
-orbit T(xo) s with bubbles. Then there exists a point x in the closure
T(xo) such that the stabilizer Tx contains a contracting element.

We consider this result as a starting point for the qualitative theory of
foliations of higher codimension. Now we have two immediate ways to
proceed. One is to prove this theorem in the more general situation. The
other is to prove an analogy of another theorem in the qualitative theory
of codimension one foliations. An attempt in this way is done by Mat-

suda [4].

4. The proof of Theorem 3. 3.

Let T be the pseudogroup generated by a finite symmetric subset Iy of
I'9%* and xo a point in Q=Uer, D(%) such that the orbit T'(xo) is infinite
and non-proper. Suppose that the condition (S) is satisfied and the T
-orbit T'(xo) is with bubbles {Bx}rer,.

We begin by some definitions.

DEFINITION 4.1. (1) For a word we W(I'), denote by |w| the word
length of w; that is, |w|=m if w=(km, - ,h), and |w| =0 if w is the
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empty word ( ).
(2) For x, yvER? with yEI'(x), put

drx, y)=min{|w|: we W(Iv), x€D(g») and gu(x)=1y}.
(Distinguish dr(x, y) from the Euclidean distance |x—y|.)

DEFINITION 4.2. Let x, yER? A word w& W(To) is called a
short-cut at x to v if x€D(gw), go(x)=y and |w|=dr(x, y).

The bubbles {Bx}:erwy are preserved by short-cuts as follows.

LEMMA 4.3. Let x, yET'(x0) be distinct points and w="hmn, -** ,l) a

short-cut at x to y. Then guo(Bx)=DB,y, where guw is the extension of gw=
hmo cee Ohl-

PROOF: For i=1,:,m, let y:=ho - ohi(x)ET (%) and put yoe=xE
I'(x0). Since w is a short-cut at x, the points x =1y, *** ,yn=2y are pairwise
distinct. Clearly 4 To and y:€D(hir1)N T'(xo) for =0, ,m—1.
Therefore

g_w(Bx): I’Zm° e 0 IZZC’ El(Byo)
= Jime +++ 2 A By)
== hm(Bym—x):Bym:By-

This completes the proof of Lemma 4.3. [

The following is a key observation.
LEMMA 4.4.  The union B : =Uxrerw) Bx is bounded.

PROOF. Take a cone Cx, with xo as vertex such that Int(Cx,)C Bx,.
For each x&€T'(x0), choose a short-cut we W(Iy) at xo to x, and put Cx=
9»(Cx,). Then Cx is a cone with x as vertex and Int(Cx)CBx. Note that
Cx is simirlar to Cx, and the similarity ratio of Cx to Cx, coincides with
that of Bx to Bx,., We proceed by intuitive arguments. Take a very
large sphere S with x, as center. We may suppose that S is suffiiently
large in such a way that the union Q=Uer, D(%) can be almost identified
with xo. There exists a large sphere S with x¢ as center such that if a
bubble By intersects S, then the correspoding cone Cx intersects S". By
taking S’ of an appropriate size, we may suppose that, for all the points
xET(x0) with BxNS=+0, the intersections CxNS are almost congruent
and so their ¢-1 dimensional volumes have almost the same positive value
v. The number of such «x’s is finite since it is almost overestimated by the
ratio of the volume of S" to the value v. Hence the union B=Uerx) Bx
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is contained in the union of the disk surrounded by S and a finite number
of bubbles, which implies that B is bounded. []

As an application of Lemma 4. 4, we have the following.

LEMMA 4.5. (1) erl"(xo) VOl(Bx)<oo.
(2) Dierto(diam(By))?< co,
(3) There exists a sequence {u)5-1 of positive numbers such that

(@) #n>ptasr for all nEN,

(b) liMn-witn=0,

(c) if wEW(To) is a short-cut at xo, then diam(Baycxe) < tin,
when n=dr %o, guw(x0))=|wl.

PROOF. (1) This follows directly from [Lemma 4. 4.
(2) Since the bubbles {Bx}ierwy are similar, the volumes {vol(Bx)}rer
are directly proportional to the numbers {(diam(Bx))%}:ery. Hence (1)
implies (2).
(3) For nEN, let

S»=sup{diam(Bx) : xET(x0), dr.(x, x0) =},
which is not infinity because

(62)7= 2 (diam(Bx))?< oo,
xET(x0)

Since the sequence 61, &, 8, -is weakly decreasing and has a lower

bound 0, there exists the limit 8w: =limp-w 0,20. If 6>0, then there

exists an infinite number of xET'(x) with diam(Bx)= 6»/2, which contra-

dicts the inequality in (2). Hence d»-=0. Now put u,=6»+1/% for each

nEN. It is easy to see that the sequence {u.}3-1 satisfies the conditions
(a), (b) and (c). O

In contrast with the action of a group of diffeomorphisms on a mani-
fold, we must always worry about the domains of elements in the pseudo-
group I', which occupies an important part in our arguments. Here we
give a lemma which follows immediately from the assumption (S). For
2xER? and >0, put Ulx; r)={yER?: |y—x|<r}.

LEMMA 4.6. If hETo and xET(x0) N D(h), then U(x ; e)TD(h).

PROOF: Suppose that U(x ;e) ¢ D(k) and take a point y&
U(x; e)—D(h). Since U(x;e) is a convex subset of R? containing the
points x and y, the line segment L connecting x and y lies in U(x; ¢).
Since x€D(k) and y&D(h), the line segment L must intersect oD(h).
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Hence U(x; €)NoD(h)*+@. This contradicts the inequality dist(I'(xo), A)>
¢ in the condition (S). [

The following lemma is an analogy of a useful lemma in Sacksteder
[7]. Let 6=sup{diam(Bx): xET'(x0)}.

LEMMA 4.7. (The Short-cut [Theorem). If w& W(To) is a short-cut
at xo, then

U<xo : e-%@)CD(gw)-

PROOF: We proceed by an induction on m=|wl|.
(I) If m=1, then %: =gy is an element of the generating set T'e. Since
diam(Bx,)/8=<1 and xET(x0) N D(h), implies that

U(xo ; E'MS(BXO)')C U(JCO ; S)CD(h):D(gw)

(I) Suppose that Lemma 4. 7 is satisfied for short-cuts of word length less
than m. For a short-cut w=kn, - ,h)E W(To) at xo, let w =(ln-1, -, M)

and ¢ =g.». Note that w’ is also a short-cut at xo and that g'(x0)ET(x0)N
D(hn). By the induction hypothesis, it follows that U(xo; e-diam(Bx,)/d)
CD(g¢’) and the following computation has the meaning :

g,< U<x0 e diarn(;on) >>: U( J(xo) : e-diam(Bry) diam(Bg'm)))

) diam(Bx,)
CU(g'(x0); €)
CD(hn).

This implies that
U(xo; e BB N 0= D(g). T

Now we are in the final stage of the proof of Theorem 3.3. Let
co=¢e-diam(Bx,)/d and take nEN with u,<diam(Bx,)/3. Since the TI'-
orbit T'(xo) is non-proper, there exists a point x&(I'(x0) —{x0}) N U(xo ; €0/3)
at a short-cut w="_(kn, -=- ,Ju)E W(Ts) at xo such that g.(xe)=x and m=n.
Then

diam(on)

diam(Bx)=diam(Bguxe)) < ttn = ptn < 3 3

By Lemma 4.7, the domain D(g») contains U(xo; €). It follows that
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gw( U(JCO , 60)): U(gw(xo) J &0 * diam(ng(%)))

diam(Bx,)
cU <x ; %)

CU(xo; g . €9).

Hence, according to the Brouwer fixed point theorem, there exists a point
2€ U(xo;2€0/3) fixed by g». Furthermore we see that the similitude ratio
of g is smaller than one. Therefore g is a contracting element of I" and

2= ££rorg(gw)k(xo)6m-

This completes the proof of Theorem 3. 3.
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