A new algorithm derived from the view-point of the fluctuation-dissipation principle in the theory of $\mathrm{KM}_{2} \mathrm{O}$-Langevin equations

Yasunori Okabe
(Received October 16, 1992)

§ 1. Introduction and statements of results

We have constructed in [4] a theory of $\mathrm{KM}_{2} \mathrm{O}$-Langevin equations for multi-dimensional weakly stationary processes with discrete time, and from the view-point of the so-called fluctuation-dissipation theorem in irreversible statistical physics ([2]), we have established a fluctuation-dissipation theorem which gives a relation between the fluctuant and deter -ministic terms in the $\mathrm{KM}_{2} \mathrm{O}$-Langevin equation. Such a fluctuationdissipation theorem had already been found as the Levinson-Whittle-Wig-gins-Robinson algorithm for the fitting problem of $A R$-models in the field of system, control and information ([3], [1], [10], [11]). Sublimating a certain philosophical structure behind our fluctuation-dissipation theorem to form the fluctuation-dissipation principle, we have applied the theory of $\mathrm{KM}_{2} \mathrm{O}$-Langevin equations to data analysis and developped a stationary analysis as well as a causal analysis ([7], [6]). Furthermore, on these lines, we have solved the non-linear prediction problem for one-dimensional strictly stationary processes with discrete time and developped a prediction analysis as our third project in data analysis ([5], [9], [8]).

Let $\mathbf{X}=(X(n) ; n \in \mathbf{Z})$ be an \mathbf{R}^{d}-valued weakly stationary process on a probability space (Ω, \mathscr{B}, P) with expectation vector zero and covariance matrix function R :

$$
\text { (1.1) } \quad R(m-n) \equiv E\left(X(m)^{t} X(n)\right) \quad(m, n \in \mathbf{Z}),
$$

where d is any fixed natural number.
For each $n \in \mathbf{N}$, a block Toeplitz matrix $S_{n} \in M(n d ; \mathbf{R})$ is defined by

$$
S_{n} \equiv\left(\begin{array}{cccc}
R(0) & R(1) & \cdots & R(n-1) \tag{1.2}\\
R(-1) & R(0) & \cdots & R(n-2) \\
\vdots & \vdots & \ddots & \vdots \\
R(-(n-1)) & R(-(n-2)) & \cdots & R(0)
\end{array}\right)
$$

In this paper we shall assume the Toeplitz condition:

$$
\text { (1.3) } S_{n} \in G L(n d ; \mathbf{R}) \quad \text { for any } \quad n \in \mathbf{N} \text {. }
$$

It then follows from the theory of $\mathrm{KM}_{2} \mathrm{O}$-Langevin equations that the time evolution in the future (resp. past) of the process \mathbf{X} is governed by the forward (resp, backward) $\mathrm{KM}_{2} \mathrm{O}$-Langevin equation (1.5+) (resp. (1. 5-)) with (1.4):

$$
\begin{align*}
X(0) & =\nu_{+}(0)=\nu_{-}(0) & & \tag{1.4}\\
X(n) & =-\sum_{k=1}^{n-1} \gamma_{+}(n, k) X(k)-\delta_{+}(n) X(0)+\nu_{+}(n) & & (n \in \mathbf{N}) \tag{+}\\
X(-n) & =-\sum_{k=1}^{n-1} \gamma_{-}(n, k) X(-k)-\delta_{-}(n) X(0)+\nu_{-}(-n) & & (n \in \mathbf{N}) . \tag{1.5-}
\end{align*}
$$

Here the random force $\nu_{+}=\left(\nu_{+}(l) ; l \in \mathbf{N}^{*}\right)$ (resp. $\nu_{-}=\left(\nu_{-}(l) ; l \in-\mathbf{N}^{*}\right)$ is said to be the forward (resp. backward) $\mathrm{KM}_{2} \mathrm{O}$-Langevin force associated with \mathbf{X}. We call the system $\left\{\gamma_{ \pm}(n, k), \delta_{ \pm}(m), V_{ \pm}(l) ; l \in \mathbf{N}^{*}, k, m, n \in \mathbf{N}\right.$, $n>k\}$, whose elements belong to $M(d ; \mathbf{R})$, the $\mathrm{KM}_{2} \mathrm{O}$-Langevin data associated with the covariance matrix function R of \mathbf{X}, where $V_{ \pm}(l)$ are the covariance matrices of $\mathrm{KM}_{2} \mathrm{O}$-Langevin forces $\nu_{ \pm}(\pm l)\left(l \in \mathbf{N}^{*}\right)$:

$$
\begin{equation*}
V_{+}(l) \equiv E\left(\nu_{+}(l)^{t} \nu_{+}(l)\right) \quad \text { and } \quad V_{-}(l) \equiv E\left(\nu_{-}(-l)^{t} \nu_{-}(-l)\right) . \tag{1.6}
\end{equation*}
$$

In particular, the subsystem $\left\{\delta_{ \pm}(n) ; n \in \mathbf{N}\right\}$ is called the partial autocorrelation coefficient in the field of system, control and information.

We are now ready to formulte the fluctuation-dissipation theorem mentioned above:

Dissipation-Dissipation Theorem ([3], [1], [10], [11], [4]). For any n, k $\in \mathbf{N}, n>k$,

$$
\gamma_{ \pm}(n, k)=\gamma_{ \pm}(n-1, k-1)+\delta_{ \pm}(n) \gamma_{\mp}(n-1, n-k-1),
$$

where
(1.8) $\quad \gamma_{+}(n, 0) \equiv \delta_{+}(n) \quad$ and $\quad \gamma_{-}(n, 0) \equiv \delta_{-}(n)$.

Fluctuation-Dissipation Theorem ([3], [1], [10], [11], [4]). For any $n \in$ N,
(1. $\left.9_{ \pm}\right) \quad V_{ \pm}(n)=\left(I-\delta_{ \pm}(n) \delta_{\mp}(n)\right) V_{ \pm}(n-1)$

$$
\begin{array}{ll}
(1.10) & \delta_{-}(n) V_{+}(n-1)=V_{-}(n-1)^{t} \delta_{+}(n) \tag{1.10}\\
(1.11) & \delta_{-}(n) V_{+}(n)=V_{-}(n)^{t} \delta_{+}(n) .
\end{array}
$$

Recalling the theory of $\mathrm{KM}_{2} \mathrm{O}$-Langevin equations, we should note that the relations ($1.9_{ \pm}$)-(1.11) can be derived from the following Burg's relation:

Burg's relation ([3], [1], [10], [11], [4]). For any $n \in \mathbf{N}$,

$$
\begin{equation*}
\sum_{k=0}^{n-1} \gamma_{+}(n, k) R(k+1)=\sum_{k=0}^{n-1} R(k+1)^{t} \gamma_{-}(n, k) \tag{1.12}
\end{equation*}
$$

As will be shown in § 2, we can paraphrase Burg's relation in terms of the $\mathrm{KM}_{2} \mathrm{O}$-Langevin forces $\nu_{ \pm}$:

$$
\begin{equation*}
E\left(\nu_{+}(n)^{t} \nu_{-}(-1)\right)=E\left(\nu_{+}(1)^{t} \nu_{-}(-n)\right) \quad\left(n \in \mathbf{N}^{*}\right) \tag{1.13}
\end{equation*}
$$

From our view-point of the fluctuation-dissipation principle, relation (1.13) should be regarded as a special case of the fluctuation-fluctuation theorem, relations among the mutual covariance matrix functions $I(m, n)$ of the forward and backward $\mathrm{KM}_{2} \mathrm{O}$-Langevin forces $\nu_{ \pm}$:

$$
\begin{equation*}
I(m, n) \equiv E\left(\nu_{+}(m)^{t} \nu_{-}(-n)\right) \quad\left(m, n \in \mathbf{N}^{*}\right) \tag{1.14}
\end{equation*}
$$

The purpose of this paper is to prove these relations that will be used to build a useful algorithm in applications to data analysis. The precise statement of our results is as follows:

Fluctuation-Fluctuation Theorem.

(i) $\quad I(0,0)=V_{+}(0)$
(ii) $\quad I(m, 0)=I(0, m)=0 \quad(m \in \mathbf{N})$
(iii) $\quad I(m, 1)=I(1, m)=-\delta_{+}(m+1) V_{-}(m) \quad(m \in \mathbf{N})$
(iv) $I(m, n)=I(m+1, n-1)+\left\{\sum_{k=1}^{n-2} I(m+1, k)^{t} \delta_{+}(k+1)\right\}^{t} \delta_{-}(n)-$

$$
-\delta_{+}(m+1)\left\{\sum_{k=1}^{m-1} \delta_{-}(k+1) I(k, n)\right\} \quad(m, n \geq 2) .
$$

This theorem has already been announced in [5] and [9], and we can easily form an algorithm to compute all values of $I(m, n)$. In a separate paper, we shall give further discussions to assert that the fluctuation -fluctuation theorem, together with the dissipation-dissipation and fluctua-tion-dissipation theorerm, yields a characterization of the weak stationarity of a stochastic process \mathbf{X} in terms of the $\mathrm{KM}_{2} \mathrm{O}$-Langevin forces $\nu_{ \pm}$.

The author would like to thank Professor A. Noda for his kind valuable advices.

§ 2. Proof of Fluctuation-Fluctuation Theorem

For any fixed natural number d, let $\mathbf{X}=(X(n) ; n \in \mathbf{Z})$ be an \mathbf{R}^{d}-valued weakly stationary process as in §1. Let us recall the definition of $\mathrm{KM}_{2} \mathrm{O}$-Langevin forces. For any d-dimensional stochastic process $\mathbf{Y}=$ $\left.{ }^{t}\left(Y_{1}(n), \cdots, Y_{d}(n)\right) ; l \leq n \leq r\right)$ on the basic probability space (Ω, \mathscr{B}, P) $(-\infty \leq l<r \leq \infty)$, we difine, for each $n_{1}, n_{2}, l \leq n_{1} \leq n_{2} \leq r$, the closed subspace $\mathbf{M}_{n_{1}}^{n_{2}^{2}}(\mathbf{Y})$ of $L^{2}(\Omega, \mathscr{B}, P)$ by
(2.1) $\quad \mathbf{M}_{n_{1}}^{n_{1}^{2}}(\mathbf{Y}) \equiv$ the closed linear hull of $\left\{Y_{j}(n) ; 1 \leq j \leq d, n_{1} \leq n \leq n_{2}\right\}$.

Then the forward (resp. backward) $\mathrm{KM}_{2} \mathrm{O}$-Langevin force $\nu_{+}=\left(\nu_{+}(n) ; n \in\right.$ $\left.\mathbf{N}^{*}\right)\left(\right.$ resp. $\left.\nu_{-}=\left(\nu_{-}(l) ; l \in-\mathbf{N}^{*}\right)\right)$ is an \mathbf{R}^{d}-valued stochastic process given by

$$
\left\{\begin{array}{lll}
\nu_{+}(n) & \equiv X(n)-P_{\mathbf{M}^{---}(\mathbf{X})} X(n) & \left(n \in \mathbf{N}^{*}\right) \tag{2.2}\\
\nu_{-}(-n) & \equiv X(-n)-P_{\mathbf{M}_{n+1}(\mathbf{X})} X(-n) & \left(n \in \mathbf{N}^{*}\right),
\end{array}\right.
$$

where $\mathbf{M}_{0}^{-1}(\mathbf{X})=\mathbf{M}_{1}^{0}(\mathbf{X})=\{0\}$ and $P_{M_{0^{-1}}(\mathbf{X})}\left(\right.$ resp. $\left.P_{\mathbf{M}_{n+1}}(\mathbf{X})\right)$ stands for the orthogonal projection to the space $\mathbf{M}_{0}^{n-1}(\mathbf{X})$ (resp. $\mathbf{M}_{-n+1}^{0}(\mathbf{X})$). We have

$$
\begin{equation*}
\nu_{+}(0)=\nu_{-}(0)=X(0) \tag{2.3}
\end{equation*}
$$

(2.4) The stochastic processes $\nu_{ \pm}$are orthogonal with mean vector zero

$$
\begin{equation*}
\mathbf{M}_{0}^{n}(\mathbf{X})=\mathbf{M}_{0}^{n}\left(\boldsymbol{\nu}_{+}\right) \quad \text { and } \quad \mathbf{M}_{-n}^{0}(\mathbf{X})=\mathbf{M}_{-n}^{0}\left(\boldsymbol{\nu}_{-}\right) \quad\left(n \in \mathbf{N}^{*}\right) . \tag{2.5}
\end{equation*}
$$

As stated in § 1, the stochastic process \mathbf{X} satisfies the forward (resp. backward) $\mathrm{KM}_{2} \mathrm{O}$-Langevin equation (1. 5_{+}) (resp. (1.5-)). The dissipa-tion-dissipation theorem ($1.7_{ \pm}$) and the fluctuation-dissipation theorem $\left(1.9_{ \pm}\right)-(1.11)$ are known relations among the $\mathrm{KM}_{2} \mathrm{O}$-Langevin data. On the other hand, the fundamental quantities $\delta_{ \pm}(\cdot)$ can be calculated from the covariance matrix function R by the following algorithm:

Partial Autocorrelation Coefficient ([3], [1], [10], [11], [4]). For any n $\in \mathbf{N}$,

$$
\delta_{ \pm}(n)=-\left\{R(\pm n)+\sum_{k=0}^{n-2} \gamma_{ \pm}(n-1, k) R(\pm(k+1))\right\} V_{\mp}(n-1)^{-1} .
$$

Now we are giving to prove Fluctuation-Fluctuation Theorem.
(Step 1) We begin with observing that Burg's relation (1.12) is equivalent to a special case of the fluctuation-fluctuation theorem: for any $m \in \mathbf{N}$,

$$
I(m, 1)=I(1, m) .
$$

Multiplying both-hand sides of equation (1. 5_{+}) with $n=m$ by ${ }^{t} X(-1)$ from the right and taking an expectation with respect to P, we have

$$
\begin{equation*}
R(m+1)=-\sum_{k=0}^{m-1} \gamma_{+}(m, k) R(k+1)+E\left(\nu_{+}(m)^{t} X(-1)\right) \tag{2.7}
\end{equation*}
$$

Noting that the weak stationarity of \mathbf{X} implies that $R(m+1)=$ $E\left(X(m)^{t} X(-1)\right)=E\left(X(1)^{t} X(-m)\right.$, we then multiply both-hand sides of equation (1.5-) with taking the transpose and putting $n=m$ by $X(1)$ from the left, and similarly obtain

$$
\begin{equation*}
R(m+1)=-\sum_{k=0}^{m-1} R(k+1)^{t} \gamma_{-}(m, k)+E\left(X(1)^{t} \nu_{-}(-m)\right) \tag{2.8}
\end{equation*}
$$

Therefore, we apply Burg's relation (1.12) to (2.7) and (2.8), and get

$$
\begin{equation*}
E\left(\nu_{+}(m)^{t} X(-1)\right)=E\left(X(1)^{t} \nu_{-}(-m)\right) \tag{2.9}
\end{equation*}
$$

On the other hand, it follows immediately from (1. $5_{ \pm}$) and (2.3)-(2. 5) that

$$
\begin{equation*}
E\left(\nu_{+}(m)^{t} X(-1)\right)=I(m, 1) \quad \text { and } \quad E\left(X(1)^{t} \nu_{-}(-m)\right)=I(1, m) \tag{2.10}
\end{equation*}
$$

Hence Step 1 follows from (2.9) and (2.10).
(Step 2) We claim that for any $m \in \mathbf{N}$,

$$
I(m, 1)=I(1, m)=-\delta_{+}(m+1) V_{-}(m)
$$

Immediately from (2.6+), we have

$$
R(m+1)=-\sum_{k=0}^{m-1} \gamma_{+}(m, k) R(k+1)-\delta_{+}(m+1) V_{-}(m)
$$

which, with (2.7) and (2.10), completes the proof of Step 2.
(Step 3) We claim that for any $n \in \mathbf{N}$,

$$
\begin{equation*}
V_{+}(n)=R(0)+\sum_{k=0}^{n-1} R(n-k)^{t} \gamma_{+}(n, k) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
V_{-}(n)=R(0)+\sum_{k=0}^{n-1} \gamma_{-}(n, k) R(n-k) . \tag{ii}
\end{equation*}
$$

These are easy versions of (4.5) and (4.6) in the proof of Lemma 4.2 in [4]. Actually we can directly derive them by multipyling both-hand sides of equations ($1.5_{ \pm}$) by ${ }^{t} X(\pm n)$ from the right, taking an expectation with respect to P and using (2.3)-(2.5).
(Step 4) For any $m, n \in \mathbf{N}^{*}$, put

$$
\begin{equation*}
F_{n}(m) \equiv R(n)+\sum_{k=1}^{m} \gamma_{-}(m, m-k) R(n+k) . \tag{2.11}
\end{equation*}
$$

Then, rewriting (ii) in Step 3, we have

$$
F_{0}(m)=V_{-}(m) .
$$

(Step 5) We are now in a position to prove the following by mathematical induction with respect to n. For any $m, n \in \mathbf{N}$,

$$
R(m+n)=-\sum_{k=1}^{n} \delta_{+}(m+k) F_{n-k}(m+k-1)-\sum_{k=0}^{m-1} \gamma_{+}(m, k) R(k+n) .
$$

By (2. 6_{+}), we have

$$
R(m+n)=-\delta_{+}(m+n) V_{-}(m+n-1)-\sum_{k=0}^{m+n-2} \gamma_{+}(m+n-1, k) R(k+1),
$$

which, using Step 4, implies that Step 5 holds for any $m \in \mathbf{N}$ and $n=1$. Let us assume that Step 5 holds for any $m \in \mathbf{N}$ and $n=n_{0}-1, n_{0} \geq 2$. It then follows that

$$
\begin{align*}
& R\left(m+n_{0}\right)=R\left((m+1)+\left(n_{0}-1\right)\right)= \tag{2.12}\\
& =-\sum_{k=1}^{n_{0}-1} \delta_{+}(m+1+k) F_{n_{0}-1-k}(m+k)-\sum_{k=0}^{m} \gamma_{+}(m+1, k) R\left(k+n_{0}-1\right) .
\end{align*}
$$

By relation (1. 7_{+}) in the dissipation-dissipation theorem, we have

$$
\begin{align*}
& \sum_{k=0}^{m} \gamma_{+}(m+1, k) R\left(k+n_{0}-1\right) \tag{2.13}\\
& =\delta_{+}(m+1) F_{n_{0}-1}(m)+\sum_{k=0}^{m-1} \gamma_{+}(m, k) R\left(k+n_{0}\right) .
\end{align*}
$$

Therefore, we see from (2.12) and (2.13) that Step 5 holds for any $m \in \mathbf{N}$ and $n=n_{0}$. Hence, we complete the proof of Step 5 by mathematical induction.
(Step 6) We claim that for any $m, n \in \mathbf{N}$,

$$
E\left(\nu_{+}(m)^{t} X(-n)\right)=-\sum_{k=1}^{n} \delta_{+}(m+k) F_{n-k}(m+k-1) .
$$

Taking an analogous manipulation when we got (2.7) from equation (1. 5_{+}), we have

$$
R(m+n)=-\sum_{k=0}^{m-1} \gamma_{+}(m, k) R(k+n)+E\left(\nu_{+}(m)^{t} X(-n)\right),
$$

which, with Step 5, yields Step 6.
(Step 7) We claim that for any $m, n \in \mathbf{N}, m \geq 2$,

$$
F_{n-1}(m)=F_{n-1}(m-1)+\delta_{-}(m) E\left(\nu_{+}(m-1)^{t} X(-n)\right) .
$$

Applying (1.7_) to each term $\gamma_{-}(m, m-k)(1 \leq k \leq m-1)$ in the definition of $F_{n-1}(m)$, and using Step 5, we have

$$
\begin{aligned}
F_{n-1}(m)= & R(n-1)+\delta_{-}(m) R(n-1+m)+ \\
& +\sum_{k=1}^{m-1}\left(\gamma_{-}(m-1, m-1-k)+\delta_{-}(m) \gamma_{+}(m-1, k-1)\right) R(n-1+k) \\
= & F_{n-1}(m-1)+\delta_{-}(m)\left\{R(n-1+m)+\sum_{l=0}^{m-2} \gamma_{+}(m-1, l) R(n+l)\right\} \\
= & F_{n-1}(m-1)-\delta_{-}(m)\left\{\sum_{k=1}^{n} \delta_{+}(m-1+k) F_{n-k}(m+k-2)\right\} .
\end{aligned}
$$

Hence, Step 7 follows from Step 6.
(Step 8) We claim that for any $m, n \in \mathbf{N}, m \geq 2$,

$$
\begin{aligned}
E\left(\nu_{+}(m)^{t} X(-n)\right)= & E\left(\nu_{+}(m+1)^{t} X(-n+1)\right)- \\
& -\delta_{+}(m+1)\left\{\sum_{k=2}^{m} \delta_{-}(k) E\left(\nu_{+}(k-1)^{t} X(-n)\right)\right\}- \\
& -\delta_{+}(m+1) F_{n-1}(1) .
\end{aligned}
$$

By Step 6, we have

$$
E\left(\nu_{+}(m)^{t} X(-n)\right)=E\left(\nu_{+}(m+1)^{t} X(-n+1)\right)-\delta_{+}(m+1) F_{n-1}(m) .
$$

Hence, a repeat substitution of Step 7 into the last term above concludes Step 8.
(Step 9) We claim that for any $m, n \in \mathbf{N}, m, n \geq 2$,

$$
\begin{aligned}
E\left(\nu_{+}(m)^{t} \nu_{-}(-n)\right) & =E\left(\nu_{+}(m+1)^{t} X(-n+1)\right)- \\
& -\delta_{+}(m+1)\left\{\sum_{k=2}^{m} \delta_{-}(k) E\left(\nu_{+}(k-1)^{t} \nu_{-}(-n)\right)\right\}- \\
& -\delta_{+}(m+1) F_{n-1}(1)+\sum_{l=0}^{n-1}\left\{E\left(\nu_{+}(m+1)^{t} X(-l+1)\right)-\right. \\
& \left.-\delta_{+}(m+1) F_{l-1}(1)\right\}^{t} \gamma_{-}(n, l) .
\end{aligned}
$$

Substituing the right-hand side of equation (1.5-) into the terms including $X(-n)$ in Step 8, we have

$$
\begin{aligned}
& E\left(\nu_{+}(m)^{t} \nu_{-}(-n)\right)=E\left(\nu_{+}(m+1)^{t} X(-n+1)\right)- \\
& \quad-\delta_{+}(m+1)\left\{\sum_{k=2}^{m} \delta_{-}(k) E\left(\nu_{+}(k-1)^{t} \nu_{-}(-n)\right)\right\}-\delta_{+}(m+1) F_{n-1}(1)+ \\
& +\sum_{l=1}^{n-1}\left\{E\left(\nu_{+}(m)^{t} X(-l)\right)+\delta_{+}(m+1)\left(\sum_{k=2}^{m} \delta_{-}(k) E\left(\nu_{+}(k-1)^{t} X(-l)\right)\right)\right\}^{t} \gamma_{-}(n, l) .
\end{aligned}
$$

On the other hand, it follows also from Step 8 that

$$
\begin{aligned}
& \text { the coefficient of }{ }^{t} \gamma_{-}(n, l) \text { in the above equality } \\
& =E\left(\nu_{+}(m+1)^{t} X(-l+1)\right)-\delta_{+}(m+1) F_{l-1}(1)
\end{aligned}
$$

Hence, we get Step 9.
(Step 10) We claim that for any $m, n \in \mathbf{N}, n \geq 2$,

$$
\begin{aligned}
& E\left(\nu_{+}(m+1)^{t} X(-n+1)\right)+\sum_{l=1}^{n-1} E\left(\nu_{+}(m+1)^{t} X(-l+1)\right)^{t} \gamma_{-}(n, l) \\
& =E\left(\nu_{+}(m+1)^{t} \nu_{-}(-n+1)\right)+\sum_{k=1}^{n-2} E\left(\nu_{+}(m+1)^{t} \nu_{-}(-k)\right)^{t}\left(\delta_{-}(n) \delta_{+}(k+1)\right) .
\end{aligned}
$$

It is easy to see from (2.2)-(2.5) that Step 10 holds for $n=2$. Let $n \geq 3$. By using equation (1.5-) for $X(-n+1)$ and (1.7-), we can write
the upper-hand side of Step 10

$$
\begin{aligned}
&=E\left(\nu_{+}(m+1)^{t} \nu_{-}(-(n-1))\right)+\sum_{k=0}^{n-2} E\left(\nu_{+}(m+1)^{t} X(-k)\right)^{t}(\gamma-(n, k+1)- \\
&=E\left(\nu_{+}(m+1)^{t} \nu_{-}(-(n-1))\right)+\left.-\gamma_{-}(n-1, k)\right) \\
&+E\left(\nu_{+}(m+1)^{t} X(-(n-2))\right)^{t}\left(\delta_{-}(n) \delta_{+}(n-1)\right)+ \\
&+\sum_{k=0} E\left(\nu_{+}(m+1)^{t} X(-k)\right)^{t}\left(\delta_{-}(n) \gamma_{+}(n-1, n-k-2)\right) .
\end{aligned}
$$

Using equation (1.5-) for $X(-n+2)$ and (1.7+) again, we get
the upper-hand side of Step 10
$=E\left(\nu_{+}(m+1)^{t} \nu_{-}(-(n-1))\right)+E\left(\nu_{+}(m+1)^{t} \nu_{-}(-(n-2))\right)^{t}\left(\delta_{-}(n) \delta_{+}(n-1)\right)+$ $+\sum_{k=0}^{n-3} E\left(\nu_{+}(m+1)^{t} X(-k)\right)^{t}\left\{\delta_{-}(n)\left(\gamma_{+}(n-1, n-k-2)-\delta_{+}(n-1) \gamma_{-}(n-2, k)\right)\right\}$
$=E\left(\nu_{+}(m+1)^{t} \nu_{-}(-(n-1))\right)+E\left(\nu_{+}(m+1)^{t} \nu_{-}(-(n-2))\right)^{t}\left(\delta_{-}(n) \delta_{+}(n-1)\right)+$
$+E\left(\nu_{+}(m+1)^{t} X(-(n-3))\right)^{t}\left(\delta_{-}(n) \delta_{+}(n-2)\right)+$
$+\sum_{k=0}^{n-4} E\left(\nu_{+}(m+1)^{t} X(-k)\right)^{t}\left(\delta_{-}(n) \gamma_{+}(n-2, n-k-3)\right)$.
Repeating the same prodedure, we arrive at the conclusion of Step 10.
(Step 11) Now, we are going to exhibit the key formula : For any n $\in \mathbf{N}, n \geq 2$,

$$
F_{n-1}(1)+\sum_{l=1}^{n-1} F_{l-1}(1)^{t} \gamma_{-}(n, l)=0 .
$$

By the definition of $F_{m}(n)$ in Step 4, we see that for any $m \in \mathbf{N}$,

$$
F_{m}(1)=R(m)+\delta_{-}(1) R(m+1),
$$

which yields
(2.14) $\quad F_{n-1}(1)+\sum_{l=1}^{n-1} F_{l-1}(1)^{t} \gamma_{-}(n, l)=I+\delta_{-}(1) I I$,
where

$$
I=R(n-1)+\sum_{l=1}^{n-1} R(l-1)^{t} \gamma_{-}(n, l)
$$

and

$$
I I=R(n)+\sum_{l=1}^{n-1} R(l)^{t} \gamma_{-}(n, l)
$$

We first show
(2.15) $\quad I I=-R(0)^{t} \delta_{-}(n)$.

By (1.7_) and (2.6_),

$$
\begin{aligned}
I I & =-V_{+}(n-1)^{t} \delta_{-}(n)+\sum_{l=1}^{n-1} R(l)^{t}\left(\gamma_{-}(n, l)-\gamma_{-}(n-1, l-1)\right) \\
& =-\left\{V_{+}(n-1)-\sum_{l=1}^{n-1} R(l)^{t} \gamma_{+}(n-1, n-l-1)\right\}^{t} \delta_{-}(n) .
\end{aligned}
$$

Hence, (2.15) follows from (i) in Step 3.
The next task is to show

$$
\begin{equation*}
I=R(0)^{t} \delta_{+}(1)^{t} \delta_{-}(n) \tag{2.16}
\end{equation*}
$$

When $n=2$, it follows from (1.7-) and (2.6+) that

$$
\begin{aligned}
I & =R(1)+R(0)^{t} \gamma_{-}(2,1) \\
& =-\delta_{+}(1) R(0)+R(0)^{t}\left(\delta_{-}(1)+\delta_{-}(2) \delta_{+}(1)\right) .
\end{aligned}
$$

Hence, by (1.10), we see that (2.16) holds for $n=2$.
Let $n \geq 3$. By (1.7-) and (2.6_),

$$
I=-V_{+}(n-2)^{t} \delta_{-}(n-1)-\sum_{k=0}^{n-3} R(k+1)^{t} \gamma_{-}(n-2, k)+\sum_{l=1}^{n-1} R(l-1)^{t} \gamma_{-}(n, l) .
$$

Applying (1.7_) to the last term in the above equality, we have

$$
\begin{aligned}
I=-V_{+} & (n-2)^{t} \delta_{-}(n-1)+R(0)^{t} \delta_{-}(n-1)+ \\
& \left.+\sum_{k=0}^{n-3} R(k+1)^{t}\left(\gamma_{-}(n-1, k+1)-\gamma_{-}(n-2, k)\right)\right)+ \\
& +\sum_{l=1}^{n-1} R(l-1)^{t} \gamma_{+}(n-1, n-l-1)^{t} \delta_{-}(n) .
\end{aligned}
$$

By using (1. 7-) again, we have

$$
\begin{align*}
I=-\{ & \left.V_{+}(n-2)-R(0)-\sum_{k=0}^{n-3} R(k+1)^{t} \gamma_{+}(n-2, n-k-3)\right\}^{t} \delta_{-}(n-1)+ \tag{2.17}\\
& +\sum_{l=1}^{n-1} R(l-1)^{t} \gamma_{+}(n-1, n-l-1)^{t} \delta_{-}(n) .
\end{align*}
$$

It follows from (i) in Step 3 that
(2.18) the coefficient of ${ }^{t} \delta_{-}(n-1)$ in $(2.17)=0$.

So it suffices to show the following :
(2.19) the coefficient of ${ }^{t} \delta_{-}(n)$ in (2.17) $=R(0)^{t} \delta_{+}(1)$.

By (1.7+),
the coefficient of ${ }^{t} \delta_{-}(n)$ in (2.17)
$=\sum_{k=0}^{n-3} R(k)^{t} \gamma_{+}(n-2, n-3-k)+\left\{R(n-2)+\sum_{k=0}^{n-3} R(k)^{t} \gamma_{-}(n-2, k)\right\}^{t} \delta_{+}(n-1)$.
On the other hand, by $(3.5)_{0}$ in [4], we get

$$
R(n-2)=-\sum_{k=0}^{n-3} R(k)^{t} \gamma_{-}(n-2, k)
$$

which is also seen by multiplying both-hand sides of equation (1.5_) for $X(-n+2)$ by ${ }^{t} X(0)$ from the right and taking an expectation with respect P. Therefore, we get
the coefficient of ${ }^{t} \delta_{-}(n)$ in $(2.17)=\sum_{k=0}^{n-3} R(k)^{t} \gamma_{+}(n-2, n-3-k)$.
By repeating the same procedure and using (1.7+), (1.10) and (2.6+), we can write
the coefficient of ${ }^{t} \delta_{-}(n)$ in (2.17) $=\sum_{k=0}^{1} R(k)^{t} \gamma_{+}(2,1-k)$ $=R(0)^{t}\left(\delta_{+}(1)+\delta_{+}(2) \delta_{-}(1)\right)-$ $-\delta_{+}(1) R(0)^{t} \delta_{+}(2)$
$=R(0)^{t} \delta_{+}(1)$
and so (2.19) holds. This completes the proof of (2.16).
In conclusion, we see from (2.14)-(2.16) and (1.10) that Step 11 holds.
(Step 12) We come to the final position to complete the proof of Fluctuation-Fluctuation Theorem (i) and (ii) are clear. (iii) has been proved in Step 2. By Step 9 and Step 10, we have

$$
\begin{aligned}
& I(m, n) \\
=I(m+1, n-1) & +\left\{\sum_{k=1}^{n-2} I(m+1, k)^{t} \delta_{+}(k+1)\right\}^{t} \delta_{-}(n)- \\
& -\delta_{+}(m+1)\left\{\sum_{k=2}^{m} \delta_{-}(k) I(k-1, n)\right\}- \\
& -\delta_{+}(m+1)\left\{F_{n-1}(1)+\sum_{l=1}^{n-1} F_{l-1}(1)^{t} \gamma_{-}(n, l)\right\} .
\end{aligned}
$$

Hence, by virtue of Step 11, (iv) holds
Thus we have completed the proof of Fluctuation-Fluctuation Theorem.
(Q. E. D.)

References

[1] Durbin, J., The fitting of time series model, Rev. Int. Stat, 28 (1960), 233-244.
[2] KUBO, R., Statistical mechanical theory of irreversible processes I, general theory and simple applications to magnetic and conduction problem, J. Phys. Soc. Japan 12 (1957), 570-586.
[3] Levinson, N., The Wiener RMS error criterion in filter design and prediction, J. Math. Phys. 25 (1947), 261-278.
[4] Okabe, Y., On a stochastic difference equation for the multi-dimensional weakly stationary time series, Prospect of Algebraic Analysis (ed. by M. Kashiwara and T. Kawai), Academic Press, 1988, vol. 2, 601-645.
[5] \qquad , Application of the theory of $\mathrm{KM}_{2} \mathrm{O}$-Langevin equations to the linear prediction problem for the multi-dimensional weakly stationaly time series, J. Math. Soc. Japan 45(1993), 277-294.
[6] Okabe, Y. and A. InOUE, The theory of $\mathrm{KM}_{2} \mathrm{O}$-Langevin equations and its applications to data analysis (II) : Causal analysis, to be submitted to Nagoya Math. J.
[7] OKabe, Y. and Y. NaKano, The theory of $\mathrm{KM}_{2} \mathrm{O}$-Langevin equations and its applications to data analysis (I) : Stationary analysis, Hokkaido Math. J. 20 (1991), 45 -90.
[8] Okabe, Y. and T. Ootsuka, The theory of $\mathrm{KM}_{2} \mathrm{O}$-Langevin equations and its applications to data analysis (III) : Prediction analysis, in preparation.
[9] \qquad , Application of the theory of $\mathrm{KM}_{2} \mathrm{O}$-Langevin equations to the non-linear prediction problem for the one-dimensional strictly stationary time series, to be submitted to J. Math. Soc. Japan.
[10] Whittle, P., On the fitting of multivariate autoregressions, and the approximate canonical factorization of a spectral density matrix, Biometrika 50 (1963), 129 -134.
[11] Wiggins, R. A. and E. A. Robinson, Recursive solution to the multichannel fitting problem, J. Geophys. Res. 70 (1965), 1885-1891.

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060
Japan

