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Introduction

Geometry deals with spaces and structures. In differential geometry,
the spaces are usually differential manifolds and the structures are usually
defined on them in terms of differential quantities and called geometric
structures of order k if the defining quantities involve only derivatives of
order up to k . The general equivalence problem is to find criteria to
decide whether or not two geometric structures are (locally) equivalent.
It is to this problem that the present work is devoted.

Let us first briefly mention the background. The general equivalence
problem has been studied by many geometers since S. Lie. In particular,
E. Cartan, in his study of infinite groups [1], invented a general method to
treat the equivalence problem on the basis of the method of moving
frames and the theory of Pfaff systems in involution, and found important
applications in various domains of his work. However, his method was
rather of the nature of a general heuristic principle not settled in precise
mathematical concepts.

As was brought to light by C. Ehresmann and others, one of the fun-
damental concepts underlying his method is that of principal fibre bundle
and G-structure. The extensive works which followed, in particular, I. M.
Singer -S. Sternberg [21] and S. Sternberg [22], gave a rigorous founda-
tion to deal with the general equivalence problem as that of G structures
and clarified important aspects of Cartan’s ideas.

But the theory of G-structures as achieved there did not seem ade-
quate to treat the equivalence problem in full generality: Even if one
confines oneself to the equivalence problem of G-structures (the first order
geometric structures), one has to deal with higher order geometric struc-
tures in a way suitable to find the higher order invariants of G-structures,

and moreover it is necessary to develop a theory including the intransitive
stuctures.
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In answer to this, we developed in [14] a general scheme to treat the
equivalence problem on the basis of the higher order “non-commutative”
frame bundles, and gave a method to solve the general equivalence prob-
lem in a neighbourhood of every generic point in the analytic category.

On the other hand, in applications to various geometric problems the
general method of G-structures is not always effective. For instance, the
deep work of Cartan on les syst\tilde{e}mes de ffaff \‘a cinq variables [2] is far
from being well understood merely by the usual approach of G-structures.
Here he elaborated a more refined method fitting in with the structures
considered: a method of reduction by using Pfaff systems and of con-
structing what is now called a Cartan connection.

In his series of papers (in particular, [24], [26]), N. Tanaka developed
this aspect extensively as the geometry of differential systems, and found
various applications, especially in CR geometry [25] and in the geometric
study of ordinary differential equations [27].

The present work, growing from the question what relation there is
between the Tanaka theory and our general method developed in [14],
aims to give a unified view on the equivalence problem by integrating the
two methods.

The starting point of Tanaka’s approach is to replace the usual under-
lying manifold, on which geometric structures are considered, by a mani-
fold equipped with a regular differential system [24]. We take also this
starting point, but a little generally we introduce the notion of a filtered
manifold: It is a differentiable manifold M equipped with a tangential
filtration F=\{F^{p}\}_{p\in Z} , where F^{p} (or denoted by FPTM) is a sequence of
subbundles of the tangent bundle TM of M satisfying: (i) F^{p}\supset F^{p+1} , (ii)
F^{0}=0 , \cup F^{p}=TM , and (iii) [\underline{F}^{p}, \underline{F}^{q}]\subset\underline{F}^{p+q} for all p, q\in Z , \underline{F}

. denoting
the sheaf of sectios of F^{\cdot} Notice that a manifold equipped with a regular
differential system gives rise to a filtered manifold (M, F) such that its
filtration is generated by F^{-1} . that is, \underline{F}^{p-1}=[\underline{F}^{-1}, \underline{F}^{p}]+\underline{F}^{p} for all p<0 .
Notice also that any manifold may be regarded as a filtered manifold
endowed with the trivial filtration F_{tr}^{1} TM=TM.

In this paper it is on filtered manifolds that we shall deal with geomet-
ric structures. The main goal is to construct a general scheme to treat
the equivalence problem of geometric structures in a way well adapted to
the underlying filtered manifolds.

The costruction is based on two ideas (or two reflections on the
differentiation in differential geometry). The first basic idea, stemming
from Tanaka [24], may be called in our terminology the utilization of
weighted ordering in differentiation. For a differential operator on a
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filtered manifold (M, F) , it is often more natural and better to use a
weighted ordering induced from the tangential filtration F rather than the
usual ordering: The weighted order is defined for a vector field X to be \leqq

k if X is a section of F^{-k}TM and is extended to any differential operator
in the obvious manner. We shall use this weighted ordering in a geomet-
ric setting. Thus for a filtered manifold (M, F) , the usual r\^ole of the tan-
gent bundle will be played by the bundle of nilpotent graded Lie algebras
grTM=\oplus F^{p}TM/F^{p+1}TM . This point of view has an effect of changing
the notions of frame bundle, G-structure and higher order geometric struc-
ture. All are considered with respect to the weighted ordering, which has
an advantage in providing us with more refined tools than usual.

The second basic idea, stemming from our previous work [14], is the
introduction of the notion of tower. This notion is an abstraction of cer-
tain properties that the homogeneous spaces possess. Recall that the local
nature of a homogeneous space L/G is completely characterized as fol-
lows: First Larrow L/G is a principal G-bundle, secondly there is given an
absolute parallelism on L defined by an \mathfrak{l}-valued 1-form \theta (the Maurer-
Cartan form) which satisfies: (i) R_{a}^{*}\theta=Ad(a)^{-1}\theta for a\in G , (ii) \theta(\tilde{A})=A

for A\in \mathfrak{g} , and (iii) the structure function \gamma , defined by d \theta+\frac{1}{2}\gamma(\theta, \theta)=0 ,

is constant (indeed the bracket operation of the Lie algebra \mathfrak{l} of L).
To treat in this spirit not only the homogeneous structures but also

the inhomogeneous structures, we consider a principal fibre bundle with an
absolute parallelism with less restrictive conditions. The first crucial gen-
eralization that we make is to liberate \mathfrak{l} (the space in which \theta takes val-
ues) from being a Lie algebra. We therefore consider, in stead of (\mathfrak{l}, G,
Ad) , a triple (E, G, \rho) , where G is a Lie group, E a vector space contain-
ing the Lie algebra \mathfrak{g} of G , and \rho the representation of G on E such that
\rho(a)x=Ad(a)x for a\in G , x\in \mathfrak{g} . Then we have a filtration F_{tr} of G

defined by the exact sequence:

1arrow F_{tr}^{p+1}G – G– GL(E/F_{tr}^{p}\mathfrak{g})

with F_{tr}^{0}G=G (see \S 2. 2). In the case of a homogeneous space this is the
filtration induced by the Tayler expansion of the actions of G at the origin
of L/G. We say that the triple (E, G, \rho) is a skeleton on V=E/\mathfrak{g} if it is
formally effective, that is, \cap F_{tr}^{p}G=\{e\} . For reasons understood later on,
we shall fix an identification: E=V\oplus \mathfrak{g} .

Now we say that a principal fibre bundle P(M, G) provided with an
absolute parallelism \theta on P is a tower on M with skeleton (E, G, \rho) if \theta

takes values in E and satisfies: (i) R_{a}^{*}\theta=\rho(a)^{-1}\theta for a\in G , (ii) \theta(\tilde{A})=A
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for A\in \mathfrak{g} . Here we make the second important generalization that G can
be infinite-dimensional (a projective limit of finite-dimensional Lie
groups).

Generalized in this way, the category of towers has the following
remarkable properties: First every geometric structure can be represented
as a tower P or as a truncation of tower P/F_{tr}^{k+1}G . Secondly, for every
manifold M there is a universal tower \mathscr{B}(M) in which every tower on M
is canonically embedded. (See \S 2. 3 for further nice functiorial prop-
erties.)

We remark that \mathscr{B}(M) has a system of local coordinates (x_{j_{i},\cdots,jm}^{i}) with
1\leq i , j_{1},\cdots , j_{m}\leq\dim M , m=0,1,2 , \cdots , (the introduction of new variables
which stand for the higher order derivatives, but without any commuting
relation), while the usual infinite order frame bundle \mathscr{F}(M) is embedded in
\mathscr{B}(M) by the equation x_{j\sigma(1),\cdots,j\sigma(m)}^{i}=x_{j_{1},\cdots,jm}^{i} for all permutations \sigma . This is
the reason why \mathscr{B}(M) is called the non-commutative frame bundle of M.

Now let us turn our attention to a filtered manifold M=(M, F) . A
tower (P, M, G, \theta) with skeleton (E, G, \rho) is called a tower on the filtered
manifold M if there is a filtration \{F^{p}V\} of V invariant under the linear
isotropy representation of G on V and if \theta preserves the filtrations, namely
ly \pi_{*}\circ\theta^{-1}(F^{p}V)=F^{p}TM , where \pi denotes the projection P -arrow M . There
is also a universal tower \mathscr{B}(M) on M in which every tower on M is
canonically embedded. And any geometric structure on a filtered mani-
fold M is represented as a tower on M or as its truncation.

If a skeleton (E, G, \rho) leaves invariant a filtration \{F^{p}V\} we can
introduce another filtratin \{F^{p}G\} of G by the exact sequence (see \S 2. 2):

1-F^{p+1}G– Garrow GL(E/F^{p}\mathfrak{g})/F^{p+1}GL(E/F^{p}\mathfrak{g}) .

This is the filtration according to the weighted ordering mentioned above,
and in studying the towers on filtered manifolds we let it play the r\^ole that
the Taylor filtration F_{tr} does when the tangential filtration is trivial.

In this way we have made our foundation to study the geometric
structures on filtered manifolds. Now to treat the equivalence problem,
our general principle may be expressed as follows:

Given a geometric structure, first represent it as a truncation of a
tower. Then reduce this tower to obtain a smaller one which has as nice
structure as possible. The invariants of the latter will yield those of the
original geometric structure.

Of course a geometric structure may, in general, much deviate from a
homogeneous space. We shall make clear through our point of view what
structures can be regarded as nice approximations of homogeneous spaces
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and under what conditions the given geometric structure can be reduced to
such nice ones.

The towers that have constant structure functions constitute an impor-
tant class of towers that have the simplest structures. A tower P belong-
ing to this class is an analogue of a homogeneous space (indeed, as ex-
plained earlier on, a local homogeneous space if \dim P<\infty ). Of interest
is thus the infinite-dimensional case. We shall clarify how such a tower
can be determined from its truncated structure P/F^{k}G . In order this we
introduce the important notion of involutivity for truncated towers on
filtered manifolds by generalizing the notion of involutive C-bundle [14]
and by using the generalized Spencer cohomology group. Since we are
working through the weighted ordering, this notion of involutivity is, so to
speak, the weighted version of the usual one.

It is nowadays a common philosophy which goes back to Cartan that
the three objects on a manifold; Lie transformation groups, geometric
structures, and differential equations, relate to each other intimately
through the notion of involutivity. Our emphasis is that this trinity also
holds if we replace the underlying manifold by a filtered manifold, and the
notion of involutivity by the weighted version: In [15] we have deter-
mined the structure of a transitive filtered Lie algebra of depth \mu (the
infinitesimal object of a Lie pseud0-group acting on a filtered manifold)
from involutive truncated filtered Lie algebras, which may be regarded as
an algebraic aspect of the present geometric study. In [20] we study the
formal integrability of differential equations on a filtered manifold by
introducing the notion of weighted jet bundle, in which we see more
explicitly the significance of the involutivity with respect to the weighted
ordering.

As another achievement of our method, we obtain a general criterion
to construct a Cartan connection associated with a geometric structure.

If one recalls the definition of a Cartan connection (see \S 3.10), one
will notice immediately that a bundle with Cartan connection is nothing
but a tower of which the size of the total space is tight (or more precisely,
the space E in which \theta takes values has a Lie algebra structure). Thus
the problem of constructing a Cartan connection for a given geometric
structure reduces to the problem of reducing a tower to a tight one. This
point of view leads us to a general criterion and a unified method to con-
struct Cartan connections, which generalizes all the results hitherto known
on the existence of Cartan connections (Riemannian, conformal, and pr0-

jective structures (cf. [9]), more generally the method of Tanaka con-
structing Cartan connections for certain geometric structures associated
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with simple graded Lie algebras [26] ) .
A summary of contents now follows: In Chapter I we define a filtered

manifold, and introduce the first order geometric structures on filtered
manifold, a generalization of the G-structures.

Chapter II introduces the notion of tower which plays a central r\^ole in
this paper, and constructs the universal tower \mathscr{B}(M) . In the case when
the filtration is trivial, the truncation \mathscr{B}^{(k)}(M) of \mathscr{B}(M) coincides with
what is called the non-commutative frame bundle of order k+1 in our
previous paper [14]. Here we prefer to go to the infinite order since it
much facilitates to understand the group theoretical natures of the struc-
tures and the fundamental properties of the structure functions.

Chapter III discusses the general equivalence problem. Of particular
importance is the notion of involutivity. By virtue of this we are able to
find all the invariants of a given geometric structure by a finite number of
steps and able to solve the equivalence problem under the assumption of
analyticity, provided that the structure is transitive. It gives a method to
calculate the invariants of the structure in a way well-adapted to the
underlying filtered structure, as illustrated by an example taken from
Monge-Amp\‘ere equations. We also discuss how to treat intransitive
structures, Finally a general criterion and method to construct Cartan
connections is given. The Cartan connection of a conformal structure is
explained in illustration of the general construction.

The main results of this paper were announced in [16] and [17].
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Chapter I. Filtered manifolds

1. 1. Definition of a filtered manifold.
A tangential filtration F on a differentiate manifold M is a sequence

\{F^{p}\}_{p\in Z} of subbundles of the tangent bundle TM of M such that the fol-
lowing conditions are satisfied:

i) F^{p}\supset F^{p+1} ,
ii) F^{0}=0 , \bigcup_{p\in Z}F^{p}=TM ,
iii) [\underline{F}^{p}, \underline{F}^{q}]\subset\underline{F}^{p+q} , for all p, q\in Z ,

where F^{p} denotes the sheaf of the germs of sections of F^{p} .
A filtered manifold is a differentiate manifold M equipped with a

tangential filtration F. We shall often denote by the bold letter M the
filtered manifold (M, F) and by \{ T^{p}M\} or \{F^{p}TM\} its tangential filtra-
tion.

An isomorphism of a filtered manifold M onto a filtered manifold M’
is a diffeomorphism \varphi:Marrow M’ such that \varphi_{*}T^{p}M=T^{p}M’ for all p\in Z ,

where \varphi_{*} denotes the differential of \varphi .
Let M be a filtered manifold. By definition there is an integer \mu\geq 0

such that T^{-\mu}M=TM . The minimum of such integers is called the depth
of M.

Before proceeding, let us give some examples.
1) Trivial filtration. A differentiate manifold M itself may be re-

garded as a filtered manifold equipped with the trivial filtration defined by
F_{tr}^{p}TM=TM for p<0 and F_{tr}^{q}TM=0 for q\geq 0 .

2) Tangential filtration derived from a regular differential system [24].
Let D be a differential system on a differentiate manifold M, that is, a
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subbundle of the tangent bundle of M. Then there is associated a
sequence of subsheaves \{\mathscr{D}^{p}\}_{p<0} of \underline{TM}, called the derived systems of D,
which is defined inductively by:

\{ \mathscr{D}^{-1}=\underline{D}\mathscr{D}^{p-1}=\mathscr{D}^{p}’+[\mathscr{D}^{p}, \mathscr{D}^{-1}]

(p<0) .

It then holds that:
[\mathscr{D}^{p}\mathscr{D}^{q}]\subset \mathscr{D}^{p+q} for p, q<0 .

Now suppose that the derived systems \mathscr{D}^{p} are all vector bundles, that
is, there are subbundles D^{p}\subset TM such that \underline{D}^{p}=\mathscr{D}^{p} for all p<0 (in this
case the differential system D is called regular [24] ) . Then there exists a
minimum integer \mu\geq 1 such that D^{p}=D^{-\mu} for all p\leq-\mu . Setting

F^{p}TM=\{
0 (p\geq 0)

D^{p} (-1\geq p\geq-\mu)

TM (p\leq\mu-1) ,

we have a filtered manifold M=(M, F) derived from the regular differen-
tial system D.

There are two cases to distinguish. If D^{-\mu}\subsetneqq TM , then D^{-\mu} is com-
pletely integrable and defines a foliation on M. In particular, if D is com-
pletely integrable the filtered manifold M is nothing but a foliated mani-
fold. If D^{-\mu}=TM , we say that the tangential filtration F is generated by
differential system D.

If a filtered manifold M (or M’) is derived from a differential system
D on M (resp. D’ on M’), then M and M’ are isomorphic if and only if
(M, D) and (M’-D’) are isomorphic, that is, there is a diffeomorphism \varphi :
M -arrow M’ such that \varphi_{*}D=D’ .

3) Higher order contact manifold (cf. [29]). Let \pi:Marrow N be a fibred
manifold. Let J^{k}(M, N) be the bundle of k-jets of cross-sections of \pi .
On this jet bundle we have a sequence of canonical differential systems
\{D^{p}\} called the higher order contact structure. In local coordinates it is
expressed as follows: Let (x^{1}. \cdots, x^{n}) , (x_{7}^{1}\cdots, x^{n}y^{1}\ldots, y^{m}) be local coordi-
nates systems of N and M respectively. Then (x^{1_{ }}.\cdots, x^{n}. \cdots, p_{a^{ }}^{i},\cdots) , where
p_{a}^{i}= \frac{\partial^{|a|}y^{i}}{\partial x^{a}} with \alpha=(\alpha_{1^{ }},\cdots, \alpha_{n}) , |\alpha|\leq k , gives a local coordinate system of
J^{k}(M, N) called a canonical coordinates system. Put

\omega_{a}^{i}=dp_{a}^{i}-\sum_{j=1}^{n}p_{a+1j}^{i}dx^{j}
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for |\alpha|\leq k-1 , with \alpha+1_{j}=(\alpha_{1}, \cdots, \alpha_{j}+1, \cdots, \alpha_{n}) , and define D^{p}(p\leq-1) by
the following Pfaff equations:

D^{p} : \omega_{a}^{i}=0 (i=1, \cdots, n |\alpha|\leq k+p) ,

It is easy to see that D^{p} are well-defined subbundles of TJ^{k}(M, N) and
satisfy :

i) \underline{D}^{p-1}=\underline{D}^{p}+[\underline{D}^{p}, \underline{D}^{-1}] ,
ii) D^{p}=TJk(M, N) for p\leq-k-1 .

We thus obtain a canonical tangential filtration \{D^{p}\} on J^{k}(M, N) of
depth k+1 generated by D^{-1} . It should be noted that if dim M=n+1 ,
\dim N=n and k=1 then J^{1}(M, N) is a contact manifold having D^{-1} as its
contact structure.

4) Standard filtered manifold. Let \mathfrak{n} be a finite-dimensional Lie alge-
bra endowed with a gradation \mathfrak{n}=\bigoplus_{p\in Z}\mathfrak{n}_{p} such that

i) [\mathfrak{n}_{p}, \mathfrak{n}_{q}]\subset \mathfrak{n}_{p+q} ,
ii) \mathfrak{n}_{p}=0 p\geq 0 .

Note that \mathfrak{n} is therefore nilpotent. Let N be a Lie group whose Lie alge-
bra is \mathfrak{n} . Set \mathfrak{n}^{p}=\bigoplus_{i\geq p}\mathfrak{n}_{i} and identify N\cross \mathfrak{n}^{p} with a left invariant subbundle

of TN, then \{N\cross \mathfrak{n}^{p}\}_{p\in Z} is a tangential filtration on N. The filtered mani-
fold N=(N, \{N\cross \mathfrak{n}^{p}\}) is called a standard filtered manifold of type \mathfrak{n} .

1. 2. The tangent space of a filtered manifold.
Let M be a filtered manifold. The tangential filtration \{ T^{p}M\} defines

on each tangent space T_{x}M , x\in M , the induced filtration \{ T_{x}^{p}M\} . We
denote by T_{x}M this filtered vector space ( T_{x}M, \{ T_{x}^{p}M\}) . Now by setting

gr_{p}T_{x}M=T_{x}^{p}M/T_{x}^{p+1}M ,

we form a graded vector space:

grT_{x}M= \bigoplus_{p\in Z}gr_{p}T_{x}M .

This vector space carries a natural bracket operation induced from the Lie
bracket of vector fields: For \xi\in gr_{p}T_{x}M , \eta\in gr_{q}T_{x}M , take local cross-
sections X, Y of T^{p}M , T^{q}M respectively such that

\{

\xi\equiv X_{x} mod T_{x}^{p+1}M ,
\eta\equiv Y_{x} mod T_{x}^{q+1}M ,

and define
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[\xi, \eta]\equiv[X, Y]_{x} mod T_{x}^{p+q+1}M .

It is then easy to see that this bracket operation is well-defined and makes
grT_{x}M a Lie algebra. Clearly we have:

i) [grpTxM, grqTxM]\subset gr_{p+q}T_{x}M ,
ii) gr_{p}T_{x}M=0 for p\geq 0 .

This graded Lie algebra grT_{x}M is called the symbol algebra of M at x
([24]) , and may be considered as the tangent space (algebra) at x of the
filtered manifold M.

We say that a filtered manifold M is regular of type rn if the symbol
algegras grTxM are all isomorphic to a graded Lie algebra \mathfrak{m} .

1. 3. First order frame bundle.
Let us fix our notation and terminology on the filtered vector spaces.

We mean by a filtered vector space a vector space V endowed with a
descending sequence \{F^{p}V\}_{p\in Z} of its subspaces. If V=(V. \{F^{p}V\}) , W=
(W, \{F^{p}W\}) are filtered vector spaces, by an isomorphism \varphi : Varrow W. we
mean always an isomorphism of filtered vector spaces, that is, a linear
isomorphism \varphi:Varrow W such that \varphi(F^{p}V)=F^{q}W for all p\in Z . For a
filtered vector space V we denote by Aut(V) the group of all isomor-
phisms of the filtered vector space V . Clearly Aut(V) is a closed Lie
subgroup of GL(V) . We denote by grV=\oplus gr_{p}V the graded vector
space associated with V. that is, gr_{p}V=F^{p}V/F^{p+1}V We denote by
Aut(grV) the Lie group of all isomorphisms of grV as a graded vector
space i.e., linear isomorphisms \phi:grVarrow grV such that \phi(gr_{p}V)=gr_{p}V .

An isomorphism \varphi:Varrow W of filtered vector spaces induces in the obvi-
ous way a unique isomorphism of the associated graded vector spaces
gr\varphi:grVarrow grW . We have thus a surjective homomorphism

Aut(V)\ni \mbox{\boldmath $\varphi$} -arrow gr\varphi\in Aut(grV)

The kernel of this homomorphism is clealy given by

F^{1}Aut(V)=\{a\in Aut(V)|(a-id_{V})(F^{p}V)\subset F^{p+1}V \forall p\}

Now let M be a filtered manifold. Choose a filtered vector space V
isomorphic to the filtered vector space T_{x}M for some and hence all x\in M .
(In order to assign V uniquely to M, we choose and fix once for all one
filtered vector space in each isomorphic class of filtered vector spaces, say
for examples, R^{n} with a suitable filtration.) To define what is to be
called a 1-st order frame of M, there are two kinds of natural candidates:
One is an isomorphism \hat{z} : Varrow T_{x}M of filtered vector spaces, another is
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an isomorphism z:grV -arrow grT_{x}M of the graded vector spaces. The for-
mer is first order in the ordinary sense and the latter in the weighted sence
([18]). Hence we call them respectively ordinary 1-st order frame and
weighted 1-st order frame of M at x .

We denote by \overline{\mathscr{B}}^{(0)}(M) the set of all ordinary 1-st order frames of M
and by \mathscr{B}^{(0)}(M) the set of all weighted 1-st order frames of M .

It is immediate to see that \mathscr{B}^{(0)}(M) (or \overline{\mathscr{B}}^{(0)}(M) ) is a principal fibre
bundle with base space M and structure group Aut(grV) (resp. Aut(V)).
Note also that there is a natural projection

\overline{\mathscr{B}}^{(0)}(M)\in\overline{z}-arrow gr\overline{z}\in \mathscr{B}^{(0)}(M) .

Since for \overline{z}\in\overline{\mathscr{B}}^{(0)}(M) and a\in Aut(V) , gr(\hat{z}a)=gr(\overline{z}) if and only if a\in

F^{1}Aut(V) , we can identify \mathscr{B}^{(0)}(M) with the quotient bundle of \overline{\mathscr{B}}^{(0\rangle}(M) by
F^{1}Aut(V) .

Let M and M’ be filtered manifolds. If there is an isomorphisms \varphi :
Marrow M’ of filtered manifolds, then there is induced an isomorphism \varphi^{(0)} :
\mathscr{B}^{(0)}(M)arrow \mathscr{B}^{(0\rangle}(M’) (or \hat{\varphi}^{(0)}:\overline{\mathscr{B}}^{(0)}(M)arrow\overline{\mathscr{B}}^{(0)}(M’) ) of principal fibre bundles
which sends z\in \mathscr{B}^{(0)}(M) to gr(\varphi_{*})\circ z\in \mathscr{B}^{(0)}(M) (resp. \overline{z}\in\overline{\mathscr{B}}^{(0)}(M) to \varphi_{*}\circ\overline{z}

\in\overline{\mathscr{B}}^{(0)}(M’)) .
It is the weighted ordering that plays a fundamental r\^ole in the pres-

ent study. We will therefore usually mean by the 1-st order frame bundle
of M the weighted one \mathscr{B}^{(0)}(M) .

1. 4. First order geometric structures.
A weighted (or ordinary) first order geometric structure on a filtered

manifold M is a principal subbundle P of \mathscr{B}^{(0)}(M) (or resp. \hat{P} of \overline{\mathscr{B}}^{(0)}(M) ).
We write sometimes as P=P(M, G) (resp. \overline{P}=\overline{P}(M,\hat{G}) ) to indicate the
base space M and the structure group G(resp.\hat{G}) , a Lie subgroup of Aut
(grV) (resp. Aut ( V)).

The notion of isomorphism is defined in the natural manner: Two first
order geometric strucures P(M, G) and P’(M’. G’) (or \overline{P}(M,\hat{G})and\hat{P}’(M’ .
\hat{G}’) on filtered manifolds M and M’ are said to be isomorphic or equiva-
lent if there exists an isomorphism \varphi:Marrow M’ such that \varphi^{(0)}(P)=P’(resp .
\overline{\varphi}^{(0)}(\overline{P})=\overline{P} ’). It should be noted that if P(M, G) and P’(M’. G’) (resp.
\overline{P}(M,\overline{G}) and \hat{P}’(M’.\overline{G}’)) are isomorphic then G=G’ (or \overline{G}=\overline{G} ’).

Let us observe how weighted and ordinary first order geometric
strucures are related to each other. Let \hat{P}(M,\overline{G}) be an ordinary 1-st
order geometric structure. Let us denote by q both the natural projec-
tions \overline{\mathscr{B}}^{(0)}(M)arrow \mathscr{B}^{(0)}(M) and Aut ( V)arrow Aut (grV) i.e., the quotient maps
by the right action of F^{1}Aut( V) . Then q\overline{P}(M, q\overline{G}) is a weighted l-st
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order geometric structure. If there is an isomorphisms \overline{\varphi}^{(0)} ; \overline{P}(M,\overline{G}) -arrow

\overline{P}’(M’.\hat{G}’) , then it clearly induces an isomorphism \varphi^{(0)} : q\hat{P}(M, q\overline{G})arrow

q\overline{P}’(M’q\overline{G}’) which makes the following diagram commutative:

q\overline{P}\overline{P\downarrow}\underline{\underline{\overline{\varphi}^{(0)}}\varphi^{(0)}}\overline{P}’q\hat{P}’\downarrow

Conversely given a weighted 1-st order geometric structure P(M, G) , let
\mathfrak{h}P , \mathfrak{h}G be the inverse images by q of P and G respectively. Then we see
that \mathfrak{h}P(M, \mathfrak{h}G) is a principal subbundle of \overline{\mathscr{B}}^{(0)}(M) i.e., an ordinary l-st
order geometric structure. We see also that weighted 1-st order geomet-
ric structures P(M, G) and P’(M’. G’) are isomorphic if and only if so are
\mathfrak{h}P and \mathfrak{h}P’ . It should be noted that an ordinary 1-st order geometric
structure \hat{P} is a (in general proper) subbundle of Jq\hat{P} . This means that
an ordinary 1-st order geometric structure may be regarded as a higher
order geometric structure with respect to the weighted ordering.

In this paper we shall be concerned with the equivalence problem pri-
marily for the weighted first order geometric structures.

1. 5. Examples.
We give a few examples of first order geometric structures on filtered

manifolds without alluding to the detail.

1) Filtered manifolds themselves. In general a filtered manifold M
is, even locally, highly non-trivial, so that the equivalence problem of
\mathscr{B}^{(0)}(M) already has various aspects and presents interesting problems.
The work of Cartan on the Pfaff systems in five variables [2] provides us
with a good example, in which he developed a deep and detailed study on
the equivalence problem of differential systems on a five-dimensional
manifold. In particular, a generic differential system D of rank 2 on a
5-dimensional manifold generates a filtration \{D^{p}\} such that rank D^{-2}=3

and rank D^{-3}=5([24]) . The invariants are calculated by constructing a
s0-called Cartan connection. (For the interpretation of [2] I have
benefited from a lot of conversation with N. Tanaka and K. Yamaguchi.)

2) G-structures. If the filtration is trivial, then \mathscr{B}^{(0)}(M) is just the
usual linear frame bundle and a subbundle of \mathscr{B}^{(0)}(M) just a s0-called G-
structure.

3) CR-structures. Let M be a filtered manifold of depth 2. An
almost CR-structure on M is defined by I\in\Gamma End(T^{-1}M) such that I^{2}=
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-id .. Clearly to this structure corresponds a subbundle P^{(0\rangle} of \mathscr{B}^{(0)}(M) .
The integrability conditions or Levi forms etc. can be expressed in terms
of the structure function. For more detail we refer to [25].

4) Monge-Amp\tilde{e}re equations. Let M be a 5-dimensional contact
manifold, in other words a filtered manifold of depth 2 whose symbol alge-
bras are isomorphic to the 5-dimensional Heisenberg Lie algebra.
According to the geometric formulation of the Monge-Amp\‘ere equation
[13], a hyperbolic M-A equation is defined by a direct sum decomposition:
T^{-1}M=\eta_{1}\oplus\eta_{2} such that \eta_{1} and \eta_{2} are perpendicular. It therefore defines
a subbundle of \mathscr{B}^{(0)}(M) , and the equivalence problem of the M-A equa-
tions may be treated as that of certain subbundles of \mathscr{B}^{(0)}(M) (see \S 3. 9).

5) Foliations with transversal structures (cf. [12]). Let M be a fil-
tered manifold of depth 2 with T^{-1}M completely integrable. Let G-2 be a
Lie subgroup of GL(gr_{-2}V) and let G_{0}=G_{-2}\cross GL(gr_{-1}V) . Then a reduc-
tion of \mathscr{B}^{(0\rangle}(M) to the group G_{0} defines a foliation with a transversal struc-
ture, e . g. , riemannian if G- 2=O(gr_{-2}V) .

6) Differential equations. A system of differential equations of order
k is in general expressed as a submanifold R of a jet bundle J^{k}(M, N) .
The higher order contact structure \{D^{p}\} of the jet bundle induces on R a
tangential filtration \{F^{p}TR\} by F^{p}TR=D^{p}\cap TR , provided that the rank
of F^{p}TR is independent of the base points. This filtration plays a funda-
mental r\^ole in the geometric study of differential equations (cf. [27], [29]).

Chapter II. Towers on filtered manifolds

2. 1. Infinite dimensiolal manifolds and Lie groups.
In our study of geometric structures, though we essentially concern

ourselves with finite-dimensional geometric structures, we will often deal
with infinite dimensional objects such as manifolds, Lie groups and princi-
pal fibre bundles etc. The introduction of such infinite-dimensional
objects has the advantage to give us clear perspectives to treat geometric
structures.

For our purpose it is enough to consider only those infinite-dimen-
sional objects which are obtained as projective limits of finite-dimensinal
ones, to which hold most of the basic notions and facts well-known in the
finite-dimensional case.

In this section, for the sake of fixing the notation, we introduce a
“

\mathfrak{p}-category” and define the class of infinite-dimensional objects that we
shall deal with.
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2. 1. 1. Let X be a set. By a fibring of X we mean a family
\{X^{(i)}, \pi_{j}^{i}, \pi^{i}\}_{\iota,j\in Z}. consisting of sets X^{(i)} , maps \pi_{j}^{i} : X^{(j)} -arrow X^{(i)}(i<j) , \pi^{i} :
Xarrow X^{(i\rangle} which satisfies the following conditions:

i) \pi_{j}^{i}\circ\pi_{k}^{j}=\pi_{k}^{i} (i<j<k)
ii) \pi_{j}^{i_{e}}\pi^{j}=\pi^{i} (i<j)
iii) \pi:X -

\lim_{arrow}X^{(i)} is bijective,

where lim X^{(i)} denotes the projective limit of the system (X^{(i)}, \pi_{j}^{i}) and \pi

denotes the canonical map induced from \pi^{i} .

We say that two fibrings of X, (X^{(i)}. \pi_{j}^{i}, \pi^{i}) and (\overline{X}^{(i)}.\overline{\pi}_{j}^{i},\overline{\pi}^{i}) are
equivalent if for any i there exist j , k and maps \alpha_{j}^{i} : X^{j}arrow\overline{X}^{i} , \beta_{k}^{i} : \overline{X}^{k}arrow X^{i}

such that \overline{\pi}^{i}=\alpha_{j}^{i}\circ\pi^{j} , \pi^{i}=\beta_{k}^{i}\circ\overline{\pi}^{k} . An equivalence class of fibrings of X is
called a \mathfrak{p}-strucure on X and a set endowed with a \mathfrak{d}^{-}structure will be
called a 0^{-}space. A fibring belonging to the 0^{-}structure is called an
admissible fibring of the \mathfrak{p} -space.

Let X, Y be \mathfrak{p}-spaces, A map f:Xarrow Y is called a \mathfrak{p}- morphism if
for admissible fibrings (X^{(i)}, \pi_{j}^{i}, \pi^{i}) , ( Y^{(i)}. \varpi_{j}^{i}, \varpi^{i}) respectively of X and Y

and for any i there exist j and a map f_{j}^{i} : X^{(j)} -arrow Y^{(j)} such that f_{j}^{i}\circ\pi^{j}=

\varpi^{i}\circ f . The map f is called a \mathfrak{p}- isomorphism if f is bijective and if both f
and f^{-1} are p-morphisms.

2. 1. 2. Now let us define a P^{-}manifold ( \mathfrak{p}-vector space, p-Lie group,
or \mathfrak{p}- Lie algebra) by specializing the sets X^{(i)} and the maps \pi_{j}^{i}, \alpha_{j}^{i},
\beta_{k}^{j} (which appeared in the definition above of a P^{-}space) as follows: The
sets X^{(i)} are required to be differential manifolds (vector spaces, Lie
groups, or Lie algebras resp.) of finite dimensions and the maps \pi_{j}^{i}, \alpha_{j}^{i}, \beta_{k}^{i}

to be surjective submersions (linear maps, Lie group homomorphisms, or
Lie algebra homomorphisms resp.).

A morphism of \mathfrak{p}-manifolds \mathfrak{d}^{-}vector spaces 0^{-}Lie groups, or p-Lie
algebras is defined by specializing the maps f_{j}^{i} above to be a differentiate
map, linear map, or homomorphism respectively, and the morphism is
rather referred to as differentiate map, (p-)linear map, or (Lie group or
Lie algebra) homomorphism respectively.

Similarly we have the notions of \mathfrak{d}^{-}principal fibre bundle and \mathfrak{p}-vector
bundle: In particular a \mathfrak{d}^{-}principal fibre bundle P(M, G) is a projective
limit of finite-dimensional principal fibre bundles \{P^{(i)}(M^{(i)}, G^{(i)})\} .

A few remaks are now in order.

REMARK 2. 1. 1. Let X be a \mathfrak{p}-manifold ( \mathfrak{p}-vector space, or p-Lie
group etc.). If one (and hence all) admissible fibring (X^{(i)}, \pi_{j}^{i}, \pi^{i}) is
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bounded to the above, that is, there exists i_{0} such that \pi_{j}^{i} are all bijective

for i_{0}\leq i<j , X is identified with a usual finite-dimensional manifold (or

vector space etc.). Conversely a finite-dimensional manifold may be
regarded as a \mathfrak{p}-manifold with the trivial fibring.

REMARK 2. 1. 2. We shall use freely the algebraic structures that
\mathfrak{p}- objects inherit in the natural way. For instance a \mathfrak{d}^{-} Lie group obviously

ly has a group structure. However as to topology, we should pay some
attention: If X is a \mathfrak{d}^{-}manifold, it has the natural topology, the projective
limit topology of the manifold topology X^{(i)} . If X is a \mathfrak{p}-vector space (or

\mathfrak{p}- Lie algebra), it is rather convenient to give it a topology by assigning
\{Ker\pi^{i}\} as a fundamental system of neighbourhoods of the origin, i . e. ,

the projective limit topology of X^{(i)} . with the discrete topology on X^{(i)} .

Since a \mathfrak{p}-vector space over R or C may be also viewed as a p-manifold,

we have two different natural topologies on it. This may be somewhat
confusing, but when topologies of \mathfrak{p}- objects are concerned, it will be clear
by context which topology is referred to.

REMARK 2. 1. 3. We can also introduce \overline{\mathfrak{p}}-categories of Lie groups
and Lie algebras by defining a \overline{\mathfrak{p}}- Lie group to be a P^{-}manifold G endowed
with a group structure such that the group operations of G are
differentiate and \overline{\mathfrak{p}}- Lie algebra to be a \mathfrak{p}-vector space L endowed with
a Lie algebra structure such that the bracket operation is continuous. In
our following discussion we sometimes deal with \hat{\mathfrak{p}}- Lie algebras but not \hat{\mathfrak{p}}

-Lie groups.

2. 1. 3 We briefly mention the differential calculus on \mathfrak{p}-manifolds
Let M be a \mathfrak{p}-manifold with an admissible fibring \{M^{(i)}, \pi_{j}^{i}, \pi^{i}\} . Put

TM=proj lim (TM^{(i)}, (\pi_{j}^{i})_{*}) ,

where TM^{(i)} denotes the tangent bundle of M^{(i\rangle} and (\pi_{j}^{i})_{*} the differential
of \pi_{j}^{i} . Denote by (\pi^{i})_{*} the canonical projection: TMarrow TM^{(i)} . Then we
have a \mathfrak{p}-manifold TM with ( TM^{(i)}. (\pi_{j}^{i})_{*}, (\pi^{i})_{*}) as an admissible fibring

and with a canonical projection \pi : TM -arrow M . Clearly TM is a \mathfrak{p} vector
bundle over M and is uniquely determined by M up to isomorphisms. So
we call it the tangent bundle of M.

We can also consider differential forms on a \mathfrak{p}- manifold M . Let
\wedge^{p}TM denote the p-th exterior product of TM, which is again a 0^{-}vector
bunble over M. Note that when we form the tensor product X\otimes Y of
\mathfrak{p}-vector spaces X, Y it is to be understood as the complete tensor product

with respect to the \mathfrak{p}-vector space topologies. Now given a \mathfrak{p}-vector
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space E, an E-valued differential p-form on M is a differential map \omega :
\wedge^{p}TMarrow E such that the restriction of \omega to each fibre: \omega_{x} : \wedge^{p}T_{x}M -arrow E ,
is \mathfrak{p}- linear. We have also the exterior differentiation d and the usual for-
mulas for differential forms.

If G is a \mathfrak{p}- Lie group the tangent space T_{e}G to G at the neutral ele-
ment e becomes in the natural manner a \mathfrak{p}- Lie algebra, which is called the
Lie algebra of G and usually denoted by the corresponding German letter
\mathfrak{g} . We have also the Maurer-Cartan form \omega of G, a left invariant \mathfrak{g}-val-
ued l-form on G assigning to each x\in G an isomorphism of \mathfrak{p}-vector
spaces \omega_{x} : T_{x}G -

arrow \mathfrak{g} , which satisfies:

d \omega+\frac{1}{2}[\omega, \omega]=0 .

2. 1. 4. At the end of this section let us make some notational conven-
tion on filtered objects.

If X is a \mathfrak{p}-vector space, \mathfrak{p}- Lie algebra or \mathfrak{p}- Lie group, and if \{(X^{(i)} ,
\pi_{j}^{i} , \pi^{i})\} is an admissible fibring of X, we call \{Ker\pi^{i}\} an admissible filtra-
tion of X. If L is a \hat{\mathfrak{p}}- Lie algebra, we mean by an admissible filtration of
L a descending sequence of subspaces \{L^{p}\} such that it constitutes a fun-
damental system of the neighbourhoods of the origin and satisfies:

[L^{p}, L^{q}]\subset L^{p+q} .

We shall mean by a filtered Lie group (Lie algebra, or vector space) a
p-Lie group ( \mathfrak{p}\wedge- Lie algebra, or \mathfrak{p}-vector space resp.) endowed with an
admissible fildtration.

For filtered objects (vector spaces V, W. Lie groups G etc.) we
denote by \{F^{p}\} not only their filtrations but also the induced filtrations
defined naturally on various associated spaces, for instance:

F^{p}(V\oplus W)=F^{p}V\oplus F^{p}W

F^{p}(V \oplus W)=\sum_{r+s=p}F^{r}V\oplus F^{s}W

F^{p}(G/F^{h}G)=F^{p}G/F^{p}G\cap F^{h}G

F^{p}Hom(V. W)=\{\alpha\in Hom(V, W)|\alpha(F^{i}V)\subset F^{i+p}W \forall i\}

F^{p}GL(V)=\{\alpha\in GL(V)|\alpha-1_{V}\in F^{p}Hom(VrV)\} .

With this convention, if V is a finite-dimensional filtered vector space we
have Aut(V) =F^{0}GL(V) . Note that Aut(V) becomes a filtered Lie group
with the natural filtration defined by

F^{p} Aut(V) Aut(V)\cap F^{p} GL(V) .

When we take a quotient space, for instance F^{0}Aut(V)/F^{p} Aut(V), we
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often write it simply as F^{0}Aut(V)/F^{p} .

2. 2. Algebraic skeletons.
In this section we introduce the notion of skeleton and study the basic

properties, to pave the way for introducing the notion of tower. Here-
often V always denotes a finite dimensional filtered vector space ( V. F)

such that
V=F^{-\mu}V\supset\cdots\supset F^{p}V\supset F^{p+1}V\supset\cdots\supset F^{0}V=0 .

2. 2. 1. First of all we introduce the following

DEFINITION 2. 2. 1. An algebraic skeleton of a tower {or simply, skel-
eton) on V is a triple (E, G, \rho) , with Ga $-Lie group, E=V\oplus \mathfrak{g} , \mathfrak{g} the
Lie algebra of G, and \rho a representati on of G on E, such that the follow-
ing conditions are satisfified:

i) \rho(a)A=Ad(a)A for a\in G, A\in \mathfrak{g} .
ii) \rho(a)F^{p}V\subset F^{p}V\oplus \mathfrak{g} for a\in G, p<0 .
iii) There exists an admissible fifiltration \{F^{p}G\} of G such that

F^{p}G=G for p\leq 0 , and that the sequences:

(2. 1) 1arrow F^{k+1}Garrow Garrow F^{0}GL(E^{(k-1)})/F^{k+1}\rho^{1k)}

are exact and \rho^{(k)} are analytic for all k\geq 0 , where

F^{p}E=F^{p}V\oplus F^{p}\mathfrak{g} , E^{(p)}=E/F^{p+1}E

with F^{p}\mathfrak{g} the Lie algebra of F^{p}G, and \rho^{(k\rangle} denotes the homomor-
phism induced by \rho .

It should be remarked that an admissible filtration \{F^{p}G\} satisfying

the above conditions is uniquely determined inductively by the exact
sequences (2. 1).

Thus the condition iii ) might be rephrased that the filtration of G

defined by (2. 1) should be admissible. In particular, we have

(2. 2) F^{\infty}G=\cap F^{p}G=\{e\} .

This is a sort of “effectiveness” condition for the action of G that does
not depend on the filtration: In stead of the given filtration F of V one
can use the trivial filtration F_{tr} of V(F_{tr}^{1}V=V. F_{tr}^{0}V=0) to define
another (or standard) filtration of G by the exact sequence (2. 1), which
can be written in this case more simply as
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(2. 3) 1arrow F_{tr}^{k+1}G – Garrow GL(V\oplus \mathfrak{g}/F_{tr}^{k}\mathfrak{g}) .

Then it is easy to verify

(2. 4) F^{p}G\supset F_{tr}^{p}G\supset F^{pu}G ,

where \mu denotes the depth of V Hence the filtration F of G is admiss-
ible if and only if so is F_{tr} .

We can therefore say that a skeleton on a fifiltered vector space ( V, F)
is a skeleton on the trivial fifiltered vector space ( V, F_{tr}) which leaves the
fifiltration F invariant.

As a typical example of skeletons, let us consider a homogeneous
space L/G, where L is a finite-dimensional Lie group with Lie algebra \mathfrak{l}

and G is a closed subgroup of L with Lie algebra \mathfrak{g} . If we define a filtra-
tion of G by (2. 3) with V\oplus \mathfrak{g} replaced by \mathfrak{l} and set G^{\infty}=\cap F_{tr}^{p}G , then G^{\infty} is
a maximal closed normal subgroup of G such that the adjoint representa-
tion of G^{\infty} on \mathfrak{l}/\mathfrak{g}^{\infty} is trivial. In particular, \mathfrak{g}^{\infty} is the maximal ideal of \mathfrak{l}

contained in \mathfrak{g} . Hence the action of L on L/G is almost effective if and
only if G^{\infty} is a discrete subgroup of G .

This in mind, let us say that the pair (\mathfrak{l}, G) is formally effective if G^{\infty}

=\{e\} . Then we have:
If the pair (I, G) is formally effective lhen the triple (\mathfrak{l}, G, Ad)

becomes a skeleton on V=\mathfrak{l}/\mathfrak{g} by a choice of identifification \mathfrak{l}=V\oplus \mathfrak{g} .
Furthermore if there is a fifiltration F of V left invariant by the linear
isotropy representation of G, then (\mathfrak{l}, G, Ad) is a skeleton over ( V, F) .

We remark that the filtration F_{tr} of G is nothing but the one derived
from the Tayler expansion of the actions of G at the origin of L/G, while
the filtration F of G defined by (2. 1) has the meaning of the weighted
expansion with respect to the induced tangential filtration of L/G.

This example shows that the notion of skeleton (E, G, \rho) is an
abstraction of some algebraic aspects of the homogeneous spaces. The
crucial generalization is that G can be infinite dimensional and that E is
not necessarily equipped with a Lie algebra structure. (As seen later on,
if E has a Lie algebra structure extending the action of \mathfrak{g} on E then the
size of E becomes “relatively small”.)

Let (E, G, \rho) be a skeleton on V We denote by \rho_{*} the representa-
tion of \mathfrak{g} on E, the differential of \rho . Let us see several properties of the
skeletons which follow immediately from the definition.

PROPOSITION 2. 2. 1.

\rho(a)(\rho_{*}(A)X)=\rho_{*}(\rho(a)A)(\rho(a)X) for a\in G, A\in \mathfrak{g} , X\in E.
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PROOF: As in the case of finite-dimensional Lie groups, we have
\rho(a)\rho_{*}(A)\rho(a)^{-1}=\rho_{*}(Ad(a)A) , a\in G , A\in \mathfrak{g} .

Then, since Ad(a)A=\rho(a)A , we have:

\rho(a)((\rho_{*}A)X)=\rho(a)\rho_{*}(A)\rho(a)^{-1}\rho(a)X

=\rho_{*}(Ad(a)A)\rho(a)X

=\rho_{*}(\rho(a)A)\rho(a)X .

PROPOSITION 2. 2. 2. For i\geq 0 , we have

(1) a\in F^{i}G\Leftrightarrow(\rho(a)-id)F^{p}V\subset F^{i+p}E for all p<0 .

(2) A\in F^{i}\mathfrak{g}\Leftrightarrow\rho_{*}(A)F^{p}V\subset F^{i+p}E for all p<0 .

PROOF: It suffices to show (1), since (2) follows immediately from
(1). The implication (\Rightarrow) is clear by the exact sequences (2. 1). Let us
prove the converse by induction on i . The assertion holds clearly for i=
0 . Suppose that i\geq 1 and that it holds for i-1 . If a\in G satisfies:
(^{*}) (\rho(a)-id)F^{p}V\subset F^{i+p}E for all p<0 ,

we want to show a\in F^{i}G , which is, in view of (2. 1), equivalent to show
(\rho(a)-id)F^{p}E\subset F^{p+i}E+F^{i} E

for all p\in Z . If p<0 this holds clearly by (*) . If p\geq 0 it amounts to say-
ing

(^{**}) (\rho(a)-id)\mathfrak{g}\subset F^{i-1}\mathfrak{g} .

But, by induction, a\in F^{i-1}G . Therefore, for X\in \mathfrak{g} , we have

\rho(a)X=Ad(a)X
\equiv X (mod F^{i-1}\mathfrak{g}),

which shows (^{**}) , hence proves (1).

PROPOSITION 2. 2. 3. For i, j, \in Z we have:

(1) (\rho(a)-id)F^{j}E\subset F^{i+j}E for a&F’G.
(2) \rho_{*}(F^{i}\mathfrak{g})F^{j}E\subset F^{i+j}E.
(3) [F^{i}\mathfrak{g}, F^{j}\mathfrak{g}]\subset F^{i+j}\mathfrak{g} .

PROOF: Let us first prove (1). By Proposition 2. 2. 2, we have only
to show it for i , j\geq 0 . For a\in F^{i}G we write \rho(a)=1+\alpha . Assuming that
(^{*}) \alpha(F^{p}E)\subset F^{i+p}E for p<j ,
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we will show \alpha(F^{j}E)\subset F^{i+j}E . In order that, by Proposition 2. 2. 2 (2), it
suffices to show that if B\in F^{j}\mathfrak{g} then
(^{**}) \rho_{*}(\alpha(B))x^{q}\in F^{i+j+q}E for all x^{q}\in F^{q}V

But, if we write \rho(a)^{-1}=1+\alpha’ , we have:

\rho_{*}(\alpha(B))x^{q}=\rho_{*}(\rho(a)B-B)x^{q}

=\rho_{*}(Ad(a)B-B)x^{q}

=\{\rho(a)\rho_{*}(B)\rho(a)^{-1}-\rho_{*}B\}x^{q}

=\{\alpha\rho_{*}(B)+\rho_{*}(B)\alpha’+\alpha\rho_{*}(B)\alpha’\}x^{q} .

From this and (*) we deduce (^{**}) , which proves (1).
The assertion (2) follows immediately from (1). Note that since we

have

\rho_{*}(A)B=[A, B] for A, B\in \mathfrak{g} ,

the assertion (3) is a consequence of (2).

COROLLARY 2. 2. 1.

(1) For a\in G, if \rho(a)v=v for all v\in V then a=1 .
(2) For A\in \mathfrak{g} , if \rho_{*}(A)v=0 for all v\in V then A=0 .

Since \cap F^{i}G=1 and \cap F^{i}\mathfrak{g}=0 , the corollary follows from Proposition
2. 2. 2.

In particular the representations \rho and \rho_{*} are faithful. In what fol-
lows, if there is no fear of confusion, we shall omit writing \rho and \rho_{*} .

Now we define a morphism (or isomorphism) from a skeleton (E, G)
to another (E’ G’) (both on V) to be a homomorphism (resp. isomor-
phism) \varphi:Garrow G’ of \mathfrak{p}- Lie groups such that

\varphi_{*}(aX)=\varphi(a)\varphi_{*}(X) for a\in G , X\in E ,

where we denote by \varphi_{*} not only the differential \varphi_{*}: \mathfrak{g}arrow \mathfrak{g} but also its triv-
ial extension id_{V}+\varphi_{*}: E(=V\oplus \mathfrak{g}) -arrow E’(=V\oplus \mathfrak{g}’) .

REMARK 2. 2. 1. If \varphi:(E, G)arrow(E’-G’) is a morphism of skeletons,
then, as easily seen from Proposition 2. 2. 2, it preserves the induced filtra-
tions of the skeletons, namely

\varphi(F^{p}G)\subset F^{p}G’ and \varphi_{*}(F^{p}E)\subset F^{p}E’ for all p\in Z

REMARK 2. 2. 2. Every morphism of skeletons is necessarily injective.
This property will turn out to be clear in the course of the discussion in
section 2. 2. 2. Hence a morphism will be also referred to as an embed-
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ding.

Now we state the following fundamental:

THEOREM 2. 2. 1. For each fifiltered vector space V there exists a skel-
eton (E(V), G(V)) on V having the universal property : Any skeleton on
V is uniquely embedded in (E(V), G(V)) .

Admitting this theorem for a while, we state a little generalized ver-
sion of it. We set

(2. 5) G^{(k)}(V)=G(V)/F^{k+1} .

and we say that a Lie subgroup G^{(k)} of G^{(k\rangle}(V) is adapted if there exists a
skeleton (E, G) on V such that G/F^{k+1}=G^{(k)} .

Then we have:

THEOREM 2. 2. 2. For an adapted subgroup G^{(k)} of G^{(k)}(V) there
exists a unique skeleton on V, denoted by (E(V^{(k\rangle}, \mathfrak{g}), G(V, G^{(k)})) and
called the universal skeleton prolonging G^{(k)} , such that

i) G(V, G^{(k)})/F^{k+1}=G^{(k)} ,

ii) If a skeleton (E, G) satisfifies G/F^{k+1}\subset G^{(k)} , then (E, G) is
embedded in (E(V, \mathfrak{g})(k) , G(V, G^{(k)})) .

In the next subsection, we will give an explicit construction of the
universal skeletons as well as an explicit criterion for a subgroup of
G^{(k)}(V) to be adapted.

2. 2. 2. Categories \mathscr{A}^{(k)} , \overline{\mathscr{A}}^{(k+1)} , and functors \# , \#\wedge.
We shall employ the following notation: For filtered Lie groups H, G,

“ H<G ” will mean that H is a filtered Lie subgroup of G , that is, the
inclusion \iota:Harrow G is a Lie homomorphism and \iota(F^{k}H)=\iota(H)\cap F^{k}G .

Let us define sets of filtered Lie groups \mathscr{A}t^{k)}.\overline{\mathscr{A}}t^{k)} (or simply written
as \mathscr{A}^{(k)},\overline{\mathscr{A}}^{(k)} ) (k=-1,0,1, \cdots) and mappings \#,\overline{\#} and q :

\overline{\#}

\mathscr{A}^{(k)}-\overline{\mathscr{A}}^{(k+1)}

(2. 6)
\mathscr{A}^{(k)}||\underline{\#}\mathscr{A}^{(k+1)}\downarrow q

so as to satisfy the following conditions (A.O) –(A.4) for k\geq 0 :
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(A.O) \mathscr{A}^{(-1)}=\overline{\mathscr{A}}^{(-1)}=\{1_{V}(=the group consisting of the identity ele-
ment)},

\# 1_{V}=F^{0}GL(V)\wedge , \# 1_{V}=F^{0}GL(V)/F^{1} .
(A.0) \hat{G}\in\overline{\mathscr{A}}^{(k)}\Leftrightarrow\hat{G}/F^{k}\in \mathscr{A}^{(k-1)} and \overline{G}<\overline{\#}(\overline{G}/F^{k}) .
(A.2) G\in_{L}\mathscr{A}^{(k)}=G/F^{k}\in \mathscr{A}^{(k-1)} and G<\#(G/F^{k}) .
(A.3) The map \#:\mathscr{A}^{(k)}\wedgearrow\overline{\mathscr{A}}^{(k+1)} is defined by

\# G^{(k)}=\{\wedge\alpha^{k+1}\in F^{0}GL(V\oplus \mathfrak{g}^{(k\rangle})|_{\alpha^{k+1}|_{\mathfrak{g}^{(k)}}=Ad([\alpha^{k}])}^{\alpha^{k}\in\# G^{(k-1)},[\alpha^{k}]\in G^{(k)}}\}\wedge

for G^{(k)}\in \mathscr{A}^{(k)} . where we denote by \mathfrak{g}^{(k)} the Lie algebra of G^{(k)} and by \alpha^{k}

the induced map which makes the following diagram commutative:

V\oplus \mathfrak{g}^{(k)}

\underline{\alpha^{k+1}}

V\oplus \mathfrak{g}^{(k)}

\downarrow
\downarrow

V\oplus \mathfrak{g}^{(k-1)}\underline{\alpha^{k}}V\oplus \mathfrak{g}^{(k-1)}

with \mathfrak{g}^{(k-1)} the Lie algebra of G^{(k-1)}=G^{(k)}/F^{k}- and we denote by [\alpha^{k}] the
equivalence class of \alpha^{k} mod F^{k+1} . i.e., an element in \overline{\#}G^{(k-1)}/F^{k+1}(=

\# G^{(k-1)}) .
(A.4) The map \#:\mathscr{A}^{(k)}arrow \mathscr{A}^{(k+1)} is defined by \#=q\circ\overline{\#}, with q:\overline{\mathscr{A}}^{(k+1)} -arrow

\mathscr{A}^{(k+1)} given by q(\overline{G})=\overline{G}/F^{k+2} for \overline{G}\in_{\mathscr{H}’}-(k+1) .

To see that the above conditions allow one to determine \overline{\mathscr{A}}^{(k)},\mathscr{A}^{(k)} , \#\wedge,
and \# inductively, one has only to check that, once determind \overline{\mathscr{A}}^{(i)} and

\mathscr{A}^{(i)}(i\leq k),\overline{\#}G^{(k)} becomes a filtered Lie subgroup of F^{0}GL(V\oplus \mathfrak{g}^{(k)}) with
\overline{\#}G^{(k)}/F^{k+1}=G^{(k)} . The verification is easy and left to the reader. Here
recall that the filtration of G^{(k)} gives rise to that of V\oplus \mathfrak{g}^{(k)} by

F^{p}(V\oplus \mathfrak{g}^{(k)})=F^{p}V\oplus F^{p(k)}\mathfrak{g} ,

so that F^{0}GL(V\oplus \mathfrak{g}^{(k)}) is also filtered in the standard manner.
Notice that we have the following commutative diagram with rows

and columms all exact:
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0 1

0 –

F^{k+2}Hom(V. E^{(k)})\downarrow

–

F^{k+2}\overline{\#}G^{(k)}\downarrow

— 1
\downarrow \downarrow \downarrow

(2. 7) 0 – F^{k+1}Hom(V, E^{(k)})arrow\iota \# G^{(k)}\wedge – G^{(k)} -arrow 1

\downarrow \downarrow \downarrow

0 –

Hom(gr_{1}V, grE^{(k)})_{k+1}arrow \# G^{(k)}\downarrow

–

G^{(k)}-\downarrow

1

0 1 1

where we difine c by \iota(\alpha)=id_{E^{tk)}}+\alpha for \alpha\in F^{k+1}Hom(V. E^{(k)}) , identifying
Hom(V. E^{(k\rangle}) with a subspace of Hom(E^{(k)}, E^{(k\rangle}) .

Now we have:

PROPOSITION 2. 2. 4. If (E, G) is a skeleton on V then G/F^{k+1}\in \mathscr{A}^{(k)} .

In fact, assuming that G^{(k)}(=G/F^{k+1})\in \mathscr{A}^{(k)} , we see that the image
\hat{G}^{(k+1)} of Garrow F^{0}GL(V\oplus \mathfrak{g}^{(k)}) is a filtered Lie subgroup of \# G^{(k)}\wedge with
\hat{G}^{(k+1)}/F^{k+1}=G^{(k)} , so that

G/F^{k+2}=\overline{G}^{(k+1)}/F^{k+2}\in \mathscr{A}^{(k+1)} .

Therefore the induction shows the proposition.
An important aspect of the mappings \#\wedge, \# is that they have functorial

properties if we regard \mathscr{A}^{(k)} and \overline{\mathscr{A}}^{(k)} as categories whose morphisms con-
sist of all adapted homomorphisms defined inductively by the following:

DEFINITION 2. 2. 2. For H^{(k)} , G^{(k)}\in \mathscr{A}^{(k)} , an adapted homomorphism
from H^{(k)} to G^{(k)} is a filtration preserving Lie homomorphism \varphi^{(k)} : H^{(k)} -arrow

G^{(k)} such that

i) The induced map \varphi^{(k-1)} : H^{(k)}/F^{k}arrow G^{(k)}/F^{k} is an adapted
homomorphism.

ii) (\#\varphi^{(k-1)})|_{H^{1k)}}=\varphi^{(k)} , where \#\varphi^{(k-1)} is given by the proposition
below.

DEFINITION 2. 2. 3. For \overline{H}^{(k)}.\overline{G}^{(k)}\in\overline{\mathscr{A}}^{(k)} . an adapted homomo\uparrow phism

from \hat{H}^{(k)} to \overline{G}^{(k)} is a filtration preserving Lie homomorphism \overline{\varphi}^{(k)} : \hat{H}^{(k)}
-arrow

\overline{G}^{(k)} such that
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i) The induced map \varphi^{(k-1)} : \overline{H}^{(k)}/F^{k}arrow\overline{G}^{(k)}/F^{k} is an adapted
homomorphism.

ii) (\#\varphi^{(k-1)})|_{H^{1k)}}=\overline{\varphi}^{(k)}\wedge , where \#\varphi^{(k-1)}\wedge is given by the proposition
below.

The inductive definitions above work by virtue of the following:

PROPOSITION 2. 2. 5. For an adapted homomorphism \varphi^{(k)} : H^{(k)} -arrow G^{(k)}

with H^{(k)} , G^{(k)}\in \mathscr{A}^{(k)} , there exist uniquely fifiltration preserving Lie
homomorphisms

\#\varphi^{(k)} : \# H^{(k)}arrow\# G^{(k)} , \#\varphi^{(k)}\wedge : \# H^{(k)}\wedgearrow\overline{\#}G^{(k)}

such that

i) For \alpha^{k+1}\in\overline{\#}H^{(k)} , the following diagram is commutative:

V \oplus \mathfrak{h}^{(k)}\underline{\varphi s^{k)}}1^{a^{k+1}}\downarrow(\overline{\#}\varphi^{(k}’)(a^{k+1})V\oplus \mathfrak{g}^{(k)}\varphi\int^{k)}

V\oplus_{\mathfrak{h}^{(k)}}-V\oplus \mathfrak{g}^{(k)}

ii) \#\varphi^{(k)}=\overline{\#}\varphi^{(k)}/F^{k+2} .

PROOF: For \alpha^{k+1}\in\overline{\#}H^{(k)} , difine \beta^{k+1} : V\oplus \mathfrak{g}^{(k)}arrow V\oplus \mathfrak{g}^{(k)} by

\{

\beta^{k+1}(v)=\varphi_{*}^{(k)}\alpha^{k+1}(v) for v\in V .
\beta^{k+1}|_{g^{(k)}}=Ad(\varphi^{(k)}(a^{k})) ,

where a^{k}=\alpha^{k+1}/F^{k}\in H^{(k)} . Since \varphi^{(k)} is adapted, it turns out that \beta^{k+1}\in

\overline{\#}G^{(k)} . Defining \overline{\#}\varphi^{(k)} by \#\varphi^{(k)}(\alpha^{k+1})=\beta^{k+1}\wedge . we see that \#\varphi^{(k)}\wedge has the desired
property. The uniqueness is obvious.

REMARK 2. 2. 3. As easily seen, every adapted homomorphism is nec-
essarily injective.

Now we define \overline{G}^{(k\rangle}(V) and G^{(k)}(V)(k=0,1, 2,\cdots) inductively by:

(2. 8) \{

\overline{G}^{(0)}(V)=Aut(V) , G^{0}(V)=Aut(V)/F^{1} ,
\overline{G}^{(k+1)}(V)=\overline{\#}G^{(k)}(V) , G^{(k+1)}(V)=\# G^{(k)}(V) .

Here by abuse of notation we use the same symbol G^{(k)}(V) for the one
constructed above and the one defined by (2. 5), since it soon turns out
that both of them are isomorphic.

Then we have:
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PROPOSITION 2. 2. 6.

(1) For any G^{(k)}\in \mathscr{A}^{(k)} there exists a unique adapted homomorphim

\iota : G^{(k)}arrow G^{(k)}(V) .
(2) For any \overline{G}^{(k)}\in\overline{\mathscr{A}}^{(k)} there exists a unique adapted homomorphi m

\iota : \hat{G}^{(k)}arrow\overline{G}^{(k)}(V) .

PROOF: If k=0 the assertion is obvious. Assuming it valid up to
k-1 , for G^{(k)}\in \mathscr{A}^{(k)} we have

G^{(k-1)}arrow G^{(k-1)}(V)\iota ,

where G^{(k-1)}=G^{(k)}/F^{k} . Then by the definition of \mathscr{A}^{(k)} and by Proposition
2. 2. 5, we have

G^{(k)}arrow\# G^{(k-1)}arrow\# G^{(k-1)}(V)\#\iota
,

which proves (1). The assertion (2) can be proved similarly.
From the construction, we have the following commutative diagram

for l>0 :

\overline{G}^{(k+l)}(V)\underline{\overline{\pi}}\overline{G}^{(k)}(V)

\downarrow q \downarrow q

G^{(k+l)}(V)\underline{\pi}G^{(k)}(V)

Moreover we have:
PROPOSITION 2. 2. 7. If l\geq\mu-1 , where \mu is the depth of V, then

there is a canonical filtration preserving Lie homomorphism

\varpi:G^{(k+l)}(V)arrow\overline{G}^{(k)}(V)

which makes the following diagram commutative

\overline{G}^{(k+l)}(V)\underline{\overline{\pi}}\overline{G}^{(k)}(V)

\downarrow

||

G^{(k+l)}(V)\underline{\varpi}\hat{G}^{(k)}(V)
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PROOF: Recall that G^{(k+l)}(V)=\hat{G}^{(k+l)}(V)/F^{k+l+1} . But
\hat{\pi}(F^{k+l+1}\overline{G}^{(k+l)}(V))\subset F^{k+l+1}GL(V\oplus \mathfrak{g}^{(k-1)}) ,

and

F^{k+1+1}GL(V\oplus \mathfrak{g}^{(k-1)})=1 for l\geq\mu-1 .

Hence there exists such \varpi .

2. 2. 3. We are now in a position to construct a universal skeleton.
We set

G(V)= \lim_{arrow}G^{(k)}(V),\overline{G}(V)=\lim_{arrow}\overline{G}^{(k)}(V) .

Then G(V) and \overline{G}(V) become \mathfrak{p}- Lie groups, which are canonically
isomorphic to each other as immediately seen from Proposition 2. 2. 7.
Since \overline{G}^{(k)}(V)\subset F^{0}GL(V\oplus \mathfrak{g}^{(k-1)}(V)) , by passing to the limit, we obtain a
representation

G(V)\cong\overline{G}(V)arrow F^{0}GL(V\oplus \mathfrak{g}(V)) .

It is now easy to see that (E(V), G(V)) is a skeleton on V, where we put

E(V)=V\oplus \mathfrak{g}(V) .

Note that the induced filtration of G(V) is given by

F^{p}G(V)= \lim_{arrow k}F^{p}G^{(k)}(V)

and we have

G(V)/F^{k+1}\cong G^{(k)}(V)(=\#^{k}(Aut(V)/F^{1})) .

To see that (E(V), G(V)) has the universal property, we note that if (E ,
G) is a skeleton on V then G^{(k)}(=G/F^{k+1}) belongs to \mathscr{A}^{(k)} , so that there
is a unique injective adapted homomorphism G^{(k)}L_{arrow}G^{(k)}(V) . This, by
passage to limit, gives a canonical embedding of (F, G) into (E(V) ,
G(V)) . Thus we have proved Theorem 2. 2. 1.

Now we proceed to the proof of Theorem 2. 2. 2. For G^{(k)}\in \mathscr{A}^{(k)} . we
construct a \mathfrak{p}- Lie group

G(V. G^{(k)})= \lim_{arrow l}\#^{l}G^{(k)} .

whose Lie algebra will be denoted by \mathfrak{g}(V. \mathfrak{g})(k) as it depends only on the
Lie algebra \mathfrak{g}^{(k)} of G^{(k)} . Setting

E(V_{ \mathfrak{g})=V\oplus \mathfrak{g}(V_{ \mathfrak{g}}^{(k)})}^{(k)},. ,
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we obtain a skeleton (E(V, \mathfrak{g}^{(k)}) , G(V. G^{(k)})) . It is now easy to see that
the skeleton (E(V, \mathfrak{g})(k) , G(V. G^{(k)})) has the universal property stated in
Theorem 2. 2. 2. Thus we have proved Theorem 2. 2. 2.

This, combined with Proposition 2. 2. 4, also yields:

PROPOSITION 2. 2. 8. A Lie subgroup G^{(k)} of G^{(k)}(V) is adapted {that
is, there exists a skeleton (E, G) such that G^{(k)}=G/F^{k+1} ) if and only if
G^{(k)}\in \mathscr{A}^{(k)} .

Recalling the definition of \mathscr{A}^{(k)} , we have thus:

(1) Any G^{(0)}<G^{(0)}(V)(=Aut(V)/F^{1}) is adapted.
(2)

G^{(k)}<G^{(k)}(V)G^{(k)}<\# G^{(k-1)}.is adapted\Leftrightarrow G^{(k-1)}(=G^{(k)}/F^{k}) is adapted and

2. 2. 4. So far we have described basic properties of the skeletons.
Now we will give a few supplements to it.

a) We can formulate the infinitesimal version of the preceding discus-
sion in a quite parallel way. In particular, an infifinitesimal skeleton on V

is defined to be a triple (E, \mathfrak{g}, \sigma) , where \mathfrak{g} is a Lie algebra, E=V\oplus \mathfrak{g} , and
\sigma is a representation of \mathfrak{g} on E such that the following conditions are
satisfied:

i) \sigma(A)B=ad(A)B for A, B\in \mathfrak{g} .
ii) \sigma(A)F^{p}V\subset F^{p}V\oplus \mathfrak{g} for A\in \mathfrak{g} , p<0 .
iii) If we define a filtration \{F^{p}\mathfrak{g}\} of \mathfrak{g} by F^{p}\mathfrak{g}=\mathfrak{g} for p\leq 0 and

inductively by the exact sequences for k\geq 0 :
\sigma^{(k)}

0arrow F^{k+1}\mathfrak{g}arrow \mathfrak{g}arrow F^{0}\mathfrak{g}l(E^{(k-1)})/F^{k+1} with E^{(k-1)}=E/F^{k}

then \mathfrak{g} is isomorphic to \lim_{arrow}\mathfrak{g}/F^{k}\mathfrak{g} .

We can also define the categories of filtered Lie algebras, \mathfrak{a}^{(k)},\hat{\mathfrak{a}}^{(k\rangle} and
functors \#,\overline{\#} corresponding to (2. 6) :

\mathfrak{a}^{(k)}\underline{\#\wedge}\overline{t1}^{(k+1)}

|| \downarrow q

\mathfrak{a}^{(k)}\underline{\#}\mathfrak{a}^{(k+1)}

For \mathfrak{g}^{(k)}\in \mathfrak{a}^{(k)},\overline{\#}\mathfrak{g}^{(k)} is given by:

\#\mathfrak{g}^{(k)}= {\alpha\wedge\wedge k+1\in F^{0}\mathfrak{g}\mathfrak{l}(V\oplus \mathfrak{g}^{(k)})|\alpha^{k}\in \mathfrak{g}^{(k)} and \overline{\alpha}^{k+1}|_{\mathfrak{g}^{(k)}}=ad(\alpha^{k}) },
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where \alpha^{k} denotes the projection of \hat{\alpha}^{k+1} to F^{0}\mathfrak{g}\mathfrak{l}(V\oplus \mathfrak{g}^{(k+1)})/F^{k+1} .

We can then identify the Lie algebra of G(V) with \lim_{arrow}\#^{k}(F^{0}\mathfrak{g}\mathfrak{l}(V)/F^{1})

and denote both by \mathfrak{g}(V) . We have also

Lie ag(G(V\neg G^{(k)}))=\lim_{arrow l}\#^{l}\mathfrak{g}^{(k)}

for an adapted subgroup G^{(k)}\subset G^{(k)}(V) with Lie algegra \mathfrak{g}^{(k)} . We shall
use freely such natural identifications without explicit mention.

b) Let us describe the structure of (E(V), \mathfrak{g}(V)) more explicitly.
Let \mathfrak{U}^{=}\oplus \mathfrak{U}p be a graded vector space with \mathfrak{u}_{p}=0 for p<-\mu or p\geq 0 .

Define a graded vector space e(\mathfrak{U})=\oplus e_{p}(\mathfrak{U}) inductively by setting

\{

e_{p}(\mathfrak{U})=_{\mathfrak{U}p} for p<0 ,
e_{p}(\mathfrak{U})=Hom(\mathfrak{U}, \oplus_{q<p}e_{q}(\mathfrak{U}))_{p} for p\geq 0 ,

where for graded vector spaces \mathfrak{U} , \mathfrak{m} , Hom(\mathfrak{U}, \downarrow 0)_{p} denotes the space of lin-
ear maps f:\mathfrak{U}arrow 1\eta such that f(\mathfrak{U}_{i})\subset \mathfrak{n})p+i , for all i .

Let \mathfrak{g}(\mathfrak{U})=\oplus \mathfrak{g}_{p}(\mathfrak{U}) be the non-negative part of e(\mathfrak{U}) , i.e.,

\mathfrak{g}_{p}(_{\mathfrak{U}})=e_{p}(\mathfrak{u}) (p\geq 0) , \mathfrak{g}_{p}(_{\mathfrak{U}})=0 (p<0) .

By recurrence we see that

\mathfrak{g}_{k}(_{\mathfrak{U}})=\bigoplus_{l\geq 1,q\geq p_{1}}\mathfrak{U}q\otimes_{\mathfrak{U}p1^{*}}\otimes q-p_{1}-\cdot-p_{l}=k\ldots\otimes_{\mathfrak{U}_{\gamma}^{*}}
.

We define a bracket operation:

[ ] : e(_{\mathfrak{U}})\cross e(_{\mathfrak{U}})arrow e(_{\mathfrak{U}})

by the following conditions:

i) [e_{p}(\mathfrak{U}), e_{q}(\mathfrak{U})]\subset e_{p+q}(\mathfrak{U}) for (p, q)\in Z\cross Z

ii) [x, y]=-[y, x]
iii) [_{\mathfrak{U},\mathfrak{U}}]=0

iv) [A, v]=A(v) for A\in \mathfrak{g}(\mathfrak{U}) , v\in_{\mathfrak{U}}

v) \mathfrak{S}[[X, Y], z]=0 for X, Y\in \mathfrak{g}(\mathfrak{U}) , z\in e(\mathfrak{U}) .

where \mathfrak{S} stands for the cyclie sum.
It is straightforward to see that the bracket operation is uniquely

determined by induction. Moreover this makes \mathfrak{g}(\mathfrak{U}) a graded Lie algebra
and act on e(\mathfrak{U}) by AX=[A, X] for A\in\overline{\mathfrak{g}}(\mathfrak{U}) , X\in e(\mathfrak{U}) . Let \overline{e}(\mathfrak{U})\overline{\mathfrak{g}}(\mathfrak{U}) be the
completion of e(\mathfrak{U}) and \mathfrak{g}(\mathfrak{U}) respectively. The we see that (\overline{e}(\mathfrak{U}),\overline{\mathfrak{g}}(\mathfrak{U})) is an
infinitesimal skeleton on \mathfrak{U} (the graded vector space \mathfrak{U} being regarded as a
filtered vector space in the obvious way).
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For a filtered vector space V if we identify grV with V (by taking
complementary subspaces) then we have:

PROPOSITION 2. 2. 9.
(E(V), \mathfrak{g}(V))\cong(\overline{e}(grV),\overline{\mathfrak{g}}(grV))

In fact, by Proposition 2.2.3, gr\mathfrak{g}(V) becomes a graded Lie algebra
and acts on grE(V) . Moreover, for A\in gr\mathfrak{g}(V) if AX=0 for all X\in

grV then A=0. Hence we may regard as

grkQ(V)\subset Hom(grV,grE(V))_{k}

and hence as gr_{k}\mathfrak{g}(V)\subset \mathfrak{g}_{k}(grV) . But \overline{\mathfrak{g}}(grV)\subset \mathfrak{g}(V) by the universal prop-
erty. From this we conclude that the two skeletons must coincide.

2. 3. Towers.
We now introduce the notion of tower which will play a central r\^ole

in our study of geometric stuctures.

DEFINITION 2. 3. 1. Let M be a filtered manifold of type V and let
(E, G) be a skeleton on V A tower on M with skeleton (E, G) is a
\mathfrak{p}-principal fibre bundle (P, M, G,\pi) (with total space P, base space M,

structure group G, and projection \pi) equipped with an E-valued 1-form \theta

having the following properties:

i) For all z\in P , \theta_{z} : T_{z}P -arrow E is an isomorphism of filtered
vector space

ii) R_{a}^{*}=a^{-1}\theta for all a\in G .
iii) \theta(\overline{A})=A for all A\in \mathfrak{g} .

Here, as usual, R_{a} denotes the right translation and \tilde{A} the vector field
on P induced by the right translations \{R_{\exp tA}\} . The filtration of T_{z}P

mentioned above is the natural one given by:

\{

F^{p}T_{z}P=\pi_{*}^{-1}(F^{p}T_{\pi(z)}M) for p\leq 0 ,
F^{q}T_{z}P=\{\tilde{A}_{z}|A\in F^{q}\mathfrak{g}\} for q\geq 0 .

Thus, the tangential filtration of the base space is uniquely determined
from the tower by:

F^{p}TM=\pi_{*}\circ\theta^{-1}(F^{p}V) .

Let us define a morphism of towers. In general, by a bundle
homomorphism of principal fibre bundles from (P, M, G, \pi) to (P’, M’ . G’ ,
\pi’) we mean a triple (\varphi, \varphi^{(-1)}, \iota) consisting of differential maps \varphi:Parrow P’ ,
\varphi^{t-1)} : Marrow M’ and a Lie homomorphism \iota : Garrow G’ which satisfies:
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\{

\varphi^{(-1)}\circ\pi=\pi’\circ\varphi ,
\varphi(za)=\varphi(z)\iota(a) for z\in P , a\in G .

We may simply write as \varphi to denote the bundle homomorphism, since \varphi^{(-1)}

and \iota are uniquely determined by \varphi .
Now let (P, M, G:\theta) and (P’. M’. G’ : \theta’) be towers on filtered mani-

folds M and M’ respectively of same type V We call a bundle homomor-
phism (\varphi, \varphi^{(-1)}, \iota):Parrow P’ a morphism of towers if

\varphi^{*}\theta=\iota_{*}\circ\theta ,

where \iota_{*} denotes the induced map \iota_{*}:
E(=V\oplus \mathfrak{g}) - E’(=V\oplus \mathfrak{g}’) .

A morphism (\varphi, \varphi^{(-1)}, \iota) will be referred to as an isomorphism if \varphi is
a diffeomorphism, and as an embedding if M=M’ and \varphi^{(-1)}=id_{M} .

Immediately from the definitions above, we have:

PROPOSITION 2. 3. 1. If (\varphi, \varphi^{(-1)}\neg\iota) : (P, M, G)arrow(P’. M’. G’) is
morphism of towers, then

(1) (\iota_{*}, \iota):(E, G)arrow(E’. G’) is a morphism of skeletons and
hence injective.

(2) \varphi^{(-1)} : Marrow M’ is a local isomorphism of fifiltered manifolds.
Now we state the following fundamental:

THEOREM 2. 3. 1. For a fifiltered manifold M of type V there exists a
tower (/\Gamma \mathscr{M}(M), M, G(V), \theta \mathscr{L}) on M with skeleton (E(V), G(V)) which has
the following universal property: Any tower on M is uniquely embedded in
\nearrow\subset y(M) .

We shall prove this theorem in the next section by constructing \mathscr{B}(M)

explictily.
We set \mathscr{B}^{(k)}(M)=\mathscr{B}(M)/F^{k+1} , the quotient bundle by the action of

F^{k+1}G(V) . It is a principal G^{(k)}(V)-bundle over M, and is referred to as
the non-commutative frame bundle of M of (weighted) order k+1 . (It
will soon turn out that \mathscr{B}^{(0)}j(M) can be identified with the weighted l-st
order frame bundle of M introduced in Chapter I.) Geometrically, of
importance is the following subbundles:

DEFINITION 2. 3. 2. We say that a principal subbundle P^{(k)} of
l^{(k)}j(M) is adapted if there exists a tower P on M such that P^{(k)}=P/F^{k+1} .

We shall also prove the following:

THEOREM 2. 3. 2. For an adaptcd subbundle P^{(k)} of \mathscr{B}^{(k)}(M) with
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structure group G^{(k)} there exists a unique tower \mathscr{B}P^{(k)} with skeleton (E(V,
\mathfrak{g}^{(k)}) , G(V, G^{(k)})) satisfying : \mathscr{B}P^{(k)}/F^{k+1}=P^{(k)} and having the following
universal property : Any tower Q on M such that Q/F^{k+1}\subset P^{(k)} is embed-
ded in \mathscr{B}P^{(k)} .

The tower \mathscr{B}P^{(k)} is called the universal tower prolonging P^{(k)} or the
universal prolongation of P^{(k)} .

2. 4. Truncated towers.
Truncated towers are those principal fibre bundles which are obtained

by truncating towers up to finite orders. We shall characterize them
rather in a constructive way.

2. 4. 1. Categories \overline{\mathscr{B}}^{(k)}and\mathscr{B}^{(k)} .

We wish to define categories \overline{\mathscr{B}}^{(k)} and \mathscr{B}^{(k)}(k=-1,0,1, \cdots) consisting
of principal fibre bundles over filtered manifolds whose structure groups
belong to \overline{\mathscr{A}}^{(k)} and \mathscr{A}^{(k)} respectively and define at the same time functors

\mathscr{B}^{(k\rangle}\underline{\overline{\#}}\overline{\mathscr{B}}^{(k+1)}

(2. 9) || \downarrow q

\mathscr{B}^{(k)}\underline{\#}\mathscr{B}^{(k+1)}

by the following requirements (B.O)–(B.4) for k\geq 0 :

(B. 0) \{

\mathscr{B}^{(-1)}=\overline{\mathscr{B}}^{(-1)}= {all filtered manifolds M },
\overline{\#}M=\overline{\mathscr{B}}^{(0)}(M) ; the bundle of frames of M of ordinary order 1,
\# M=\mathscr{B}^{(0)}(M) : the bundle of frames of M of weighted order 1.

(B. 1) \hat{P}\in\overline{\mathscr{B}}^{(k)}\Leftrightarrow\overline{P}/F^{k}\in \mathscr{B}^{(k-1)} and \overline{P} is a subbundle of \overline{\#}(P/F^{k}) .
(B. 2) P\in \mathscr{B}^{(k)}\Leftrightarrow P/F^{k}\in \mathscr{B}^{(k-1)} and P is a subbundle of \#(P/F^{k}) .
(B. 3) The functor \overline{\#}:\mathscr{B}^{(k)}arrow\overline{\mathscr{B}}^{(k+1)} is defined as follows:

For (P^{(k)}. G^{(k)})\in \mathscr{B}^{(k)} , we set \# P^{(k)}\wedge to be the set of all filtration
preserving linear isomtrphisms

\xi^{k+1} : V\oplus \mathfrak{g}^{(k)}arrow T_{x^{k}}P^{(k)} (x^{k}\in P^{(k)})

such that

i) \xi^{k+1}(A)=\overline{A}_{x^{k}} for A\in \mathfrak{g}^{(k)} ,

ii) \xi^{k}\in\# P^{(k-1)}\wedge ,
iii) [\xi^{k}]=x^{k} .
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where we denote by \xi^{k} the induced map which makes the following dia-
gram commutative:

V\oplus \mathfrak{g}^{(k)}\underline{\xi^{k+1}}
T_{x^{k}}P^{(k)}

\downarrow \downarrow\pi_{*}

V\oplus \mathfrak{g}^{(k-1)}\underline{\xi^{k}}T_{x^{k-1}}P^{(k-1)}

with \mathfrak{g}^{(k-1)}=\mathfrak{g}^{(k)}/F^{k} . P^{(k-1)}=P^{(k)}/F^{k} . \pi denoting the natural projection P^{(k)}

arrow P^{(k-1)} , and x^{k-1}=\pi(x^{k}) , and we denote by [\xi^{k}] the projection of \xi^{k} to
\# P^{(k-1)}(=\overline{\#}P^{(k-1)}/F^{k+1}) .

(B. 4) The functor \#:\mathscr{B}^{(k)}arrow \mathscr{B}^{(k+1)} is defined by \#=q\circ\#\wedge, with q:\overline{\mathscr{B}}^{(k+1)}

arrow \mathscr{B}^{(k+1)} given by q(\overline{P})=\hat{P}/F^{k+2} for \hat{P}\in\overline{\mathscr{B}}^{(k+1)} .

To see that our inductive definition of \overline{\mathscr{B}}^{(k)} , \mathscr{B}^{(k)} , \#\wedge, and \# are well-
defined, let us show that \# P^{(k)}\wedge becomes a principal fibre bundle over M
with structure group \overline{\#}G^{(k)} and that \# P^{(k)}\wedge/F^{k+1}=P^{(k)} . Let \pi_{k+1}^{k} : \# P^{(k)}\wedge -arrow

P^{(k)} be the map which sends \xi^{k+1} to [\xi^{k}] , and let \pi_{k+1}=\pi_{k}\cdot\pi_{k+1}^{k} , with \pi_{k} :
P^{(k)}arrow M the natural projection. First of all, note that \pi_{k+1}^{k} is surjective.
In fact given an x^{k}\in P^{(k)} : since P^{(k)}\subset\# P^{(k-1)}=\# P^{(k-1)}\wedge/F^{k+1} , there exists \xi^{k}

\in\overline{\#}P^{(k-1)}. such that [\xi^{k}]=x^{k} Then take a lift \xi^{k+1} of \xi^{k} satisfying (B. 3)
i) , we see then \xi^{k+1}\in\overline{\#}P^{(k)} and \pi_{k+1}^{k}(\xi^{k+1})=x^{k} Thus we see, in particular
\pi_{k+1} : \# P^{(k)}\wedge -arrow M is surjective.

Next let us define the right action of \overline{\#}G^{(k)} on \hat{\#}P^{(k)} . Let \xi^{k+1}\in\overline{\#}P^{(k)} ,
\alpha^{k+1}\in\overline{\#}G^{(k)} and denote their projections to P^{(k)} and G^{(k)} respectively by x^{k}

and a^{k} We define \xi^{k+1}\cdot\alpha^{k+1} by the following commutative diagram:

V\oplus \mathfrak{g}^{(k)}

\underline{\xi^{k+1}}

T_{x^{k}}P^{(k)}

(2. 10) \uparrow a^{k+1}
\downarrow(R_{a^{k}})_{*}

V\oplus \mathfrak{g}^{(k)}

\underline{\xi^{k+1}\cdot a^{k+1}}

T_{x^{k}a^{k}}P^{(k)} .

Assuming that for l<k the action of \# G^{(l)}\wedge on \hat{\#}P^{(l)} is defined in this
way, we can easily verify that \xi^{k+1}\cdot\alpha^{k+1}\in\overline{\#}P^{(k)} and that this indeed defines
the action of \# G^{(k)}\wedge on \hat{\#}P^{(k)} .

Thus \overline{\#}P^{(k)} is a principal fibre bundle over M with structure group
\# G^{(k)}\wedge , and \# P^{(k)} is a principal fibre bundle over M with structure group
\# G^{(k)} .
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PROPOSITION 2. 4. 1. If P is a tower then the quotient bundle P/F^{k+1}

belongs to \mathscr{B}^{(k)} for each k\geq-1 .

PROOF: Write P^{(k)}=P/F^{k+1} . We proceed by induction. Assume
that P^{(k-1)}\in \mathscr{B}^{(k-1)} . It suffices to show that there exists a canonical em-
bedding P^{(k)}arrow\# P^{(k-1)} . For each z\in P define \xi^{(k)} by the following com-
mutative diagram

T_{z}P
\underline{\theta}

E

(2. 11)
T_{z^{k-1}}P^{(k-1)}\downarrow\underline{\xi^{k}}E^{(k-1)}\downarrow

then the assignment zarrow\xi^{k} yields a bundle map Parrow\# P^{(k-1)}\wedge , which in turn
by passage to quotient gives an embedding P^{(k)} -arrow\# P^{(k-1)} .

2. 4. 2. Morphisms of \mathscr{B}_{V}^{(k)} and \overline{\mathscr{B}}_{V}^{(k)} .

We shall denote by \mathscr{B}_{V}^{(k)} and \overline{\mathscr{B}}_{V}^{(k)} or \mathscr{B}_{M}^{(k)} and \overline{\mathscr{B}}_{M}^{(k)} the subcategories of
\mathscr{B}^{(k)} and \overline{\mathscr{B}}^{(k)} consisting of bundles whose base spaces are filtered mani-
folds of type V or coincide with a filtered manifold M respectively. We
define the notion of adapted bundle homomorphism by the following two
definitions and the subsequent proposition.

DEFINITION 2. 4. 1. For P^{(k)} , P^{\prime(k)}\in \mathscr{B}_{V}^{(k)} a bundle homomorphism
\varphi^{(k)} : P^{(k)}arrow P^{\prime(k)} is called adapted if and only if

i) \varphi^{(k-1)}(=\varphi^{(k)}/F^{k}):P^{(k-1)}(=P^{(k)}/F^{k}) -arrow P^{r(k-1)} is adapted,
ii) (\#\varphi^{(k-1)})|_{P^{tk)}}=\varphi^{(k)} .

DEFINITION 2. 4. 2. For \overline{P}^{(k)},\overline{P}^{\prime(k)}\in\overline{\mathscr{B}}_{V}^{(k)} a bundle homomorphism
\overline{\varphi}^{(k)} : \overline{P}^{(k)}

-
\overline{P}^{\prime(k)} is called adapted if and only if

i) \varphi^{(k-1)}(=\overline{\varphi}^{(k)}/F^{k}):P^{(k-1)}(=\hat{P}^{(k)}/F^{k}) -arrow P^{\prime(k-1)} is adapted,
ii) (\overline{\#}\varphi^{(k-1)})|_{\overline{P}^{(k)}}=\overline{\varphi}^{(k)} .

Here we promise that an adapted bundle homomorphism \varphi:Marrow M’

be a local isomorphism of filtered manifolds.

PROPOSITION 2. 4. 2. For an adapted bundle homomo\uparrow phism\varphi^{(k)} : P^{(k)}

arrow P^{r(k)} with P^{(k)} , P^{\prime(k\rangle}\in \mathscr{B}_{V}^{(k)} there exist unique adapted bundle homomor-
phisms

\#\varphi^{(k)} : \# P^{(k)}arrow\# P^{r(k)} , \overline{\#}\varphi^{(k)} : \overline{\#}P^{(k)}arrow\overline{\#}P^{\prime(k)}
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satisfying :

i) For \xi^{k+1}\in\#^{\wedge}P^{(k)} the following diagram is commutative:

V\oplus \mathfrak{g}^{(k)}\underline{\iota_{*}}V\oplus \mathfrak{g}^{\prime(k)}

\xi^{k+1}\downarrow \downarrow\overline{\#}\varphi^{(k)}(\xi^{k+1})

T_{x^{k}}P^{(k)}
\underline{\varphi_{*}^{(k)}}T_{x^{k}}P^{\prime(k)}

with x^{k}=\xi^{k+1}/F^{k+1} , x^{\prime k}=\varphi^{(k)(x^{k})} .
ii) \#\varphi^{(k)}=\overline{\#}\varphi^{(k)}/F^{k+2} .

To see that the above inductive definitions is well-defined, it suffices
to construct \overline{\#}\varphi^{(k)} : \# P^{(k\rangle}\wedgearrow\# P^{\prime(k)}\wedge . For \xi^{k+1}\in\overline{\#}P^{(k)} we define \#\varphi^{(k)}(\xi^{k+1})\wedge by

\#\varphi^{(k)}(\xi^{k+1})(v)=\varphi_{*}^{(k)}\xi^{k+1}(v)\wedge for v\in V

and
\#\varphi^{(k)}(\xi^{k+1})(A)=\overline{A}_{x^{rk}}\wedge for A\in \mathfrak{g}^{\prime(k)} .

Them, taking account of the “adaptedness” of \varphi^{(k)} and using the
induction assumption, we see that \overline{\#}\varphi^{(k)}(\xi^{k+1})\in\overline{\#}P^{r(k)} and that \#\varphi^{(k)}\wedge is also
an adapted bundle homomorphism with \overline{\#}\varphi^{(k)}/F^{k+1}=\varphi(k) .

It should be remarked that if (\varphi^{(k)}. \varphi^{(-1)}. \iota):(P^{(k)}. M, G^{(k)}) - (P^{r(k)}. M’.
G^{\prime(k)}) is an adapted homomorphim of \mathscr{B}_{V}^{(k)} then \iota : G^{(k)} - G^{\prime(k)} is an adapted
ed homomorphism and \varphi^{(-1)} : M -arrow M’ is a local isomorphism of filtered

\overline{\mathscr{B}}_{V}^{(k)}man.ifo1ds

. The same remark applies to the adapted homomorphisms of

An adapted bundle homomorphism will be simply referred to as a
morphism. If \varphi^{(k)} is a diffeomorphism it is called an isomorphism, and if
M=M’ and if \varphi^{(-1)}=id it is called an embedding.

2. 4. 3. The canonical form \theta^{(k-1)} of \overline{P}^{(k)} .
Let (\overline{P}^{(k\rangle}, N,\hat{G}^{(k)})\in\overline{\mathscr{B}}^{(k)} with k\geq 0 . Since \overline{P}^{(k)}\subset\overline{\#}P^{(k-1)} with P^{(k-1)}=

\hat{P}^{(k\rangle}/F^{k}.\hat{P}^{(k)} may be regarded as a subbundle of the linear frame bundle
of P^{(k-1\rangle} . so that we can define the canonical form \theta^{(k-1)} of \overline{P}^{(k)} : Let \mathfrak{g}^{(k-1)}

denote the Lie algebra of G^{(k-1)}(=\overline{G}^{(k)}/F^{k}) and put E^{(k-1)}=V\oplus \mathfrak{g}^{(k-1)} .
Define an E^{(k-1)_{-}}valued 1-form \theta^{(k-1)} on \hat{P}^{(k)} by the following commutative
diagram:



Geometric structures on fifiltered manifolds 297

T_{\xi^{k}}\hat{P}^{(k)}
\underline{\theta^{(k-1)}}E^{(k-1)}

\downarrow ||

T_{x^{k-1}}P^{(k-1\rangle}\underline{\xi^{k}}E^{(k-1\rangle}

for \xi^{k}\in\overline{P}^{(k)} with x^{k-1}=\xi^{k}/F^{k} .

Then we have easily:

PROPOSITION 2. 4. 3.

(1) \theta^{(k-1)}(\overline{A})=A/F^{k} for A\in\overline{\mathfrak{g}}^{(k)} .
(2) R_{a}^{*}\theta^{(k-1)}=\alpha^{-1}\theta^{(k-1)} for \alpha\in\hat{G}^{(k)} .
(3) If \varphi:\overline{P}^{(k)} -arrow\overline{P}^{\prime(k)} is a morphism of \overline{\mathscr{B}}_{V}^{(k)} , then \varphi^{*}\theta^{\prime(k-1)}=\theta^{(k-1)} .

where \theta^{r(k-1)} denotes the canonical form of P^{\prime(k)} .
(4) For \overline{P}^{(k)}.\overline{P}^{\prime(k)}\in\overline{\mathscr{B}}_{V}^{(k)} if a bundle homomorphism \varphi:\hat{P}^{(k)}arrow\hat{P}^{r(k)}

satisfifies: \varphi^{*}\theta^{\prime(k-1)}=\theta^{(k-1)} , then \varphi is adapted, that is mor-
phism of \overline{\mathscr{B}}^{(k)} .

2. 4. 4. \mathscr{B}^{(k)}(M) and \overline{\mathscr{B}}^{(k)}(M) .

We set

\mathscr{B}^{(k)}(M)=\#\mathscr{B}^{(k-1)}(M)(=\#^{k}\mathscr{B}^{(0)}(M)=\#^{k+1}(M))

\overline{\mathscr{B}}^{(k)}(M)=\hat{\#}\mathscr{B}^{(k-1)}(M) .

Then it is straightforward to see the following:

PROPOSITION 2. 4. 4.

(1) If P^{(k)}\in \mathscr{B}_{M}^{(k)} , then there exists a canonical embedding
P^{(k)}c_{arrow}\mathscr{B}^{(k)}(M) .

(2) If \overline{P}^{(k)}\in\overline{\mathscr{B}}_{M}^{(k)} , then there exists a canonical embedding
\overline{P}^{(k)}L_{arrow\overline{\mathscr{B}}^{(k)}(M)} .

On the other hand we have:

PROPOSITION 2. 4. 5. If the depth of M is \mu, there is a natural bun-
dle homomrphism

\varpi : \mathscr{B}^{(k+\mu-1)}(M)arrow\overline{\mathscr{B}}^{(k\rangle}(M)

which makes the following diagram commutative:
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\overline{\mathscr{B}}^{(k+\mu-1)}(M)\underline{\hat{\pi}}\overline{\mathscr{B}}^{(k)}(M)

\downarrow

||

\mathscr{B}^{(k+\mu-1)}(M)\underline{\varpi}\overline{\mathscr{B}}^{(k)}(M)

The proof is similar to that of Proposition 2. 2. 7.

We are now in a position to prove Theorem 2. 3. 1 and Theorem 2. 3. 2.
We put

\mathscr{B}(M)=\lim_{arrow k}\mathscr{B}^{(k)}(M) .

Then we see that \mathscr{B}(M) is a \mathfrak{p}-principal fibre bundle over M with strucure
group G(V) . Since we have the natural projection

\mathscr{B}(M)arrow\overline{\mathscr{B}}^{(k+1)}(M) ,

we have a E^{(k)}(V)-valued 1-form \theta_{\mathscr{L}}^{(k)} on \mathscr{B}(M) , the pull-back of the
canonical form of \overline{\mathscr{B}}^{(k+1)}(M) . Clearly we have, for k>l ,

\theta_{\mathscr{L}}^{(l)}=\theta_{\mathscr{L}}^{(k)}/F^{l+1} ,

where ./F^{l+1} denotes the projection E^{(k)} -arrow E^{(l)} . Passing to limit, we
obtain an E(V) valued l-form:

\theta_{\mathscr{L}}=\lim_{arrow}\theta_{\mathscr{L}-}^{(k)}

As easily seen from Proposition 2. 4. 3, this form \theta_{\mathscr{L}} satisfies the conditions
i)-iii) of Definition 2. 3. 1. Thus (\mathscr{B}(M), G(V), \theta_{\mathscr{L}}) is a tower. It is now
immediate to see the universal property of \mathscr{B}(M) . In fact, if (P, M, G, \theta)

is a tower, then P^{(k)}\in \mathscr{B}^{(k)} and is embedded in \mathscr{B}^{(k)}(M) . By passing to
projective limit, P is embedded in \mathscr{B}(M) as a principal subbundle. More-
over this embedding is uniquely determined by the condition \iota^{*}\theta_{\mathscr{L}}=\theta ,
which proves Theorem 2. 3. 1.

To prove Theorem 2. 3. 2, given P^{(k)}\in \mathscr{B}_{M}^{(k)} , we set

\mathscr{B}P^{(k)}=\lim_{arrow l}\#^{l}P^{(h\rangle} .

It is immediate to see that \mathscr{B}P^{(k)} is a tower with skeleton G(V, G^{(k)})

having the universal property, which completes the proof.
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We have also shown

PROPOSITION 2. 4. 6. A principal subbundle P^{(k)} is adapted if and
only if P^{(k)}\in \mathscr{B}^{(k)} .

The preceding discussion also yields:

PROPOSITION 2. 4. 7.

(1) For a morphism \varphi^{(k\rangle} : P^{(k)} -arrow P^{\prime(k)} there is a morphism of towers
\mathscr{B}\varphi^{(k)} : \mathscr{B}P^{(k)} -arrow \mathscr{B}P^{\prime(k)} such that \mathscr{B}\varphi^{(k)}/F^{k+1}=\varphi^{(k)} .

(2) A morphism of towers \varphi:Parrow P’ induces a morphism of \mathscr{B}^{(k)} ,
\varphi^{(k)} : P^{(k)} -arrow P^{\prime(k)} and \varphi=\mathscr{B}\varphi^{(k)}|_{P} .

PROOF: Set \mathscr{B}\varphi^{(k)}=\lim_{arrow}, \#^{l}\varphi^{(k)} . Then the assertions are clear.

To close this section we notice one of the implications of Theorem 2.
3. 1. Let L/G be a homogeneous space and suppose that the linear
isotropy representation of G on V=\mathfrak{l}/\mathfrak{g} leaves invariant a filtration F of
Vr By left translation it then defines a left invariant tangential filtration
F of M=L/G. Now assume that (\mathfrak{l}, G) is formally effective. Then, as
seen in section 2.2.1, (\mathfrak{l}, G) becomes a skeleton on V=(V. F) by a choice
of identification \mathfrak{l}=V\oplus \mathfrak{g} . It is then clear that (L, M, G, \theta_{L}) , with \theta_{L} the
Maurer-Cartan form of L, is a tower on M with skeleton (\mathfrak{l}, G) . Hence,
by Theorem 2.3.1, we have a unique embedding \iota : L(M, G)arrow \mathscr{B}(M) such
that \iota^{*}\theta_{\mathscr{L}(M)}=\theta_{L} . This universal property of \mathscr{B}(M) holds not only for the
homogeneous spaces but also for the Cartan connections (see \S 3. 10).

Chapter III. Equivalence problems

3. 0. Equivalence problems.
By a geometric structure on a filtered manifold M of order k+1 we

shall mean an adapted subbundle P^{(k)} of \mathscr{B}^{(k)}(M) . (When we deal with
intransitive geometric structures in section 3. 8, we need to consider gener-
alized subbundles.)

Two geometric structures (P^{(k)}, M, \pi) and (P^{r(k)}, M’\pi’) are said to be
isomorphic (or equivalent) if there exists an isomorphism \varphi^{(k)} : P^{(k)} -arrow P^{\prime(k)}

of adapted subbundles. In view of Definition 2. 4. 1, this is equivalent to
saying that there exists an isomorphism f:Marrow M’ of filtered manifolds
such that the lift \#^{k+1}f:\mathscr{B}^{(k)}(M) - \mathscr{B}^{(k)}(M’) sends P^{(k)} onto P^{r(k)} .

We say that P^{(k)} and P^{r(k)} are locally isomorphic (or locally equiva-
lent) at (x, x’)\in M\cross M’ if there exist neighbourhoods U, U’ of x , x’
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respectively and an isomorphism of filtered manifolds f_{-}. Uarrow U’ such that
f(x)=x’ and that

\#^{k+1}f(P^{(k)}|_{U})=P^{\prime(k)}|_{U’} .

In this chapter we shall address ourselves to the s0-called equivalence
problem:

“Given two geometric structures on filtered manifolds. Determine
whether or not they are equivalent (or locally equivalent).”

The first half of this problem is to obtain necessary conditions:
“Given a geometric structure P^{(k)} . Find invariants (if possible the

complete set of invariants) of P^{(k)\prime}.’

To treat these problems, our leading principle may be represented
symbolically by the following tautology:

geometric structure (of order k+1)
= adapted subbundle of \mathscr{B}^{(k)}

= truncated tower.
Geometric structures are not complete in a sense, especially from a

group theoretical view point, and it is towers that we consider more com-
plete. Therefore in studying a geometric structure P^{(k)} , we always keep
in mind the towers P which complete it, that is P/F^{k+1}=P^{(k)} . Our main
task is then to seek or construct a tower P which has as simple structure
as can be among the towers completing the given geometric structure.

3. 1. Structure functions.
3. 1. 1. We first introduce the structure function of a tower. Let (P,

M , G , \theta) be a tower on a filtered manifold M with skeleton (E, G) . Since
\theta defines an absolute parallelism on P, there exists a unique Hom(\wedge^{2}E ,
E)-valued function \gamma on P which satisfies the following structure equa-
tion:

(3. 1) d \theta+\frac{1}{2}\gamma(\theta, \theta)=0 .

This function \gamma is referred to as the structure function of the the
tower P, and has the following properties:

PROPOSITION 3. 1. 1. Let \gamma be the structure function of a tower (P,

M, G, \theta) . Then

(1) \gamma(z)(A, X)=A\cdot X for z\in P, A\in \mathfrak{g} , X\in E.
(2) \gamma(za)(X, Y)=a^{-1}\gamma(z) ( aX, a Y) for z\in P, a\in G, X, Y\in E.
(3) If \varphi:Parrow P’ is a morphism of towers then \varphi^{*}\gamma’=\gamma, where \gamma’

denotes the structure function of P’
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Proof: Since R_{a}^{*}\theta=a^{-1}\theta , we have

(3. 2) L_{\overline{A}}\theta=-A\cdot \theta for A\in \mathfrak{g} ,

where L_{\overline{A}} stands for the Lie derivative with respect to \overline{A} . Then we have

\overline{A}_{\lrcorner}d\theta=-d(\overline{A}_{\lrcorner}\theta)+L_{\overline{A}}\theta=-A\cdot\theta ,

from which follows (1). Applying R_{a}^{*} to (3. 1), we obtain (2) immediately.

The assertion (3) is obvious since \varphi^{*}\theta’=\theta .
If we denote \rho the natural representation of G on Hom(\wedge^{2}E, E)

defined by

(3. 3) (\rho(a)\alpha)(X, Y)=a\alpha(a^{-1}X, a^{-1}Y)

for a\in G , \alpha\in Hom(\wedge^{2}E, E) , X, Y\in E , then the above formula (2) is written
as
(3. 4) R_{a}^{*}\gamma=\rho(a)^{-1}\gamma .

Since E=V\oplus \mathfrak{g} , we have the direct sum decomposition:

(3. 5) Hom(\wedge^{2}E, E)=Hom( \wedge^{2} V. E) \oplus Hom(\mathfrak{g}\otimes E, E) ,

where we identify Hom(\wedge^{2}V, E) with the subspace of Hom(\wedge^{2}E, E) con-
sisting of all \alpha such that \alpha(A, X)=0 for A\in \mathfrak{g} , X\in E , and also Hom(\mathfrak{g}\oplus E ,

E) similarly.
Note that Hom(\wedge^{2}V\neg E) is a G-invariant subspace of Hom(\wedge^{2}E, E) ,

while Hom(\mathfrak{g}\otimes E, E) is not. Let \beta denote the element of Hom(\mathfrak{g}\otimes E, E)

given by the action of \mathfrak{g} on E :

(3. 6) \beta(A, X)=A\cdot X for A\in \mathfrak{g} , X\in E .

Then, by Proposition 2. 2. 1, we have

(3. 7) (\rho(a)\beta)(A, X)=\beta(A, X) for a\in G , A\in \mathfrak{g} , X\in E ,

which means that the action of G on Hom(\wedge^{2}E, E)/Hom(\wedge^{2}V_{\tau}E) leaves
fixed the equivalence class of \beta mod Hom( \wedge^{2} V. E). Hence the representa-
tion \rho induces the affine representation of G on the affine subspace \beta

+Hom( \wedge^{2} V. E).
Thus the structure function \gamma is a G-equivariant map from P to the

affine space \beta+Hom(\wedge^{2}V, E) on which G acts as affine transformations.
The Hom( \wedge^{2} V. E)-valued function c given by

(3. 8) \gamma=\beta+c

is therefore the crucial part of \gamma and also called the structure function of P.
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3. 1. 2. We next introduce the structure function of a truncated tower.
Let (P^{(k)}, M, G^{(k)}) be a truncated tower, that is, an adapted subbundle of
\mathscr{B}^{(k)}(M) . Let (P, M, G,\theta) be any tower prolonging P^{(k)} , i.e., P/F^{k+1}=

P^{(k)} , and \gamma its structure function. Now recall that Hom(\wedge^{2}E, E) has the
natural filtration defined by

(3. 9) \alpha\in F^{k}Hom(\wedge^{2}E, E)=\alpha(F^{p}E\wedge F^{q}E)\subset F^{p+q+k}E \forall p , q .

First of all we have the following:
PROPOSITION 3. 1. 2. The structure function of a tower takes its val-

ues in F^{0}Hom(\wedge^{2}E, E) .

PROOF: Let (P, M, G, \theta) be a tower with structure function \gamma . By
Proposition 3. 1. 1 (1) and Proposition 2. 2. 3 (2), it suffices to show

(3. 10) \gamma(z)(F^{p}E\otimes F^{q}E)\subset F^{p+q}E

for p, q<0 and z\in P .
Let Pr^{(k)} denote the projection Earrow E^{(k)} . Note that the V-valued

form Pr^{(-1)}\circ\theta , which will be denoted by \theta_{V} , may be regarded as a form on
P^{(\mu-1)} where \mu is the depth of M, Let x , z^{\mu-1} be the projections of z to
M and P^{(\mu-1)} respectively. Let \sigma be a local cross-section of P^{(\mu-1)} - M
around x with \sigma(x)=z^{\mu-1} . Since \sigma^{*}\theta_{V} defines an absolute parallelism of
M around x , we define for u\in V a local vector field \tilde{u} by <\sigma^{*}\theta,\tilde{u}>=u .
Then we have

(3. 11) Pr^{(l)}\gamma(z)(u, v)=Pr^{(l)}(\sigma^{*}\theta_{V})([\overline{u},\tilde{v}]_{x})

for u , v\in V . l<0 .
In fact, taking any X, Y\in T_{z}P such that \theta_{V}(X)=u , \theta_{V}(Y)=v , we

have

Pr^{(l)}\gamma(z)(u, v)=Pr^{(l)}\gamma(z)(\theta(X), \theta(Y))

=-Pr^{(l)}d\theta(X, Y)

=-Pr^{(l)}d\theta_{V}(\sigma_{*}\overline{u}_{x}, \sigma_{*}\overline{v}_{x})

=Pr^{(l)}(\sigma^{*}\theta_{V})([\overline{u},\overline{v}]_{x}) .

Now suppose that u\in F^{p}V , v\in F^{q} , then [ \overline{u},\overline{v}] is a section of T^{(p+q)}M

by our basic assumption [F^{p}TM, F^{q}TM]\subset F^{p+q}TM . Hence we have
Pr^{(p+q-1)}\gamma(z)(u, v)=Pr^{(p+q-1)}(\sigma^{*}\theta_{V})([\overline{u},\tilde{v}_{x}])=0 ,

which proves (3. 9), and hence the proposition. q.e.d.
Now we set

Hom(\wedge^{2}E, E)^{(k)}=F^{0}Hom(\wedge^{2}E, E)/F^{k+1}
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and denote \gamma^{(k)} the projectin of \gamma to this space. Since F^{k+1}Hom(\wedge^{2}E, E)

is obviously a G-invariant subspace, we have the induced representation
\rho^{(k)} of G on Hom(\wedge^{2}E, E)^{(k)} .
And we have:

\gamma^{(k)}(z\cdot a)=\rho^{(k)}(a^{-1})\gamma^{(k)}(z) for a\in G , z\in P .

On the other hand, it is easy to see that

\rho^{(k)}(a)=1 for a\in F^{k+1}G .

Thus \gamma^{(k)} may be regarded as a function on P^{(k)}(=P/F^{k+1}G) . By Proposi-
tion 3. 1. 1 (3), this \gamma^{(k)} does not depend on the choice of the tower P
prolonging P^{(k)} . Thus we have defined a mapping:

(3. 12) \gamma^{(k)} : P^{(k)} -arrow Hom(\wedge^{2}E, E)^{(k)} .

According to the decomposition; \gamma=\beta+c , we can also decompose

(3. 13) \gamma^{(k)}=\beta^{(k)}+c^{(k)} ,

where \beta^{(k)} and c^{(k)} take their values in F^{0}Hom(\mathfrak{g}\otimes E, E)/F^{k+1} and F^{0}Hom

(\wedge^{2}V, E)/F^{k+1} respectively. Note that

(3. 14) F^{0}Hom(\wedge^{2}V, E)/F^{k+1}=F^{0}Hom(\wedge^{2}V_{0}E^{k+1})/F^{k+1} .

Therefore the crucial component c^{(k)} is expressed only in terms of E^{(k-1)} .
But the expression of \beta^{(k)} involves the prolonged space E.

To adjust this, let us consider another filtration \{I^{k}Hom(\wedge^{2}E, E)\} of
Hom(\wedge^{2}E, E) . We employ the following notation: For p\in Z , we set

(3. 15) p^{*}=\{
p for p<0
0 for p\geq 0 .

We then define :

(3. 16) \alpha\in I^{k}Hom(\wedge^{2}E, E)\Leftrightarrow\alpha(F^{p}E\wedge F^{p}E)\subset F^{p^{*}+q^{*}+k}E \forall p , q\in Z ,

and we put

(3. 17) Hom(\wedge^{2}E, E)^{[k]}=F^{0}Hom(\wedge^{2}E, E)/I^{k+1} .

We denote by \gamma^{[k]} the projection of \gamma to this space. Clearly \gamma^{[k]} may be
regarded as a function on P^{(k)} . Moreover we have the induced representa-
tion \rho^{[k]} of G^{(k)} on Hom(\wedge^{2}E, E)^{[k]} and we have

(3. 18) \gamma^{[k]}(za)=\rho^{[k]}(a^{-1})\gamma^{[k]}(z) for z\in P^{(k)} , a\in G^{(k)} .

Note that \gamma^{[k]} is described in terms of E^{(k)} , since
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(3. 19) Hom(\wedge^{2}E, E)^{[k]}\cong F^{0}Hom(\wedge^{2}E^{(k)}, E^{(k)})/I^{k+1} .

Moreover we can decompose \gamma^{[k]} as
\gamma^{[k]}=\beta^{[k]}+c^{(k)} ,

where c^{(k)} is the F^{0}Hom(\wedge^{2}V, E^{(k-1)})/F^{k+1}-component defined in (3. 13),
and \beta^{[k]} is the projection of \beta to Hom(\wedge^{2}E, E)^{[k]} .

The function \gamma^{[k]} , as well as \gamma^{(k)} and c^{(k)} , will be referred to as the
structure function of P^{(k)} . Summarizing the above discussion, we have:

PROPOSITION 3. 1. 3. The structure function r^{[k]} of a truncated tower
(P^{(k)}. M, G^{(k)}) is a G^{(k)_{-}} equivariant map
(3. 20) \gamma^{[k]} : P^{(k)} -arrow Hom(\wedge^{2}E, E)^{[k]}\cong F^{0}Hom(\wedge^{2}E^{(k)}, E^{(k)})/I^{k+1} .

and if \varphi^{(k)} : P^{(k)} -arrow P^{r(k)} is an adapted homomorphism then (\varphi^{(k)})^{*}\gamma^{\prime[k]}=\gamma^{[k]} .

In practice, the structure function \gamma^{[k]} can be computed as follows:
Consider the prolongation \overline{\#}P^{(k)} , and choose a local cross-section \sigma of
\overline{\#}P^{(k\rangle}arrow P^{(k)} . Let \theta^{(k)} be the canonical form of \# P^{(k)}\wedge (which is an
E^{(k)}-valued 1-form), then \sigma^{*}\theta^{(k)} locally defines an absolute parallelism of
P^{(k)} . Define an F^{0}Hom(\wedge^{2}E^{(k)}, E^{(k)})-valued function \Gamma by

(3. 21) d \sigma^{*}\theta^{(k)}+\frac{1}{2}\Gamma(\sigma^{*}\theta^{(k)}, \sigma^{*}\theta^{(k)})=0 ,

then from our preceding discussion it is easy to see that the projection of
\Gamma to F^{0}Hom(\wedge^{2}E^{(k)}, E^{(k)})/I^{k+1} just yields the structure function \gamma^{[k]} .

As an illustration, let us examine the structure function \gamma^{[0]}=\beta^{[0]}+c^{(0)}

of a first order truncated tower (P^{(0)}, M, G^{(0)}) .
Recall that grT_{x}M has a graded Lie algebra structure, so that each

z\in P^{(0)} transports this Lie algebra structure to grV by the isomorphism z :
grVarrow grT_{x}M . Then, under the identification

F^{0}Hom( \wedge^{2} V. V) /F^{1}=Hom(\wedge^{2}grV. grV)_{0} ,

we have

(3. 22) c^{(0)}(z)=z^{-1}[z(u), z(u)] for u , v\in grV .

We can verify this formula immediately by calculating the structure func-
tion as explained above. In fact, this is already implied by the formula
(3. 11).

We note that the component \beta^{[0]} just represents the action of \mathfrak{g}^{(0)} on
grV.
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3. 2. Reviews on transitive filtered Lie algebras.
In [15] we have studied the structures of transitive filtered Lie alge-

bras. In the next sections we shall find the geometric counterparts of
those algebraic studies. In this section we review rapidly some algebraic
notions needed later on. For more detail we refer to [15].

1. A graded Lie algebra is a Lie algebra \mathfrak{l} equipped with a gradation
\mathfrak{l}=\bigoplus_{p\in Z}\mathfrak{l}_{p} such that [\mathfrak{l}_{p}, \mathfrak{l}_{q}]\subset \mathfrak{l}_{p+q} . We denote by \mathfrak{l}_{-} the negative part \bigoplus_{p<0}\mathfrak{l}_{p} .

The graded Lie algebra is called transitive if the following conditions are
satisfied:

(3. 23) \{
i) dim \mathfrak{l}_{p}<\infty

ii) \{x\in \mathfrak{l}_{p}|[x, \mathfrak{l}_{-}]=0\}=0 for p\geq 0 .

2. A truncated graded Lie algebra of order k is a graded vector
space t=\bigoplus_{p\leq k}t_{p} endowed with a bracket operation [ . ] : t_{p}\otimes t_{q}arrow t_{p+q} defined

only for p+q , p, q\leq k and satisfying the truncated Jacobi identity:

(3. 24) \mathfrak{S}[[x_{p}, y_{q}], z_{r}]=0

for x_{p}\in t_{p} , y_{q}\in t_{q} , z_{r}\in t_{r} , whenever the brackets make sense.
It is called transitive if the condition (3. 23), with \mathfrak{l} replaced by t , is

satisfied.

PROPOSITION 3. 2. 1 [24]. For a transitive truncated graded Lie alge-
bra t=\bigoplus_{p\leq k}\mathfrak{l}_{p} of order k\geq-1 , there exists, uniquely up to isomorphism, a

transitive gradcd Lie algebra \mathfrak{l}=\bigoplus_{p\in Z}\mathfrak{l}_{p} {called the prolongation of t and

denoted by Prol (t) ) such that

i) \mathfrak{l}_{p}=t_{p} for p\leq k,

ii) { is maximal among the transitive graded Lie algebra satisfy-
ing i ).

3. Associated with the graded Lie algebra \mathfrak{l} , there is defined the c0-

homology group called the generalized Spencer cohomology groups:
Define the coboundary operator

(3. 25) \partial:Hom(\wedge^{p}\mathfrak{l}_{-}, \mathfrak{l})arrow Hom(\wedge^{p+1}\mathfrak{l}_{-}, \mathfrak{l})

by

(\partial\alpha)(X_{1}, \cdots X_{p+1})=\Sigma(-1)^{i-1}[X_{i}\alpha(X_{1}, \cdots\overline{X}_{i}\cdots X_{p+1})]

+\Sigma(-1)^{i+j}\alpha([X_{i}, X_{j}], X_{1}, \cdots\overline{X}_{i}\cdots\hat{X}_{j}\cdots X_{p+1})
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for \alpha\in Hom(\wedge^{2}\mathfrak{l}_{-}, \mathfrak{l}) , X_{1} , \cdots X_{p+1}\in \mathfrak{l}_{-} . It is easy to verify that \partial^{2}=\partial\cdot \partial=0 .
We denote by

H( \mathfrak{l}_{-}, \mathfrak{l})=\bigoplus_{p}H^{p}(\mathfrak{l}_{-}, \mathfrak{l})

the cohomology group defined by this complex. For each integer r , we
have subcomplex

Hom(\wedge \mathfrak{l}_{-}, \mathfrak{l})_{r}=\bigoplus_{p}Hom(\wedge^{p}\mathfrak{l}_{-}, \mathfrak{l})_{r} ,

where Hom(\wedge^{p}\mathfrak{l}_{-}, \mathfrak{l})_{r} consists of all homogeneous elements \alpha of degree r ,
that is,

\alpha(\mathfrak{l}_{a_{1}}\wedge\cdots\wedge \mathfrak{l}_{a_{P}})\subset \mathfrak{l}_{a_{1}+\cdots+a_{p}+r}

for all a_{1} , \cdots , a_{p}<0 .
Denoting the associated cohomology group by

H( \mathfrak{l}_{-}, \mathfrak{l})_{r}=\bigoplus_{p}H^{p}(I_{-}, \mathfrak{l})_{r} ,

we have the bi-gradation on H(\mathfrak{l}_{-}, \mathfrak{l}) ;

H( \mathfrak{l}_{-}, \mathfrak{l})=\bigoplus_{p,r}H^{p}(\mathfrak{l}_{-},\mathfrak{l})_{r} .

The follwing theorem is fundamental:

THEOREM 3. 4. 1 [15]. For a transitive graded Lie algebra \mathfrak{l}=\bigoplus_{p\in Z}\mathfrak{l}_{q},

there exists an integer r_{0} such that H(\mathfrak{l}_{-}, \mathfrak{l})_{r}=0 for all r\geq r_{0} .

For a transitive truncated graded Lie algebra t , we define its c0-
homology group by

H^{p}(t)_{r}=H^{p} (Prol(t)_{-} , Prol(t))r.

4. A Lie algebra L equipped with a filtration \{L^{p}\}_{p\in Z} is called a tran-
sitive filtered Lie algebra (abbreviated TFLA) of depth \mu(>0) if it
satisfies:

o) L^{p}\supset L^{p+1}

i) [L^{p}. L^{q}]\supset L^{p+q} \forall p , p\in Z ,
ii) dim L^{p}/L^{p+1}<\infty ,
iii) L=L^{-\mu} .

iv) For p>0 , L^{p}=\{x\in L^{p-1}|[x, L^{a}]\subset L^{p+a} \forall a<0\} ,
v) \cap L^{p}=0 ,
vi) complete with respect to the uniform topology defined by the

filtration.
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For a TFLA, L, we put

grL=\oplus gr_{p}L with gr_{p}L=L^{p}/L^{p+1} .

which is a transitive graded Lie algebra.
5. Now let us recall the notion of truncated transitive filtered Lie

algebra introduced in [15]. Let k be an integer with k\geq 0 . Let T be a
filtered vector space with the filtration \{F^{p}\}(=\{F^{p}T\}) satisfying:

o) F^{p}\supset F^{p+1} ,

i) dim F^{p}/F^{p+1}<\infty ,
ii) F^{-\mu}=T for some \mu>0 ,
iii) F^{k+1}=0 .

As in (3. 16), we have the filtration \{I^{p}\} of Hom(\wedge^{r}TT) defined by;

\alpha\in I^{p}\Leftrightarrow\alpha(F^{q1}\wedge\cdots\wedge F^{qr})\subset F^{p+q_{1}^{*}+}+q_{r}^{*} ,

and we set

Hom(\wedge^{r}T. T)^{[p]}=F^{0}Hom(\wedge^{r}T. T)/I^{p+1} .

Given an element \alpha^{[k]}\in Hom(\wedge^{2}T-T)^{[k]} . Let \alpha\in F^{0}Hom ( \wedge^{2} T. T) be
a representative of \alpha^{[k]} . Let \alpha^{\circ}\alpha\in F^{0}Hom( \wedge^{3} T. T) be defined by

(\alpha^{o}\alpha)(x, y, z)=\mathfrak{S}\alpha(\alpha(x, y)x,y,z ’ z).

Then we see easily the equivalence class \alpha\circ\alpha mod I^{k+1} does not depend on
the choice of the representative \alpha , which we denote \alpha^{[k]}\circ\alpha^{[k]}(\in Hom(\wedge^{3}T .

T)^{[k]}) .
We say that \alpha^{[k]} satisfies the truncated Jacobi identify if \alpha^{[k]}\circ a^{[k]}=0 .

If the filtered vector space T is endowed with such an \alpha^{[k]} satisfying the
truncated Jacobi identify, we call ( T_{\backslash }\alpha^{[k]}) a truncated filtered Lie algebra
of order k .

It should be remarked that if ( T. \alpha^{[k]} ) is a truncated filtered Lie alge-
bra then F^{0}T is always a filtered Lie algebra. Let

grT= \bigoplus_{p}gr_{p}T with gr_{p}T=F^{p}T/F^{p+1}

be the associated graded vector space. Then we have the homogeneous
bilinear map of degree 0, \alpha_{0}\in Hom(\wedge^{2}grT, grT)_{0} , induced by \alpha^{[k]} . Then
(grT. \alpha_{0}) is a truncated graded Lie algebra. We call ( T_{7}\alpha^{[k]}) transitive if
(grT_{7}\alpha_{0}) is transitive.

6. The main theorem of [15] may be roughly stated as follows:
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THEOREM. The structure of a transitive filtered Lie algebra L is com-
pletely determined by the truncated transitive filtered Lie algebra L/L^{k+1} if
H^{p}((grL)_{-}, grL)_{r}=0 for r\geq k, p=1,2 .

3. 3. Towers and truncated towers with constant structure functions.
Let (P, M, \pi:\theta) be a tower with skeleton (E, G) . Let us see what

the tower P looks like when the structure function \gamma is constant.
Assume that \gamma is constant. Applying the exterior differentiation to

the structure equation d \theta+\frac{1}{2}\gamma(\theta, \theta)=0 , we have

\gamma(\gamma(\theta, \theta) , \theta)=0 ,

which implies \gamma(\in Hom(\wedge^{2}E, E)) satisfies the Jacobi identify

\mathfrak{S}\gamma(\gamma(x, y) , z)=0 , x , y , z\in E .

Hence the filtered vector space E , endowed with the bracket operation
given by \gamma , becomes a Lie algebra. Moreover, as easily seen, it is a tran-
sitive filtered Lie algebra. Thus,

PROPOSITION 3. 3. 1. If a tower P with skeleton (E, G) has a con-
stant structure function \gamma, then (E, \gamma) is a transitive fifiltered Lie algebra.

Thus a tower (P, M, G:\theta) with a constant structure function \gamma is an
analogue of a homogeneous space \tilde{G}/G with \overline{G} a Lie group and G its
closed Lie subgroup. Though there is not defined a group structure, P
might be regarded as underlying manifold of a Lie group \tilde{G} (possibly
infinite dimensional), \theta as the Maurer-Cartan from, (E, \gamma) as its Lie alge-
bra, G as the isotropy subgroup, and M as the homogeneous space.

We next show:

PROPOSITION 3. 3. 2. If a truncated tower (P^{(k)}, M, G^{(k)}) has a con-
stant structure function \gamma^{[k]} , then (E^{(k)}. \gamma)[k] is a truncated transitive filtered
ed Lie algebra.

PROOF: Let P be any tower prolonging P^{(k)} , with skeleton (E, G) ,

say e.g. (\nearrow/P^{(k\rangle} . Thus P^{(k)}=P/F^{k+1}G^{(k)}=G/F^{k+1}-E^{(k)}=E/F^{k+1} . Let \gamma

be the structure function of P. Let us denote by

Pr^{[k]} : F^{0}Hom(\wedge^{i}E, E)arrow F^{0}Hom(\wedge^{i}E, E)/I^{k+1}

the natural projection. In defining the structure function of P^{(k)} , we have
seen that Pr^{[k]}\circ\gamma is constant along the fibres of Parrow P^{(k)} . and that Pr^{[k]}\circ\gamma

is identified with \gamma^{[k]} .
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By differentiating the structure equation of P:d \theta+\frac{1}{2}\gamma(\theta, \theta)=0 ,

we have
\gamma(\gamma(\theta, \theta) , \theta)=d\gamma(\theta, \theta) .

Hence we have

(3. 26) \gamma\circ\gamma=D\gamma ,

where the function D\gamma:Parrow F^{0}Hom(\wedge^{3}E, E) is given by

(3. 27) (D\gamma)(z)(\xi, \eta, \zeta)=\mathfrak{S}\overline{\xi}_{z}\gamma(\eta, \zeta)\xi,\eta,\zeta for z\in P , \xi , \eta , \zeta\in E .

Here \overline{\xi} denote the vector field on P determined by \langle\theta,\tilde{\xi}\rangle=\xi .

Now by assumption \gamma^{[k]} being constant, we can write

\gamma=x+const. ,

with a certain \chi : Parrow I^{k+1}Hom(\wedge^{2}E, E) . Then we have
\gamma^{[k]}\circ\gamma^{[k]}=Pr^{[k]}(\gamma^{\circ}\gamma)

=Pr^{[k]}(D\gamma)

=Pr^{[k]}(D(x+const.))

=Pr^{[k]}(Dx) .

But since \chi takes its values in I^{k+1}Hom(\wedge^{2}E, E) , it follows that Dx takes
its values in I^{k+1}Hom(\wedge^{3}E, E) . Thus Pr^{[k]}(Dx)=0 , and therefore \gamma^{[k]}\circ\gamma^{[k]}

=0 , which shows that (E^{(k)}. \gamma^{[k]}) is a truncated filtered Lie algebra.
On the other hand recall that

\gamma(A, \xi)=A\cdot \xi for A\in \mathfrak{g} , \xi\in E .

Therefore we see that the “truncated action” of \bigoplus_{p=0}^{k}gr_{p}E^{(k)} on \bigoplus_{p\leq k}gr_{p}E^{(k)}

comes from the action of gr\mathfrak{g} on grE . Hence the transitivity of (E^{(k)}. \gamma)[k]

is clear. q.e.d.

3. 4. Fundamental identities.
Let us take a closer look at the structure function of a truncated

tower. Let P be a tower on M with skeleton (E, G) . Write as usual,
P^{(k)}=P/F^{k+1} . G^{(k)}=G/F^{k+1} . and E^{(k)}=E/F^{k+1} . Let \gamma and \gamma^{[k]} be the
structure functions of P and P^{(k)} . We wish to make clear the relation
between \gamma^{[k]} and \gamma^{[k+1]} .

We have the following commutative diagram:
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P^{(k+1)}\underline{\gamma^{[k+1]}}Hom(\wedge^{2}E^{(k+1)}, E^{(k+1)})^{[k+1]}

(3.28) \downarrow

[k]

\downarrow

P^{(k)}\underline{\gamma}
Hom(\wedge^{2}E^{(k)}, E^{(k)})^{[k]}

so that \gamma^{[k]} is determined by \gamma^{[k+1]} . Conversely, we want to know to what
extent \gamma^{[k]} determines \gamma^{[k+1]} .

To fix our discussion, choose complementary subspaces E_{p} so that
F^{p}E=E_{p}\oplus F^{p+1}E ,

and identify \oplus E_{p} with grE, and \Pi E_{p} with E. Then we can also iden-
tify:

F^{0} Hom(\wedge^{r}E, E)=\prod_{i=0}^{\infty}Hom(\wedge^{r}E,E)_{i}

F^{0} Hom(\wedge^{r}E, E)/F^{k+1}=\prod_{i=0}^{k}Hom(\wedge^{r}E, E)_{i} ,

where Hom(\wedge^{r}E, E)_{i} denotes the set of homogeneous elements \alpha of degree
i , that is, \alpha(E_{p_{1}}\wedge\cdots\wedge E_{p_{r}})\subset E_{p_{1}+\cdots+pr+i} . Therefore we can write as

(3. 29) \gamma=\sum_{i=0}^{\infty}\gamma_{i}

with \gamma_{i} being Hom(\wedge^{2}E, E)_{i}-valued functions on P. According to the
decomposition \gamma=\beta+c we can also write

c= \sum_{i=0}^{\infty}c_{i} ,

where c_{i} are Hom(\wedge^{2} V. E)_{i}-valued functions. Then by the definition of
\gamma^{(k)} , we can identify:

\gamma^{(k)}=\sum_{i=0}^{k}\gamma_{i} ,

of which the crucial part is given by

c^{(k)}= \sum_{i=0}^{k}c_{i} .

The other part represents the structure of the truncated skeleton (E^{(k)} ,
\mathfrak{g}^{(k)}) .

Now we recall that we have
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\gamma\circ\gamma=D\gamma ,

or more precisely

\xi,\eta,\zeta \mathfrak{S}\gamma(z)(\gamma(z)(\xi, \eta), \zeta)=\mathfrak{S}\overline{\xi}_{z}\gamma(\eta\zeta,\eta,\zeta’\zeta)

for z\in P and \xi , \eta , \zeta\in E . Substituting (3. 29) into this equation, we have

(3. 30) \sum_{i,j\geq 0}\gamma_{i^{\circ}}\gamma_{j}=\Sigma D\gamma_{m}

= \sum_{l\in Z,m\geq 0}D_{l}\gamma_{m} ,

where for \varphi , \phi\in Hom(\wedge^{2}E, E) the multiplication \varphi^{\circ}\varphi\in Hom(\wedge^{3}E, E) is
defined by

(3. 31) (\varphi\circ\psi)(\xi, \eta, \zeta)=\mathfrak{S}\varphi(\psi(\xi, \eta), \zeta)

and D_{l} denote the differentiation with respect to the /-th component fol-
lowed by the skewsymmetrization:

(D_{l}\gamma)(z)(\xi, \eta, \zeta)=\mathfrak{S}\overline{\pi_{l}(\xi)}\gamma(\eta\xi,\eta,\zeta’\zeta)

with \pi_{l} : Earrow E_{l} standing for the projection. Note that

\deg(\gamma_{i^{\circ}}\gamma_{i})=i+j , \deg(D_{l}\gamma_{m})=m-l .

Now specializing (3. 30) as an identity in F^{0}Hom(\wedge^{3}V, E)/F^{k+2_{-}}valued
functions, we have

\sum_{i+j\leq k+1}(\gamma_{i}\circ\gamma_{j})|_{V}=\sum_{m-l\leq k+1}(D_{l}\gamma_{m})|_{V} ,

where, for Hom(\wedge E, E)-valued function \phi , we denote by \phi|_{V} the Hom(\wedge

V, E)-valued function obtained by restriction. Since
\gamma_{i}|_{V}=c_{i} , D_{l}\gamma_{m}|_{V}=0 for l\geq 0 ,

we have:

\gamma_{0}\circ c_{k+1}+c_{k+1}\circ\gamma_{0}

=- \sum_{i+j\leq k}(\gamma_{i^{\circ}}\gamma_{j})|_{V}+\sum_{m-/\leq k+1,l<0}(D_{l}\gamma_{m})|_{V} ,

which can be written as

(3. 32) \gamma_{0^{O}}c_{k+1}+c_{k+1}\circ\gamma_{0}

\equiv-(\gamma^{(k)_{\circ}}\gamma^{(k)})|_{V}+\sum_{l<0}(D_{l}\gamma^{(k)})|_{V} (mod F^{k+2}Hom(\wedge^{3}V , E)).

This is the equation which describes how the structure function c^{(k+1)}(=

c^{(k)}+c_{k+1}) of P^{(k+1)} in constrained by the structure function \gamma^{(k)} of P^{(k)} .
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Now let us consider the case where \gamma^{(k)} is constant. Then clearly the
second member of the right-hand side of (3. 32) vanishes. Moreover the
left-hand side can be written as follows: Recall that by Proposition 3. 3. 2,
(E^{(k)}. \gamma)[k] is a transitive truncated filtered Lie algebra, and (grE^{(k)}. \gamma_{0}) is
a transitive truncated graded Lie algebra. Let

\partial:Hom(\wedge^{2}grV. grE^{(k)})_{k+1}arrow Hom(\wedge^{3}grV, grE^{(k)})_{k+1}

be the coboundary operator of the complex associated to the graded Lie
algebra Pro1(grE^{(k)}. \gamma_{0}) , the prolongation of (grE^{(k)}. \gamma_{0}) . Regarding c_{k+1}

as Hom(\wedge^{2}grV, grE^{(k\rangle})_{k+1^{-}}-v‘ a lued function, we can then write the left-
hand side of (3, 32) as

\gamma_{0}\circ c_{k+1}+c_{k+1}\circ\gamma_{0}=-\partial c_{k+1} .

Hence we get:

\partial c_{k+1}\equiv(\gamma^{(k\rangle}\circ\gamma^{(k)})|_{V} (mod F^{k+2}Hom(\wedge^{3} V. E)).

To summarize the above discussion, let (P_{\eta}^{(k+1\rangle}M, G^{(k+1)}) be a trun-
cated tower and let P^{(k\rangle}=P^{(k+1)}/F^{k+1}G^{(k+1)} . Let \gamma^{[k+1]} and \gamma^{[k]} be the
structure function of P^{(k+1)} and P^{(k)} respectively. Let \overline{\gamma}^{[k]} be a lift of \gamma^{[k]}

to P^{(k+1)} . that is, a Hom(\wedge^{2}E^{(k+1)}, E^{(k+1)})^{[k+1]}-valued function obtained by
pull-back and by choosing a splitting of Hom(\wedge^{2}E^{(k+1)}. E^{(k+1)})^{[k+1]}arrow Hom

(\Lambda^{2}E^{(k\rangle}. E^{(k)})^{[k]} . Set
c^{(k+1\rangle}=\gamma^{[k+1]}|_{V},\overline{c}^{(k)}=\tilde{\gamma}^{[k]}|_{V} .

Then we can write
c^{(k+1)}=\overline{c}^{(k)}+c_{k+1}

with an F^{k+1}Hom(\wedge^{2}V, E^{(k+1)})/F^{(k+2)}(=Hom(\wedge^{2}grV. grE^{(k\rangle})_{k+1})-valued
function c_{k+1} , and we have:

PROPOSITION 3. 4. 1.

(3. 33) \gamma_{0}\circ c_{k+1}+c_{k+1}\circ\gamma_{0}\equiv-(\tilde{\gamma}^{[k]}\circ\tilde{\gamma}^{[k]})|_{V}+(D\overline{\gamma})[k]|_{V} .
(mod F^{k+2}Hom(\wedge^{3}V, E^{(k+1)} )).

In particular, if \gamma^{[k]} is constant then

(3. 34) \partial c_{k+1}\equiv(\tilde{\gamma}^{[k]}\circ\tilde{\gamma}^{[k]})|_{V} (mod F^{k+2}Hom(\wedge^{3}V , E^{(k+1)} )).

Next we study the behaviour of the structure function \gamma^{[k+1]} of P^{(k+1)}

along each fibre of P^{(k+1\rangle}arrow P^{(k\rangle} .
Note that we have the following exact sequence:
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1-arrow F^{k+1}G^{(k+1)} -arrow G^{(k+1)} -arrow G^{(k\rangle}arrow 1

and that P^{(k+1)} is a principal fibre bundle over P^{(k)} with structure group
F^{k+1}G^{(k+1)} . Recall also that we have the canonical embedding

G^{(k+1)}--, F^{0}GL(E^{(k)})/F^{k+2} .

Moreover the induced map

G^{(k+1)}arrow F^{0}Hom(V. E^{(k)})/F^{k+2}

is injective. Therefore F^{k+1}G^{(k+1)} can be identified with an abelian sub-
group of

F^{k+1}Hom(V. E^{(k)})/F^{k+2}=Hom(grV. grE^{(k)})_{k+1} .

For an element a^{k+1}\in F^{k+1}G^{(k+1)} , if \alpha_{k+1}\in Hom(grV, grE^{(k)})_{k+1} is the
corresponding element, we will write as

a^{k+1}=1+\alpha_{k+1}

since we have

a^{k+1}v_{p}\equiv v_{p}+\alpha_{k+1}v_{p} (mod F^{p+k+2}E )

for v_{p}\in F^{p}V Note here that a^{k+1}v_{p} and \alpha_{k+1}v_{p} are well-defined as ele-
ments of E/F^{p+k+2} . The above congruence will be written more simply as

a^{k+1}v\equiv(1+\alpha_{k+1})v (mod F^{k+2} ).

Now that we have
\gamma^{[k+1]}(za)=\rho^{[k+1]}(a^{-1})\gamma^{[k+1]}(z)

for z\in P^{(k+1)} , a\in G^{(k+1)} , let us examine this formula for a=1+\alpha\in

F^{k+1}G^{(k+1)} . Let c^{(k+1)}=\gamma^{[k+1]}|_{V} and denote \gamma_{0} the projection of \gamma^{[k+1]} to
Hom(\wedge^{2}E^{(k+1)}, E^{(k+1)})^{[0]} . Then for v_{p}\in F^{p} V. w_{q}\in F^{q} V. we have

c^{(k+1)}(za)(v, w)\equiv\gamma^{[k+1]}(za)(v, w)

\equiv(1-\alpha)\gamma^{[k+1]}(z)((1+\alpha)v, (1+\alpha)w)

\equiv c^{(k+1)}(z)(v, w)

+\gamma_{0}(z)(\alpha v, w)+\gamma_{0}(z)(v, \alpha w)-\alpha\gamma_{0}(z)(v, w)

(mod F^{p+q+k+2}E),

which may be written more simply as:
c^{(k+1)}(z(1+\alpha))=c^{(k+1)}(z)+\gamma_{0}(z)\circ\alpha-\alpha\circ\gamma_{0}(z) ,

where \gamma_{0}(z)\circ\alpha-\alpha\circ\gamma_{0}(z) is an element of F^{k+1}Hom( \wedge^{2} V. E^{(k)} ) /F^{k+2}\cong Hom

(\wedge^{2}grV, grE^{(k)})_{k+1} given by



314 T. Morimoto

\{

\gamma_{0}(z)\circ\alpha(u, w)=\gamma_{0}(z)(\alpha(v), w)+\gamma_{0}(z)(v, \alpha(v))

\alpha\circ\gamma_{0}(z)(v, w)=\alpha(\gamma_{0}(z)(v, w))

for v , w\in grV .
In particular, if the structure function \gamma^{[k]} of P^{(k)} is constant, \gamma_{0}(z) is

the bracket of the truncated graded Lie algebra grE^{(k)} and
\gamma_{0}(z)\circ\alpha-\alpha\circ\gamma_{0}(z)=\partial\alpha .

Summarizing the above discussion, we have

PROPOSITION 3. 4. 2. Let P^{(k+1)} be a truncated tower. The behaviour
of the structure function c^{(k+1)} along the fifibres P^{(k+1)} - P^{(k)} is discribed as
(3. 35) c^{(k+1)}(z(1+\alpha))=c^{(k+1)}(z)+\gamma_{0}(z)\circ\alpha-\alpha\circ\gamma_{0}(z) ,

for z\in P^{(k+1)} , 1+\alpha\in F^{k+1}G^{(k+1)} with \^a Hom(grV, grE^{(k)})_{k+1} . If the struc-
ture function \gamma^{[k]} of P^{(k)} is constant. then

(3. 36) c^{(k+1)}(z(1+\alpha))=c^{(k+1)}(z)+\partial\alpha .

3. 5. Reductions.
The structure function of a truncated tower is, in general, not con-

stant. Therefore of importance is the procedure of reduction that we are
going to explain.

First we prepare the following:

LEMMA 3. 5. 1. Let M, N be differentia te manifolds and let f:Marrow
N be a differentia te map. Assume that a Lie group G with countable open
basis acts differentiabIly on N and that the image f(M) is contained in
G-Orbit S. Then the map \overline{f}:Marrow S, defifined by regarding f as a map
from M to S, is also differentia te.

PROOF: The orbit S has the natural diferentiable structure as a
homogeneous space and is a immersed submanifold of N. It is easy to see
that the differentiability of \overline{f} follows immediately from the continuity of
\overline{f} So let us show \overline{f} is continuous. For this purpose, given a point q\in S ,
first we are going to construct a suitable neighbourhood W of q in N.
Let s , r be respectively the dimension and the codimension of S. Then
there exist elements A_{1} , \cdots , A_{s} of the Lie algebra \mathfrak{g} of G such that (\tilde{A}_{1})_{q} ,
\ldots , (\overline{A}_{s})_{q} are linearly independent, where \overline{A} denotes the vector field on N
induced by the infinitesimal action of A\in \mathfrak{g} . Choose a regular submanifold
\Lambda through q of N of dimension r such that

T_{q}\Lambda\oplus\langle(\tilde{A}_{1})_{q^{ }},\cdots, (\overline{A}_{s})_{q}\rangle=T_{q}N .
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Let D be an open disk in R^{s} and define a map \Phi:D\cross\Lambdaarrow N by

\Phi((a_{1}, \cdots, a_{S}), \lambda)=\exp(\Sigma a_{i}A_{i})\lambda .

Since the differential of \Phi at (0, q) is non-singular, if necessary by shrink-
ing D and \Lambda , we may assume that \Phi is a diffeomorphism of D\cross\Lambda onto an
open set W of N_{-} For \lambda\in\Lambda we set W_{\lambda}=\Phi(D\cross\{\lambda\}) . Clearly each W_{\lambda} is
contained in a single G-orbit. Therefore we can write

S \cap W=\bigcup_{\lambda\in S\cap\Lambda}W_{\lambda} (disjoint union).

Note also that W_{\lambda}(\lambda\in S\cap\Lambda) is an open submanifold of S . Since S has a
countable open basis, S\cap\Lambda is a countable set. It follows from this that
the connected component of S\cap W containing q with respect to the topol-
ogy induced from N is just W_{q} .

Now it is straightforward to show the continuity of \overline{f} : Let p\in M and
\overline{f}(p)=q . For an open set U\ni q in S , we may choose a neighbourhood W

of q in N as constructed above so as to satisfy U\supset W_{q} . Since f:Marrow N
is continuous, there exists an open set V\ni p of M such that V is con-
nected and that f(V)\subset W . but f(V)\subset S\cap W and connected, therefore
f(V)\subset W_{q} . This proves the continuity and hence the differentiability of

\overline{f}. q.e.d.
Let (P^{(k)}. M, G^{(k)}) be a truncated tower. Recall that the structure

function
\gamma^{[k]} : P^{(k)}arrow Hom(\wedge^{2}E^{(k)}, E^{(k)})^{[k]}

is a G^{(k)}-equivariant map. Therefore the image of \gamma^{[k]} is a disjoint union
of G^{(k)}-orbits. If it consists of a single G^{(k)_{-}}orbit, we can reduce P^{(k)} to a
smaller one:

PROPOSITION 3. 5. 1. Let (P^{(k)}, M, G^{(k)}) be a truncated tower with
structure function \gamma^{[k]} . If the image of \gamma^{[k]} consists of a single G^{(k)_{-}} orbit,
then for each [mathring]_{\gamma}\in\gamma^{[k]}(P^{(k)}) , the inverse image Q^{(k)}=(\gamma^{[k]})^{-1}([mathring]_{\gamma}) is a principal
subbundle of P^{(k)} , of which the structure group is the isotropy subgroup of
G^{(k)} at [mathring]_{\gamma}.

PROOF: Set theoretically the assertion is obvious. We have only to
verify the differentiability, but by Lemma 3.5.1 we see that the map \gamma^{[k]} :
P^{(k)} -arrow\gamma^{[k]}(P^{(k)}) is differentiable. Moreover clearly it is a surjective sub-
mersion. Hence Q^{(k)} is a regular submanifold of P^{(k)} .

Now several remarks are in order.

REMARK 3. 5. 1. The reduced bundle Q^{(k)} is not necessarily adapted.
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If Q^{(k)}arrow P^{(k-1)} is a surjective submersion, then Q^{(k)} is adapted. In par-
ticular, if k=0 it is always adapted.

REMARK 3. 5. 2. The structure function of Q^{(k)} is obviously equal to
[mathring]_{\gamma} and hence constant. Another choice of [mathring]_{\gamma} gives rise to another subbun-
dle of G^{(k)} which is conjugate to Q^{(k)} by an element of G^{(k)} . Thus the
reduction is not canonical but “semi-canonical” in the sence that Q^{(k)} is
determined up to conjugate.

REMARK 3. 5. 3. If the image of \gamma^{[k]} is not a single G^{(k)_{-}}orbit, then
the structure is intransitive. To treat the intransitive structures systemat-
ically, we need such a formulation as done in [14]. We will consider this
problem in section 3. 8.

Let us apply the procedure of reduction to first order frame bundles.
Let \mathfrak{m}=\bigoplus_{p<0}\mathfrak{m}_{p} be a graded Lie algebra. We say that a filtered manifold M

is regular (of type \mathfrak{m} ) if the symbol algebra grTxM, x\in M , are all isomor-
phic (to \mathfrak{m} ) as graded Lie algebras.

Let (\mathscr{B}^{J(0)}(M), M, G^{(0)}(V)) be the first order frame bundle of M. Then
by (3. 22), Proposition 3. 1. 1, and the fact that G^{(0)}(V)=Aut(grV) , we
have immediately:

PROPOSITION 3. 5. 2. A fifiltered manifold is regular if and only if the
structure function of \mathscr{B}^{(0)}(M) takes its values in a single G^{(0)}(V)- orbit.

Given a filtered manifold M of regular of type \mathfrak{m} , we shall always
identify rn with V and also with grV, where V is the modeled filtered
vector space used to define \mathscr{B}(M) . Let \gamma^{[0]}=\beta^{[0]}+c^{(0)} be the structure
function of \mathscr{B}^{(0)}(M) . Then c^{(0)} may be considered as taking values in
Hom(\wedge^{2}\mathfrak{m}, \mathfrak{m})_{0} . Let c_{\mathfrak{m}}^{(0)} be the bilinear map which defines the bracket
operation of \mathfrak{m} . We set

\mathscr{B}^{(0)}(M, \mathfrak{m})=\{z\in \mathscr{B}^{(0)}(m)|c^{(0)}(z)=c_{\mathfrak{m}}^{(0)}\} .

Then, by Proposition 3. 5. 2, \mathscr{B}^{(0)}(M, \mathfrak{m}) is a principal subbundle of \mathscr{B}^{(0)}

(M) . Clearly its structure group, denoted by G^{(0)}(\mathfrak{m}) , consists of all
automorphisms of the graded Lie algebra \mathfrak{m} .

In view of (3. 22), \mathscr{B}^{(0)}(M, \mathfrak{m}) is nothing but the set of all isomor-
phisms z:\mathfrak{m}arrow grT_{x}M of graded Lie algebras.

We shall denote by \mathscr{B}(M, \mathfrak{m}) the universal tower \mathscr{B}\mathscr{B}^{(0)}(M, \mathfrak{m}) prolon-
ging \mathscr{B}^{(0)}(M, \mathfrak{m}) and by (E(\mathfrak{m}), G(\mathfrak{m})) its skeleton. Hence E(\mathfrak{m})=\mathfrak{m}\oplus \mathfrak{g}(\mathfrak{m}) ,

where \mathfrak{g}(\mathfrak{m}) is the Lie algebra of G(\mathfrak{m}) . We set \mathscr{B}^{(k)}(M, \mathfrak{m})=\mathscr{B}(M, \mathfrak{m})/F^{k+1}

and call it the reduced frame bundle of M of order k+1 .
Now let us examine the structure function of \mathscr{B}(M, \mathfrak{m}) . We define a

bilinear map
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(3. 37) \beta_{\mathfrak{m}}=[ ] : E(\mathfrak{m})\cross E(\mathfrak{m})-E(\mathfrak{m})

by

\{

[u, v]=[u, v]_{\mathfrak{m}} (the bracket of \mathfrak{m} )
[A, B]=[A, B]_{\mathfrak{g}(\mathfrak{m})} (the bracket of \mathfrak{g}(\mathfrak{m}) )
[A, x]=Ax (the action of \mathfrak{g}(\mathfrak{m}) on E(\mathfrak{m}) )

for u , v\in \mathfrak{m} , x\in E(\mathfrak{m}) , and A, B\in \mathfrak{g}(\mathfrak{m}) . It should be remarked that this
bracket does not satisfy the Jacobi identity.

Recall that G(\mathfrak{m}) has the natural representation on Hom(\wedge^{2}E(\mathfrak{m}) ,
E(\mathfrak{m})) , and note that the subspace F^{1}Hom(\wedge^{2}\mathfrak{m}, E(\mathfrak{m})) is G(\mathfrak{m})- invariant.
Moreover it is easy to see that \beta_{\mathfrak{m}} modF^{1}Hom(\wedge^{2}\mathfrak{m}, E(\mathfrak{m})) is fixed by the
induced action of G(\mathfrak{m}) on the quotient space. Hence G(\mathfrak{m}) has the in-
duced affine representation on the affine space \beta_{tt},+F^{1Hom}(\wedge^{2}\mathfrak{m}, E(\mathfrak{m})) .
Then it is straightforward to see:

PROPOSITION 3. 5. 3. The structure function \gamma \mathscr{L}(M.,\uparrow\iota) of \mathscr{B}’(M, \mathfrak{m}) is a
G^{(k)_{-}} equivariant map from \mathscr{B}/(M, \mathfrak{m}) to the affine space \beta_{11},+F^{1}Hom(\wedge^{2}\mathfrak{m} ,

E(\mathfrak{m})) .

We can therefore write
\gamma_{\mathscr{L}(M,,\mathfrak{n})}=\beta_{\mathfrak{m}}+\overline{c}

with \overline{c} an F^{1}Hom(\wedge^{2}\mathfrak{m}, E(\mathfrak{m}))-valued function on \mathscr{B}(M, \mathfrak{m}) .
In applications, most of the first order geometric structures are defined

as subbundles P^{(0)} of the reduced frame bundle \mathscr{B}^{(0\rangle}(M, \mathfrak{m}) . Thus the pr0-

longation \mathscr{B}P^{(0)} is contained in \mathscr{B}(M, \mathfrak{m}) as an adapted subbundle. Note
that clearly the structure function of an adapted subbundle of \mathscr{P}(M, \mathfrak{m})

satisfies the same properties as in Proposition 3. 5. 3.

3. 6. Involutive truncated towers.
Given a truncated tower P^{(k)} with constant strucure function. Is it

possible to construct a tower P with constant structure function prolong-
ing P^{(k)} ? In general, it is not the case, but it holds for the involutive
truncated towers which we are now going to define.

DEFINITION 3. 6. 1. An adapted subbundle (P^{(k\rangle}, M, G^{(k)}) of /_{J}’((k)M) ,

namely a truncated tower is called involutile if the following conditions
are satisfied:

i) The structure function \gamma^{[k]} is constant
ii) H^{2}(grE^{(k)})_{r}=0 for r\geq k+1 .

Note that, in the definition above, since \gamma^{[k]} is constant, grE^{(k)}
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becomes a transitive truncated graded Lie algebra, so that it makes sense
to speak of its cohomology group H(grE^{(k)}) (see \S 3. 2).

THEOREM 3. 6. 1. For an involutive truncated tower P^{(k)} , we can con-
struct, in a natural manner, a tower P with constant structure function
such that P/F^{k+1}=P^{(k)} .

PROOF: Let P^{(k)} be an involutive tower. Let P be the universal
prolongation of P^{(k)} . that is P=\mathscr{B}P^{(k)} , and let P^{(k+1)}=P/F^{k+2} .

First let us show that the image \gamma^{[k+1]}(P^{(k+1)}) of the structure function
\gamma^{[k+1]} of P^{k+1} consists of a single G^{(k+1)_{-}}orbit.

To see this it suffices to show that, for any z, z’\in P^{(k+1)} , there exists
\alpha\in G^{(k+1)} such that c^{(k+1)}(z’)=c^{(k+1)}(za) . Since the structure function \gamma^{[k]}

of P^{(k)} is constant, by Proposition 3. 4. 1 we have
\partial(c^{(k+1)}(z)-\overline{c}^{(k)})\equiv(\tilde{\gamma}^{[k]}\circ\overline{\gamma}^{[k]})|_{V} mod F^{k+2Hom}( \wedge^{3} V. E^{(k)} )

for all z\in P^{(k+1)} . Hence
\partial(c^{(k+1)}(z’)-c^{(k+1)})(z))=0 .

Now, since H^{2}(grE^{(k)})_{k+1}=0 , we have the following exact sequence:

Hom(grV, grE^{(k)})_{k+1}arrow Hom(\wedge^{2}grV\backslash grE^{(k)})_{k+1}\partial

arrow Hom(\wedge^{3}grV, grE^{(k)})_{k+1}\partial

Therefore there exists \alpha_{k+1}\in Hom(grV, grE^{(k)})_{k+1} such that
c^{(k+1)}(z’)=c^{(k+1)}(z)+\partial\alpha_{k+1}

Note that the injection

F^{k+1}G^{(k+1)}c_{arrow}Hom(grV, grE^{(k)})_{k+1}

is an isomorphism in the case when P is the universal prolongation of P^{(k)} .
Hence we see that

1+\alpha_{k+1}\in F^{k+1}G^{(k+1)}

and by Proposition 3.4.2 we have
c^{(k+1)}(z(1+\alpha_{k+1}))=c^{(k+1)}(z)+\partial\alpha_{k+1} ,

which proves the assertion required.
Now choose an element [mathring]_{\gamma}^{[k+1]} in \gamma^{[k+1]}(P^{(k+1)}) , and let Q^{(k+1)}=

(\gamma^{[k+1]})^{-1}([mathring]_{\gamma}^{[k+1]}) . It is clear that Q^{(k+1)} -arrow P^{(k)} is surjective, so that Q^{(k+1)} is
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an adapted subbundle of \mathscr{B}^{(k+1)}(M) . It is immediate to see that Q^{(k+1)} is
involutive. By iterating this construction, we obtain, as the limit, a tower
with constant structure function prolonging P^{(k)} . q.e.d.

Now, assuming the analyticity, we solve the local equivalence prob-
lem of involutive truncated towers.

THEOREM 3. 6. 2. Let M and M’ be fifiltered manifolds of type V, and
let (P^{(k)}, M, G^{(k)}) and (P^{\prime(k)}, M’-G^{r(k)}) be involutive subbundle of \mathscr{B}^{(k)}(M)

and \mathscr{B}^{(k)}(M’) with structure functions \gamma^{[k]} and \gamma^{r[k]} respectively. Then
under the assumption of analyticity the following two conditions are equiva-
le t :

(1) G^{(k)}=G^{\prime(k)} and \gamma^{[k]}=\gamma^{r[k]}

(2) For any (p, p’)\in P^{(k)}\cross P^{\prime(k)} . there exist open neighbourhoods U
and U’ of \pi(p) and \pi’(p’) respectively, and an analytic isomor-
phism of fifiltered manifolds f:Uarrow U’ such that \#^{k+1}f(P^{(k)}|_{U})=

P^{\prime(k)}|_{U} and that \#^{k+1}f(p)=p’

PROOF: The implication (2)\Rightarrow(1) holds even without the analyticity.
Our task is thus to prove (1)\Rightarrow(2) .

If the filtration of V is trivial, this theorem coincides exactly with
Theorem 8. 1 in [14], and can be proved by using the Cartan-K\"ahler the
orem.

In the general case, we will prove this theorem, first building towers
with constant structure functions and then cutting them to obtain truncated
ed towers with trivial filtered manifolds as base spaces to which the
Cartan-K\"ahler theorem applies.

According to Theorem 3. 6. 1, we construct towers (P, G) and (P’. G’)
with constant structure functions \gamma and \gamma’ prolonging P^{(k)} and P^{\prime(k\rangle} respec-
tively. We can arrange the construction so as to have \gamma=\gamma’ G=G’
Then clearly P^{(k)} and P^{\prime(k)} are isomorphic if and only of so are P and P’ .

Now we regard the skeleton (E, G) as the skeleton on the trivial
filtered vector space V, and we denote \{F_{tr}^{p}\} the standard filtration of G

and E associated with the trivial filtration of V defined by (2. 3). Let
P_{tr}^{(p)} denote the quotient of P by F_{tr}^{p+1}G . Then, in view of (2. 4), we have
the natural bundle maps:

P^{(p\mu)}arrow P_{tr}^{(p)}arrow P^{(p)} .

Since the structure function \gamma is constant, P_{tr}^{(k)} are truncated towers with
constant structure functions on the trivial filtered manifold M.

Let gr_{tr}E be the graded Lie algebra associated with \{F_{tr}^{p}E\} . Then
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H^{p}(gr_{tr}E)_{r} is the usual Spencer cohomology group and there exists an
integer l_{0} such that

H^{p}(gr_{tr}E)_{r}=0 for p=1,2 r\geq l_{0}+1 .

It follows then that P_{tr}^{(l)} are involutive for l\geq l_{0} . Applying the Cartan-
K\"ahler theorem, we obtain a local isomorphism of P_{tr}^{(l)} to P’1_{r}^{l)} for an l
with l\geq k , which gives the local isomorphism of P^{(k)} and P^{r(k)} . This com-
pletes the proof of Theorem 2. 6. 2.

As a consequence of Theorem 3. 6. 2, we have in particular

COROLLARY 3. 6. 1. Let \mathfrak{m}=\bigoplus_{p<0}\mathfrak{m}_{p} be a graded Lie algebra such that

the cohomology group associated with the prolongation of rn satisfifies:
H^{2}(\mathfrak{m})_{r}=0 for r\geq 1 .

Then every analytic fifiltered manifold M regular of type rn is locally isomor-
phic to a standard fifiltered manifold \mathfrak{M} of type \mathfrak{m} .

PROOF: The reduced frame bundle \mathscr{B}^{(0)}(M, \mathfrak{m}) has the constant struc-
ture function \beta_{\mathfrak{m}}^{[0]} . By the assumption on the cohomology group, \mathscr{B}(M, \mathfrak{m})

is therefore involutive. Hence the assertion follows from Theorem 3. 6. 2.

A contact manifold is a simple example to which the above corollary
applies. Its symbol algebras are all isomorphic to the Heisenberg Lie
algebra. As we calculated in [15] (Theorem 5. 2), the associated c0-
homology group H_{r}^{p} vanishes if (p, r)\neq(0, -2) . In this case the above
corollary gives a formal aspect of Darboux’ theorem. Other examples are
also found among the higher order contact structures (see [15] Corollary
5. 3).

3. 7. Transitive geometric structures.
Restricting ourselves to the transitive geometric structures of the 1-st

order, we will explain how to find out all the invariants of a given ge0-

metric structure.
We say that a truncated tower (P^{(k)}, M, G^{(k)}) is transitive (or more

precisely, locally transitive) if for any x , y\in M there exists a local
automorphism f of P^{(k)} such that f(x)=y.

THEOREM 3. 6. 1. Let (P^{(0)}, M, G^{(0)}) be a transitive truncated tower of
the 1-st order on a fifiltered manifold M. Then we can construct an
involutive truncated tower (Q^{(l)}, M, H^{(l)}) associated with P^{(0)} up to conju-
gate in a way compatible with the equivalence relation.
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PROOF. Given a transitive truncated tower of the 1-st order (P^{(0)}. M ,
G^{(0)}) . We first construct a sequence (Q_{i}, M, H_{i})_{i=1,2},\ldots of transitive trun-
cated towers of order k_{i}+1 with constant structure function [mathring]_{i}_{\gamma} .

Let \gamma^{[0]} denote the structure function of P^{(0)} . Since P^{(0)} is transitive,
\gamma^{[0]}(P^{(0)}) consists of a single G^{(0)}-orbit. Choose an element [mathring]_{1}_{\gamma}\in\gamma^{[0]}(P^{(0)})

and let
Q_{1}=(\gamma^{[0]})^{-1}([mathring]_{1}_{\gamma}) .

Then Q_{1} is a truncated tower of the 1-st order. Now supposing that Q_{i} is
constructed, we construct Q_{i+1} as follows: First form \# Q_{i} , and let \gamma

denote its structure function. Note that since Q_{i} is transitive, so is \# Q_{i} .
By choosing an element [mathring]_{i+1}_{\gamma} in \gamma(\# Q_{i}) , we set

Q_{i+1}’=\gamma^{-1}([mathring]_{i+1}_{\gamma}) .

It can happen that this subbundle is no more adapted. If Q_{i+1}’ is not
adapted, we set

Q_{i+1}=\pi^{(0)}Q_{i+1}’ ,

where \pi^{(0)} denotes the projection \mathscr{B}^{(k_{i+1})}(M)-\mathscr{B}^{(0)}(M) . If Q_{i+1}’ is adapted,
we set Q_{i+1}=Q_{i+1}’ . In both cases Q_{i+1} is a transitive truncated tower with
constant structure function. Thus by induction we obtain a sequence \{(Q_{i} ,

M , H_{i})\}_{i=1,2},\ldots of adapted subbundles of \mathscr{B}^{(k_{i})}(M) .
From the construction we see that there exists a subsequence \{(Q^{(j)} ,

M , H^{(j)})\}_{j=0,1,2},\ldotsof adapted subbundles of \mathscr{B}^{(j)}(M) such that the projection
Q^{(j+1)}arrow Q^{(j)} is surjective for all j\geq 0 , and that the structure function of Q^{(j)}

is constant for j\geq 0 .
Let (Q, M, H) be the tower obtained as the projective limit of Q^{(j)} .

Clearly the structure function of Q is constant. Therefore E=V\oplus \mathfrak{h} is a
transitive filtered Lie algebra. The associated cohomology group
H^{p}(grE)_{r} vanishes for all p if r\geq r_{0} ( r_{0} is an integer determined by grEy
see Theorem 3.4.1). Then Q^{(j)} is involutive if j\geq r_{0} .

Note that the construction of Q_{i} depends on the choice of [mathring]_{i}_{\gamma} . A
different choice gives a conjugate bundle R_{a}(Q_{i}) with a\in\# H_{i-1} .

Note also that for two transitive geometric structures P^{(0)} , P^{\prime(0)} . we
can construct the associated truncated towers Q^{(l)} . Q^{\prime(l)} in such a way
that P^{(0)} and P^{\prime\langle 0)} are equivalent if and only if Q^{(t)} and Q^{\prime(l)} are equivalent
q.e.d.

The above theorem and Theorem 3.6.2 give a general principle to
treat the equivalence problem of transitive geometric structures of order 1.

Higher order geometric structures can be treated by regarding them
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as 1-st order geometric structures on some enlarged base spaces, since to
a (k+1)-th order geometric structure P^{(k)}\subset \mathscr{B}^{(k)}(M) there corresponds in a
natural manner a 1-st order geometric structure on P^{(k-1)} .

For the intransitive case see the next section.

3. 8. Intransitive geometric structures.
3. 8. 0. To study the equivalence problem of geometric structures in

full generality one cannot avoid encountering intransitive geometric struc-
tures and needs to extend the formulation developed in the preceding sec-
tions.

To illustrate this, let us consider a filtered manifold M whose symbol
algebras gr_{x}TM are not all isomorphic to each other. This is equivalent
to saying that the image of the structure function c^{(0)} of \mathscr{B}^{(0)}(M) contains
more than one G^{(0)}(V)-orbits, that is, the induced map from M to the
moduli space of the orbits is not a constant map. Working locally in a
neighbourhood of a regular point, we have a surjective submersion \pi_{N} : M
arrow N such that gr_{x}TM and gr_{y}TM are isomorphic if and only if \pi_{N}(x)=

\pi_{N}(y) . Clearly \pi_{N} makes a part of the invariants of the structure.
In order to get further invariants, we proceed as follows: Let \overline{\mathscr{B}}^{(0)}(M)

be the ordinary first order frame bundle of M and consider a bundle map
x:\overline{\mathscr{B}}^{(0)}(M) -arrow Hom(V. TN)

defined by

\chi(\zeta)v=(\pi_{N})_{*}\zeta(v) for \zeta\in\overline{\mathscr{B}}^{(0)}(M) , v\in V

The map \chi is also called the structure function and satisfies:
\chi(\zeta\alpha)=\chi(\zeta)\circ\alpha for \alpha\in\overline{G}^{(0)}(V) .

We therefore have the induced map from M to the space of \overline{G}^{(0)}(V)-orbits
in Hom(V. TN) , which may be viewed, in a neighbourhood of a generic
point, as giving a surjective submersion \pi_{N} : Marrow N’ with N’ a certain
submanifold of the orbit space. If the surjection N’arrow N is not bijective,
\pi_{N’} is a new invariant and we can repeat the same procedure for \pi_{N’} and
successively until it stabilizes.

With N being eventually replaced by the enlarged one, we may thereby
by assume that the map \chi sends each fibre of \overline{\mathscr{B}}^{(0)}(M) -arrow N to a single
\overline{G}^{(0)}(V)-orbit. Now choose a section [mathring]_{\chi} : Narrow Hom(V. TN) contained in
the image of \chi , and define \hat{P}^{(0)} to be the inverse image of [mathring]_{\chi}(N) by \chi . The
subbundle \hat{P}^{(0)} thus obtained of \overline{\mathscr{B}}^{(0)}(M) is a new invariant determined up
to conjugate depending on the choice of [mathring]_{\chi} .
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It should be noted that \overline{P}^{(0)} may not be a principal subbundle of
\overline{\mathscr{B}}^{(0)}(M) in the usual sense, but a generalized one in the following sense;
its structure group G^{(0)} over x\in M is the isotropy subgroup of \hat{G}^{(0)}(V) at
[mathring]_{\chi}(\pi_{N}(x)) and may therefore change depending on t=\pi_{N}(x)\in N .

It should be also noted that since the restriction of \chi to \hat{P}^{(0)} sends
each fibre of \overline{P}^{(0)}

- N to a single point, it makes N a filtered manifold
with the tangential filtration \{F^{p}TN\} given by F^{p}T_{t}N=\chi(\zeta)F^{p}V for any
\zeta\in\hat{P}^{(0)} projecting to t\in N .

Finally, by projecting \hat{P}^{(0)} to \mathscr{B}^{(0\rangle}(M) , we obtain in an invariant way a
generalized principal subbundle P^{(0)} of \mathscr{B}^{(0)}(M) , which becomes an object
of the next study.

In this way we are led to consider subbundles of \mathscr{B}^{(0)}(M) whose struc-
ture group may vary with some parameters and to generalize the prolon-
gation scheme to a class of such bundles. In the case when the filtration
is trivial, a thorough study was developed in [14]. Here we will not enter
into details, but we will content ourselves only to give a rapid account
how this generalization can be done.

3. 8. 1. We need the notions of N-Lie group and TV-principal fibre
bundle ([28], [14]).

DEFINITION 3. 8. 1. An N-Lie group is a fibred manifold \epsilon_{N} : Garrow N

such that
i) Each fibre G(t)=\epsilon_{N}^{-1}(t) is a Lie group for t\in N .
ii) The mapping G\cross_{N}G\ni(a, b) - ab^{-1}\in G is differentiate,

where G\cross_{N}G denotes the fibre product.

Let (G, N, \epsilon_{N}) and ( \overline{G},\overline{N}, \epsilon-) be N and \overline{N}- Lie groups. We say that
(G, N, \epsilon_{N}) is an subgroup of ( \overline{G},\overline{N}, \epsilon_{\overline{N}}) if there are given a
differentiate mapping h:Narrow\overline{N} and an immersion \iota : Garrow\overline{G}X_{\overline{N}}N such
that \epsilon_{N}\circ\iota=\epsilon_{N} and that \iota|_{G(t)} : \overline{G}(t)arrow\overline{G}(h(t)) is an injective Lie homomor-
phism for all t\in N .

Analogously we have the notions of N-Lie algebra and N-Lie subal-
gebra. Clearly to an N-Lie group (G, N, \epsilon_{N}) one can associate an N-Lie
algebra (\mathfrak{g}, N, \epsilon_{N}) by defining \mathfrak{g}(t) to be the Lie algebra of G(t) .

DEFINITION 3. 8. 2. Let (G, N, \epsilon_{N}) be an TV-Lie group. An N -prin-
cipal fifibre bundle P(M, N, G) over M with structure group (G, N, \epsilon_{N}) is
a fibred manifold \pi:Parrow M endowed with a surjective submersion \pi_{N} : M
arrow N and a right action of G on P:P\cross_{N}G\ni(p, a) - pa\in P such that the
action of G(\pi_{N}(x)) on \pi^{-1}(x) is simply transitive for all x\in M .

The notion of N-principal subbundle is also defined similarly.
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3. 8. 2. Let M be a filtered manifold of depth \mu and of type V . Let
N be a filtered manifold and suppose that there is given a surjection \pi_{N} :
Marrow N such that (\pi_{N})_{*}T^{p}M=T^{p}N . We wish to define a class of N-prin-
cipal subbundles of \mathscr{B}^{(k)}(M) called adapted.

First we note that the structure function \chi:\overline{\mathscr{B}}^{(0)}(M)arrow Hom(V, TN)

induces the structure function
\chi^{(k)} : \mathscr{B}^{(k)}(M) -arrow Hom(V. TN)^{(k)}=F^{0}Hom(V. TN)/F^{k+1} .

In fact, for z^{k}\in \mathscr{B}^{(k)}(M) take \zeta^{k}\in\overline{\mathscr{B}}^{(k)}(M) which projects to z^{k} , and
let \zeta^{0}\in\overline{\mathscr{B}}^{(0)}(M) be the projection of \zeta^{k} . Clearly \chi(\zeta^{0}) preserves the filtra-
tion, that is, belongs to F^{0}Hom(V, TN) . We then set

\chi^{(k)}(z^{k})\equiv\chi(\zeta^{0}) mod F^{k+1} .

which is, as easily seen, well-defined and hence defines the map \chi^{(k)} .
It should be remarked that if k\geq\mu-1 , where \mu denotes the depth of

M, then Hom(V. TN)^{(k)}=F^{0}Hom(V. TN) and \chi^{(k)} coincides with the pull-
back of the structure function \chi of \overline{\mathscr{B}}^{(0)}(M) by the projection \mathscr{B}^{(k)}(M) -arrow

\overline{\mathscr{B}}^{(0\rangle}(M) .
We also note that G^{(k)}(V) acts on Hom(V. TN)^{(k)} to the right in the

natural manner and we have:

\chi^{(k)}(za)=\chi^{(k)}(z) . a for a\in G^{(k)}(V) , z\in \mathscr{B}^{(k)}(M) .

If P^{(k)} is a subbundle of \mathscr{B}^{(k)}(M) , the restriction of \chi^{(k)} to P^{(k)} is also
denoted by \chi^{(k)} and called the structure function (of the first kind) of P^{(k)} .

We say that the structure function \chi^{(k)} is N-constant if it is constant along
each fibre of P^{(k)} -arrow N.

DEFINITION 3. 8. 3. An N -principal subbundle P^{(k)} of \mathscr{B}^{(k)}(M) is
called adapted (abbreviated adapted TV-bundle) if the following conditions
are satisfied ((ii) and (iii) being void if k=0):

i) The structure function \chi^{(k)}ofP^{(k)} is N-contant-
ii) P^{(k-1)}(=P^{(k)}/F^{k}) is an adapted N-principal subbundle of

.\mathscr{B}^{(k-1\rangle}/(M) .
iii) P^{(k)} is an N-principal subbundle of \# P^{(k-1)} .

To complete the definition above we have to define the functor \# . Let
P^{(k)}(M, G^{(k)}) be an adapted iV-subbundle of \mathscr{B}^{(k)}(M) . By definition the
structure function \chi^{(k)} of P^{(k)} is N-constant and therefore considered as a
section of the bundle Hom(V, TN)^{(k)} over N. Choose a section \chi of the
bundle F^{0}Hom(V, TN) such that \chi projects to \chi^{(k)} . Now we define \overline{\#}P^{(k)}
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to be the subset of \overline{\mathscr{B}}^{(k+1)}(M) consisting of all

\xi^{k+1} : V\oplus \mathfrak{g}^{(k)}(V)arrow T_{x^{k}}\mathscr{B}^{(k)}(M)

with \xi^{k+1}\in\overline{\mathscr{B}}^{(k+1)}(M) and x^{k}\in P^{(k)} such that

i) \xi^{k+1}(V\oplus \mathfrak{g}^{(k)}(t))\subset T_{\chi k}P^{(k)} ,

ii) \chi\overline{\mathscr{H}}^{(0)}(M)(\xi^{0})=\chi(l) ,

where \xi^{0} and t denote the projections of \xi^{k+1} to \overline{\mathscr{B}}^{(0)}(M) and N respective-
ly.

We note that if k\geq\mu-1 then the condition ii ) above is automatically
satisfied. If k<\mu-1 , the construction of \# P^{(k)}\wedge depends on the choice of
the lift \chi of \chi^{(k)} .

We then define: \# P^{(k)}=\overline{\#}P^{(k)}/F^{k+2} .
Now let us describe the structure group of \# P^{(k)} and \# P^{(k)}\wedge . We fix an

surj ection

x:V\cross Narrow TN

in view of the fact that the structure function of an adapted N-subbundle
is N-constant.

DEFINITION 3. 8. 4. An iV-Lie subgroup (G^{(k)}. N, \epsilon_{N}) of G^{(k)}(V) is
adaped if the following conditions are satisfied ((ii) and (iii) being void if
k=0) :

i) \chi^{(k)}(t)\cdot a^{(k)}=\chi^{(k)}(t) for t\in N , a^{(k)}\in G^{(k)}(t) .
ii) G^{(k-1)}(=G^{(k)}/F^{k}) is an adapted \^A-Lie subgroup of G^{(k-1)}(V) .
iii) G^{(k)} is an \^A-Lie subgroup of \# G^{(k-1)} .

To define the functor \# we prepare the following two formulas.
Let G be a Lie group, and let G\cross N denote the sheaf of sections of

the trivial group bundle G\cross N -arrow N. We define a differential operator

D:\underline{G\cross N}arrow Hom\underline{(TN,\mathfrak{g})}

by

D\underline{a}=\underline{a}^{*}\omega for a\in\underline{G\cross N} ,

where \omega denotes the Maurer-Cartan from of G . Composed with \chi : V\cross N

arrow TN, it gives an operator

D_{\chi} : \underline{G\cross N}arrow\underline{Hom(V,\mathfrak{g})\cross N} .

Then we have:
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(^{*}) D_{\chi}(\underline{a}\cdot\underline{b})=Ad(\underline{b})^{-1}\circ D_{\chi}\underline{a}+D_{\chi}\underline{b}

for \underline{a} , \underline{b}\in\underline{G\cross N} .
Next let us define a map

\delta:\hat{G}^{(k+1)}(V) - Hom(V, \mathfrak{g}^{(k)}(V)) .

Recalling that \overline{G}^{(k+1)}(V)\subset F^{0}GL(V\otimes \mathfrak{g}^{(k)}(V)) , we set
(^{**}) (\delta\alpha^{k+1})(v)=Ad(a^{k})^{-1}(\pi_{\mathfrak{g}}\alpha^{k+1}(v))

for v\in V . \alpha^{k+1}\in\overline{G}^{(k+1)}(V) , where \pi_{\mathfrak{g}} denotes the projection V\oplus \mathfrak{g}^{(k)}(V) -arrow

\mathfrak{g}^{(k)}(V) and a^{k} denotes the image of \alpha^{k+1} by the projection \overline{G}^{(k+1)}(V)arrow

G^{(k)}(V) . Then we have:
(^{***}) \delta(\alpha^{k+1}\cdot\beta^{k+1})=Ad(b^{k})^{-1}\circ\delta\alpha^{k+1}\circ\beta^{0}+\delta\beta^{k+1}

for \alpha^{k+1} . \beta^{k+1}\in\overline{G}^{(k+1)}(V) , where b^{k} and \beta^{0} denote the projections of \beta^{k+1}

to G^{(k)}(V) and \overline{G}^{(0)}(V) respectively.
Now let (G^{(k)}, N, \epsilon_{N}) be an adapted iV-Lie subgroup of G^{(k)}(V) . We

define a subsheaf \#\underline{G}^{(k)}\wedge of \underline{\hat{G}^{(k+1)}(V)\cross N} as follows: \underline{\alpha}^{k+1}\in\overline{\#}G^{(k)} for \underline{\alpha}^{k+1}\in

\overline{G}^{(k+1)}(V)\cross N if and only if

i) \underline{a}^{k}\in\underline{G}^{(k)} ,
ii) \delta\underline{\alpha}^{k+1}-D_{\chi}\underline{a}^{k}\in\underline{Hom(V,\mathfrak{g})(k)},
iii) \chi\cdot\underline{\alpha}^{k+1}=\chi ,

where \underline{\alpha}^{k} denotes the section of \underline{G^{(k)}(V)\cross N} obtained as projection of \underline{\alpha}^{k+1} .

By virtue of (^{*}) and (^{***}) , we see that \#\underline{G}^{(k)}\wedge is a sheaf of groups.
Moreover, on account of the exact sequence (recall (2. 7))

0– F^{k+1}Hom(V. E^{(k)}(V))arrow\ell\overline{G}^{(k+1)}(V) -arrow G^{(k)}(V)–1

with \iota given by \iota(\alpha)=1+\alpha , we have the following exact sequence:

0arrow\underline{F^{(k+1)}Hom(V,E^{(k)})^{\chi}}arrow\#\underline{G}^{(k)}\wedgearrow\underline{G^{(k)}}arrow 1 ,

where E^{(k)}=V\oplus \mathfrak{g}^{(k)} and Hom(V. E^{(k)})^{\chi} denotes the vector bundle over N
whose fibre over t\in N consists of all \alpha\in Hom(V, E^{(k)}(t)) such that \chi(t)\circ

Pr_{V}\circ\alpha=0 , where Pr_{V} denotes the projecfion E^{(k)}arrow V Note that F^{k+1}

Hom(V, E^{(k)})^{\chi}=F^{k+1}Hom(V. E^{(k)}) if k\geq\mu-1 .
It then follows that there exists uniquely an N-Lie subgroup \# G^{(k)}\wedge of

\overline{G}^{(k+1)}(V) such that \overline{\#}\underline{G}^{(k)}=\underline{\# G^{(k)}\wedge}. Finally we define: \# G^{(k)}=\# G^{(k)}/F^{k+2}\wedge-

which is an N-Lie subgroup of G^{(k+1)}(V) . Note that we have the follow-
ing commutative diagram with exact rows.
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0—- F^{k+1}Hom(V, E^{(k)})^{\chi}arrow\overline{\#}G^{(k)}arrow G^{(k)}arrow 1

\downarrow
\downarrow ||

0– Hom(grV. grE^{(k)})_{k+1}^{\chi} – \# G^{(k)} – G^{(k)} -arrow 1

It should be remarked that the action of (\overline{\#}G^{(k)})(t) on E^{(k)}(V) does
not necessarily leave invariant the subspace E^{(k)}(t)(=V\oplus \mathfrak{g}^{(k)}(t)) , while
Ker\chi(t)\oplus \mathfrak{g}^{(k)}(t) is an invariant subspace.

If P^{(k)}(M, G^{(k)}) is an adapted iV-Lie subgroup of \mathscr{B}^{(k)}(M) , then the
structure groups of \# P^{(k)}\wedge and \# P^{(k)} are \overline{\#}G^{(k)} and \# G^{(k)} respectively.

To understand that the inductive definitions above are all consistent,

it would be enough to show that \overline{\#}G^{(k)} acts on \overline{\#}P^{(k)} . For (\xi^{k+1}, \alpha^{k+1})\in

\overline{\#}P^{(k)}\cross_{N}\overline{\#}G^{(k)} . let \eta^{k+1} be given by the following commutative diagram:

V\oplus \mathfrak{g}^{(k)}(V)\underline{\xi^{k+1}} T_{z^{k}}\mathscr{B}^{(k)}(M)

a^{k+1}| \downarrow R_{a^{k}*}

V\oplus \mathfrak{g}^{(k)}(V)\underline{\eta^{k+1}}T_{z^{k}a^{k}}\mathscr{B}^{(k)}(M) ,

where as usual z^{k} and a^{k} denote the projections of \xi^{k+1} and \alpha^{k+1} on P^{(k)}

and G^{(k)} respectively. We then define: \xi^{k+1}\cdot\alpha^{k+1}=\eta^{k+1} . To see that this
actually defines the action of \# G^{(k)}\wedge on \overline{\#}P^{(k)} , we have to verify, among
others, that \eta^{k+1}\in\overline{\#}P^{(k)} . For that, let us show

(^{*}) \eta^{k+1}(V)\subset T_{z^{k}a^{k}}P^{(k)} .

Take a section \underline{\alpha}^{k+1}\in\#\underline{G}^{(k)}\wedge such that \underline{\alpha}^{k+1}(t_{0})=\alpha^{k+1} . where t_{0}=\pi_{N}(z^{k}) .
Then

(\delta\underline{\alpha}^{k+1}-D_{\chi}\underline{a}^{k})(V)\subset \mathfrak{g}^{(k)} .

Therefore
Ad(\underline{a}^{k})(\delta\underline{\alpha}^{k+1}-D_{\chi}\underline{a}^{k})(V)\subset \mathfrak{g}^{(k)} ,

and therefore
(\underline{\alpha}^{k+1}-Ad(\underline{a}^{k})D_{\chi}\underline{a}^{k})(V)\subset V\oplus \mathfrak{g}^{(k)} .

Putting

\overline{\alpha}^{k+1}=\underline{\alpha}^{k+1}-Ad(\underline{a}^{k})D_{\chi}\underline{a}^{k} .

we have
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(R_{\underline{a}_{*}^{k}}\circ\xi^{k+1}\circ\tilde{\alpha}^{k+1}(t_{0}))v\in T_{z^{k}a^{k}}P^{(k)} for v\in V .

On the other hand, we have
(R_{\underline{a^{k}}*}\circ\xi^{k+1}\circ\tilde{\alpha}^{k+1}(t_{0}))v

=R_{\underline{a}*}^{k}\circ\xi^{k+1}\circ\{\underline{\alpha}^{k+1}(t_{0})-Ad(\underline{a}^{k}(t_{0}))(D_{\chi}\underline{a}^{k})(t_{0})\}v

=R_{\underline{a^{k}}*}\{(\xi^{k+1}\circ\underline{\alpha}^{k+1}(t_{0}))v-[Ad(\underline{a}^{k}(t_{0}))(D_{\chi}\underline{a}^{k})(t_{0})(v)]_{z^{k}}^{\sim}\}

=(R_{a*}k\circ\xi^{k+1}\circ\alpha^{k+1})v+[(D_{\chi}\underline{a}^{k})(t_{0})(\alpha^{0}v)]_{za}^{\sim}kk-[(D_{\chi}\underline{a}^{k})(t_{0})v]_{za}^{\sim}kk

=(R_{a^{k}*}\circ\xi^{k+1}\circ\alpha^{k+1})v (since \alpha^{0}v=v),

which proves (^{*}) . The rest of the verification is now straightforward.
3. 8. 3 The prolongation scheme being well constructed, we can

develop the theory analogously as in the transitive case. We give the
outline without proof.

Let (P^{(k)}, M, N) be an adapted N-principal subbundle of \mathscr{B}^{(k)}(M) .
Let

\gamma^{[k]} : \mathscr{B}^{(k)}(M) - Hom(\wedge^{2}E^{(k)}(V), E^{(k)}(V))^{[k]}

\chi^{(k)} : \mathscr{B}^{(k)}(M) -arrow Hom(V. TN)^{(k)}

be the structure functions of \mathscr{B}^{(k)}(M) . Let \iota : P^{(k)}--, \mathscr{B}^{(k)}(M) be the
canonical injection. The pull-backs \iota^{*}\gamma^{[k]} and \iota^{*}\chi^{(k)} are called the struc-
ture functions of P^{(k)} and denoted also by \gamma^{[k]} and \chi^{(k)} .

PROPOSITION 3. 8. 1. If the structure functions \gamma^{[k]} of an adapted
N-principal subbundle P^{(k)}(M, G^{(k)}, N) is N-constant, then gr(E^{(k)}(t) ,
\gamma^{[k]}(t)) is a truncated transitive graded Lie algebra for all t\in N.

In this case, we can therefore define the cohomology group
H_{p}(grE^{(k)}(t))_{r} for t\in N , and we can introduce the notion of involutivity:

DEFINITION 3. 8. 5. An adapted N-principal subbundle P^{(k)}(M, G^{(k)} ,
N) is called involutive if the following conditions are satisfied:

i) The structure function \gamma^{[k]} is N-constant.
ii) H^{2}(grE^{(k)}(t))_{r}=0 for r>k+1 and for all t\in N .
iii) k\geq\mu-1

We remark that in the above condition iii ), \mu can be replaced by

\lambda={\rm Min}\{k\geq 1| Hom(V. TN)=0\} .

THEOREM 3. 8. 1. For an involutive adapted N-principal subbundle
P^{(k)} of \mathscr{B}^{(k)}(M) , we can construct, uniquely up to conjugate, an N-princi-
pal subbundle P of \mathscr{B}(M) with N- constant structure functions such that
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P/F^{k+1}=P^{(k)} .

This theorem gives a solution (at least formally) to the equivalence
problem of involutive adapted N-principal subbundles P^{(k\rangle} . The invar-
iants of P^{(k)} are completely determined by the structure group G^{(k)} and the
structure functions c^{[k]} and \chi .

However, contrary to the transitive case or to the case of trivial filtra-
tion, the analytic theorem such as Theorem 3. 6. 2. or Theorem 8. 1 in [14]
does not seem to hold. The proof of Theorem 3. 6. 2 breaks in this intran-
sitive case, since the dimensions of the fibres P_{tr}^{(k)} -arrow N may not be con-
stant. The proper category will be the formal Gevrey class (see [18]).

The importance of the notion of involutivity and Theorem 3. 8. 1 also
lies in the fact that a theorem similar to Theorem 9. 1 of [14] holds in this
case of filtered manifolds: Roughly speaking, the equivalence problem of
any geometric structure on a filtered manifold M can be generically
reduced to that of a certain involutive iV-subbundle of \mathscr{B}(k\rangle(M) .

3. 9. An application to Monge-Amp\‘ere equations.
To illustrate the general procedure to the equivalence problem we will

prove the following:

THEOREM 3. 9. 1. A Monge-Amp\‘ere equation is locally contact equiva-

lenl to the equation \frac{\partial^{2}z}{\partial x\partial y}=0 if its two characterstic systems are not con-

founded and if each of them has two independent fifirst integrals.

The origin of this theorem goes back to S. Lie (cf. [7], [10]). Follow-
ing our general method developed in the preceding sections, we will give
another proof of the theorem.

First of all recall that, according to Morimoto [13], to consider a
Monge-Amp\tilde{e}re equation having two distinct characteristic systems is
equivalent to giving a data (M, D, \xi, \eta) , where M is a differentiate rank
fold of dimension 5, D a contact structure on M, and \xi , \eta subbundles of D
of rank 2 satisfying:

i) D=\xi\oplus\eta

ii) d\omega(\xi, \eta)=0 for a local contact form \omega defining D.

The subbundles \xi , \eta are the characteristic systems associated with the
Monge-Amp\‘ere equation. Note that under the above conditions the de-
rived systems of \xi , \eta are of rank 3, that is, there exist subbundles \xi’\eta’ of
TM of rank 3 such that \underline{\xi’}=\underline{\xi}+[\underline{\xi}, \underline{\xi}] , \underline{\eta}’=\underline{\eta}+[\underline{\eta}, \underline{\eta}] . Therefore saying that
each of the characteristic systems has two independent first integrals is
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equivalent to saying:

iii) The derived systems \xi’ . \eta’ are completely integrable.

Let us call (M, D, \xi, \eta) a M-A system of hyperbolic type if it satisfies the
above two conditions i) -ii ) and of wave type if it satisfies moreover iii ).
Then we can reformulate the above theorem as follws:

THEOREM 3. 9. 2. Any two M-A systems of wave type are locally
equivalent, that is, for such (M, D, \xi, \eta) and (M’D’\xi_{r}’,\eta’) there exists a
local diffeomorphism from M to M’ such that f_{*}D=D’f_{*}\xi=\xi’f_{*}\eta=\eta’

Since the M-A system corresponding to the equation \frac{\partial^{2}z}{\partial x\partial y}=0 is, as
easily seen, of wave type, this theorem is equivalens to the preceding one.

To prove the theorem we first show that to each M-A system corre-
sponds a first order geometric structure on a contact manifold.

Let (M, D, \xi, \eta) be a M-A system of hyperbolic type. Denote by M
the contact manifold (M, D) regarded as a filtered manifold (i.e., T^{-2}M=

TM, T^{-1}M=D) . Let \mathfrak{g}_{-}=\mathfrak{g}_{-2}\oplus \mathfrak{g}_{-1} be the Heisenberg Lie algebra of dimen-
sion 5 and take bases \{e_{0}\} of \mathfrak{g}_{-2} and { e_{1} , e2,e_{3} ,e_{4}} of \mathfrak{g}_{-1} such that

[e_{1}, e_{2}]=[e_{3}, e_{4}]=e_{0}

with the other brackets trivial. Set
\mathfrak{g}_{-1}’=span\{e_{1}, e_{2}\} , \mathfrak{g}_{-1}’=span\{e_{3}, e_{4}\} .

Then for any x\in M there exists an isomorphism (of the graded Lie alge-
bras)

z:\mathfrak{g}-arrow grT_{x}M

such that z(\mathfrak{g}_{-1}’)=\xi_{\chi} , z(\mathfrak{g}_{-1}’)=\eta_{x} . Let P^{(0)} be the set of all such isomor-
phisms. Then P^{(0)} can be regarded as a subbundle of the first order frame
bundle \mathscr{B}^{(0)}(M) , whose structure group is given by

G_{0}=\{\phi\in Aut(\mathfrak{g}-)|\phi(\mathfrak{g}’-1)\subset \mathfrak{g}_{-1}’, \phi(\mathfrak{g}_{-1}^{rr})\subset \mathfrak{g}_{-1}’\} .

Its Lie algebra \mathfrak{g}_{0} has the following matrix representation:

\{\begin{array}{lllll}2\lambda 0 0 0 00 \lambda+a b 0 00 c \lambda-a 0 00 0 0 \mathcal{A}+a’ b’0 0 0 c’ \lambda-a’\end{array}\}

Thus we have a direct sum decomposition:
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\mathfrak{g}_{0}=sp(\mathfrak{g}_{-1}’)\oplus sp(\mathfrak{g}_{-1}’)\oplus_{30} ,

where 30 is the center of dimension 1.
Note that two M-A systems are equivalent if and only if so are the

corresponding geometric structures.
Now let (M, D, \xi, \eta) be a M-A system of wave type and P^{(0)}(M, G_{0})

the corresponding subbundle of \mathscr{B}^{(0)}(M) . Let us determine the invariants
of P^{(0)} .

From the construction of P^{(0)} , it is clear that the structure function \gamma^{(0)}

of P^{(0)} just represents the structure of the graded Lie algebra \mathfrak{g}_{-}\oplus \mathfrak{g}_{0} . Thus
it is constant.

Next we consider prolongation \# P^{(0)}\subset \mathscr{B}^{(1)}(M) . Let \gamma^{(1\rangle} be the struc-
ture function of \# P^{(0)} . As in (3. 13) we decompose \gamma^{(1)} as \gamma^{(1)}=\beta^{(1)}+c^{(1\rangle}

with c^{(1)} : \# P^{(0)} – Hom(\wedge^{2}\mathfrak{g}_{-}, E(\mathfrak{g}_{0}))^{(1)} . We make a further decomposition
of c^{(1)} into homogeneous components:

c^{(1)}=c_{0}+c_{1} ,

where c_{i} takes its values in Hom(\wedge^{2}\mathfrak{g}_{-}, \mathfrak{g}-)_{i} . Clearl Co represents the
bracket of \mathfrak{g}_{-} .

LEMMA. For any z^{0}\in P^{(0)} there exists z^{1}\in\# P^{(0)} with \pi(z^{1})=z^{0} such
that c_{1}(z^{1})=0 .

PROOF: Let us denote by \tilde{G}_{1} the strucure group of the fibring \# P^{(0)} -arrow

P^{(0)} and by \overline{\mathfrak{g}}_{1} its Lie algebra. On account of (2. 7) they are abelian and
\tilde{\mathfrak{g}}_{1}\cong Hom(\mathfrak{g}_{-}, \mathfrak{g}_{-}\oplus \mathfrak{g}_{0})_{1} .

Recalling (3. 36), we have, for A\in\tilde{\mathfrak{g}}_{1} ,

c^{(1)}(z(1+A))=c^{(1)}(z)+\partial A ,

where

(\partial A)(x, y)=[x, A(y)]+[A(x), y]-A([x, y])

for x , y\in \mathfrak{g}-.

We first show that there exists z^{1}\in\# P^{(0)} with \pi(z^{1})=z^{0} such that
c_{1}(z^{1})(\mathfrak{g}_{-1}\wedge \mathfrak{g}_{-1})=0 . Take any point w\in\# P^{(0)} over z^{0} . and write

\{

c_{1}(w)(e_{1}\wedge e_{2})=u’+u’

c_{1}(w)(e_{3}\wedge e_{4})=v’+v’

with u’ . v’\in \mathfrak{g}_{-1}’ and u’ . v’\in \mathfrak{g}_{-1}’ . Define A\in Hom(\mathfrak{g}-2, \mathfrak{g}_{-1}) by

A(e_{0})=u^{\gamma\gamma}+v’
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Then we have

\{

c_{1}(w(1+A))(\mathfrak{g}’-1\wedge \mathfrak{g}_{-1}’)\subset \mathfrak{g}’-1

c_{1}(w(1+A))(’\mathfrak{g}-1\wedge \mathfrak{g}_{-1}’)\subset \mathfrak{g}_{-1}^{rr} .

Now we define \mathfrak{g}b^{1)} by the following exact sequence:

0-arrow \mathfrak{g}b^{1)}arrow Hom(\mathfrak{g}_{-1}, \mathfrak{g}_{0})arrow Hom(\wedge^{2}\mathfrak{g}_{-1}, \mathfrak{g}_{-1})\partial ,

where \partial is given by

(\partial\varphi)(x, y)=\varphi(x)y-\varphi(y)x

for \varphi\in Hom(\mathfrak{g}_{-1}, \mathfrak{g}_{0}) , x , y\in \mathfrak{g}_{-1} . Since \mathfrak{g}_{0}=sp(\mathfrak{g}_{-1}’)\oplus sp(\mathfrak{g}_{-1}’)\oplus 30 , an easy calcu-
lation shows that

\mathfrak{g}b^{1)}=sp(\mathfrak{g}_{-1}’)^{(1)}\oplus sp(\mathfrak{g}_{-1}’)^{(1)} ,

where
sp(\mathfrak{g}_{-1}’)^{(k)}=Hom(S2\mathfrak{g}_{-1}, sp’(\mathfrak{g}_{-1}’)^{(k-2)})\cap Hom(\mathfrak{g}_{-1}’, sp(\mathfrak{g}_{-1}’)^{(k-1)}) ,

the usual k-th prolongation of Sp(\mathfrak{g}_{-1}’) (see e.g., [21]). In particular we
have dim \mathfrak{g}b^{1)}=8 . On the other hand the image of \partial is contained in

W=\{\alpha\in Hom(\wedge^{2}\mathfrak{g}-1, \mathfrak{g}_{-1})|\alpha(\wedge^{2}\mathfrak{g}_{-1}’)\subset \mathfrak{g}’-1, . \alpha(\wedge^{2}\mathfrak{g}_{-1}’)\subset \mathfrak{g}_{-1}’\} .

Noting that dim W=20 and dim Hom(\mathfrak{g}_{-1}, \mathfrak{g}_{0})=28 , we conclude that
\partial Hom(\mathfrak{g}_{-1}, \mathfrak{g}_{0})=W , Hence there exists B\in Hom(\mathfrak{g}_{-1}, \mathfrak{g}_{0}) such that

c_{1}(w(1+A)(1+B))(\mathfrak{g}_{-1}\wedge \mathfrak{g}_{-1})=0 .

Thus we have found z^{1}\in\# P^{(0)} with \pi(z^{1})=z^{0} such that c_{1}(z^{1})(\mathfrak{g}_{-1}\wedge \mathfrak{g}_{-1})=0 .
Next we show that this implies moreover c_{1}(z^{1})(\mathfrak{g}_{-1}\wedge \mathfrak{g}_{-2})=0 by using

the fundamental identity. In fact, by Proposition 3. 4. 1. we have
\partial c_{1}(z^{1})\equiv(\tilde{\gamma}^{[0]}(z^{0})\circ\overline{\gamma}^{[0]}(z^{0}))|_{V} (mod F^{2}) .

But in this case clearly the right hand side vanishes, hence \partial c_{1}(z^{1})=0 . In
particular we have

\mathfrak{S}c_{1}(z^{1})([x_{1}, x_{2}], x_{3})=0

for x_{i}\in \mathfrak{g}_{-1} , from which follows immediately that c_{1}(z^{1})(\mathfrak{g}_{-1}\wedge \mathfrak{g}_{-2})=0 . Hence
c_{1}(z_{1})=0 . Thus the lemma is proved.

By the above lemma, we see that the image of \gamma^{(1)} is contained in a
single G^{(1\rangle_{-}}orbit through [mathring]_{\gamma}^{(1)} , where we set [mathring]_{c}^{(1)}=c_{0} and [mathring]_{\gamma}^{(1)}=\beta^{(1)}+[mathring]_{c}^{(1)} . If
we set
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P^{(1)}=\{z^{1}\in\# P^{(0)}|\gamma^{(1)}(z^{1})=[mathring]_{\gamma}^{(1)}\} ,

then it is an adapted subbundle of \# P^{(0)} and P^{(1)} -arrow P^{(0)} is a principal fibre
bundle. Let G_{1} denote its structure group and \mathfrak{g}_{1} the Lie algebra of G .
Then we see easily that

\mathfrak{g}_{1}\cong sp(\mathfrak{g}_{-1}’)^{(1)}\oplus sp(\mathfrak{g}_{-1}’)^{(1)} .

Now we proceed to the second order structure \# P^{(1)} . Denote by c^{(2)}

its structure function, and decompose it into homogeneous components:

c^{(2)}=c_{0}+c_{1}+c_{2} .

By construction, cO represents the bracket of \mathfrak{g}_{-} , c_{1}=0 , and c_{2} takes it
values in Hom(\wedge^{2}\mathfrak{g}_{-}, \mathfrak{g}_{-}\oplus \mathfrak{g}_{0})_{2} . Writing down the structure equation of
\mathscr{B}P^{(2)} and taking account of our assumption that \xi’ . \eta’ are completely inte-
grable, we see that
(^{*}) c_{2}(z)(\mathfrak{g}_{-2}\wedge \mathfrak{g}_{-1}’)\subset \mathfrak{g}_{-1}’ , c_{2}(z)(\mathfrak{g}_{-2}\wedge \mathfrak{g}_{-1}’)\subset \mathfrak{g}_{-1}^{rr}

for any z\in P^{(2)} .
Let us denote by \tilde{G}_{2} the structure group of the fibring \# P^{(1\rangle}arrow P^{(1)} and

by \tilde{\mathfrak{g}}_{2} its Lie algebra. Then
\tilde{\mathfrak{g}}_{2}\cong Hom(\mathfrak{g}_{-}, \mathfrak{g}_{-}\oplus \mathfrak{g}_{0}\oplus \mathfrak{g}_{1})_{2}

=Hom(\mathfrak{g}_{-2}, \mathfrak{g}_{0})\oplus Hom(\mathfrak{g}_{-1}, \mathfrak{g}_{1}) .

On account of (^{*}) and the formula (3. 36), we see that for any z^{1}\in P^{(1)}

there exists z^{2} with \pi(z^{2})=z^{1} such that

\{

c_{2}(z^{2})(e_{0}, x)=0 x\in \mathfrak{g}_{-1}’

c_{2}(z^{2})(e_{0}, y)=\lambda y y\in \mathfrak{g}_{-1}’

for some \lambda\in R . (In fact, for any w^{2}\in\# P^{(1)} , we can find \alpha\in Hom(\mathfrak{g}_{-2}, \mathfrak{g}_{0}) so
that z^{2}(=w^{2}(1+\alpha)) satisfies the above condition.)

Now in the fundamental identity:

\partial c_{2}(z^{2})\equiv(\overline{\gamma}^{[1]}(z^{2})\circ\overline{\gamma}^{[1]}(z^{2}))|_{V} (mod F^{3}) ,

again the right-hand side vanishes because c_{1}=0 . Hence \partial c_{2}(z^{2})=0 .
From \partial c_{2}(z^{2})(x, y, e_{0})=0 , we deduce easily that

c_{2}(z^{2})(x, y)\in \mathfrak{h}_{0}=sp(\mathfrak{g}_{-1}’)\oplus sp(\mathfrak{g}_{-1}’)

for any x , y\in \mathfrak{g}_{-1}’ . From \partial c_{2}(z^{2})(x_{1}, x_{2}, x_{3})=0 for x_{i}\in \mathfrak{g}_{-1} , we see easily that
\lambda=0 . Therefore
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c_{2}(z^{2})(\mathfrak{g}_{-2}\otimes \mathfrak{g}_{-1})=0 .

Moreover this implies c_{2}(z^{2})\in Hom(\wedge^{2}\mathfrak{g}_{-1}, \mathfrak{h}_{0}) .

Now consider the following sequence:

Hom(\mathfrak{g}_{-1}, \mathfrak{g}_{1})arrow Hom(\wedge^{2}\mathfrak{g}_{-1}, \mathfrak{h}_{0})arrow Hom(\wedge^{3}\mathfrak{g}_{-1}, \mathfrak{g}_{-1})\partial\partial ,

which is, as easily seen, exact. By the above argument c_{2}(z^{2})\in Hom
(\wedge^{2}\mathfrak{g}_{-1}, \mathfrak{h}_{0}) and closed. Hence c_{2}(z^{2})=\partial\beta for some \beta\in Hom(\mathfrak{g}_{-1}, \mathfrak{g}_{1}) . This
shows that for any z^{1}\in P^{(1)} we can choose z^{2}\in\# P^{(1)} with \pi(z^{2})=z^{1} so as to
get c_{2}(z^{2})=0 .

Put
[mathring]_{c}^{(2)}=c_{0} and [mathring]_{\gamma}^{(2)}=\beta^{(2)}+[mathring]_{c}^{(2)} .

and set
P^{(2)}=\{z^{2}\in\# P^{(1)}|\gamma^{(2)}(z^{2})=[mathring]_{\gamma}^{(2)}\} .

Then P^{(2)} -arrow P^{(1)} is surjective and P^{(2)} is an adapted subbundle of \mathscr{B}^{(2)}(M)

with constant structure function [mathring]_{\gamma}^{(2)} .

LEMMA. P^{(2)} is involutive.

PROOF: Let us denote by G^{(2)} the structure group of P^{(2)} -arrow M , and
by \mathfrak{g}^{(2)} its Lie algebra. It is easy to see that the prolongation of the trun-
cated graded Lie algebra gr(\mathfrak{g}_{-}\oplus \mathfrak{g}^{(2)}) is isomorphic to \mathfrak{g}=\bigoplus_{p\geq-2}\mathfrak{g}_{p} , where

\mathfrak{g}_{0}=sp(\mathfrak{g}_{-1}’)\oplus sp(\mathfrak{g}_{-1}^{rr})\oplus_{30}

\mathfrak{g}_{p}=sp(\mathfrak{g}’-1)^{(p)}\oplus sp(\mathfrak{g}_{-1}’)^{(p)} (p>0) .

Now we claim
H^{2}(\mathfrak{g}_{-}, \mathfrak{g})_{r}=0 for r\geq 3 .

In fact, let \omega\in Hom(\wedge^{2}\mathfrak{g}-, \mathfrak{g})_{r} and suppose that \partial\omega=0 . Write

\omega=\alpha+\beta

with \alpha\in Hom(\mathfrak{g}-2\otimes \mathfrak{g}-1, \mathfrak{g}_{r-s}) and \beta\in Hom(\wedge^{2}\mathfrak{g}_{-1}, \mathfrak{g}_{r-2}) . From \partial\omega(x, y, e_{0})=0

for x , y\in \mathfrak{g}_{-1} , it follows that

[x, \alpha(y, e_{0})]+[y, \alpha(e_{0}, x)]+[e_{0}, \beta(x, y)]=0 .

If r\geq 3 , we have [ e_{0} , \beta[x, y)]=0 . From this we see that there exists \alpha’\in

Hom(\mathfrak{g}_{-2}, \mathfrak{g}_{r-2}) such that
\alpha’(e_{0})=\alpha(e_{0} , \cdot ) .
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Put \omega’=\omega-\partial\alpha’ , then \omega’\in Hom(\wedge^{2}\mathfrak{g}_{-1}, \mathfrak{g}_{-2}) and \partial\omega’=0 . By the well-known
fact that sp(V) is involutive ([21]), we can find \beta’\in Hom(\mathfrak{g}_{-1}, \mathfrak{g}_{r-1}) such
that \partial\beta’=\omega’ This proves that H^{2}(\mathfrak{g}_{-}, \mathfrak{g})_{r}=0 for r\geq 3 . Hence P^{(2)} is
involutive.

Thus, starting from any M-A system of wave type, we have con-
structed an involutive truncated tower P^{(2)} with same constant structure
function [mathring]_{\gamma}^{(2)} . Therefore, under the assumption of analyticity, Theorem
3. 9. 2 follows from Theorem 3. 6. 2.

REMARK 3. 9. 1. In [13], we gave an outline of the proof of Theorem
3. 9. 2. on the basis of the usual method of G-structures. The proof given
here based on the weighted frame bundles is more natural.

REMARK 3. 9. 2. The classical proof of Theorem 3. 9. 1 (see [7], [10])
only uses the contact geometry and the Hamilton-Jacobi theory for the
first order PDEs. Thus the theorem is also valid in C^{\infty}-category. Sys-
tematic studies of C^{\infty}- integrability for transitive geometric structures have
been made by many authors, in particular D. C. Spencer, V. W. Guillemin,
H. Goldschmidt, P. Molino (see e.g. [6], [11]). However, as far as the
author knows, there is not yet a general theory enough to cover the above
theorem in C^{\infty}-category.

3. 10. Cartan connections.
3. 10. 1. Definition of a Cartan connection. Let \mathfrak{l} be a Lie algebra

and \xi a Lie subalgebra of \mathfrak{l} . Let K be a Lie group with Lie algebra \xi

equipped with a representation

\rho:Karrow GL(\mathfrak{l})

such that the differential \rho_{*}:
\xiarrow \mathfrak{g}\mathfrak{l}(\mathfrak{l}) coincides with the adjoint represen-

tation of \xi on \mathfrak{l} . By abuse of notation this representation \rho will be denoted
ed by Ad .

Let P(M, K) be a principal fibre bundle over a manifold M with struc-
ture group K. A Cartan connection in P of type (\mathfrak{l}, K) is a 1-form \theta on
P with values in \mathfrak{l} satisfying the following conditions:

i) \theta:T_{z}P -arrow \mathfrak{l} is an isomorphism for all z\in P .
ii) R_{a}^{*}\theta=Ad(a)^{-1}\theta for a\in K .
iii) \theta(\overline{A})=A for A\in f .

REMARK 3. 10. 1. In the usual definition of a Cartan connection (cf.
[9] ) , there is given moreover a Lie group L with Lie algebra \mathfrak{l} containing
K as a closed Lie subgroup, and the representation \rho of K on \mathfrak{l} is the one
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induced by the adjoint representation of L.

REMARK 3. 10. 2. Our frame bundle \mathscr{B}(M) has the universal property
also for the Cartan connection: Assume that the pair (\mathfrak{l}, K) is formally
effective (see \S 2. 2. 1). By choosing a complementary subspace V of \mathfrak{l} to \xi

we can view (\mathfrak{l}, K, Ad) as a skeleton on V, Then it is clear that a Car-
tan connection (P, M, K, \theta) of type (\mathfrak{l}, K) is a tower on M . Hence, by
Theorem 2. 3. 1, there exists a unique embedding \iota : Parrow \mathscr{B}(M) such that
\iota^{*}\theta_{\mathscr{H}}=\theta .

EXAMPLE. Let L be a Lie group and K a closed Lie subgroup. The
Maurer-Cartan form \theta of L defines in the principal fibre bundle L(L/K,
K) a Cartan connection called the standard Cartan connection.

Let (P, \theta) be a Cartan connection of type (\mathfrak{l}, K) . Since \theta defines an
absolute parallelism on P, we can write the structure equation as follows:

d \theta+\frac{1}{2}[\theta, \theta]+\frac{1}{2}c(\theta\wedge\theta)=0 ,

where c is a Hom(\wedge^{2}\mathfrak{l}, \mathfrak{l})-valued function on P called the curvature. Note
that, as easily seen from the conditions ii ), iii ) of the definition of a Car-
tan connection, we have

c(z)(f, \mathfrak{l})=0 for z\in P .

Therefore we may view the function c as taking values in Hom(\wedge^{2}\mathfrak{l}/f, \{) .
Given two Cartan connections (P, \theta) , (P’\theta’) of type (\mathfrak{l}, K) , we call a

bundle isomorphism (or local diffeomorphism) f : Parrow P’ an isomorphism
(resp. local isomorphism) of the Cartan connections if f^{*}\theta’=\theta . Note
that, as a consequence of the definition, a local isomorphism commutes
locally with the right translations.

All the local invariants of a Cartan connection can be, in principle,
obtained from the curvature and its higher order derivatives (with respect
to the absolute parallelism). In paricular, if the curvature vanishes identi-
cally it is locally isomorphic to the standard Cartan connection.

Thus Cartan connections may be considered as geometric structures
rather nice to deal with, and naturally arises the following question:

Given a geometric structure \Gamma on a manifold M, is it possible to con-
struct a principal bundle over M and a Cartan connection \theta in P in the
way that (P, \theta) is canonically associated with \Gamma ?

We know various examples hitherto obtained: Riemannian, confor-
mal or projective structures (cf. [9]), strongly pseud0-convex CR-struc-



Geometric stmctures on fifiltered manifolds 337

tures [25], and more generally certain geometric structures associated
with simple graded Lie algebras [26].

In the next subsections we shall give a general criterion and a unified
method to construct Cartan connections.

3. 10. 2. Criterion for the existence of Cartan connections. Let \mathfrak{m}=

\bigoplus_{p<0}\mathfrak{m}_{p} be a graded Lie algebra, and M a filtered manifold regular of type

\mathfrak{m} . Let (\mathscr{B}^{(0)}(M, \mathfrak{m}) , M , G^{(0)}(\mathfrak{m})) be the first order reduced frame bundle of
M (see \S 3. 5). Given a principal subbundle (P^{(0)}, M, G_{0}) of \mathscr{B}^{(0)}(M, \mathfrak{m})

with G_{0} a Lie subgroup of G^{(0)}(\mathfrak{m}) , we ask whether there exists a Cartan
connection (P, \theta) naturally associated with P^{(0)} .

Let \mathscr{B}P^{(0)} be the universal prolongation of P^{(0)} and denote G(\mathfrak{m}, G_{0}) its
structure group. The canonical from \theta of \mathscr{B}P^{(0)} takes values in

E(\mathfrak{m}, \mathfrak{g}_{0})=\mathfrak{m}\oplus \mathfrak{g}(\mathfrak{m}, \mathfrak{g}_{0}) ,

where \mathfrak{g}_{0} and \mathfrak{g}(\mathfrak{m}, \mathfrak{g}_{0}) denote the Lie algebras of G_{0} and G(\mathfrak{m}, G_{0}) respec-
tively. Then our (\mathscr{B}P^{(0)}. \theta) is already similar to a Cartan connection, but
only lacking in the condition that the space E(\mathfrak{m}, \mathfrak{g}_{0}) in which \theta takes
values be a Lie algebra. We therefore seek for some nice subbundle of
\mathscr{B}P^{(0)} satisfying this requirement.

Let us first introduce, for a given Lie subgroup G_{0}\subset G^{(0)}(\mathfrak{m}) , a subs-
keleton

(\mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}) , K(\mathfrak{m}, G_{0}))\subset(E(\mathfrak{m}, \mathfrak{g}_{0}), G(\mathfrak{m}, G_{0})) .

Let \mathfrak{M} be a standard filtered manifold of type \mathfrak{m} , that is a Lie group hav-
ing rn as its Lie algebra. Then the 1-st order reduced frame bundle \mathscr{B}^{(0)}

(\mathfrak{M}, \mathfrak{m}) is identified with the trivial bundle \mathfrak{M}\cross G^{(0)}(\mathfrak{m}) , and the trivial bun-
dle \mathfrak{M}\cross G_{0} represents a standard geometric structure, which is clearly
transitive. Applying Theorem 3. 6. 1 to this geometric structure, we obtain
a tower P with constant structure function \overline{c}=0 . We denote by K(\mathfrak{m}, G_{0})

its structure group and set \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0})=\mathfrak{m}\oplus f(\mathfrak{m}, \mathfrak{g}_{0}) with f(\mathfrak{m}, \mathfrak{g}_{0}) the Lie algebra
of K(\mathfrak{m}, G_{0})

Then we have:

1) (\mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}), K(\mathfrak{m}, G_{0}) is a subskeleton of (E(\mathfrak{m}, \mathfrak{g}_{0}), G(\mathfrak{m}, G_{0})) .
2) a[X, Y]= [aX, a Y] for a\in K(\mathfrak{m}, \mathfrak{g}_{0}) , X, Y\in \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}) .
3) \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}) is a transitive filtered Lie algebra with respect to the

bracket operation defined by (3. 37), and isomorphic to the
completion of grl(rn, \mathfrak{g}_{0}) .

4) grl(m, \mathfrak{g}_{0}) is canonically isomorphic to the prolongation of the
truncated graded Lie algebra \mathfrak{m}\oplus \mathfrak{g}_{0} .
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5) G_{0} is embedded in K(\mathfrak{m}, G_{0}) as a closed subgroup.

Now we consider the following complex:

... -

arrow Hom(\wedge^{k}\mathfrak{m}, 1(\mathfrak{m}, \mathfrak{g}_{0}))arrow Hom(\wedge^{k+1}\mathfrak{m}, \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}))arrow\partial\partial ...

Since \mathfrak{m} is a Lie subalgebra of \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}) , the coboundary operator \partial is
defined as usual. Note that the group K(\mathfrak{m}, G_{0}) acts on Hom(\wedge\cdot \mathfrak{m}, \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}))

by the induced representation of (3. 3), which evidently preserves the filtra-
tion \{F^{p}Hom(\wedge\cdot \mathfrak{m}, \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}))\} .

It being prepared,

DEFINITION 3. 10. 1. We say that a Lie subgroup G_{0}\subset G^{(0)}(\mathfrak{m}) satisfies
the condition (C) if there exists a subspace

W\subset F^{1}Hom(\wedge^{2}\mathfrak{m}, \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}))

such that

i) F^{1}Hom(\wedge^{2}\mathfrak{m}, \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}))=W\oplus\partial F^{1}Hom(\wedge^{1}\mathfrak{m}, \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0})) ,
ii) W is stable under the actions of K(\mathfrak{m}, G_{0}) .

THEOREM 3. 10. 1. Let M be a fifiltered manifold regular of type \mathfrak{m} ,

and let G_{0} be a Lie subgroup of G^{(0)}(\mathfrak{m}) satisfying the condition (C). Then
for each principal subbundle P^{(0)} of \mathscr{B}^{(0)}(M, \mathfrak{m}) with structure group G_{0} , we
can construct a tower P\subset \mathscr{B}(M, \mathfrak{m}) in such a way that:

i) P is a tower on M with skeleton (\mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}), K(\mathfrak{m}, G_{0})) .
ii) The structure function \overline{c} of P takes values in W.
iii) The assignment P^{(0)}>P is compatible with equivalences.

Thus (P, \theta) is a Cartan connection of type (\mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}), K(\mathfrak{m}, G_{0})) associated
with P^{(0)} , where \theta is the canonical form of P.

PROOF: Let us construct subbundles P^{(l)}\subset \mathscr{B}^{(l)}(M, \mathfrak{m}) by induction on
l , with P^{(0)} the given one.

For an l\geq 0 , suppose that we have constructed P^{(l)} so as to satisfy:
1) P^{(t)} is an adapted subbundle of \mathscr{B}^{(l)}(M, \mathfrak{m}) with structure group

K^{(l)} , where K^{(l)}=K(\mathfrak{m}, G_{0})/F^{l+1}

2) The structure function \hat{c}^{(l)} of P^{(l)} takes values in W^{(l)}=W/F^{l+1} ,

where \hat{c}^{(l)} is the F^{1}Hom(\wedge^{2}\mathfrak{m}, \mathfrak{m}\oplus f(\mathfrak{m}, \mathfrak{g}_{0}))^{(l)}-valued function defined by
decomposing the total structure function: \gamma^{[l]}=\beta_{\mathfrak{m}}^{rl\rceil}+\overline{c}^{(l)} .

Now we construct P^{(l+1)} as follows: Let \# P^{(l)} be the prolongation of
P^{(l)} . Then its structure funtion \overline{c}^{(l+1)} takes values in F^{1}Hom(\wedge^{2}\mathfrak{m}, \mathfrak{m}\oplus

\mathfrak{g}(f^{(l)}))^{(l+1)} . This space is identified with F^{1}Hom(\wedge^{2}\mathfrak{m}, \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}))^{(l+1)}(because
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of the truncation), which has the K^{(l)}- invariant direct sum decomposition:

F^{1}Hom(\wedge^{2}\mathfrak{m}, \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}))^{(l+1)}=W^{(l+1)}\oplus\partial F^{1}Hom(\mathfrak{m}, \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}))^{(l+1)} .

We then set :
P^{(l+1)}=\{z\in\# P^{(l)}|\hat{c}^{(l+1)}(z)\in W^{(l+1)}\} .

By Proposition 3. 4. 2 it is easy to see that P^{(l+1)} is a principal fibre bundle
over P^{(l)} with structure group F^{k+1}K(\mathfrak{m}, G_{0})/F^{l+2}(\cong gr_{l+1}\mathfrak{l}) . Moreover,
since W^{(l+1)} is K^{(l)}- invariant and \beta_{\mathfrak{m}} ( aX, a Y) =a\beta_{\mathfrak{m}}(X, Y) for a\in K , X, Y
\in \mathfrak{m}\oplus\xi , it follows easily from the formula

\beta_{\mathfrak{m}}^{[l+1]}+\overline{c}^{(l+1)}(za)=(\rho(a^{-1})\beta_{\mathfrak{m}})^{[l+1]}+\rho(a^{-1})\hat{c}^{(l+1)}(z)

for z\in\# P^{(t)} , a\in\# K^{(l)}

that K^{(l+1)} acts on P^{(l+1)} . It then turns out that P^{(l+1)} is an adapted sub-
bundle of \mathscr{B}^{(l+1)}(M, \mathfrak{m}) with structure group K^{(l+1)} , which completes the
inductive construction of P^{(t)} . Putting P=limP^{(l)} . we obtain a tower sat-
isfying the required conditions.

REMARK 3. 10. 3. If the dimension of \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}) is finite, say F^{k+1}\mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0})

=0 , then in constructing the Cartan connection (P, \theta) , we have
P^{(k)}\cong P^{(k+1)}\cong\ldots\cong P^{(k+\mu)}\cong\# P^{(k+\mu)}\cong\cdots\cong P .

Moreover, since \theta ( =\pi^{k}\circ\theta , with \pi^{k} : t arrow \mathfrak{l}^{(k)}\cong the canonical projection) is

defined already on P^{(k+\mu)} and yieds an absolute parallelism of P^{(k)} and
hence of P^{(k+\mu)} , we can identiby (P, \theta) with (P^{(k+\mu)}, \theta^{(k)}) . Thus the
contruction actually finishes at P^{(k+\mu)} .

3. 10. 3. Various examples of Cartan connections are hitherto known.
The most general result has been the theorem of Tanaka [26] which states
that one can construct a Cartan connection associated with a subbundle
P^{(0)}(M, G_{0}) of \mathscr{B}^{(0)}(M, \mathfrak{m}) if \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}) is finite dimensional and simple.

Theorem 3. 10. 1 gives a new proof of the above theorem if we admit
the following algebraic fact: The condition (C) is satisfied if \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}) is
finite dimensional and simple. This statement is essentially shown in [26].
Mereover its proof suggests us the following more general sufficient condi-
tion for G_{0} to satisfy the condition (C).

PROPOSITION 3. 10. 1. Lel \mathfrak{m}=\bigoplus_{p<0}\mathfrak{m}_{p} be a graded Lie algebra and let
G_{0} be a Lie subgroup of G^{(0)}(\mathfrak{m}) . Assume that \mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}) {simply denoted by 1
=\oplus \mathfrak{l}_{p}) is fifinite dimensional and that there exists a positive defifinite symmet-
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ric bilinear form
( ) : \mathfrak{l}\cross \mathfrak{l}arrow R

satisfying :

i) (I_{p}, \mathfrak{l}_{q})=0 if p\neq q .
ii) There exists \tau:f(\mathfrak{m}, \mathfrak{g}_{0}) -arrow \mathfrak{l} such that

\{

\tau(\mathfrak{l}_{p})\subset \mathfrak{l}_{-p} for p\geq 0

([A, x], y)=(x, [\tau(A), y]) for x, y\in \mathfrak{l} , A\in f .
iii) There exists \tau_{0} : G_{0}arrow G_{0} such that

(ax, y)=(x, \tau_{0}(a)y) for x, y\in \mathfrak{l} , a\in G_{0} .

Then G_{0} satisfifies the condition (C) .

PROOF: We extend the inner product of \mathfrak{l} to that of Hom(\wedge^{p}\mathfrak{m}, \mathfrak{l})) by
the following formula:

( \phi, \phi)=n!.\sum_{1\leq\iota_{1}<<\iota_{p}\leq n}.(\phi(e_{i_{1}, }\cdots, e_{ip}) ,\phi(e_{i_{1}}, \cdots, e_{ip}))

for \phi,\phi\in Hom(\wedge^{p}\mathfrak{m}, \mathfrak{l})) , where n=\dim \mathfrak{m} and \{e_{1}, \cdots, e_{n}\} is an orthonormal
basis of \mathfrak{m} .

We then define the formal adjoint \partial^{*} of \partial

\ldots\overline{\partial^{*}}\overline{\partial^{*}}\overline{\partial^{*}}Hom(\wedge^{p}\mathfrak{m}, \mathfrak{l})Hom(\wedge^{p+1}\mathfrak{m}, \mathfrak{l})) ...

by

(\phi, \partial\phi)=(\partial^{*}\phi, \phi)

for \phi\in Hom(\wedge^{p+1}\mathfrak{m}, \mathfrak{l})) , \emptyset\in Hom(\wedge^{p}\mathfrak{m}, \mathfrak{l})) . Then as is well-known, we
have the direct sum decomposition:

Hom(\wedge^{p}\mathfrak{m}, \mathfrak{l}))=\partial Hom(\wedge^{p-1}\mathfrak{m}, \mathfrak{l}))\oplus Ker\partial^{*} .

Now 1\wedge et us show that Ker\partial^{*} is an invariant subspace by the actions of
K(\mathfrak{m}, G_{0}) .

If we denote by \rho the representation of K on Hom(\wedge\cdot \mathfrak{m}, \mathfrak{l})) , it suffices
to show

\partial^{*}\circ\rho(a)=\rho(a)\circ\partial^{*} for a\in K .

But since any element a\in K is written as

a=a_{0} . expA

with a_{0}\in G_{0} , A\in F^{1}f(\mathfrak{m}, \mathfrak{g}_{0}) , it suffices to show
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(a) \partial^{*}\circ\rho(a_{0})=\rho(a_{0})\circ\partial^{*} for a_{0}\in G_{0}

(b) \partial^{*}\circ\rho_{*}(A)=\rho_{*}(A)\circ\partial^{*} for A\in f ,

where \rho_{*} denote the representation of \xi on Hom(\wedge\cdot \mathfrak{m}, \mathfrak{l}))

On the other hand, we have in general

\partial\circ\rho(a_{0})=\rho(a_{0})\circ\partial for a_{0}\in G_{0}

and
\partial\circ\lambda(B)=\lambda(B)\circ\partial for B \in \mathfrak{l}^{(0)}=\bigoplus_{p\leq 0}\mathfrak{l}_{p} ,

where \lambda denotes the representation of \mathfrak{l}^{(0)} on Hom(\wedge\cdot \mathfrak{m}, \mathfrak{l}) . Now it follows
easily from our assumption that

(\rho(a_{0})\phi, \phi)=(\phi, \rho(\tau_{0}(a_{0}))\phi)

(\rho_{*}(A)\phi, \phi)=(\phi, \lambda(\tau(A))\phi)

for a_{0}\in G_{0} , A\in\xi , \phi , \phi\in Hom(\wedge^{p}\mathfrak{m}, \mathfrak{l})) .
Hence we have

(\partial^{*}\rho_{*}(A)\phi, \psi)=(\rho_{*}(A)\phi, \partial\psi)

=(\phi, \lambda(\tau(A))\partial\phi)

=(\phi, \partial\lambda(\tau(A))\phi)

=(\partial^{*}\phi, \lambda(\tau(A))\phi)

=(\rho_{*}(A)\partial_{*}\phi, \phi)

which shows (b). Similarly we can verify (a).
If we set W=Ker\partial_{*}\cap F^{1}Hom(\wedge^{2}\mathfrak{m}, \mathfrak{l}) , then W has the desired property.

REMARK 3. 10. 4. There are non-simple Lie algebras which satisfy
the assumption of Proposition 3. 10. 1 (and hence the condition (C)) among
the Lie algebras \mathfrak{l} obtained as the semi-direct product \mathfrak{l}=\mathfrak{s}\ltimes \mathfrak{o} of a semi-
simple graded Lie algebra \mathfrak{s}=\oplus \mathfrak{s}_{p} and a graded vector space (1= \bigoplus_{p<0}0_{p} by

an irreducible representation \rho of \mathfrak{s} on \mathfrak{d} such that \rho(\mathfrak{s}_{p})\mathfrak{o}_{q}, \subset \mathfrak{o}_{p+q} . A typi-
cal example of this type has first appeared in the geometrie study of ordi-
nary differential equations due to N. Tanaka [27], where \mathfrak{s}=\mathfrak{s}\mathfrak{l}(n) and \mathfrak{p} is
the space of the homogeneous polynomials in n-variables of degree \mu . It
is through this example that Proposition 3. 10. 1 was noticed independently
by N. Tanaka and the author. In the near future Tanaka will publish a
ditailed treatise on the geometric study of ordinary differential equations.
For other examples see T. Yatsui [30].

3. 11. Example (Conformal structures)
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It is quite well-known that associated with a riemannian structure
there exists a unique Levi-Civita connection. This is one of the simplest
examples of Cartan connections. It is also well-known but seems less
familifar that there exists a Cartan connection associated with a confor-
mal structure ([3], [23], [9]). We will explain this classical fact from our
point of view, which will serve as a good illustration of the general
method given in the preceding section.

A conformal structure on a differentiate manifold M is a conformal
equivalence class [g] of a pseud0-riemannian metric g on M, where two
metrics g and g’ on M are said to be equivalent if there exists a function \rho

such that g’=\rho g .
Let (\mathscr{B}^{(0)}(M), M, G^{(0)}(V)) be the first order frame bundle of M. (Here

M is viewed as a trivial filtered manifold, so that V is simply a vector
space of the same dimension as M, G^{(0)}(V)=GL(V) , and \mathscr{B}^{(0)}(M) is the
usual linear frame bundle of M. )

Let us fix an inner product ( ) of V of signature (r, s) . Let CO(V)
be the linear conformal transformation group, that is,

CO(V)= { a\in GL(V)|\exists\lambda s.t . (ax, ay)=\lambda(x , y) for x , y\in V},

and let co(V) donote its Lie algebra.
It is fundamental that there is a bijective correspondence between the

conformal structures on M of signature \{r, s\} and the CO(V)-subbundles
of \mathscr{B}^{(0)}(M) .

We know by a simple calculation (see [21]) that if dim V\geq 3 then the
prolongation of the truncated graded Lie algegra V\oplus co(V) is isomorphic
to

(3. 38) V\oplus co(V)\oplus V^{*}

The bracket operation is defined, for v\in V , \alpha\in V^{*} , by

[v, \alpha]=\langle v, \alpha\rangle id_{V}+v\otimes\alpha-(v\otimes\alpha)^{T}

where \varphi^{\uparrow} denotes the adjoint of \varphi\in Hom(V, V) determined by

(\varphi(v), \omega)=(v, \varphi^{T}(w)) .

The brackets for the other pairs are defined by the natural actions of
co(V) on V, V^{*} and co(V) .

We remark that if dim V\leq 2 then the prolongation of V\oplus co(V) is
infinite dimensional.

The Lie algebra (3. 38) can be represented as the infinitesimal confor-
mal transformation group of the M\"obius space. Let R^{n+2} be a pseud0-
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Euclidean space endowed with an inner product ( ) of signature (r+1 ,

s+1) , say

(x, y)={}^{t}x\hat{J}y for x , y\in R^{n+2}

with

\hat{J}=\{\begin{array}{lll} -1-1 J \end{array}\} . J= \{I_{r} -I_{s}\}

Let Q^{n} be the quadric in the projective space P(R^{n+2}) defined by the hom0-
geneous equation: (x, x)=0 . The inner product of R^{n+2} induces on Q a
natural conformal structure. The linear group

O(n+2,\hat{J})=\{a\in GL(n+2, R)|{}^{t}a\hat{J}a=\hat{J}\}

acts on P^{n+1} as projective transformations and induces on Q^{n} conformal
transformations. Moreover the action of L=O(n+2,\hat{J})/Z on Q^{n} is
effective and transitive, where Z is the center of O(n+2,\hat{J}) consisting of
\{E, - E\} . Thus if we denote by H the isotroy subgroup of L at [1, 0, \cdots ,

O]\in Q , we have the M\"obius space L/H=Q.
The Lie algebra \mathfrak{l}(=o(n+2,\hat{J})) of L has a gradation t=1_{-1}\oplus \mathfrak{l}_{0}\oplus \mathfrak{l}_{1}

given by the following matrix decomposition:

l_{-1}=\{ \{\begin{array}{lll}0 0 0 {}^{t}vJ 0\end{array}\} ; v\in R^{n}\}

l_{0}=\{ \{\begin{array}{lll}\mathcal{A} A -\mathcal{A}\end{array}\} . \lambda\in R{}^{t}AJ+JA=0\}

: \alpha\in(R^{n})^{*}\}l_{1}=\{ \{\begin{array}{lll}0 \alpha 0 0 J^{t}\alpha 0\end{array}\}

The Lie algebra \mathfrak{h} of H is then given by: \mathfrak{h}=\mathfrak{l}_{0}\oplus \mathfrak{l}_{1} . One can verify easily

that the graded Lie algebra V\oplus co(V)\oplus V^{*} is isomorphic to \oplus \mathfrak{l}p .
In section 3. 8. 2 we have defined a skeleton (\mathfrak{l}(\mathfrak{m}, \mathfrak{g}_{0}) , K(\mathfrak{m}, G_{0})) for a

given Lie subgroup G_{0}\subset G^{(0)}(\mathfrak{m}) . In the present case where \mathfrak{m}=V . G_{0}=

CO(V)\subset G^{(0)}(V) , we see that (\mathfrak{l}(V, co(V)), K(V. CO(V))) is isomorphic to
the skeleton (\mathfrak{l}, H) just constructed above.

To see that (\mathfrak{l}, H) satisfies the conditions of Proposition 3. 10. 1, we
notice that in general if we define an inner product of \mathfrak{g}\mathfrak{l}(n, R) by
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(X, Y)=TrX^{t}Y X, Y\in \mathfrak{g}\mathfrak{l}(n, R)

and set: \tau(X)={}^{t}X , then we have

([A, X], Y)=(X, [\tau(A), Y]) X, Y, A\in \mathfrak{g}\mathfrak{l}(n, R)

(Ad(a)X, Y)=(X, Ad((\tau(a))Y X, Y\in \mathfrak{g}\mathfrak{l}(n, R), a\in c(1) R) .

Since O(n+2,\hat{J}) is invariant by \tau , it is clar that (\mathfrak{l}, H) with the induced
inner product satisfies the conditions of Proposition 3. 10. 1. (This is a spe-
cial case of the fact that the conditions are satisfied if \mathfrak{l} is simple.)

According to the general prescription, let
\partial_{*:}Hom(\wedge^{2}\mathfrak{l}_{-1}, \mathfrak{l})arrow Hom(\mathfrak{l}_{-1}, \mathfrak{l}) ,

be the adjoint of \partial defined by using the inner product of \mathfrak{l} and set
W=F^{1}Hom(\wedge^{2}\mathfrak{l}_{-1}, \mathfrak{l})\cap Ker\partial_{*}

then we have
F^{1}Hom(\wedge^{2}\mathfrak{l}_{-1}, \mathfrak{l})=\partial F^{1}Hom(\mathfrak{l}_{-1}, \mathfrak{l})\oplus Wr

In homogeneous components

Hom(\wedge^{2}\mathfrak{l}_{-1}, \mathfrak{l}_{p})=\partial Hom(\mathfrak{l}_{-1}, t_{p+1})\oplus W_{p+2} (p=-1,0, 1)
W=W_{1}\oplus W_{2}\oplus W_{3} .

But here W_{1}=0 because \partial Hom(Vo(V))=Hom ( \wedge^{2} V. V) (the reason for
the existence of Levi-Civita connection), and obviously W_{3}=Hom(\wedge^{2}\mathfrak{l}_{-1}, \mathfrak{l}_{1}) .
By definition W_{2} is the kernel of \partial_{*}: Hom(\wedge^{2}\mathfrak{l}_{-1}, \mathfrak{l}_{0}) -arrow Hom(\mathfrak{l}_{-1}, \mathfrak{l}_{1}) and can
be expressed in terms of components as follows: Let \{e_{1}, \cdots, e_{n}\} be an
orthonormal basis of \mathfrak{l}_{-1} . For \alpha\in Hom(\wedge^{2}\mathfrak{l}_{-1}, \mathfrak{l}_{0}) write

\alpha(e_{i}, e_{j})e_{k}=\sum a_{ijk}^{l}e_{l} .

Then a simple calculation shows that \partial^{*}\alpha=0 if and only if

\sum_{a}\alpha_{iaj}^{a}=0 .

Now given a CO(V)-subbundle P^{(0)} of \mathscr{B}^{(0)}(M) , let us construct a
Cartan connection of type (\mathfrak{l}, H) associated with P^{(0)} .

Let \# P^{(0)}\subset \mathscr{B}^{(1)}(M) be the prolongation of P^{(0)} . The structure function
\hat{c}^{(1)} takes values in Hom(\wedge^{2}\mathfrak{l}_{-1}, \mathfrak{l}_{-1}) . Since W_{1}=0 , putting

P^{(1)}=\{z\in\# P^{(0)}|\hat{c}^{(1)}(z)=0\} ,

we get a principal subbundle of \mathscr{B}^{(1)}(M) with structure group H\subset G^{(1\rangle}(V) .
Next consider the structure function \overline{c}^{(2)} of \# P^{(1)} and set
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P^{(2)}=\{z\in\# P^{(1)}|\hat{c}^{(2)}(z)\in W_{2}\} .

The fact that \mathfrak{l}_{2}=0 implies that P^{(2\rangle}arrow P^{(1)} is bijective and the structure
group of P^{(2)} -arrow M is identified with H. Then the successive prolongation
only yields isomorphic bundles

P^{(1\rangle}\cong P^{(2)}\cong\# P^{(2)}\cong\ldots\cong\#^{l}P^{(2)} .

Let P= \lim\#^{l}P^{(2)}\subset \mathscr{B}(M) and \theta the canonical form of P, which takes
values in \mathfrak{l} . Thus (P, \theta) is a Cartan connection of type (\mathfrak{l}, H) . We
remark that since P^{(2)}\subset \mathscr{B}^{(2)}(M)=\overline{\mathscr{B}}^{(2)}(M) , the canonical form \theta is already
defined on P^{(2)} . Thus the construction is actually finished at P^{(2)} .

The structure equation of (P, \theta) is written as

d \theta+\frac{1}{2}[\theta, \theta]+\frac{1}{2}c(\theta_{-1}, \theta_{-1})=0 ,

where \theta_{-1} , denotes the 1_{-1}-component of \theta and c is a function on P taking
values in W. According to the decomposition W=W_{2}\oplus W_{3} , we have the
decomposition

(3. 39) c=c_{2}+c_{3} ,

where c_{2} is a Hom(\wedge^{2}\mathfrak{l}_{-1}, \mathfrak{l}_{0})-valued function satisfying

(3. 40) \partial^{*}c_{2}=0

and Cs is a Hom(\wedge \mathfrak{l}_{-1},1_{1})-valued function.
Since the total structure function, \gamma=[ ]+c, satisfies \gamma\circ\gamma=D\gamma , by

equating with zero the homogeneous parts of degree 2 and 3, we have

(3. 41) \{

\partial c_{2}=0

\partial c_{3}=Dc_{2} .

The last formula implies, in particular, that if c_{2} is constant and if
dim M\geq 4 then c_{3}=0 , since, as easily verified, \partial : Hom(\wedge^{2}\mathfrak{l}_{-1}, \mathfrak{l}_{1}) -arrow

Hom(\wedge^{3}\mathfrak{l}_{-1}, \mathfrak{l}_{0}) is injective if dim \mathfrak{l}_{-1}\geq 4 .
This example offers a prototype to construct Cartan connections.
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