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\S 0. Introduction.

We are interested in a solution operator of a linear elliptic equation

(1) Lu=-f in X.

Here L is an abstract second order elliptic differential operator (with no
zero order terms) defined in a locally compact Hausdorff space X, a typi-
cal example of which is a domain in R^{d} . Function spaces we consider are
some subspaces of C_{b}(X) , the set of bounded continuous functions. By
the Green operator we mean a solution operator of (1) although it is
rather abuse of words. As is well known, if there is a positive noncon-
stant L-harmonic function u defined in X, i . e . Lu=0 in X, the Green
operator G exists and it operates to all f\in C_{0}(X) , the set of continuous
functions with compact support (cf. [4, 5]).

Our first goal is to construct the Green operator by an operator the0-
retical method. We construct the (pseudo) resolvent J_{\lambda}=(\lambda-L)^{-1} and
define the Green operator by \tilde{G}=\lim_{\lambdaarrow 0}J_{\lambda} . The meaning of the convergence

is important. In [6] the convergence is understood as uniform conver-
gence on X. However, the relation between classical Green operator G

and ours was unclear. In this paper we use different topology so that our
\overline{G} is actually an extension of G. We say a sequence \{f_{n}\} in C_{b}(X) con-
verges to f strongly if \{f_{n}\} converges to f uniformly in every compact set
and \{f_{n}\} is uniformly bounded on X. We give a locally convex topology
to C_{b}(X) by this convergence and denote F instead of C_{b}(X) . Our \tilde{G} is
constructed under this topology and its domain of the definition is C_{b}(X) .
A crucial step is to show that \lim_{\lambdaarrow 0}\lambda J_{\lambda}=I in F, where I is the identity oper-

ator.
Our second goal is to construct the semigroup e^{-l\overline{A}} in F with a closed

operator \tilde{A}=\lambda-J_{\lambda}^{-1} which formally equals \overline{G}^{-1} .
Our theory applies to a general second order elliptic operators
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L= \Sigma_{1\leq i,j\leq d}a_{ij}(x)\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}+\Sigma_{l=1}^{d}b_{l}(x)\frac{\partial}{\partial x_{l}}

with smooth coefficients in a domain X\subset R^{d} , provided that there is a posi-
tive nonconstant L-superharmonic function. The operator L need \underline{not} to
be uniformly elliptic. We impose \underline{no} conditions on the behavior of a_{ij} and
b_{l} near \partial X and the space infinity. The reason why our theory applies to
such general operators is that we rather use C_{b}(X) instead of C_{0}(X) .
Even for a_{ij}=\delta_{ij} and X=R^{d} the solution of (1) for f\in C_{0}(X) may not
belong to the completion C_{0}’\overline{(X)} of C_{0}(X) unless b_{l} is bounded. Such
operators are excluded in the theory of Hunt [3] and Yosida [12, 13, 14].

K. Yosida got a similar result on the construction of semigroup whose
generator is the inverse of Green operator in the space C_{0}(X) . But his
thoery does not apply to general elliptic operators to which our theory
applies.

Throughout this paper, we discuss our problems in an abstract setting
of [4, 6] .

\S 1. Preliminaries.

This section establishes conventions of notation, reviews some results
of [4, 6] .

Let X be a connected, locally compact and \sigma-compact Hausdorff
space, C(X) be the set of all continuous function on X, C_{b}(X) be the set
of all bounded functions in C(X) and C_{0}(X) be the set of all functions in
C(X) with compact support. C(D) , C_{0}(D) and C(\overline{D}) are defined
analogously for any subdomain D of X. All functions are assumed to be
real valued. The norm ||f|| of any bounded function f on X(orD,\overline{D}) is
defined by ||f||= \sup_{x}|f(x)| , and the completion of C_{0}(X) (resp. C_{0}(D) ) with

respect to the norm is denoted by \overline{C_{0}(X)} (resp. \overline{C_{0}(D))} . Let \mathfrak{M}(D) be the
set of all signed measures on D and \mathfrak{M}_{0}(D) be the set of \rho\in \mathfrak{M}(D) with
compact support in the interior of D. In the space C(D) for any sub-
domain D of X, we consider the topology of uniform convergence on com-
pact subsets of D. Then the dual space C(D)’ of C(D) contains \mathfrak{M}_{0}(D) .
(This statement includes the case D=X.)

Let L be a linear operator in C(X) with domain \mathscr{D}(L) such that
\mathscr{D}(L)\cap C_{0}^{+}(D) is dense in C_{0}^{+}(D) for any subdomain D of X, where C_{0}^{+}(D)

denotes the set of nonnegative functions in C_{0}(D) . We assume that any
constant function c belongs to \mathscr{D}(L) and Lc=0. We further assume that
L is a local operator, i . e . if f\in \mathscr{D}(L) and f(x) vanishes in a neighbor-
hood of a point x_{0}\in X , then (Lf)(x_{0})=0 . This enables us to localize L on
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any subdomain D of X. We say f\in C(D) belongs to \mathscr{D}(L_{D}) if, for every
domain D’\subset D with compact closure \overline{D}’\subset D , there is a function g_{D’}\in \mathscr{D}(L)

such that g_{D’}=f in D’ . The operator L_{D} is defined by (L_{D}f)(x)=(Lg_{D’})(x)

for x\in D’ ; in this way (L_{D}f)(x) is uniquely defined for all x\in D since L is
a local operator.

We can derive the following fact immediately from the definition of
L_{D} mentioned above.

LEMMA 1. 1. If f\in \mathscr{D}(L) , then f|_{D}\in \mathscr{D}(L_{D}) and Lf=L_{D}f.

We notice \mathscr{D}(L_{D}) is dense in C(D) with the topology of uniform con-
vergence on compact sets. Then we define L_{D}^{*} as the dual operator of L_{D} .
We shall often suppress the subscript of L_{D} . The definition of L_{D} in the
present paper is slightly modified from that in the previous papers [4, 6] .
But the results in [4]-[6] are still valid under the new definition.

Since \mathscr{D}(L) is dense in C(X) by the assumption, the dual operator L^{*}

of L is well-defined as a linear operator defined in a certain linear sub-
space of C(X)’ . For any subdomain D of X, \mathscr{D}(L_{D}) is dense in C(D) as
may be seen from the definition of L_{D} . Hence the dual operator L_{D}^{*} of L_{D}

is well-defined in C(D)’ Then we may easily prove the following lemma.

LEMMA 1. 2. Assume that \rho\in \mathfrak{M}_{0}(X)\cap \mathscr{D}(L^{*}) and that D be any sub-
domain of X containing the support of \rho . Then <f, L^{*}\rho>=0 for any f
\in C(X) satisfying that f=0 in D.

PROPOSITION 1. 3. Let D be an arbitrary subdomain of X.
i) Assume that \rho\in \mathfrak{M}_{0}(D)\cap \mathscr{D}(L_{D}^{*}) and defifine \rho=0 outside D. Then \rho

\in \mathfrak{M}_{0}(X)\cap \mathscr{D}(L^{*}) and L^{*}\rho=L_{D}^{*}\rho .
ii) Assume that \rho\in \mathfrak{M}_{0}(X)\cap \mathscr{D}(L^{*}) and that the support of \rho is

contained in D. Then \rho\in \mathfrak{M}_{0}(D)\cap \mathscr{D}(L_{D}^{*}) and L_{D}^{*}\rho=L^{*}\rho .
The part i ) may readily be proved from the definition of L_{D} . The

part ii ) is proved by means of Lemma 1. 2.

A subdomain D of X is called a regular domain if the closure \overline{D} is
compact and, for any \varphi\in C(\partial D) , there exists a solution u\in \mathscr{D}(L_{D})\cap C(\overline{D})

of the boundary value problem: Lu=0 in D and u=\varphi on \partial D . We
assume that there exist sufficiently many regular domains, that is, for any
domains D_{1} and D_{2} with compact closure and satisfying \overline{D}_{1}\subset D_{2} , there
exists a regular domain D such that \overline{D}_{1}\subset D\subset D_{2} .

The operator L is assumed to satisfy the following axioms.
(\alpha) If Lu\geq 0 and u is nonconstant in D, then u does not take its

maximum in the interior of D (maximum principle).
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(\beta) If \{u_{n}\} and \{Lu_{n}\} are uniformly bounded on D, then a subse-
quence \{u_{n_{\nu}}\} of \{u_{n}\} converges uniformly on every compact subset of D
(Harnack property).

(\gamma) For any regular domain D, and \lambda\geq 0 and any f\in \mathscr{D}(L_{D})\cap C(\overline{D}) ,

there exists u\in \mathscr{D}(L_{D})\cap\overline{C_{0}(D)} satisfying (\lambda-L_{D})u=f .
Instead of the axiom (\delta) in [6], we set the following axiom (\delta’)

which corresponds to the Weyl-Schwartz lemma for the parabolic

differential operator \Delta-\frac{\partial}{\partial t} :
(\delta’) If u(t, x) is bounded and measurable on (t_{1}, t_{2})\cross D and satisfies

\int_{t_{1}}^{t_{2}}\{\langle u(t^{ },\cdot), L^{*}\rho\rangle\chi(t)+\langle u(t^{ },\cdot), \rho\rangle\chi’(t)\}dt=0

for any \chi\in C_{0}^{1}((t_{1}, t_{2})) and any \rho\in \mathfrak{M}_{0}(D)\cap \mathscr{D}(L^{*}) , then u(t, x) is

differentia 1 in t , u(t, \cdot)\in \mathscr{D}(L_{D}) for any t\in(t_{1}, t_{2}) and \frac{\partial u}{\partial t}=Lu\in C((t_{1} ,

t_{2})\cross D) .

REMARK. If we consider the case where u(t, x) in the axiom (\delta’)

does not depend on t , we may easily derive the axiom (\delta) in [6] from (\delta’)

stated just above. In \S 1-\S 3 we only need to assume (\delta) instead of (\delta’)

as in [4, 5, 6]. The assumption (\delta’) is invoked from \S 4.

EXAMPLE. Let X be a domain in R^{d} and let L be a second order
operator of form

L= \Sigma_{1\leq i,j\leq d}a_{ij}(x)\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}+\Sigma_{l=1}^{d}b_{l}(x)\frac{\partial}{\partial x_{t}}

with \mathscr{D}(L)=C^{2}(X)\subset C(X) , where a_{ij} and b_{l} are smooth functions on X.
The operator L is assumed to be elliptic in the sense that \{a_{ij}(x)\} is a
positive definite real symmetric matrix. (We impose no assumptions on
the behavior of a_{ij} and b_{l} near \partial X and the space infinity.) Then the oper-
ator L satisfies all assumptions (\alpha) , (\beta) , (\gamma) , (\delta’) . These are verified by a
standard theory of elliptic operators (see, e . g . Gilbarg and Trudinger
[1] ) . We below indicate the proof.

The condition (\alpha) is nothing but a usual maximum principle. The
condition (\beta) follows from usual Harnack principle and (\delta’) follows from
hyp0-ellipticity of parabolic operators. It remains to prove (\gamma) . We first
note \mathscr{D}(L_{D})=C^{2}(D)\subset C(D) . Let \Lambda be the set of \lambda\geq 0 such that for any f\in

C^{2}(D)\cap C(\overline{D}) there exists u\in C^{2}(D)\cap\overline{C_{0}(D)} satisfying (\lambda-L_{D})u=f in D.
We first claim t\underline{hat\Lambda} is open in [0. \infty ). Suppose that \lambda_{0}\in\Lambda . Then
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there is v\in C^{2}(D)\cap C_{0}(D) such that (\lambda_{0}-L)v=f . It follows from the
strong maximum principle that

(*) ||v||\leq C||f||

with C independent of f, where ||\cdot|| denotes the supremum norm in C(\overline{D})

(see [1]). Let S denote the operator defined by v=Sf. The estimate (*)
guarantees that

w= \sum_{m=0}^{\infty}(-\mu S)^{m}f

converges in C(\overline{D}) for sufficiently small \mu . Since S can be extended on
C(\overline{D}) by (*) we see

u=Sw\in\overline{C_{0}(D)} .

Applying \mu+\lambda_{0}-L to u yields

(\mu+\lambda_{0}-L)u=f in D

in distribution sense. By an interior regularity theory of elliptic operator
we see u\in C^{2}(D) since f\in C^{1}(D) . We thus conclude \lambda_{0}+\mu\in\Lambda for small \mu .

We next claim that \lambda\in\Lambda if there is a monotone increasing sequence
\{\lambda_{j}\}\subset\Lambda converging to \lambda . We may assume f\geq 0 by adding a constant. Let
u_{j} be a function such that

(\lambda_{j}-L)u_{j}=f , u_{j}\in C^{2}(D)\cap\overline{C_{0}(D)} .

By the maximum principle u_{j}\geq 0 on D. Since \lambda_{j+1}\geq\lambda_{j} it follows from the
maximum principle and u_{j}\geq 0 that u_{j+1}\leq u_{j} on D. We now apply the
Harnack principle (\beta) to observe that u_{j} converges to a continuous func-
tion u uniformly in every compact subset of D. Since 0\leq u\leq u_{1} and u_{1}\in

\overline{C_{0}(D)} , we extend u by zero on \partial D and conclude that the extended func-
tion (still denoted u) belongs to \overline{C_{0}(D)}\subset C(\overline{D}) . Since u_{j+1}\leq u_{j} , by Dini’s
theorem u_{j} converges to u uniformly on \overline{D} . It is again easy to see that

(\lambda-L)u=f in D

in distribution sense. So we recover u\in C^{2}(D) and conclude that \lambda\in\Lambda .
To show \Lambda=[0, \infty) it now suffices to prove that 0\in\Lambda . Let \Omega\subset X be a

smoothly bounded domain with \overline{D}\subset\Omega,\overline{\Omega}\subset X so that L is uniformly elliptic
in \overline{\Omega} . By the maximum principle we observe that Lv=0 in \Omega with v=0
on \partial\Omega has no nontrivial solution. Since L is uniformly elliptic on \overline{\Omega} and \Omega

is a smoothly bounded domain, the uniqueness of solution implies the
solvability of
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(**) LU=-f in \Omega and U=0 on \partial\Omega ;

(cf. [1]). In particular for f\in C(\overline{\Omega}) there is a solution U\in C^{1}(\overline{\Omega}) of (**) .
If f|_{D}\in C^{1}(D) then the regularity theory implies U|_{D}\in C^{2}(D) , where f|_{D}

denotes the restriction on D. For given f\in C(\overline{D})\cap C^{2}(D) we extend f to
a function (still denoted by f) in C(\overline{\Omega}) . Let U be a solution of (**) with
this f. Since D is a regular domain there is a function w\in C^{2}(D)\cap C(\overline{D})

such that Lw=0 in D and w=-U on \partial D . If we set u=U|_{D}+w we easily
observe that u is in C^{2}(D)\cap\overline{C_{0}(D)} and satisfies Lu=-f in D. In other
words we conclude that 0\in\Lambda and (\gamma) is now verified.

In this paper we always assume that the space X admits a positive
nonconstant L-superharmonic function.

For any \lambda>0 and any regular domain D, we can define the operator

J_{\lambda}^{D}=(\lambda-L)^{-1} of \mathscr{D}(L)\cap C_{0}(D) into \overline{C_{0}(D)} with norm \leq\frac{1}{\lambda}. Then we can
define a bounded and positive linear operator J_{\lambda} of C_{0}(X)\cap \mathscr{D}(L) into
C_{b}(X) in such a way that J_{\lambda}f= \lim_{D\uparrow X}J_{\lambda}^{D}f (pointwise convergence on X), and

we have ||J_{\lambda}|| \leq\frac{1}{\lambda} ; accordingly J_{\lambda} can be extended to a bounded and posi-

tive linear operator of C_{0}(X) into C_{b}(X) such that

(1. 1) |J_{\lambda}f(x)| \leq\frac{1}{\lambda}||f|| on X for any f\in C_{0}(X) .

Hence there exists a measure \rho_{\lambda}^{x} in X such that \rho_{\lambda}^{x}(X)\leq\frac{1}{\lambda} and

(J_{\lambda}f)(x)= \int_{X}f(y)d\rho_{\lambda}^{x}(y) for any f\in C_{0}(X) .

For any f\in C_{b}(X) , we define

(1. 2) (J_{\lambda}f)(X)= \int_{X}f(y)d\rho_{\lambda}(xy) .

Then the family of operators \{J_{\lambda}\}_{\lambda>0} in C_{b}(X) satisfies the resolvent equa-
tion; namely, for any f\in C_{b}(X) ,

(1. 3) J_{\lambda}f-J_{\mu}f=(\mu,-\lambda)J_{\lambda}J_{\mu}f4^{\cdot}

We notice
(1. 4) J_{\lambda}(\lambda-L)u=u for any u\in C_{0}(X)\cap \mathscr{D}(L) .

In [4], the author proved the existence of the Green operator G from
C_{0}(X) to C(X) associated with L such that u=Gf belongs to \mathscr{D}(L) and
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satisfies Lu=-f on X for and f\in C_{0}(X)\cap \mathscr{D}(L) under the assumtion the
space X admits a positive nonconstant L-harmonic function. Further-
more there exists a family of measures \{\Phi(x, E)|x\in X\} such that

(Gf)(x)= \int_{X}\Phi(x, dy)f(y) for any f\in C_{0}(X) .

We define the operator \overline{G} as an extension of G as follows:

\mathscr{D}(\overline{G})=\{f\in C_{b}(X)|\sup_{x\in X}\int_{X}\Phi(x, dy)|f(y)|<\infty\}

and

( \overline{G}f)=\int_{X}\Phi(x, dy)f(y) for f\in \mathscr{D}(\overline{G}) .

Then we have

(1. 5) \lim_{\lambda\downarrow 0}J_{\lambda}f(x)=\overline{G}f(x) on X

and \overline{G}f\in C_{b}(X) for and f\in \mathscr{D}(\overline{G}) .

We define
E_{0}=\{\Sigma_{k=1}^{l}J_{\lambda_{k}}f_{k}|f_{k}\in C_{0}(X)(1\leq k\leq l);l=1,2,\cdots\} ,

and E=\overline{E}_{0} (the closure of E_{0} with respect to the supremum norm in
C_{b}(X)) . Then E is a Banach space and E\supset\overline{C_{0}(X)} , and the operator J_{\lambda}

(for any \lambda>0) maps E into E. The main result of [6] reads as follows:
([6; Theorems 2 and 3], see [14]).

THEOREM. i)
(1. 6) \lim_{\lambda\uparrow\infty}||\lambda J_{\lambda}f-f||=0 and \lim_{\lambda\downarrow 0}||\lambda J_{\lambda}f||=0 for any f\in E ;

ii) there exists a closed linear operator A with domain \mathscr{D}(A) and
range \mathscr{B}_{-}(A) both dense in E with respect to the supremum norm such that
A=\lambda-J_{\lambda}^{-1} . and A is the infifinitesimal generator of a uniquely determined
contraction semigroup \{ T_{t} : t\geq 0\} of class (C_{0}) of bounded linear operator
in E. Furthermore there exists A^{-1} such that \overline{G}=-A^{-1}=s^{-}\lim_{\lambda\downarrow 0}J_{\lambda} and \overline{G} is

a Green operator associated with L :
iii) A is an extension of L restricted to \mathscr{D}(L)\cap C_{0}(X) .
Furthermore, the following relation between \hat{G} and J_{\lambda} holds:

f-\lambda J\lambda f\in \mathscr{D}(\overline{G}) and \hat{G}(f-\lambda J_{\lambda}f)=J_{\lambda}f

for any f\in \mathscr{D}(\overline{G})\cap E [ 6,\cdot Lemma 4. 2].
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We close this section by introducing a sequence of functions in C_{0}(X)

for later use. Let \{D_{n}\}_{n=0,1,2},\cdots be a sequence of subdomains of X satisfy-
ing that \overline{D}_{n} is compact and \overline{D}_{n}\subset D_{n+1} for each n and that \bigcup_{n=0}^{\infty}D_{n}=X ; such
sequence \{D_{n}\} is called an exhaustion of X. Since X is locally compact
and \sigma-compact, such an exhaustion always exists. Here we may assume
every D_{n} to be a regular domain. With any such exhaustion, we associate
a sequence of functions \{\varphi_{n}\}_{n=1,2},\cdots\subset C_{0}(X) such that
(1. 7) 0\leq\varphi_{n}(x)\leq 1 on X, \varphi_{n}(x)=1 on \overline{D}_{n-1}

and \varphi_{n}(x)=0 on X\backslash D_{n}(n=1,2, \cdots) .

\S 2. A family of seminorms in C_{b}(X) .
This section gives a family of seminorms to C_{b}(X) so that C_{b}(X) is a

locally convex topological vector space. The metric is different from
usual metric which comes from supremum norm in C_{b}(X) .

Let \Gamma= { \gamma\in\overline{C_{0}(X)}|\gamma(x)>0 on X}. For example the function

(2. 1) \gamma(x)=\sum_{n=1}^{\infty}1/2^{n}\varphi_{n}(x)

belongs to \Gamma where \{\varphi_{n}\} is the sequence of functions mentioned in the last
paragraph of \S 1. We introduce a family of seminorms \{p_{\gamma}|\gamma\in\Gamma\} defined
by p_{\gamma}(f)= \sup_{x\in X}\gamma(x)|f(x)| for f\in C_{b}(X) . We often suppress subscript \gamma .

This family of seminorms defines in C(X) the topology of uniform conver-
gence on compact sets. Let F be the space C_{b}(X) topologized by the
family of seminorms defined above. Hereafter we denote by “s-\lim” the
convergence in F with respect to the strong topology defined by the family
of seminorms, while ||f|| denotes the supremum norm of f\in C_{b}(X) as in
the preceding section.

LEMMA 2. 1. If \{f_{n}\} is a Cauchy sequence in F, then \{f_{n}\} is uniform
ly bounded on X.

PROOF. We argue by contradiction. Suppose that \{f_{n}\} were not uni-
formly bounded on X. Then we could choose a subsequnce \{f_{n}’\} of \{f_{n}\}

satisfying that

||f_{n}’||>||f_{n-1}’||+2^{n}+1 (n=1,2, \cdots) .

For each n, there exists x_{n}\in X such that ||f_{n}’||-1<f_{n}’(x_{n})\leq||f_{n}’|| . We con-
sider an exhaustion \{D_{n}\} of X satisfying x_{n}\in D_{n} for every n, and associated
ed sequence of functions \{\varphi_{n}\} as mentioned in \S 1. Then the function \gamma(x)
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in (2.1) defines a seminorm p_{\gamma} . If m>n , then we have
p_{\gamma}(f_{m}’-f_{n}’)\geq\gamma(x_{m})|f_{m}’(x_{m})-f_{n}’(x)|

\geq\gamma(x_{m})\{(||f_{m}’||-1)-||f_{n}’||\}\geq\gamma(x_{m})\cdot 2^{m}\geq 1 .

This is a contradiction since \{f_{n}’\} is a subsequence of the Cauchy sequence
\{f_{n}\} in F.

PROPOSITION 2. 2. A sequence \{f_{n}\} converges in F if and only if
\{f_{n}\} is uniformly bounded on X and converges uniformly on every compact
subset of X.

PROOF. First we assume that \{f_{n}\} converges in F. Then there
exists f\in F such that \lim_{narrow\infty x}\sup_{\in X}\gamma(x)|f_{n}(x)-f(x)|=0 for any \gamma\in\Gamma . Let \gamma(x)=

\gamma_{0}(x)=\sum_{n=1}^{\infty}1/2^{n}\varphi_{n}(x) . Then for any compact subset K of X, there exists
M_{K} such that 0<M_{K}\leq\gamma_{0}(x) for any x\in K . Hence \lim_{narrow\infty x}\sup_{\in K}|f_{n}(x)-f(x)|=0 ,

that is, \{f_{n}\} converges uniformly on every compact subset of X. Uniform
boundedness follows from Lemma 2. 1.

Next we prove the converse. Assume that \{f_{n}\} is uniformly bounded,
and converges uniformly on every compact subset of X. Then there
exists M such that |f_{n}(x)|<M for any n and any x\in X . For any \gamma\in\Gamma .
we put M_{\gamma}= \max\{||\gamma||, M\} . Then, for any \epsilon>0 , there exists a compact set
K_{\gamma.\epsilon} such that \gamma(x)<\epsilon/2M_{\gamma} for x\in X\backslash K_{\gamma,\epsilon} ; furthermore there exists n_{0}

such that x\in lsu?_{\epsilon},|f_{n}(x)-f(x)|<\epsilon/M_{\gamma} for any n>n_{0} . Hence we get \gamma(x)|f_{n}(x)

-f(x)|<\epsilon for any x\in X , which implies p_{\gamma}(f_{n}-f)<\epsilon . Thus we have
proved that \{f_{n}\} converges to f in F.

PROPOSITION 2. 3. The space F is sequentially complete.

PROOF. Let \{f_{n}\} be a Cauchy sequence. Then, for any \epsilon>0 and any
p_{\gamma} , there exists n_{0} such that p_{\gamma}(f_{m}-f_{n})<\epsilon whenever m, n>n_{0} . For any
compact subset K of X, there exists M such that 0<M<\gamma(x) on K.
Hence \sup_{x\in K}|f_{m}(x)-f_{n}(x)|<\epsilon/M whenever m, n>n_{0} . Therefore \{f_{n}\} con-
verges uniformly on every compact subset of X. Accordingly f(x)=
\lim_{narrow\infty}f_{n}(x) exists and is continuous on X. Uniform boundedness of \{f_{n}\} is
already shown in Lemma 2. 1. Hence we see f\in F , and accordingly F is
sequentially complete.

PROPOSITION 2. 4. C_{0}(X) is dense in F.
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PROOF. For any f\in F , we put f_{n}(x)=\varphi_{n}(x)f(x)(n=1,2,\cdots) .
Then f_{n}\in C_{0}(X) , and \lim_{narrow\infty x}\sup_{\in Dm}|f_{n}(x)-f(x)|=0 for each m. Hence \{f_{n}\}

converges uniformly on every compact subset of X. Uniform boundedness
of \{f_{n}\} is obvious. Therefore \{f_{n}\} converges to f in F by Proposition 2. 2.

COROLLARY. C_{0}(X)\cap \mathscr{D}(L) is dense in F.

It follows from Proposition 2.2 that the space F is continuously im-
bedded into the space C(X) topologized by the uniform convergence on
every compact set. Hence any \rho\in C(X)’ is considered as a continuous
linear functional on F.

\S 3. Green operator.

This section constructs the Green operator \tilde{G} of L by formally
defining \tilde{G}=\lim_{\lambda 10}J_{\lambda} . Here we understand the convergence as the strong

topology of F. It turns out that \overline{G} is a natural extension of G defined in
\S 1.

In the sequel, we fix an exhaustion \{D_{n}\}_{n\geq 0} of X and associated
sequence of functions \{\varphi_{n}\} as mentioned in \S 1: we also define the follow-
ing functions on X :

\varphi_{\infty}(x)\equiv 1 and \phi_{n}(x)=1-\varphi_{n}(x) (n=1,2,\cdots) .

We put I_{\lambda}=\lambda J_{\lambda} to simplify notations.

LEMMA 3. 1. For any f\in F, I_{\lambda}f is continuous as an F-valued func-
tion of \lambda>0 .

PROOF. By means of the resolvent equation (1.3), we have

||I_{\lambda}f-I_{\lambda_{0}}f||=||\lambda(J_{\lambda}-J_{\lambda_{0}})f+(\lambda-\lambda_{0})J_{\lambda_{0}}f||

=||\lambda(\lambda-\lambda_{0})J_{\lambda}J_{\lambda_{0}}f+(\lambda-\lambda_{0})J\lambda_{0}f||

\leq\frac{1}{\lambda_{0}}|\lambda-\lambda_{0}|(||\lambda J_{\lambda}||\cdot||\lambda_{0}J_{\lambda_{0}}||\cdot||f||+||\lambda_{0}J_{\lambda_{0}}||\cdot||f||)

\leq\frac{2}{\lambda_{0}}|\lambda-\lambda_{0}|||f||arrow 0 as \lambdaarrow\lambda_{0} .

Hence I_{\lambda}f is continuous in \lambda>0 with respect to supremum norm. Accord-
ingly I_{\lambda}f is continuous with respect to the strong topology in F.

LEMMA 3. 2. The function \varphi_{\infty}(x)\equiv 1 satisfifies s-\lim_{\lambdaarrow\infty}I_{\lambda}\varphi_{\infty}=\varphi_{\infty} .
PROOF. We fix an arbitrary n . Theorem i ) in \S 1 implies that, for

any \epsilon>0 , there exists \lambda_{0} such that ||I_{\lambda}\varphi_{n}-\varphi_{n}||<\epsilon for any \lambda>\lambda_{0} . Since \varphi_{n}
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=1 on \overline{D}_{n} , we have I_{\lambda}\varphi_{n}>1-\epsilon on \overline{D}_{n} : accordingly 1\equiv\varphi_{\infty}\geq I_{\lambda}\varphi_{\infty}\geq I_{\lambda}\varphi_{n}>1

-\epsilon on \overline{D}_{n} . Since n is arbitrary, we may conclude that I_{\lambda}\varphi_{\infty} converges to
\varphi_{\infty} as \lambdaarrow\infty uniformly on every compact subset of X. Uniform bounded-
ness of \{I_{\lambda}\varphi_{\infty}\} is obvious. Hence s-\lim_{\lambdaarrow\infty}I_{\lambda}\varphi_{\infty}=\varphi_{\infty} .

From this lemma and (1.6), we get the following:

LEMMA 3. 3. s-\lim_{\lambdaarrow\infty}I_{\lambda}\phi_{n}=\phi_{n} for any n.

LEMMA 3. 4. s-\lim_{narrow\infty}I_{\lambda}\phi_{n}=0 for every \lambda>0 .

PROOF. It follows from (1.2) that (I_{\lambda} \phi_{n})(x)=\int_{X}\lambda\phi_{n}(y)d\rho_{\lambda}(xy) .

Since \lambda\rho_{\lambda}(xX)\leq 1 and \lim_{narrow\infty}\phi_{n}(y)=0 monotone decreasingly, we obtain by

bounded convergence theorem that (I_{\lambda}\phi_{n})(x) decreases to 0 as narrow\infty .
This convergence is uniform on every compact subset of X by Dini’s the0-
rem. Since \{I_{\lambda}\psi_{n}\} is uniformly bounded, we now obtain Lemma 3. 4 from
Proposition 2. 2.

LEMMA 3. 5. \lim_{narrow\infty}p(I_{\lambda}\phi_{n})=0 uniformly in \lambda\geq\beta for any fifixed \beta>0 and
any seminorm p.

PROOF. It follows from Lemma 3. 3 that

\lim_{\lambdaarrow\infty}|p(I_{\lambda}\phi_{n})-p(\phi_{n})|\leq\lim_{\lambdaarrow\infty}p(I_{\lambda}\phi_{n}-\psi_{n})=0 .

Define
h_{n}(\lambda)=\{

p(I_{\lambda}\phi_{n}) if \beta\leq \mathcal{A}<\infty

p(\psi_{n}) if \lambda=\infty .

Then \{h_{n}(\lambda)\} decreases monotonously as n increases and each h_{n}(\lambda) is
continuous on the “compact” interval [\beta, \infty] . \lim_{narrow\infty}p(I_{\lambda}\phi_{n})=0 by Lemma 3. 4
and \lim_{narrow\infty}p(\phi_{n})=0 . Hence by Dini’s theorem h_{n}(\lambda) converges to 0 as narrow\infty

uniformly in \lambda\in[\beta, \infty] .

PROPOSITION 3. 6. For a fifixed \beta>0 and any seminorm p, there exists
a seminorm q such that p(I_{\lambda}f)\leq q(f) for any \lambda\geq\beta and any f\in F, that is,
I_{\lambda} is equi-continuous in \lambda\geq\beta.

PROOF. By Lemma 3. 5, there exists an increasing sequence \{n_{\nu}\}

such that p(I_{\lambda}\phi_{n_{\nu}})\leq 1/2^{2(\nu+1)} for any \lambda\in[\beta, \infty] . For simplicity, we denote
D_{n_{\nu}} , \varphi_{n_{\nu}} and \phi_{n_{\nu}} by D_{\nu} , \varphi_{\nu} and \phi_{\nu} respectively. We represent f as
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f= \varphi_{0}f+\phi of=\varphi_{0}f+\sum_{\nu=1}^{N}(\phi_{\nu-1}-\phi_{\nu})f+\phi_{N}f .

For each f\supset\geq 0 , let x_{\nu} be a point in \overline{D}_{\nu+1}\backslash D_{\nu-1} such that
|f(x_{\nu})|= \max_{\overline{D}_{\nu+1}\backslash D_{\nu 1}}|f(x)|

where we put D_{-1}=\phi . Then, by virtue of positivity of I_{\lambda} , we have

|I_{\lambda}f|=|I_{\lambda}( \varphi_{0}f)+\sum_{\nu=1}^{N}I_{\lambda}[(\phi_{\nu-1}-\phi_{\nu})f]+I_{\lambda}(\phi_{N}f)|

\leq|f(x_{0})|I_{\lambda}\varphi_{0}+\sum_{\nu=1}^{N}|f(x_{\nu})|I_{\lambda}(\phi_{\nu-1}-\phi_{\nu})+||f||I_{\lambda}\psi_{N} .

Hence, for any seminorm p\equiv p_{\gamma}(\gamma\in\overline{C_{0}(X)}) , we get

p(I_{\lambda}f) \leq|f(x_{0})|p(I_{\lambda}\varphi_{0})+||f||p(I_{\lambda}\phi_{N})+\sum_{\nu=1}^{N}|f(x_{\nu})|p(I_{\lambda}\phi_{\nu-1})

\leq K|f(x_{0})|+1/2^{2N+1}||f||+\sum_{\nu=1}^{N}1/2^{2\nu}|f(x_{\nu})|

where K= \max\{||\gamma||, 1\} . Define q=p_{71} where \gamma_{1} is a function in \overline{C_{0}(X)} satis-
fying that

\gamma_{1}(x)=2K on D_{1} , 2K\geq\gamma_{1}(x)\geq 1 on \overline{D}_{2}\backslash D_{1} ,
1/2^{\nu-2}\geq\gamma_{1}(x)\geq 1/2^{\nu-1} on \overline{D}_{\nu+1}\backslash D_{\nu} (\iota\nearrow\geq 2) .

Then
K|f(x_{0})|= \frac{1}{2}\gamma_{1}(x_{0})|f(x_{0})|\leq\frac{1}{2}q(f)

and
\sum_{\nu=1}^{N}1/2^{2\nu}|f(x_{\nu})|\leq\sum_{\nu=1}^{N}1/2^{\nu+1}\gamma_{1}(x_{\nu})|f(x_{\nu})|

\leq q(f)\sum_{\nu=1}^{N}1/2^{\nu+1}\leq 1/2q(f) .

Hence it follows that p(I_{\lambda}f)\leq q(f)+1/2^{2N+2}||f|| ; here N may be chosen arbi-
trarily large. Thus we obtain p(I_{\lambda}f)\leq q(f) .

COROLLARY. s-\lim_{\lambdaarrow\infty}I_{\lambda}f=f for any f\in F.

PROOF. For any f\in F , the sequence \{f_{n}\}\subset C_{0}(X) defined by

f_{n}(x)=\varphi_{n}(x)f(x) (n=1,2, \cdots) ,

satisfies s^{-}\lim_{narrow\infty}f_{n}=f . For any seminorm p, let q be a seminorm as
mentioned in Proposition 3. 6. Then

p(I_{\lambda}f-f)\leq p(I_{\lambda}f-I_{\lambda}f_{n})+p(I_{\lambda}f_{n}-f_{n})+p(f_{n}-f)
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\leq q(f-f_{n})+||\gamma||||I_{\lambda}fn-f_{n}||+p(f_{n}-f) .

Since \lim_{\lambdaarrow\infty}||I_{\lambda}f_{n}-f_{n}||=0 for every n by (1. 6), we get

\varlimsup_{\lambdaarrow\infty}p(I_{\lambda}f-f)\leq q(f-f_{n})+p(f_{n}-f) for any n.

Let narrow\infty , and we have \varlimsup_{\lambdaarrow\infty}p(I_{\lambda}f-f)=0 , which implies s-\lim_{\lambdaarrow\infty}I_{\lambda}f=f since p

is arbitrary.

THEOREM 1. The inverse of the operator J_{\lambda} exists for any \lambda>0 , and
\lambda-J_{\lambda}^{-1} is independent of \lambda . The operator \tilde{A}=\lambda-J_{\lambda}^{-1} is a closed operator
in F, and the domain \mathscr{D}(\overline{A}) is dense in F.

PROOF. From the resolvent equation (1. 3), it follows that the null
space \mathcal{N}(J_{\lambda}) of J_{\lambda} is independent of \lambda . Hence Corollary to Proposition 3. 6
implies that \mathcal{N}(J_{\lambda}) consists of zero vector only, and accordingly that J_{\lambda}^{-1}

exists. By the resolvent equation (1. 3),

J_{\lambda}J\mu\{(\lambda-J_{\lambda}^{-1})-(\mu-J^{-1}\mu)\}=(\lambda-\mu)J_{\lambda}J\mu-J_{\lambda}J\mu(J_{\lambda}^{-1}-J^{-1}\mu)=0 .

Hence \lambda-J_{\lambda}^{-1} is independent of \lambda , and we may define \tilde{A}=\lambda-J_{\lambda}^{-1} . Since J_{\lambda}

is continuous in F,\overline{A} is a closed operator in F. For any f\in F , g_{\lambda}=\lambda J_{\lambda}f

\in \mathscr{B}(J_{\lambda})=\mathscr{D}(\overline{A}) and s-\lim_{\lambdaarrow\infty}g_{\lambda}=f by Corollary to Proposition 3. 6. Hence
\mathscr{D}(\overline{A}) is dense in F.

THEOREM 2. C_{0}(X)\cap \mathscr{D}(L)\subset \mathscr{D}(\tilde{A}) , and \overline{A}u=Lu for any u\in C_{0}(X)

\cap \mathscr{D}(L) ; namely \overline{A} is an extension of L restricted to C_{0}(X)\cap \mathscr{D}(L) .

PROOF. For any u\in C_{0}(X)\cap \mathscr{D}(L) , we put f=(\lambda-L)u . Then, since
J_{\lambda}f=J_{\lambda}(\lambda-L)u=u by (1. 4), we have f=J_{\lambda}^{-1}u . Hence Lu=\lambda u-J_{\lambda}^{-1}u .
Therefore, by the definition of \overline{A}, we get u\in \mathscr{D}(\overline{A}) and \tilde{A}u=Lu .

Let F_{1}= { f \in F|s-\lim_{\lambda\downarrow 0}J_{\lambda}f exists}. We define \tilde{G}f=s-\lim_{\lambda 10}f_{\lambda}f for f\in F_{1} .

We shall prove that \overline{G} is an extension of \overline{G} defined in \S 1.

THEOREM 3. F_{1}\supset \mathscr{D}(\overline{G})\supset C_{0}(X) , and s-\lim_{\lambda\downarrow 0}J_{\lambda}f=\overline{G}f for any f\in

\mathscr{D}(\overline{G}) .

PROOF. For any f\in \mathscr{D}(\overline{G}) , \lim_{\lambda\downarrow 0}J_{\lambda}f(x)=\overline{G}f(x) holds pointwise from
(1. 5). It is sufficient to prove our assertion for f\geq 0 . For such f, the
above convergence holds monotone increasingly as \lambda\downarrow 0 by the resolvent
equation (1. 3). Hence the convergence holds uniformly on every compact
subset of X by Dini’s theorem. The uniform boundedness of \{J_{\lambda}f\}_{\lambda>0} is
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clear. Hence we have s^{-}\lim_{\lambda\downarrow 0}J_{\lambda}f=\overline{G}f . Therefore we get F_{1}\supset \mathscr{D}(\overline{G}) . The

relation \mathscr{D}(\overline{G})\supset C_{0}(X) is shown by the same argument as we have derived
(5. 2) in the proof of Theorem 2 in [4].

THEOREM 4. If f\in \mathscr{D}(\tilde{G}) , then \tilde{G}f\in \mathscr{D}(\tilde{A}) and \tilde{A}\tilde{G}f=-f.

PROOF. For any f\in \mathscr{D}(\tilde{G})=F_{1} , we have J_{\lambda}f\in \mathscr{D}_{-}(\overline{A}) and s-\lim_{\lambda\downarrow 0}J_{\lambda}f=

\overline{G}f : accordingly s-\lim_{\lambda\downarrow 0}\overline{A}J_{\lambda}f=s-\lim_{\lambda\downarrow 0}(\lambda J_{\lambda}f-f)=-f . Since \tilde{A} is a closed
operator, we obtain that \overline{G}f\in \mathscr{D}(\overline{A}) and \tilde{A}\overline{G}f=-f .

THEOREM 5. For any f\in C_{0}(X)\cap \mathscr{D}(L),\overline{A}f\in \mathscr{D}(\tilde{G}) and \tilde{G}\overline{A}f=-f.
PROOF. For f\in C_{0}(X)\cap \mathscr{D}(L) , we have f\in \mathscr{D}(\tilde{A}) and \tilde{A}f=Lf\in

C_{0}(X) by Theorem 2. Hence it follows from Theorem 3 and the definition
of \tilde{G} that \tilde{A}f=Lf\in \mathscr{D}(\tilde{G}) and s-\lim_{\lambda\downarrow 0}J_{\lambda}Lf=\overline{G}Lf=\tilde{G}\tilde{A}f . On the other
hand, we know by ii ) and iii ) of Theorem mentioned in \S 1 that Lf=Af
\in \mathscr{D}(\overline{G}),\overline{G}Lf=-f and \lim_{\lambda\downarrow 0}||J_{\lambda}Lf-\overline{G}Lf||=0 , and accordingly that \lim_{\lambda\downarrow 0}||J_{\lambda}Lf

+f||=0 . Therefore we may conclude that \tilde{G}\overline{A}f=-f .

\S 4. Generation of semigroups.

In this section, we shall show that the operator \overline{A} (defined in \S 3) gen-
erates a unique quasi-equicontinuous (C_{0})-semigroup \{ \tilde{T}_{t}\} in F, and that
\{\overline{T}_{t}\} is an extension of the semigroup \{ T_{t}\} in E mentioned in \S 1.

By the theory of semigroups, we get \lim_{\lambdaarrow\infty}||T_{t}f-e-b1e\lambda f\iota\lambda^{2}J||=0 . Here

e^{t\lambda^{2}f_{\lambda}}f= \sum_{n=0}^{\infty}\frac{(t\lambda^{2})^{n}}{n!}J_{\lambda}^{n}f ; the series in the right hand side converges with
respect to the supremum norm. We can conclude T_{t} is a positive opera-
tor since J_{\lambda} is a positive operator for any \lambda>0 . Hence, for the restriction
of the operator T_{t} to C_{0}(X) , there exists a family of Borel measures \{P(t ,
x , \cdot)|x\in X\} in X such that P(t, x, X)\leq 1 and that

(T_{t}f)(x)= \int_{X}P(t, x, dy)f(y) for any f\in C_{0}(X) .

Therefore J_{\lambda}f is represented by

(J_{\lambda}f)(x)= \int_{0}^{\infty}e^{-\lambda t}dt\int_{X}P(t, x, dy)f(y) for f\in C_{0}(X) .

For any f\in C_{b}(X) , we define

(4. 1) u_{f}(t, x)= \int_{X}P(t, x, dy)f(y)
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and
(4. 2) v_{f}( \lambda, x)=\int_{0}^{\infty}e^{-\lambda t}u_{f}(t, x)dt .

LEMMA 4. 1. v_{f}(\lambda, x)=(J_{\lambda}f)(x) holds for any f\in C_{b}(X) .

PROOF. We first notice that J_{\lambda}f(x) for any f\in C_{b}(X) is expressed by

(4. 3) (J_{\lambda}f)(x)= \int_{X}f(y)d\rho_{\lambda}(xy) (see (1. 2)).

For any f\in C_{b}(X) , there exists a sequence \{f_{n}\}\subset C_{0}(X) such that s^{-}\lim_{narrow\infty}f_{n}

=f holds in F and that |f_{n}(x)|\leq|f(x)| on X for any n . Hence we con-
clude by (4. 1), (4. 2), (4. 3) and bounded convergence theorem that

\lim_{narrow\infty}(J_{\lambda}f_{n})(x)=J_{\lambda}f(x) and \lim_{narrow\infty}v_{fn}(\lambda, x)=v_{f}(\lambda, x) .

These are pointwise convergences on X. Since

(J_{\lambda}f_{n})(x)= \int_{0}^{\infty}e^{-\lambda t}dt\int_{X}P(t, x, dy)f_{n}(y)=v_{fn}(\lambda, x) (n=1,2,\cdots) ,

we get (J_{\lambda}f)(x)=v_{f}(\lambda, x) .

LEMMA 4. 2. For any f\in F and any k\geq 1 , we have

(4. 4) (J_{\lambda}^{k}f)(x)= \frac{1}{(k-1)!}\int_{0}^{\infty}t^{k-1}e^{-\lambda t}u_{f}(t, x)dt,\cdot

accordingly

(4. 5) p([ \lambda-\beta)J_{\lambda}]^{k}f)\leq\frac{(\lambda-\beta)^{k}}{(k-1)!}\int_{0}^{\infty}t^{k-1}e^{-(\lambda-\beta)t}p(e^{-\beta t}u_{f}(t^{ },\cdot))dt

for any seminorm p.

PROOF. It follows from (4. 2) that

\frac{\partial^{k}v_{f}(\lambda,x)}{\partial\lambda^{k}}=\int_{0}^{\infty}(-t)^{k}e^{-\lambda t}u_{f}(t, x)dt (k=1,2,\cdots) .

We use the resolvent equation (1. 3) and induction on k to obtain

( \frac{d}{d\lambda})^{k}(J_{\lambda}f)=(-1)^{k}k ! J_{\lambda}^{k+1}f .

Combining this formula with Lemma 4. 1 and the identity above, we con-
clude (4. 4). The inequality (4. 5) follows immediately from (4. 4).

LEMMA 4. 3. For any f\in E and any \lambda>0 , u=J_{\lambda}f belongs to \mathscr{D}(A)
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and satisfifies \langleAu, \rho\rangle =\langle u, L^{*}\rho\rangle for any \rho\in \mathfrak{M}_{0}(X)\cap \mathscr{D}(L^{*}) .

PROOF. We divide the proof of the this lemma into three steps. We
first notice the following facts which we use in step i ).

Let D be an arbitrary subdomain of X. If f\in C_{0}(X)\cap \mathscr{D}(L) and
supp f\subset D , then f\in C_{0}(D)\cap \mathscr{D}(L_{D}) by virtue of Lemma 1. 1. If \rho\in \mathfrak{M}_{0}(X)

\cap \mathscr{D}(L^{*}) and supp \rho\subset D , then \rho\in \mathfrak{M}_{0}(D)\cap \mathscr{D}(L_{D}^{*}) by virtue of Proposition
1. 3.

i) Assume that f\in C_{0}(X)\cap \mathscr{D}(L) . Since A=\lambda-J_{\lambda}^{-1} in E , we have

(4. 6) u=J_{\lambda}f\in \mathscr{D}(A) and Au=(\lambda-J_{\lambda}^{-1})J_{\lambda}f=\lambda u-f .

Let D be an arbitrary regular domain containing supp f\cup supp \rho , and put
u^{D}=J_{\lambda}^{D}f . Then (\lambda-L)u^{D}=f since f\in C_{0}(X)\cap \mathscr{D}(L) . Hence, for any \rho\in

\mathfrak{M}_{0}(X)\cap \mathscr{D}(L^{*}) , we have
\langle\lambda u^{D}-f, \rho\rangle=\langle Lu^{D}. \rho\rangle=\langle u^{D}. L^{*}\rho\rangle .

Passing to the limit as D\uparrow X , we get \langle\lambda u -f, \rho\rangle=\langle u, L^{*}\rho\rangle , which implies
\langleAu , \rho\rangle =\langle u, L^{*}\rho\rangle by means of (4. 6).

ii) Assume that f=J_{\mu}h with h\in C_{0}(X) and \mu>0 .
When \mu\neq\lambda , it follows from the resolvent equation and the result of

i) that

u=J_{\lambda}J \mu h=\frac{1}{\lambda-\mu}(J\mu h-J_{\lambda}h)\in \mathscr{D}(A) and Au=-J\mu h+\lambda u

and that
\langleAu, \rho\rangle =\langle u, L^{*}\rho\rangle for any \rho\in \mathfrak{M}_{0}(X)\cap \mathscr{D}(L^{*}) .

When \mu=\lambda , we take a sequence \{\lambda_{n}\} such that \lambda_{n}\neq\lambda and \lim_{narrow\infty}\lambda_{n}=\lambda . If

we put u_{n}=J_{\lambda}J_{\lambda n}h , then \lim_{narrow\infty}||u_{n}-u||\leq\lim_{narrow\infty}||J_{\lambda}||||J_{\lambda_{n}}h-J_{\lambda}h||=0 . It follows from

the above result that u_{n}\in \mathscr{D}(A) and Au_{n}=-J_{\lambda n}h+\lambda u_{n} ; accordingly Au_{n}

converges to -f+\lambda u as narrow\infty with respect to the supremum norm. Since
A is a closed operator in E, we obtain that u\in \mathscr{D}(A) and Au=-f+\lambda u .
This fact implies that Au_{n} converges to Au as narrow\infty with respect to the
supremum norm. As we have shown just above, \lambda_{n}\neq\lambda implies that u_{n}=

J_{\lambda}J_{\lambda n}h satisfies \langle Au_{n}, \rho\rangle=\langle u_{n}, L^{*}\rho\rangle for any \rho\in \mathfrak{M}_{0}(X)\cap \mathscr{D}(L^{*}) . Passing
to the limit as narrow\infty , we get \langleAu, \rho\rangle =\langle u, L^{*}\rho\rangle .

iii) It follows from the result of ii ) that the assertion of Lemma 4. 3
holds for any f\in E_{0} and any \lambda>0 . Since E_{0} is dense in E with respect to
the supremum norm and since A is a closed operator in E , the similar
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argument to that in ii ) shows that u=J_{\lambda}f\in \mathscr{D}(A) and \langleAu, \rho\rangle =\langle u, L^{*}\rho\rangle

for any f\in E .

LEMMA 4. 4. For any f\in F, the function u_{f}(t^{ }, \cdot ) defifined in (4. 1), is
continuous in t>0 with respect to the seminorm topology in F.

PROOF. For any f\in F , there exists a sequence \{f_{n}\}\subset C_{0}(X) satisfy-
ing that s-\lim_{narrow\infty}f_{n}=f . Then, for every n and \lambda>0 , J_{\lambda}f_{n}\in \mathscr{D}(A) by Lemma
4. 3. Hence TJ_{\lambda}f_{n} is differentiate in t with respect to the norm in E and
we have \frac{d}{dt}TJ_{\lambda}f_{n}=ATJ_{\lambda}f_{n}=AJ_{\lambda}T_{t}f_{n} . Accordingly, for any \rho\in \mathfrak{M}_{0}(X)\cap

\mathscr{D}(L^{*}) , we get \frac{d}{dt}\langle TJ_{\lambda}f_{n}, \rho\rangle=\langle AJ_{\lambda}T_{t}f_{n}, \rho\rangle=\langle J_{\lambda}T_{t}fn, L^{*}\rho\rangle by Lemma 4. 3.
Hence

\langle\lambda J_{\lambda}T_{t}f_{n}, \rho\rangle-\langle\lambda J_{\lambda}T_{s}f_{n}, \rho\rangle=\int_{s}^{t}\langle\lambda J_{\lambda}T_{\tau}f_{n}, L^{*}\rho\rangle d\tau (t>s>0) .

Passing to the limit as \lambdaarrow\infty , we obtain by (1. 6)

\langle T_{t}f_{n}, \rho\rangle-\langle T_{s}f_{n}, \rho\rangle=\int_{s}^{t}\langle T_{\tau}f_{n}, L^{*}\rho\rangle d\tau .

By the definition (4. 1) of u_{f}(t, x) , we may rewrite the above equality as
follows:

\langle u_{fn}(t, \cdot), \rho\rangle-\langle u_{fn}(_{S^{ }},\cdot), \rho\rangle=\int_{s}^{t}\langle u_{fn}(_{T^{ }},\cdot), L^{*}\rho\rangle d\tau .

Let narrow\infty , and we get, by means of bounded convergence theorem,

\langle u_{f}(t^{ },\cdot), \rho\rangle-\langle u_{f}(s^{ },\cdot), \rho\rangle=\int_{s}^{t}\langle u_{f}(_{T^{ }},\cdot), L^{*}\rho\rangle d\tau .

Since \langle u_{f}(t, \cdot), L^{*}\rho\rangle is bounded in t , the above equality implies that
\frac{d}{dt}\langle u_{f}(t^{ },\cdot), \rho\rangle exists and is equal to \langle u_{f}(t^{ },\cdot), L^{*}\rho\rangle for almost all t>0 .

Hence, for any function \chi\in C_{0}^{1}((0^{ },\infty)) , we get

\langle u_{f}(t^{ },\cdot), \rho\rangle\chi(t)-\langle u_{f}(_{S^{ }},\cdot), \rho\rangle\chi(s)

= \int_{s}^{t}\frac{d}{d\tau}\{\langle u_{f}(_{T^{ }},\cdot), \rho\rangle\chi(\tau)\}d\tau

= \int_{s}^{t}\{\langle u_{f}(_{T^{ }},\cdot), L^{*}\rho\rangle\chi(\tau)+\langle u_{f}(_{T^{ }},\cdot), \rho\rangle\chi’(\tau)\}d\tau .

Let s\downarrow 0 and t\uparrow\infty , and we obtain

\int_{0}^{\infty}\{\langle u_{f}(\tau, \cdot), L^{*}\rho\rangle\chi(\tau)+\langle u_{f}(_{T^{ }},\cdot), \rho\rangle\chi’(\tau)\}d\tau=0 .
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Hence, by Axiom (\delta’) , u_{f}(t, x) is differentiable in t , u_{f}(t, \cdot)\in \mathscr{D}(L) for

any t>0 and \frac{\partial u_{f}}{\partial t}=Lu_{f}\in C((0, \infty)\cross X) . For any t_{0}>0 and any compact

subset K of X, we consider a bounded interval [t_{1}, t_{2}] such that 0<t_{1}<t_{0}<

t_{2}<\infty . Then Lu_{f}(t, x) is bounded on [t_{1}, t_{2}]\cross K and we have

u_{f}(t, x)-u_{f}(t_{0}, x)= \int_{to}^{t}Lu_{f}(\tau, x)d\tau (t_{1}<t<t_{2}) .

Hence u_{f}(t, \cdot) converges to u_{f}(t_{0}^{ }, \cdot ) as tarrow t_{0} uniformly on every compact
subset of X. Furthermore we have |u_{f}(t, x)|\leq||f|| , which means that
\{u_{f}(t, \cdot); t>0\} is uniformly bounded. Hence we get s-\lim_{tarrow t_{0}}u_{f}(l^{ },\cdot)=

u_{f}(t_{0}^{ }, \cdot ) , namely u_{f}(t, \cdot) is continuous in t>0 with respect to the seminor-
m topology in F.

LEMMA 4. 5. s^{-}\lim_{t\downarrow 0}u_{\psi n}(t^{ },\cdot)=\phi_{n} in F for each n .

PROOF. Since \varphi_{n}\in C_{0}(X) , we have

\lim_{t\downarrow 0}||u_{\varphi n}(t^{ },\cdot)-\varphi_{n}||=\lim_{t\downarrow 0}||T_{t}\varphi_{n}-\varphi_{n}||=0 .

Using this fact, we may prove by the same argument as in the proof of
Lemma 3. 2 that s-\lim_{t\downarrow 0}u_{\varphi_{\infty}}(t, \cdot)=\varphi_{\infty} in F, and accordingly we get

s-\lim_{t\downarrow 0}u_{\psi n}(t^{ },\cdot)=\phi_{n} in F for each n .

LEMMA 4. 6. For any seminorm p, p([(\lambda-\beta)J_{\lambda}]^{k}\phi_{n}) converges to 0 as
narrow\infty uniformly in \lambda\geq\beta and k\geq 0 .

PROOF. The sequence \{u_{\psi_{n}} ( t^{ }, \cdot ) \} decreases to 0 pointwise as narrow\infty .
For given seminorm p, we put

g_{n}(t)=\{
p(e^{-\beta t}u_{\psi_{n}}(t, \cdot)) if 0\leq t<\infty

0 if t=\infty .
Then g_{n}(t) decreases to 0 as narrow\infty for each t\in[0, \infty] , and we see by
Lemma 4. 4 and Lemma 4. 5 that g_{n}(t) is continuous in t\in[0, \infty] for each
n . Hence g_{n}(t) tends to 0 uniformly in t\in[0, \infty] by Dini’s theorem.
Therefore, for any \epsilon>0 , there exists n_{0} such that p(e^{-\beta t}u_{\psi_{n}}(t^{ },\cdot))<\epsilon for
any n>n_{0} . Hence, by Lemma 4. 2, we get for n>n_{0}

p([( \lambda-\beta)J_{\lambda}]^{k}f)\leq\frac{(\lambda-\beta)^{k}}{(k-1)!}\int_{0}^{\infty}t^{k-1}e^{-(\lambda-\beta)t}p(e^{-\beta t}u_{\psi_{n}}(t^{ },\cdot))dt

\leq\epsilon\frac{(\lambda-\beta)^{k}}{(k-1)!}\int_{0}^{\infty}t^{k-1}e^{-(\lambda-\beta)t}dt=\epsilon :
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the last equality follows from a direct calculation. Therefore p([(\lambda

-\beta)J_{\lambda}]^{k}\phi_{n}) converges to 0 as narrow\infty uniformly in \lambda\geq\beta and k\geq 0 .

PROPOSITION 4. 7. For any fifixed \beta>0 and any seminorm p, there
exists a seminorm q such that p([(\lambda-\beta)J_{\lambda}]^{k}f)\leq q(f) for any \lambda>\beta, k\geq 0

and f\in F, that is, [(\lambda-\beta)J_{\lambda}]^{k} is equicontinuous in \lambda>\beta and k\geq 0 .

The proof of this proposition is parallel to that of Proposition 3. 6, so
is omitted.

THEOREM 6. The operator \overline{A} is the infifinitesimal generator of a
uniquely determined quasi-equicontinuous (C_{0})-semigroup \{ \overline{T}_{t}\} in F, and
we have

J_{\lambda}f=( \lambda-\overline{A})^{-1}f=\int_{0}^{\infty}e^{-\lambda t}\overline{T}fdt for any f\in F.

PROOF. We define A_{\beta}=\tilde{A}-\beta and J_{\beta,\lambda}=J_{\beta+\lambda} for any given \beta>0 .
Then J_{\beta,\lambda}=(\lambda-A_{\beta})^{-1} . Since (\lambda J\beta,\lambda)^{k}(\lambda>0, k\geq 0) is equi-continuous by
Proposition 4. 7, A_{\beta} is the infinitesimal generator of a uniquely determined
equicontinuous (C_{0})-semigroup \{S_{\beta,t}\}_{t\geq 0} by Hille-Yosida theorem on semi-
groups of operators in locally convex spaces ([7], [8], [15]). If 0<\beta_{1}<\beta_{2} ,

then \{e^{-(\beta_{2}-\beta_{1})t}S_{\beta_{1},t}\}_{t>0} is the equicontinuous (C_{0})-semigroup whose genera-
tor is A_{\beta_{1}}-(\beta_{2}-\beta_{1}) ; this is identical with A_{\rho_{2}} . Hence we have
e^{-(\beta_{2}-\beta_{1})t}S_{\beta_{1},t}=S_{\beta_{2},t} , namely e^{\beta_{1}}{}^{t}S_{\beta_{1},t}=e^{\beta_{2}}{}^{t}S_{\beta_{2},t} . We thus see that e^{\beta t}S_{\beta,t} is
independent of \beta . Therefore, if we define \tilde{T}_{t}=e^{\beta t}S_{\beta,t} , \{ \overline{T}_{t}\} is the quasi
-equicontinuous (C_{0})-semigroup whose generator is \overline{A}. For any fixed \beta>

0 , we have

J_{\lambda+\beta}= \int_{0}^{\infty}e^{-\lambda t}S_{\beta,t}dt=\int_{0}^{\infty}e^{-(\lambda+\beta)t}\overline{T}_{t}dt

for any \lambda>0 , that is,

J_{\lambda}= \int_{0}^{\infty}e^{-\lambda t}\overline{T}_{t}dt for any \lambda>\beta .

Since \beta is arbitrary, this equality holds for any \lambda>0 .

THEOREM 7. The semigroup \{ \overline{T}_{t}\} in F is an extension of \{ T_{t}\} in E,

and ( \overline{T}_{t}f)(x)=\int_{X}P(t, x, dy)f(y) for any f\in F.

PROOF. Since J_{\lambda} is written as (\lambda-A)^{-1} in the Banach space E where A

is the infinitesimal generator of semigroup \{ T_{t}\} , we get J_{\lambda}f= \int_{0}^{\infty}e^{-\lambda t}T_{t}fdt
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for any f\in E . On the other hand, J_{\lambda}f= \int_{0}^{\infty}e^{-\lambda t}\overline{T}_{t}fdt for any f\in F by

Theorem 6. For any f\in E , ( T_{t}f)(x) and ( \overline{T}_{t}f)(x) are continuous function
of t for every x\in X , and accordingly T_{t}f=\tilde{T}_{t}f by the unicity theorem of
Laplace transforms. Hence \{ \overline{T}_{t}\} is an extension of \{ T_{t}\} . For any f\in F ,
we have

\int_{0}^{\infty}e^{-\lambda t}dt\int_{X}P(t, x, dy)f(y)=\int_{0}^{\infty}e^{-\lambda t}\overline{T}_{t}fdt

by Lemma 4. 1 and Theorem 6, and \int_{X}P(t, x, dy)f(y) is continuous in t for
every x\in X by Lemma 4. 4. Hence, again using the unicity theorem of
Laplace transforms, we get ( \overline{T}_{t}f)(x)=\int_{X}P(t, x, dy)f(y) for any f\in F .

References

[1 ] D. GILBARG and N. TRUDINGER, Elliptic partial differential equations of second order,
Springer-Verlag 1977.

[2 ] F. HIRSCH, Families r\’esolvents g\’en\’erateurs, cogenerateurs, potentiels, Ann. Inst.
Fourier 22 (1972), 89-210.

[3] G. HUNT, Markov processes and potentials, I, II, III, 111. J. Math. 1(1957), 44-93, 316
-362; 2 (1958), 151-213.

[4] M. ITO, The existence of positive harmonic functions and Green operators, Natural
Sci. Report, Ochanomizu Univ., 29 (1978), 137-146.

[5 ] M. ITO, On existence of Green operator and positive superharmonic functions, ibid. 34
(1983), 15-18.

[6] M. ITO, Abstract Green operators and semigroups, ibid. 34 (1983), 1-13.
[7] H. KOMATSU, Semigroups of operators on locally convex spaces. J. Math. Soc. of

Japan 16, (1964), 230-262.
[8] T. K\^OMURA, Semigroups of operators in locally convex spaces. J. Funct. Anal. 2

(1968), 258-296.
[9] P. A. MEYER, Probability and potentials, Blaisdell Publ. Co. 1966.
[10] A. MORI, On the existence of harmonic functions on a Riemann surface, J. Fac. Sci.,

Univ. Tokyo, Sec. I, 6 (1951), 247-257.
[11] A. YAMADA, On the correspondence between potential operators and semigroups as-

sociated with Markov processes, Z. Wahrscheinlichkeitstheorie u. verw. Gebiete,
15(1970), 230-238.

[12] K. YOSIDA, Positive resolvents and potentials, ibid. 8 (1967), 210-218.
[13] K. YOSIDA, The pre-closedness of Hunt’s potential operators and its applications, Proc.

Intern, Conf. on Funct. Anal. Related Topics, Tokyo (1969), 324-331.
[14] K. YOSIDA, On the existence and a characterization of abstract potential operators,

Proc. Colloq. Funct. Anal., Li\‘ege (1970), 129-136.
[15] K. YOSIDA, Functional Analysis, 6th ed. Springer 1980.

Nihon Medical School
2-297-2 Kosugi Nakahara-Ku
Kawasaki 211, JAPAN


	\S 0. Introduction.
	\S 1. Preliminaries.
	THEOREM. i)(1. ...

	\S 2. A family of seminorms ...
	\S 3. Green operator.
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...
	THEOREM 4. ...
	THEOREM 5. ...

	\S 4. Generation of semigroups.
	THEOREM 6. ...
	THEOREM 7. ...

	References

