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A new algorithm derived from the view-point of
the fluctuation-dissipation principle
in the theory of KM:0-Langevin equations
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§ 1. Introduction and statements of results

We have constructed in [4] a theory of KM:O-Langevin equations for
multi-dimensional weakly stationary processes with discrete time, and
from the view-point of the so-called fluctuation-dissipation theorem in ir-
reversible statistical physics ([2]), we have established a Auctuation-dissi-
pation theorem which gives a relation between the fluctuant and deter

-ministic terms in the KM:O-Langevin equation. Such a fluctuation-
dissipation theovem had already been found as the Levinson- Whittle- Wig-
gins-Robinson algorithm for the fitting problem of AR-models in the field
of system, control and information ([3] [1],[10],[11]). Sublimating a cer-
tain philosophical structure behind our fluctuation-dissipation theorem to
form the fluctuation-dissipation principle, we have applied the theory of
KM:0-Langevin equations to data analysis and developped a stationary
analysis as well as a causal analysis (, [E]). Furthermore, on these
lines, we have solved the non-linear prediction problem for one-dimen-

sional strictly stationary processes with discrete time and developped «
prediction analysis as our third project in data analysis ([5], [9], [8]).
Let X=(X(#n); n<Z) be an R%valued weakly stationary process on a

probability space (Q, Z, P) with expectation vector zero and covariance
matrix function R :

(1.D Rim—n)=E(X(m)'X(n)) (m, nEZ),

where d is any fixed natural number.
For each #nEN, a block Toeplitz matrix S,&M(nd ; R) is defined by

This research was partially supported by Grant-in-Aid for Science Research No. 03452011
and No. 04352003, the Ministry of Education, Science and Culture, Japan.



200 Y. Okabe

R(0) R(1) -+ R(n—1)

12 S=| F-D RO - R(-2)

R(—(n—1)) R(—(n—2)) -~ R(0)
In this paper we shall assume the Toeplitz condition :
(1.3) S:€GL(nd ; R)  for any #nEN.

It then follows from the theory of KM.O-Langevin equations that the time
evolution in the future (resp. past) of the process X is governed by the
forward (resp, backward) KM » O-Langevin equation (1.5,) (resp. (1. 5.))
with (1.4):

(1.4) X(0)=v:(0)=v-(0)
150 X(n)=—Sri(n, XE) - 6. ()XO)+v-(n)  (nEN)

k=1
n—

1.5  X(—n)=— iy_(n,k)X(—k)—8_(n)X(0)+u_(—n) (nEN).

k=

Here the random force v.=(vi(/); /EN*) (resp. v-=(v_(I); IE—N*) is
said to be the forward (resp. backward) KM.O-Langevin force associated
with X. We call the system {y:(#n, k), 6:(m), Vo(I); IEN* k, m, nEN,
n>k}, whose elements belong to M(d; R), the KM,O-Langevin data as-
sociated with the covariance matrix function R of X, where V.(/) are the
covariance matrices of KM:O-Langevin forces v.(+17) (IEN*):

(1.6) Vi) =E(v.(D)'w:(1)) and V_(D)=E(v_(=1tv(=1)).

In particular, the subsystem {0:(%); =N} is called the partial autocorrela-
tion coefficient in the field of system, control and information.

We are now ready to formulte the fluctuation-dissipation theorem
mentioned above :

Dissipation- Dissipation ([3] [1], [10], [11]), [4D. For any =, k
eN, n>k,

(L.72)  7:(n, B)=7:(n—1, k—=1)+6:(n)r:(n—1, n—k—1),
where

(1.8) v+(n, 0)=0+(n) and 7v-(n, 0)=6-(n).

Fluctuation-Dissipation (31 [1], [10], [11), [4]D). For amy ne
N;

(192 Ve(n)=(I—8+(n)d+(n)) Ve(n—1)
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1.100 - Vi(n—1)=V_(n—1)8+(n)
(1.1 6-(n) Vi(n)= V_(n)t6.(n).

Recalling the theory of KM:0-Langevin equations, we should note
that the relations (1. 9:)—(1. 11) can be derived from the following Buzg’s
relation :

Burg’s relation ([3], [1], [10], [11], [4]). For any nEN,

11D 2y DR(E+D) =S R+ 7-(n, B).

As will be shown in § 2, we can paraphrase Burg’s relation in terms of
the KM20O-Langevin forces v- :

1.13)  E(vs(0)v-(—1)=E(vs(D)'v_(—n)) (nEN*).

From our view-point of the fluctuation-dissipation principle, relation
(1. 13) should be regarded as a special case of the fluctuation-fluctuation
theorem, relations among the mutual covariance matrix functions I(m, #)
of the forward and backward KM:O-Langevin forces v :

(1.149)  I(m, n)=E(vi(m)v_(—n)) (m, nEN*).

The purpose of this paper is to prove these relations that will be used to
build a useful algorithm in applications to data analysis. The precise
statement of our results is as follows:

Fluctuation-Fluctuation Theorem.

(i) 1(0,0)= V:(0)
(i) I(m, 0)=1(0, m)=0 (mEeN)
(iii) Im,1)=I1, m)=—0:(m+1) V_-(m) (mEN)

(v)  I0m w)=I(m+1, n—1)+{:gfz(m+1, k)‘6+(k+1)}t6_(n)—

—8+(m+1){7§‘11 5_(E+ DIk, n>} (m, n>2).

This theorem has already been announced in [5] and [9], and we can
easily form an algorithm to compute all values of I(m, #). In a separate
paper, we shall give further discussions to assert that the fuctuation
-fluctuation theovem, together with the dissipation-dissipation and Auctua-
tion-dissipation theorerm, yields a characterization of the weak stationar-

ity of a stochastic process X in terms of the KM:0O-Langevin forces vs.
The author would like to thank Professor A. Noda for his kind valu-
able advices.
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§ 2. Proof of Fluctuation-Fluctuation Theorem

For any fixed natural number d, let X=(X(#); #EZ) be an R%-val-
ued weakly stationary process as in §1. Let us recall the definition of
KM:0O-Langevin forces. For any d-dimensional stochastic process Y=
(‘“(Yi(n), -+, Ya(n)); I<n<r) on the basic probability space (Q, %, P)
(—oo</<r<o0), we difine, for each m, n2, [<m<n<r, the closed sub-
space M7:(Y) of L¥Q, &, P) by

2.D M7 (Y)=the closed linear hull of {Y;(n);1<;<d, m<n<n,).

Then the forward (resp. backward) KM.O-Langevin force v.=(v.(n); n<
N*) (resp. v-=(v-(I); /€ —N*)) is an Rvalued stochastic process given
by

{ vi(n)  =X(n)— PwxX(n) (nEN*)
v(—n) =X(—n)—Pw,.xX(—n) (nEN¥),

where Mg'(X)=MYX)={0} and Pm;x (resp. Pw,.x) stands for the orth-
ogonal projection to the space Mi '(X) (resp. M%,+1(X)). We have

(2.3) v+(0)=v-(0)=X(0)

2. 4) The stochastic processes v: are orthogonal with mean vector

Zero
(2.5) §X)=Mi(vs) and M%,(X)=M%.(v.) (nEN*).

(2.2)

As stated in § 1, the stochastic process X satisfies the forward (resp.
backward) KM:O-Langevin equation (1. 5.) (resp. (1.5-)). The dissipa-
tion-dissipation theorem (1. 7.) and the fluctuation-dissipation theorem
(1. 9:)—(1. 11) are known relations among the KM:O-Langevin data. On
the other hand, the fundamental quantities 8+(*) can be calculated from
the covariance matrix function R by the following algorithm :

Partial Autocorrelation Coefficient ([3], [1], [10], [11], [4]). For any n
EN,

2.6 u(n)= —{R(in)-l-:Z;‘,z ye(n—1, k)R(i(kﬂ))}vM—D-l.

Now we are giving to prove Fluctuation-Fluctuation

(Step 1) We begin with observing that Burg’s relation (1.12) is
equivalent to a special case of the fluctuation-fluctuation theorem: for any
meEN,

I(m,1)=1(1, m).
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Multiplying both-hand sides of equation (1.5.) with #=m by ‘X(—1)
from the right and taking an expectation with respect to P, we have

@D Rlm+1)= ~”’z yoCm, BYR(E+1)+ E(us(m) X(—1)).

Noting that the weak stationarity of X implies that R(m+1)=
E(X(m)'X(—1)=E(X(1)'X(—m)), we then multiply both-hand sides of
equation (1. 5-) with taking the transpose and putting #=m by X(1) from
the left, and similarly obtain

2.8  Rim+1)= —§;R<k+1>t7_(m, B+ E(XD) 'y (—m)).

Therefore, we apply Burg’s relation (1. 12) to (2.7) and (2.8), and get
2.9 E(vi(m)'X(—1)=E(XQ)'v_(—m)).

On the other hand, it follows immediately from (1.5:) and (2. 3)—(2.
5) that

2.100 E(w:(m)'X(—1)=I(m,1) and EXQ)v_(—m))=IQ1, m).
Hence Step 1 follows from (2. 9) and (2. 10).
(Step 2) We claim that for any mEN,
I(m, 1)=1(1, m)=—06+(m+1) V_(m).

Immediately from (2. 6;), we have
R(m+1)=— :':2;: y+(m, B)R(k+1)—8+(m+1) V_(m),
which, with (2. 7) and (2. 10), completes the proof of Step 2.
(Step 3) We claim that for any #EN,
(1) Vim=RO)+ % Re—k)7:(n, k)
(i) V-)=RO)+ 3 7-(n, R(n—k)

These are easy versions of (4.5) and (4. 6) in the proof of Lemma 4.2
in [4] Actually we can directly derive them by multipyling both-hand
sides of equations (1. 5:) by’X(+#) from the right, taking an expectation
with respect to P and using (2. 3)—(2. 5).

(Step 4) For any m, n=N*, put
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2.1  Fu(m)=R(n)+ z v (m, m—k) R (n+k).

Then, rewriting in Step 3, we have
Fo(m): V_(Wl).

(Step 5) We are now in a position to prove the following by mathe-
matical induction with respect to #n. For any m, nEN,

R(m+n)= —kZle Ss(m~+k)Fu_w(m+ k—1)—§;y+(m, k)R (k+n).
By (2. 6+), we have
Rim+n)=—08,(m+n) V-(im+ n—l)—m§;27+(m+ n—1, k)R(k+1),

which, using Step 4, implies that Step 5 holds for any m&EN and n=1.
Let us assume that Step 5 holds for any m&EN and n=no—1, no=>2. It
then follows that

(2.12)  R(m+mno)=R({(m+1)+(n—1))=
= =8 8.0m+ 1+ k) Faoralm+ )= 2 74(m+1, DR+ n0—1).

By relation (1. 7+) in the dissipation-dissipation theorem, we have
@13) 2 7u(m+1, R (e+no—1)
m—1
=8:(m+1) Fno1(m)+ kZ:}O vi(m, B)R(k+ no).

Therefore, we see from (2. 12) and (2. 13) that Step 5 holds for any
meEN and n=n.. Hence, we complete the proof of Step 5 by mathemati-
cal induction.

(Step 6) We claim that for any m, nEN,
E(a(m)'X(=m)=— 2 8.(m-+ k) Fas(m+k—1)

Taking an analogous manipulation when we got (2. 7) from equation
(1.5:), we have

Rlm+m)=—"3 y.(m, DR(k+n)+ E(v(m)'X(=n),

which, with Step 5, yields Step 6.
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(Step 7) We claim that for any m, nEN, m>=2,
Fnoi(m)=Fna(m—1)+6_-(m)E(vi(m—1)'X(—n)).

Applying (1.7-) to each term y-(m, m—k) (1<k<m—1) in the
definition of F,_1(m), and using Step 5, we have

Fooiim)=R(n—1)+6_-(m)R(n—1+m)+
+'§(y_(m—1, m—1—E)+0-(m)ys(m—1, k—1)R(n—1+k)
:F;z—l(m—1)+&(m){l’?(n—l—#7}@)%—77202 yi(m—1, )R(n+ l)}
:Fn—l(m—l)—é_(m){ > 8+(m—1+k)Fn_k(m+k—2)}.

Hence, Step 7 follows from Step 6.
(Step 8) We claim that for any m, nEN, m=>2,
E(vi(m)' X(=n))=E(vs(m+1)’X(—n+1))—
—8.m+ D 5, 6- (D EG (k=D X (=)} -
—0:(m+1)Fra(1).
By Step 6, we have
E(viim)!X(—n)=E(vi(m+1)'X(—n+1))— 6+(m+1)Fri(m).

Hence, a repeat substitution of Step 7 into the last term above concludes
Step 8.

(Step 9) We claim that for any m, #nEN, m, n=2,
E(v:(m)'v-(—n))=E(w:(m+1)'X(—n+1))—
—sum+D{ 6-(R)E(vi(k=1)'v- (=)} -
— 8u(m+ DFar(D+ SAEs(m+ 1) X (— 1+1)) -
8l DE(D)y (D).

Substituing the right-hand side of equation (1.5-) into the terms in-
cluding X(—#) in Step 8, we have

E(wvi(m)tv-(—n)=E(vis(m+1)'X(—n+1))—
— 8. m+ )| £ 8 (W (k=D (= )| = 6. (m+ D Fa-i(D)+

+ S B n) X (= )+ 8.0n+D(E, -(0) B (k=1 X (= DD 7-n, )
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On the other hand, it follows also from Step 8 that

the coefficient of ‘y-(%, /) in the above equality
=E(v:(m+1)'X(—714+1))—8+(m+1)F.,_1(1).

Hence, we get Step 9.
(Step 10) We claim that for any m, nEN, #>2,
E(va(m+ DX (= n+ 1)+ 3 E(a(m+1)X(— 1 +1))'7-(n, )
= Ea(m+ D)y (—n+ 1)+ 2 E(va(m+ 1) (= R) (- (n)8:(k+1).
It is easy to see from (2. 2)—(2. 5) that Step 10 holds for #=2. Let

n=3. By using equation (1. 5-) for X(—#+1) and (1. 7-), we can write
the upper-hand side of Step 10

= EQu(m+ D= (= (1= 1)+ B E(va(m+ DX (= £)(7-(n, k+1)—

—r-(n—1, %))
=E(ws(m+1D)v(=(n—1))+

+E(vi(m+1)'X(—(n—2))"(6-(n)0+(n—1))+
+'gZE(u+(m+1)tX(—k)>f(a_<n>y+(n—1, n—k—2)).

Using equation (1. 5-) for X(—#»+2) and (1. 7.) again, we get

the upper-hand side of Step 10
=E(vi(m+1)v-(—(n—1)+ E(vs(m+1) v (= (n—2)))"(6-(n)d+(n—1))+

+ 2 B (m+ DX (= )H6- ()= 1, n=k=2)= 8:(n—D7-(n—2, k)

=E(Wwi(m+1)'v(—(n—1))+E(wi(m+1)v-(—=(2—2)))(8-(n)d+(n—1))+
+ E(vi(m+1) X (= (n—23))(6-(n)0+(n—2))+

+ 5 B (m+ DX (= £) (0-(n)7-(n—2, n—k—3)).

Repeating the same prodedure, we arrive at the conclusion of Step 10.

(Step 11) Now, we are going to exhibit the key formula: For any #
EN, n=2,

Fn—1(1)+ng-1(1)ty_(n, 1)=0.

By the definition of Fn(%) in Step 4, we see that for any m&N,
Fr()=R(m)+6-(1)R(m+1),
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which yields
@19 Fos(D+ ' Fi()ir-(n, )=1+6-(D1I,
where
I=R(n=1+E RU~1)r-(n, 1)
and
11=R(n)+ 3 R()'7-(n, 1),

We first show
2.15) II=—R(0)%_(n).
By (1. 7-) and (2. 6_),

1=~ Vi(n=1)8-(n)+ 3 R()(r-(n, )= y-(n—1, [—1))
= (Vo= D="Z RO)7(n=1, n=1-1)}5.(m)

Hence, (2. 15) follows from (i) in Step 3.
The next task is to show

(2.16) I=R(0)6+(1)'%6_(n).
When n=2, it follows from (1. 7_) and (2. 6,) that

I=R(1)+ R(0)ty_(2,1)
=—38:(1)R(0)+ R(0)!(5-(1)+ 6-(2)8.(1)).

Hence, by (1. 10), we see that (2. 16) holds for #=2.
Let >3. By (1.7-) and (2. 6.),
n-3 n-1
I=— V+(n—2)t6_(n—1)—IZ}OR(k-H)ty_(n—Z, k)+ Z]lR(l—l)‘y_(n, /).

Applying (1. 7-) to the last term in the above equality, we have
I=—Vin—2)6-(n—1)+R0)!6-(n—1)+
n-3
+§OR(k+1)‘(7_(n—l, k+1)—y-(n—2, k) +

‘|‘7:211R(1*1)t7+(7’l_17 n—1=1)'0-(n).
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By using (1. 7-) again, we have
n—3
@217 I= —{ Vi(n—2)—R(0)— 2 R(k+1)'7:(n—2, n—k—3)} 5 (n—1)+
n-—1
+ ER(!—I)t}q(n—l, n—1I1—1)5_-(n).
It follows from (i) in Step 3 that
(2.18)  the coefficient of 6_(%z—1) in (2. 17)=0.
So it suffices to show the following :
(2.19)  the coefficient of 6_(%) in (2. 17)=R(0)*5:(1).
By (1.74),
the coefficient of ‘5_(#n) in (2. 17)
n-3 n-3
= SR 712, =3 k) H Ri=D)+ SR 7-(n=2, )} 6.(n D).
On the other hand, by (3. 5) in [4], we get
n-3
R(n—2)=— 2 R(k)'r-(n—2, k),

which is also seen by multiplying both-hand sides of equation (1.5-) for
X(—n+2) by ‘X(0) from the right and taking an expectation with respect
P. Therefore, we get

n-3
the coefficient of ‘0-(%) in (2. 17):§0R(k)t7+(n—2, n—3—Fk).

By repeating the same procedure and using (1. 7+), (1. 10) and (2. 6.),
we can write

1
the coefficient of ‘0_(») in (2. 17):§0R(k)t7’+(2, 1—k)

= R(0)*(84(1)+6+(2)0-(1))—
—8:(1)R(0)6:(2)
= R(0)!6+(1)

and so (2. 19) holds. This completes the proof of (2. 16).
In conclusion, we see from (2.14)—(2. 16) and (1.10) that Step 11
holds.

(Step 12) We come to the final position to complete the proof of
Fluctuation-Fluctuation (i) and are clear. has been
proved in Step 2. By Step 9 and Step 10, we have
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I(m, n)
— I(m+1, n—1)+{g1(m+1, £ (k41016 (n)—

— 8 (m+ D{Z, 8- (R (k—1, n)}—
— 8. (m+ DAFu D)+ Z Fra)'r-(n, 1),

Hence, by virtue of Step 11, holds
Thus we have completed the proof of Fluctuation-Fluctuation Theo-
rem. (Q.E.D.)
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