A new algorithm derived from the view-point of the fluctuation-dissipation principle in the theory of KM₂O-Langevin equations

Yasunori OKABE (Received October 16, 1992)

§ 1. Introduction and statements of results

We have constructed in [4] a theory of KM₂O-Langevin equations for multi-dimensional weakly stationary processes with discrete time, and from the view-point of the so-called fluctuation-dissipation theorem in irreversible statistical physics ([2]), we have established a fluctuation-dissipation theorem which gives a relation between the fluctuant and deter -ministic terms in the KM₂O-Langevin equation. Such a fluctuationdissipation theorem had already been found as the Levinson-Whittle-Wiggins-Robinson algorithm for the fitting problem of AR-models in the field of system, control and information ([3], [1], [10], [11]). Sublimating a certain philosophical structure behind our fluctuation-dissipation theorem to form the fluctuation-dissipation principle, we have applied the theory of KM₂O-Langevin equations to data analysis and developped a stationary analysis as well as a causal analysis ([7], [6]). Furthermore, on these lines, we have solved the non-linear prediction problem for one-dimensional strictly stationary processes with discrete time and developped a prediction analysis as our third project in data analysis ([5], [9], [8]).

Let $\mathbf{X} = (X(n); n \in \mathbf{Z})$ be an \mathbf{R}^{d} -valued weakly stationary process on a probability space (Ω, \mathcal{B}, P) with expectation vector zero and covariance matrix function R:

(1.1) $R(m-n) \equiv E(X(m)^{t}X(n)) \quad (m, n \in \mathbf{Z}),$

where d is any fixed natural number.

For each $n \in \mathbb{N}$, a block Toeplitz matrix $S_n \in M(nd; \mathbb{R})$ is defined by

This research was partially supported by Grant-in-Aid for Science Research No. 03452011 and No. 04352003, the Ministry of Education, Science and Culture, Japan.

Y. Okabe

(1.2)
$$S_n \equiv \begin{pmatrix} R(0) & R(1) & \cdots & R(n-1) \\ R(-1) & R(0) & \cdots & R(n-2) \\ \vdots & \vdots & \ddots & \vdots \\ R(-(n-1)) & R(-(n-2)) & \cdots & R(0) \end{pmatrix}$$

In this paper we shall assume the Toeplitz condition :

(1.3)
$$S_n \in GL(nd; \mathbf{R})$$
 for any $n \in \mathbf{N}$.

It then follows from the theory of KM₂O-Langevin equations that the time evolution *in the future* (resp. *past*) of the process **X** is governed by *the forward* (resp, *backward*) KM_2 O-Langevin equation (1. 5₊) (resp. (1. 5₋)) with (1. 4):

(1.4)
$$X(0) = \nu_+(0) = \nu_-(0)$$

(1.5₊)
$$X(n) = -\sum_{\substack{k=1\\n-1}}^{n-1} \gamma_{+}(n, k) X(k) - \delta_{+}(n) X(0) + \nu_{+}(n)$$
 $(n \in \mathbb{N})$

(1.5.)
$$X(-n) = -\sum_{k=1}^{n-1} \gamma_{-}(n, k) X(-k) - \delta_{-}(n) X(0) + \nu_{-}(-n) \quad (n \in \mathbb{N}).$$

Here the random force $\mathbf{v}_{+} = (\nu_{+}(l); l \in \mathbf{N}^{*})$ (resp. $\mathbf{v}_{-} = (\nu_{-}(l); l \in -\mathbf{N}^{*})$ is said to be *the forward* (resp. *backward*) KM_2O -Langevin force associated with **X**. We call the system $\{\gamma_{\pm}(n, k), \delta_{\pm}(m), V_{\pm}(l); l \in \mathbf{N}^{*}, k, m, n \in \mathbf{N}, n > k\}$, whose elements belong to $M(d; \mathbf{R})$, the KM_2O -Langevin data associated with the covariance matrix function R of **X**, where $V_{\pm}(l)$ are the covariance matrices of KM₂O-Langevin forces $\nu_{\pm}(\pm l)$ ($l \in \mathbf{N}^{*}$):

(1.6)
$$V_+(l) \equiv E(\nu_+(l)^t \nu_+(l))$$
 and $V_-(l) \equiv E(\nu_-(-l)^t \nu_-(-l)).$

In particular, the subsystem $\{\delta_{\pm}(n); n \in \mathbb{N}\}$ is called *the partial autocorrelation coefficient* in the field of system, control and information.

We are now ready to formulte the fluctuation-dissipation theorem mentioned above:

Dissipation-Dissipation Theorem ([3], [1], [10], [11], [4]). For any $n, k \in \mathbb{N}$, n > k,

(1.7_±)
$$\gamma_{\pm}(n, k) = \gamma_{\pm}(n-1, k-1) + \delta_{\pm}(n)\gamma_{\mp}(n-1, n-k-1),$$

where

(1.8) $\gamma_+(n, 0) \equiv \delta_+(n)$ and $\gamma_-(n, 0) \equiv \delta_-(n)$.

Fluctuation-Dissipation Theorem ([3], [1], [10], [11], [4]). For any $n \in \mathbb{N}$,

(1.9_±)
$$V_{\pm}(n) = (I - \delta_{\pm}(n)\delta_{\mp}(n)) V_{\pm}(n-1)$$

(1.10) $\delta_{-}(n) V_{+}(n-1) = V_{-}(n-1)^{t} \delta_{+}(n)$ (1.11) $\delta_{-}(n) V_{+}(n) = V_{-}(n)^{t} \delta_{+}(n).$

Recalling the theory of KM₂O-Langevin equations, we should note that the relations $(1.9_{\pm})-(1.11)$ can be derived from the following *Burg's relation*:

Burg's relation ([3], [1], [10], [11], [4]). For any $n \in \mathbb{N}$,

(1.12)
$$\sum_{k=0}^{n-1} \gamma_{+}(n, k) R(k+1) = \sum_{k=0}^{n-1} R(k+1)^{t} \gamma_{-}(n, k).$$

As will be shown in § 2, we can paraphrase Burg's relation in terms of the KM₂O-Langevin forces ν_{\pm} :

(1.13)
$$E(\nu_{+}(n)^{t}\nu_{-}(-1)) = E(\nu_{+}(1)^{t}\nu_{-}(-n)) \quad (n \in \mathbf{N}^{*}).$$

From our view-point of the fluctuation-dissipation principle, relation (1.13) should be regarded as a special case of *the fluctuation-fluctuation theorem*, relations among the mutual covariance matrix functions I(m, n) of the forward and backward KM₂O-Langevin forces ν_{\pm} :

(1.14)
$$I(m, n) \equiv E(\nu_{+}(m)^{t}\nu_{-}(-n))$$
 $(m, n \in \mathbf{N}^{*}).$

The purpose of this paper is to prove these relations that will be used to build a useful algorithm in applications to data analysis. The precise statement of our results is as follows:

Fluctuation-Fluctuation Theorem.

$$\begin{array}{ll} (i) & I(0,0) = V_{+}(0) \\ (ii) & I(m,0) = I(0,m) = 0 \quad (m \in \mathbb{N}) \\ (iii) & I(m,1) = I(1,m) = -\delta_{+}(m+1) V_{-}(m) \quad (m \in \mathbb{N}) \\ (iv) & I(m,n) = I(m+1,n-1) + \left\{ \sum_{k=1}^{n-2} I(m+1,k)^{t} \delta_{+}(k+1) \right\}^{t} \delta_{-}(n) - \\ & -\delta_{+}(m+1) \left\{ \sum_{k=1}^{m-1} \delta_{-}(k+1) I(k,n) \right\} \quad (m,n \geq 2). \end{array}$$

This theorem has already been announced in [5] and [9], and we can easily form an algorithm to compute all values of I(m, n). In a separate paper, we shall give further discussions to assert that *the fluctuation -fluctuation theorem*, together with *the dissipation-dissipation* and *fluctuation-dissipation theorem*, yields a characterization of the weak stationarity of a stochastic process **X** in terms of the KM₂O-Langevin forces ν_{\pm} .

The author would like to thank Professor A. Noda for his kind valuable advices.

§ 2. Proof of Fluctuation-Fluctuation Theorem

For any fixed natural number d, let $\mathbf{X} = (X(n); n \in \mathbb{Z})$ be an \mathbb{R}^d -valued weakly stationary process as in § 1. Let us recall the definition of KM₂O-Langevin forces. For any d-dimensional stochastic process $\mathbf{Y} = ({}^t(Y_1(n), \cdots, Y_d(n)); l \le n \le r)$ on the basic probability space (Ω, \mathscr{B}, P) $(-\infty \le l < r \le \infty)$, we difine, for each $n_1, n_2, l \le n_1 \le n_2 \le r$, the closed subspace $\mathbf{M}_{n_1}^{n_2}(\mathbf{Y})$ of $L^2(\Omega, \mathscr{B}, P)$ by

(2.1) $\mathbf{M}_{n_1}^{n_2}(\mathbf{Y}) \equiv \text{the closed linear hull of } \{Y_j(n); 1 \le j \le d, n_1 \le n \le n_2\}.$

Then the forward (resp. backward) KM₂O-Langevin force $\nu_+ = (\nu_+(n); n \in \mathbf{N}^*)$ (resp. $\nu_- = (\nu_-(l); l \in -\mathbf{N}^*)$) is an \mathbf{R}^d -valued stochastic process given by

(2.2)
$$\begin{cases} \nu_{+}(n) \equiv X(n) - P_{\mathbf{M}_{0}^{n-1}(\mathbf{X})}X(n) & (n \in \mathbf{N}^{*}) \\ \nu_{-}(-n) \equiv X(-n) - P_{\mathbf{M}_{-n+1}^{0}(\mathbf{X})}X(-n) & (n \in \mathbf{N}^{*}), \end{cases}$$

where $\mathbf{M}_0^{-1}(\mathbf{X}) = \mathbf{M}_1^0(\mathbf{X}) = \{0\}$ and $P_{\mathbf{M}_0^{n-1}(\mathbf{X})}$ (resp. $P_{\mathbf{M}_{-n+1}^0(\mathbf{X})}$) stands for the orthogonal projection to the space $\mathbf{M}_0^{n-1}(\mathbf{X})$ (resp. $\mathbf{M}_{-n+1}^0(\mathbf{X})$). We have

- $(2.3) \qquad \nu_{+}(0) = \nu_{-}(0) = X(0)$
- (2.4) The stochastic processes ν_{\pm} are orthogonal with mean vector zero

(2.5)
$$\mathbf{M}_0^n(\mathbf{X}) = \mathbf{M}_0^n(\boldsymbol{\nu}_+)$$
 and $\mathbf{M}_{-n}^0(\mathbf{X}) = \mathbf{M}_{-n}^0(\boldsymbol{\nu}_-)$ $(n \in \mathbf{N}^*)$.

As stated in §1, the stochastic process X satisfies the forward (resp. backward) KM₂O-Langevin equation (1.5_+) (resp. (1.5_-)). The dissipation-dissipation theorem (1.7_{\pm}) and the fluctuation-dissipation theorem $(1.9_{\pm})-(1.11)$ are known relations among the KM₂O-Langevin data. On the other hand, the fundamental quantities $\delta_{\pm}(\cdot)$ can be calculated from the covariance matrix function *R* by the following algorithm:

Partial Autocorrelation Coefficient ([3], [1], [10], [11], [4]). For any $n \in \mathbb{N}$,

(2.6_±)
$$\delta_{\pm}(n) = -\left\{R(\pm n) + \sum_{k=0}^{n-2} \gamma_{\pm}(n-1, k)R(\pm (k+1))\right\} V_{\mp}(n-1)^{-1}.$$

Now we are giving to prove Fluctuation-Fluctuation Theorem.

(Step 1) We begin with observing that Burg's relation (1.12) is equivalent to a special case of the fluctuation-fluctuation theorem: for any $m \in \mathbf{N}$,

$$I(m,1)=I(1,m)$$

Multiplying both-hand sides of equation (1.5_+) with n=m by ${}^{t}X(-1)$ from the right and taking an expectation with respect to *P*, we have

(2.7)
$$R(m+1) = -\sum_{k=0}^{m-1} \gamma_{+}(m, k) R(k+1) + E(\nu_{+}(m)^{t} X(-1)).$$

Noting that the weak stationarity of **X** implies that $R(m+1) = E(X(m)^t X(-1)) = E(X(1)^t X(-m))$, we then multiply both-hand sides of equation (1.5.) with taking the transpose and putting n = m by X(1) from the left, and similarly obtain

(2.8)
$$R(m+1) = -\sum_{k=0}^{m-1} R(k+1)^{t} \gamma_{-}(m, k) + E(X(1)^{t} \nu_{-}(-m)).$$

Therefore, we apply Burg's relation (1. 12) to (2. 7) and (2. 8), and get

(2.9)
$$E(\nu_{+}(m)^{t}X(-1)) = E(X(1)^{t}\nu_{-}(-m)).$$

On the other hand, it follows immediately from (1.5_{\pm}) and (2.3)-(2.5) that

(2.10)
$$E(\nu_{+}(m)^{t}X(-1)) = I(m, 1)$$
 and $E(X(1)^{t}\nu_{-}(-m)) = I(1, m)$.

Hence Step 1 follows from (2.9) and (2.10).

(Step 2) We claim that for any $m \in \mathbf{N}$,

$$I(m, 1) = I(1, m) = -\delta_{+}(m+1) V_{-}(m).$$

Immediately from (2.6_+) , we have

$$R(m+1) = -\sum_{k=0}^{m-1} \gamma_{+}(m, k) R(k+1) - \delta_{+}(m+1) V_{-}(m),$$

which, with (2.7) and (2.10), completes the proof of Step 2.

(Step 3) We claim that for any $n \in \mathbf{N}$,

(i)
$$V_{+}(n) = R(0) + \sum_{k=0}^{n-1} R(n-k)^{t} \gamma_{+}(n,k)$$

(ii)
$$V_{-}(n) = R(0) + \sum_{k=0}^{n-1} \gamma_{-}(n, k) R(n-k).$$

These are easy versions of (4.5) and (4.6) in the proof of Lemma 4.2 in [4]. Actually we can directly derive them by multipyling both-hand sides of equations (1.5_{\pm}) by ${}^{t}X(\pm n)$ from the right, taking an expectation with respect to *P* and using (2.3)-(2.5).

(Step 4) For any $m, n \in \mathbb{N}^*$, put

Y. Okabe

(2.11)
$$F_n(m) \equiv R(n) + \sum_{k=1}^m \gamma_-(m, m-k) R(n+k).$$

Then, rewriting (ii) in Step 3, we have

$$F_0(m)=V_-(m).$$

(Step 5) We are now in a position to prove the following by mathematical induction with respect to n. For any m, $n \in \mathbb{N}$,

$$R(m+n) = -\sum_{k=1}^{n} \delta_{+}(m+k) F_{n-k}(m+k-1) - \sum_{k=0}^{m-1} \gamma_{+}(m,k) R(k+n).$$

By (2.6_+) , we have

$$R(m+n) = -\delta_{+}(m+n) V_{-}(m+n-1) - \sum_{k=0}^{m+n-2} \gamma_{+}(m+n-1,k) R(k+1),$$

which, using Step 4, implies that Step 5 holds for any $m \in \mathbb{N}$ and n=1. Let us assume that Step 5 holds for any $m \in \mathbb{N}$ and $n=n_0-1$, $n_0 \ge 2$. It then follows that

(2.12)
$$R(m+n_0) = R((m+1)+(n_0-1)) =$$

= $-\sum_{k=1}^{n_0-1} \delta_+(m+1+k) F_{n_0-1-k}(m+k) - \sum_{k=0}^m \gamma_+(m+1,k) R(k+n_0-1).$

By relation $(1, 7_+)$ in the dissipation-dissipation theorem, we have

(2.13)
$$\sum_{k=0}^{m} \gamma_{+}(m+1, k) R(k+n_{0}-1)$$
$$= \delta_{+}(m+1) F_{n_{0}-1}(m) + \sum_{k=0}^{m-1} \gamma_{+}(m, k) R(k+n_{0}).$$

Therefore, we see from (2.12) and (2.13) that Step 5 holds for any $m \in \mathbb{N}$ and $n = n_0$. Hence, we complete the proof of Step 5 by mathematical induction.

(Step 6) We claim that for any $m, n \in \mathbb{N}$,

$$E(\nu_{+}(m)^{t}X(-n)) = -\sum_{k=1}^{n} \delta_{+}(m+k)F_{n-k}(m+k-1).$$

Taking an analogous manipulation when we got (2.7) from equation (1.5_+) , we have

$$R(m+n) = -\sum_{k=0}^{m-1} \gamma_{+}(m, k) R(k+n) + E(\nu_{+}(m)^{t} X(-n)),$$

which, with Step 5, yields Step 6.

(Step 7) We claim that for any $m, n \in \mathbb{N}, m \ge 2$,

$$F_{n-1}(m) = F_{n-1}(m-1) + \delta_{-}(m)E(\nu_{+}(m-1)^{t}X(-n)).$$

Applying (1.7.) to each term $\gamma_{-}(m, m-k)$ $(1 \le k \le m-1)$ in the definition of $F_{n-1}(m)$, and using Step 5, we have

$$\begin{split} F_{n-1}(m) &= R(n-1) + \delta_{-}(m)R(n-1+m) + \\ &+ \sum_{k=1}^{m-1} (\gamma_{-}(m-1, m-1-k) + \delta_{-}(m)\gamma_{+}(m-1, k-1))R(n-1+k) \\ &= F_{n-1}(m-1) + \delta_{-}(m) \Big\{ R(n-1+m) + \sum_{l=0}^{m-2} \gamma_{+}(m-1, l)R(n+l) \Big\} \\ &= F_{n-1}(m-1) - \delta_{-}(m) \Big\{ \sum_{k=1}^{n} \delta_{+}(m-1+k)F_{n-k}(m+k-2) \Big\}. \end{split}$$

Hence, Step 7 follows from Step 6.

(Step 8) We claim that for any $m, n \in \mathbb{N}, m \ge 2$,

$$E(\nu_{+}(m)^{t}X(-n)) = E(\nu_{+}(m+1)^{t}X(-n+1)) - \\ -\delta_{+}(m+1)\left\{\sum_{k=2}^{m}\delta_{-}(k)E(\nu_{+}(k-1)^{t}X(-n))\right\} - \\ -\delta_{+}(m+1)F_{n-1}(1).$$

By Step 6, we have

$$E(\nu_{+}(m)^{t}X(-n)) = E(\nu_{+}(m+1)^{t}X(-n+1)) - \delta_{+}(m+1)F_{n-1}(m).$$

Hence, a repeat substitution of Step 7 into the last term above concludes Step 8.

(Step 9) We claim that for any $m, n \in \mathbb{N}, m, n \ge 2$,

$$E(\nu_{+}(m)^{t}\nu_{-}(-n)) = E(\nu_{+}(m+1)^{t}X(-n+1)) - \\ -\delta_{+}(m+1) \left\{ \sum_{k=2}^{m} \delta_{-}(k)E(\nu_{+}(k-1)^{t}\nu_{-}(-n)) \right\} - \\ -\delta_{+}(m+1)F_{n-1}(1) + \sum_{l=0}^{n-1} \left\{ E(\nu_{+}(m+1)^{t}X(-l+1)) - \\ -\delta_{+}(m+1)F_{l-1}(1) \right\}^{t}\gamma_{-}(n, l).$$

Substituing the right-hand side of equation (1.5_{-}) into the terms including X(-n) in Step 8, we have

$$E(\nu_{+}(m)^{t}\nu_{-}(-n)) = E(\nu_{+}(m+1)^{t}X(-n+1)) - \delta_{+}(m+1)\left\{\sum_{k=2}^{m}\delta_{-}(k)E(\nu_{+}(k-1)^{t}\nu_{-}(-n))\right\} - \delta_{+}(m+1)F_{n-1}(1) + \sum_{l=1}^{n-1}\left\{E(\nu_{+}(m)^{t}X(-l)) + \delta_{+}(m+1)(\sum_{k=2}^{m}\delta_{-}(k)E(\nu_{+}(k-1)^{t}X(-l)))\right\}^{t}\gamma_{-}(n, l).$$

Y. Okabe

On the other hand, it follows also from Step 8 that

the coefficient of ${}^{t}\gamma_{-}(n, l)$ in the above equality = $E(\nu_{+}(m+1){}^{t}X(-l+1)) - \delta_{+}(m+1)F_{l-1}(1).$

Hence, we get Step 9.

(Step 10) We claim that for any $m, n \in \mathbb{N}, n \ge 2$,

$$E(\nu_{+}(m+1)^{t}X(-n+1)) + \sum_{l=1}^{n-1} E(\nu_{+}(m+1)^{t}X(-l+1))^{t}\gamma_{-}(n, l)$$

= $E(\nu_{+}(m+1)^{t}\nu_{-}(-n+1)) + \sum_{k=1}^{n-2} E(\nu_{+}(m+1)^{t}\nu_{-}(-k))^{t}(\delta_{-}(n)\delta_{+}(k+1)).$

It is easy to see from (2, 2)-(2, 5) that Step 10 holds for n=2. Let $n\geq 3$. By using equation $(1, 5_{-})$ for X(-n+1) and $(1, 7_{-})$, we can write

the upper-hand side of Step 10

$$=E(\nu_{+}(m+1)^{t}\nu_{-}(-(n-1)))+\sum_{k=0}^{n-2}E(\nu_{+}(m+1)^{t}X(-k))^{t}(\gamma_{-}(n, k+1)-\gamma_{-}(n-1, k))$$

$$=E(\nu_{+}(m+1)^{t}\nu_{-}(-(n-1)))+\sum_{k=0}^{n-3}E(\nu_{+}(m+1)^{t}X(-(n-2)))^{t}(\delta_{-}(n)\delta_{+}(n-1))+\sum_{k=0}^{n-3}E(\nu_{+}(m+1)^{t}X(-k))^{t}(\delta_{-}(n)\gamma_{+}(n-1, n-k-2)).$$

Using equation (1.5) for X(-n+2) and (1.7) again, we get

the upper-hand side of Step 10
=
$$E(\nu_{+}(m+1)^{t}\nu_{-}(-(n-1))) + E(\nu_{+}(m+1)^{t}\nu_{-}(-(n-2)))^{t}(\delta_{-}(n)\delta_{+}(n-1)) + \sum_{k=0}^{n-3} E(\nu_{+}(m+1)^{t}X(-k))^{t}\{\delta_{-}(n)(\gamma_{+}(n-1, n-k-2) - \delta_{+}(n-1)\gamma_{-}(n-2, k))\}$$

= $E(\nu_{+}(m+1)^{t}\nu_{-}(-(n-1))) + E(\nu_{+}(m+1)^{t}\nu_{-}(-(n-2)))^{t}(\delta_{-}(n)\delta_{+}(n-1)) + E(\nu_{+}(m+1)^{t}X(-(n-3)))^{t}(\delta_{-}(n)\delta_{+}(n-2)) + \sum_{k=0}^{n-4} E(\nu_{+}(m+1)^{t}X(-k))^{t}(\delta_{-}(n)\gamma_{+}(n-2, n-k-3)).$

Repeating the same prodedure, we arrive at the conclusion of Step 10. (Step 11) Now, we are going to exhibit the key formula: For any $n \in \mathbb{N}$, $n \ge 2$,

$$F_{n-1}(1) + \sum_{l=1}^{n-1} F_{l-1}(1)^{t} \gamma_{-}(n, l) = 0.$$

By the definition of $F_m(n)$ in Step 4, we see that for any $m \in \mathbb{N}$,

$$F_m(1) = R(m) + \delta_{-}(1)R(m+1),$$

A new algorithm derived from the view-point of the fluctuation-dissipation principle in the theory of KM₂O-Langevin equations

which yields

(2.14)
$$F_{n-1}(1) + \sum_{l=1}^{n-1} F_{l-1}(1)^t \gamma_{-}(n, l) = I + \delta_{-}(1)II,$$

where

$$I = R(n-1) + \sum_{l=1}^{n-1} R(l-1)^{t} \gamma_{-}(n, l)$$

and

$$II = R(n) + \sum_{l=1}^{n-1} R(l)^{t} \gamma_{-}(n, l).$$

We first show

(2.15) $II = -R(0)^t \delta_{-}(n).$

By (1.7_{-}) and (2.6_{-}) ,

$$II = -V_{+}(n-1)^{t}\delta_{-}(n) + \sum_{l=1}^{n-1} R(l)^{t}(\gamma_{-}(n, l) - \gamma_{-}(n-1, l-1))$$

= $-\left\{V_{+}(n-1) - \sum_{l=1}^{n-1} R(l)^{t}\gamma_{+}(n-1, n-l-1)\right\}^{t}\delta_{-}(n).$

Hence, (2.15) follows from (i) in Step 3.

The next task is to show

(2.16) $I = R(0)^t \delta_+(1)^t \delta_-(n).$

When n=2, it follows from $(1, 7_{-})$ and $(2, 6_{+})$ that

$$I = R(1) + R(0)^{t} \gamma_{-}(2, 1)$$

= $-\delta_{+}(1)R(0) + R(0)^{t} (\delta_{-}(1) + \delta_{-}(2)\delta_{+}(1)).$

Hence, by (1.10), we see that (2.16) holds for n=2.

Let $n \ge 3$. By $(1, 7_{-})$ and $(2, 6_{-})$,

$$I = -V_{+}(n-2)^{t}\delta_{-}(n-1) - \sum_{k=0}^{n-3} R(k+1)^{t}\gamma_{-}(n-2,k) + \sum_{l=1}^{n-1} R(l-1)^{t}\gamma_{-}(n,l).$$

Applying (1.7) to the last term in the above equality, we have

$$I = -V_{+}(n-2)^{t}\delta_{-}(n-1) + R(0)^{t}\delta_{-}(n-1) + \\ + \sum_{k=0}^{n-3}R(k+1)^{t}(\gamma_{-}(n-1, k+1) - \gamma_{-}(n-2, k))) + \\ + \sum_{l=1}^{n-1}R(l-1)^{t}\gamma_{+}(n-1, n-l-1)^{t}\delta_{-}(n).$$

By using (1.7) again, we have

(2.17)
$$I = -\left\{ V_{+}(n-2) - R(0) - \sum_{k=0}^{n-3} R(k+1)^{t} \gamma_{+}(n-2, n-k-3) \right\}^{t} \delta_{-}(n-1) + \sum_{l=1}^{n-1} R(l-1)^{t} \gamma_{+}(n-1, n-l-1)^{t} \delta_{-}(n).$$

It follows from (i) in Step 3 that

(2.18) the coefficient of ${}^{t}\delta_{-}(n-1)$ in (2.17)=0.

So it suffices to show the following :

(2.19) the coefficient of ${}^{t}\delta_{-}(n)$ in (2.17) = $R(0){}^{t}\delta_{+}(1)$.

By (1.7₊),

the coefficient of
$${}^{t}\delta_{-}(n)$$
 in (2.17)
= $\sum_{k=0}^{n-3} R(k)^{t}\gamma_{+}(n-2, n-3-k) + \left\{ R(n-2) + \sum_{k=0}^{n-3} R(k)^{t}\gamma_{-}(n-2, k) \right\}^{t}\delta_{+}(n-1).$

On the other hand, by $(3.5)_0$ in [4], we get

$$R(n-2) = -\sum_{k=0}^{n-3} R(k)^{t} \gamma_{-}(n-2, k),$$

which is also seen by multiplying both-hand sides of equation (1.5_{-}) for X(-n+2) by ${}^{t}X(0)$ from the right and taking an expectation with respect *P*. Therefore, we get

the coefficient of
$${}^{t}\delta_{-}(n)$$
 in (2.17) = $\sum_{k=0}^{n-3} R(k)^{t}\gamma_{+}(n-2, n-3-k)$

By repeating the same procedure and using $(1, 7_+), (1, 10)$ and $(2, 6_+)$, we can write

the coefficient of
$${}^{t}\delta_{-}(n)$$
 in $(2.17) = \sum_{k=0}^{1} R(k)^{t}\gamma_{+}(2, 1-k)$
= $R(0)^{t}(\delta_{+}(1) + \delta_{+}(2)\delta_{-}(1)) - \delta_{+}(1)R(0)^{t}\delta_{+}(2)$
= $R(0)^{t}\delta_{+}(1)$

and so (2.19) holds. This completes the proof of (2.16).

In conclusion, we see from (2.14)-(2.16) and (1.10) that Step 11 holds.

(Step 12) We come to the final position to complete the proof of Fluctuation-Fluctuation Theorem. (i) and (ii) are clear. (iii) has been proved in Step 2. By Step 9 and Step 10, we have

$$I(m, n) = I(m+1, n-1) + \{\sum_{k=1}^{n-2} I(m+1, k)^{t} \delta_{+}(k+1)\}^{t} \delta_{-}(n) - \\ - \delta_{+}(m+1) \{\sum_{k=2}^{m} \delta_{-}(k) I(k-1, n)\} - \\ - \delta_{+}(m+1) \{F_{n-1}(1) + \sum_{l=1}^{n-1} F_{l-1}(1)^{t} \gamma_{-}(n, l)\}$$

Hence, by virtue of Step 11, (iv) holds

Thus we have completed the proof of Fluctuation-Fluctuation Theorem. (Q. E. D.)

References

- [1] DURBIN, J., The fitting of time series model, Rev. Int. Stat, 28 (1960), 233-244.
- [2] KUBO, R., Statistical mechanical theory of irreversible processes I, general theory and simple applications to magnetic and conduction problem, J. Phys. Soc. Japan 12 (1957), 570-586.
- [3] LEVINSON, N., The Wiener RMS error criterion in filter design and prediction, J. Math. Phys. 25 (1947), 261-278.
- [4] OKABE, Y., On a stochastic difference equation for the multi-dimensional weakly stationary time series, Prospect of Algebraic Analysis (ed. by M. Kashiwara and T. Kawai), Academic Press, 1988, vol. 2, 601-645.
- [5] _____, Application of the theory of KM₂O-Langevin equations to the linear prediction problem for the multi-dimensional weakly stationaly time series, J. Math. Soc. Japan 45(1993), 277-294.
- [6] OKABE, Y. and A. INOUE, The theory of KM₂O-Langevin equations and its applications to data analysis (II): Causal analysis, to be submitted to Nagoya Math. J.
- [7] OKABE, Y. and Y. NAKANO, The theory of KM₂O-Langevin equations and its applications to data analysis (I): Stationary analysis, Hokkaido Math. J. 20 (1991), 45 -90.
- [8] OKABE, Y. and T. OOTSUKA, The theory of KM₂O-Langevin equations and its applications to data analysis (III): Prediction analysis, in preparation.
- [9] _____, Application of the theory of KM₂O-Langevin equations to the non-linear prediction problem for the one-dimensional strictly stationary time series, to be submitted to J. Math. Soc. Japan.
- [10] WHITTLE, P., On the fitting of multivariate autoregressions, and the approximate canonical factorization of a spectral density matrix, Biometrika 50 (1963), 129 -134.
- [11] WIGGINS, R. A. and E. A. ROBINSON, Recursive solution to the multichannel fitting problem, J. Geophys. Res. 70 (1965), 1885-1891.

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060 Japan