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Abstract. Let P_{+} be an analytic projection and let P_{-} be a co analytic
projection. Let L^{2}(W) be the usual weighted Lebesgue space on the unit
circle. For some weight W. P_{+} is not continuous in the norm of L^{2}(W) .
We shall define the Hilbert space L^{2}((W)) such that for any weight W, P_{+}

is continuous from L^{2}((W)) to L^{2}(W) . For an essentially bounded func-
tion \phi , we shall consider a singular integral operator \phi P_{+}+P_{-} as a densely
ly defined continuous operator from L^{2}((W)) to L^{2}(W) . Then S_{\phi,(W)}

denotes the bounded extension of \phi P_{+}+P_{-} . Necessary and sufficient con-
ditions for the (left) invertibility of S_{\phi,(W\rangle} are given as applications of the
Cotlar-Sadosky’s lifting theorem. Our results involve the Helson-Szeg\"o
theorem and the Widom-Devinatz-Rochberg theorem.

\S 1. Introduction.

Let C(T) be an algebra of all continuous functions f on the unit circle
T, and let A be a disc algebra of all functions f in C(T) whose negative
Fourier coefficients vanish. For 1\leqq p\leqq\infty , let L^{p}=L^{p}(T) denote the L^{p}

space of T with respect to the normalized Lebesgue measure m on T. Put
A_{0}= {f;f is in A, and \int_{T}fdm=0 }, and put \overline{A}_{0}= { f-;f is in A_{0}}. By \overline{f}

we denote the complex conjugate function of f. Let H^{p} be the subspace
of L^{p} consisting of functions whose negative Fourier coefficients vanish.

Put H_{0}^{p}= {f;f is in H^{p} , and \int_{T}fdm=0}, and put \overline{H}_{0}^{p}= { f-;f is in H_{0}^{p}}.

For an f in L^{1} . its harmonic conjugate function \tilde{f} is defined by

\tilde{f}(e^{i\theta})=\int_{T} cot [ \frac{\theta-t}{2}]f(e^{it})dm(e^{it}) ,

the integral being a Cauchy principal value. A function Q in H^{\infty} is an
inner function if |Q|=1 . A function h is an outer function if there exists a
real function V in L^{1} and a real constant c such that h=e^{V+i\overline{V}+ic} . Let
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H^{1/2} denote the subspace of functions of the form Qh^{2} where Q is an inner
function and h is an outer function in H^{1} . The singular integral operator
S is defined by

Sf( \zeta)=\frac{1}{\pi i}\int_{T}\frac{f((\eta)}{\eta\zeta}d\eta , (\zeta\in T)

(cf. [2, p. 38]). The analytic projection P_{+} and the coanalytic projection
P_{-} is defined by P_{+}=(I+S)/2 and P_{-}=(I-S)/2 . Then,

Sf( \zeta)=(P_{+}-P_{-})f(\zeta)=i\overline{f}(\zeta)+\int_{T}fdm .

For a \phi in L^{\infty} . the singular integral operator \phi P_{+}+P_{-} is denoted by S_{\phi} for
short. In this paper, a positive function W in L^{1} is said to be a weight.
For a weight W, L^{p}(W)(1<p<\infty) is a space of m-measurable functions
equipped with the norm

||f||_{p} , W^{=} \{\int_{T}|f|^{p}Wdm\}^{1/p}<\infty .

The weighted Hardy space H^{p}(W) (resp. \overline{H}_{0}^{p}(W) ) is the norm closure of
A (resp. \overline{A}_{0} ) in L^{p}(W) . When we consider S_{\phi} as an densely defined oper-
ator in L^{p}(W) , we wright S_{\phi}=S_{\psi,p,W} . S_{\phi,p,w} may not be continuous. In
this paper, we shall consider the case p=2, and remain entirely in Hilbert
spaces. L^{2}(W) is a Hilbert space equipped with the inner product

(f, g)_{W}= \int_{T}f\overline{g}Wdm .

We shall wright S_{\phi,2,W} as S_{\phi,W} , and ||\cdot||_{2,W} as ||\cdot||_{W} for short. For an f in
the algebraic sum A+\overline{A}_{0} , we shall define the inner product

(f, g)_{(W)}=(P_{+}f, P_{+}g)_{W}+(P_{-}f, P_{-}g)_{W} .

Then A+\overline{A}_{0} becomes a pre-Hilbert space. L^{2}((W)) denotes the comple-
tion of A+\overline{A}_{0} with norm ||\cdot||_{(W)} defined by

||f||_{(W)}=(f, f)_{(W)^{1/2}} .

Then L^{2}((W)) is a Hilbert space, and P_{+} is a contraction operator from
L^{2}((W)) to L^{2}(W) , since for all f in A+\overline{A}_{0} ,

||P_{+}f||_{W}\leqq||f||_{(W)} .

We shall define the Helson-Szeg\"o class (HS) as follows (cf. [12]).

(HS) e^{u+\overline{v}} ; u and v in L^{\infty}||v||_{\infty}<\pi/2 }.
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If W is in (HS), then W^{-1} is also in (HS), and hence W^{-1} is in L^{1} . If W

is in (HS), then ||\cdot||_{W} and ||\cdot||_{(W)} are equivalent norms. If W is not in
(HS), then S_{\phi,W} may not be continuous. For a general weight W, S_{\phi} is a
continuous operator from L^{2}((W)) to L^{2}(W) , that is, there exists a con-
stant c such that for all f in A+\overline{A}_{0} ,

||S_{\phi}f||_{W}\leqq c||f||_{(W)} .

In fact, we can take c=2^{1/2} \max\{||\phi||_{\infty}, 1\} . Let S_{\phi.(W)} denote the bounded
extension of S_{\phi} . Hence S_{\phi,(W)} is a bounded operator from L^{2}((W)) to
L^{2}(W) satisfying S_{\phi,(W)}f=S_{\phi}f for all f in A+\overline{A}_{0} . We shall study the
(left) invertibility of S_{\phi,(W)} using Hilbert space methods and the following
Cotlar-Sadosky’s lifting theorem (cf. [1], [5], [15], [22]).

THEOREM(Cotlar-Sadosky). Suppose W_{1} , W_{2} , W_{3} are in L^{1} . and W_{1} ,
W_{2} are real functions. Then the following conditions (1) and (2) are
equiva(cf .
(1) For all f_{1} in A and f_{2} in \overline{A}_{0} ,

\int_{T}\{|f_{1}|^{2}W_{1}+|f_{2}|^{2}W_{2}+2{\rm Re}(f_{1}\overline{f}_{2}W_{3})\}dm\geqq 0 .

(2) W_{1}\geqq 0 , W_{2}\geqq 0 and there exists a k in H^{1} such that

|W_{3}-k|^{2}\leqq W_{1}W_{2} .

When W=1 , Doninguez [7] studied the invertibility of systems of
Toeplitz operators using the Cotlar-Sadosky’s type lifting theorem. When
W is in (HS), Rochberg [18] defined the Toeplitz operator T_{\phi.p,w} on
H^{p}(W) by T_{\psi,p,w}f=P_{+}(\phi f) for all f in H^{p}(W) , and got the necessary
and sufficient condition for the invertibility of T_{\psi,p,w} (cf. [2, p. 216], [3]).
If P_{+} is continuous in the norm of L^{p}(W) , then T_{\psi,p,w} is (left) invertible if
and only if S_{\phi,p,w} is (left) invertible (cf. [9, p. 124], [17, p. 393]). When W

=1 , Widom [21] and Devinatz [6] considered the left invertibility and the
invertibility of T_{\phi} and S_{\phi} (cf. [8, p. 187], [17, p. 371]). Shinbrot [20] con-
sidered the invertibility of S_{\phi} on L^{2} and derived the method for finding the
inverse operator of S_{\phi} . Many generalizations of these results have been
considered (cf. [2], [3], [4], [10], [11], [14]). For functions \alpha and \beta in L^{\infty}

the continuity of \alpha P_{+}+\beta P_{-} in the norm of L^{2}(W) was considered in our
preceding paper [15]. For a general weight W, \alpha P_{+}+\beta P_{-} has a bounded
extension which is (left) invertible as an operator from L^{2}((W)) to L^{2}(W)

if and only if \alpha^{-1}-\beta^{-1} are in L^{\infty} and S_{a/\beta,(W)} is (left) invertible. When W

is in (HS), we can give a simple necessary and sufficient condition for the
(left) invertibility of S_{\phi,W} . But when W is not in (HS), we can not give a
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simple condition.
In Section 2, by the Hilbert space methods and the Cotlar-Sadosky’s

lifting theorem, we shall give necessary and sufficient conditions for the
left invertibility of S_{\phi,(W)} . Theorems 1 and 2 are main theorems. In Sec-
tion 3, Theorem 3 is the main theorem. We shall give necessary and
sufficient conditions for the invertibility of S_{\phi,(W)} using the results of Sec-
tion 2.

The author wishes to thank Prof. T. Nakazi for many helpful conver-
sations.

\S 2. Left invertibility.

In Theorem 1 and Theorem 2, we shall give necessary and sufficient
conditions for the left invertibility of the singular integral operator S_{\phi,(W)} .
When S_{\phi,(W)} is bounded and has a bounded left inverse operator, we shall
say S_{\phi,(W)} is left invertible. Since S_{\phi,(W)} is always bounded, S_{\phi,(W)} is left
invertible if and only if S_{\phi,(W\rangle} is bounded below. When W is not in (HS),
we have been unable to give a simple necessary and sufficient condition for
the left invertibility of S_{\phi,(W)} . For the left invertibility of S_{\phi,(W)} , Prof. T.
Nakazi suggested the simple condition (2) in Theorem 2, and the equiva-
lence of (2) and (5). We use the Cotlar-Sadosky’s lifting theorem to
prove Theorem 1. We use Theorem 1 to prove Theorem 2. Each TheO-
rem involves the Helson-Szeg\"o theorem (cf. [12]). We shall consider
weighted norm inequalities.

THEOREM 1. Suppose |\phi|=1 , W is a weight, \delta is a constant
satisfying 0<\delta\leqq 1 , and put

r=\delta(2-\delta^{2})^{1/2} .

Then the following conditions (1) and (2) are equivalent.
(1) For all f in A+\overline{A}_{0} ,

\delta||f||_{(W)}\leqq||S_{\phi}f||_{W} .

(2) There exists an inner function Q, a real function V in L^{1} , u and v

in L^{\infty} such that
\phi=Qe^{-i\overline{V}} , We^{V}=e^{u+\overline{v}} ,

||v||_{\infty}\leqq\cos^{-1}r<\pi/2 , |u|\leqq\cosh^{-1}\{(\cos v)/r\} .

PROOF. We shall use the idea of Rochberg (cf. [18]) and the idea of
Arocena, Cotlar and Sadosky (cf. [1], [5]). We shall show that (1)
implies (2). By (1),
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\delta^{2}\int_{T}(|f_{1}|^{2}+|f_{2}|^{2})Wdm\leqq\int_{T}|\phi f_{1}+f_{2}|^{2}Wdm ,

for all f_{1} in A and f_{2} in \overline{A}_{0} . Hence

\int_{T}\{(1-\delta^{2})(|f_{1}|^{2}+|f_{2}|^{2})+2{\rm Re}(\phi f_{1}\overline{f_{2}})\}Wdm\geqq 0 .

By the Cotlar-Sadosky’s lifting theorem, \delta\leqq 1 and there exists a k in H^{1}

such that

|\phi w-k|\leqq(1-\delta^{2})W .

Since |\phi|=1 ,

|W-|k||\leqq|\phi W-k|\leqq(1-\delta^{2})W\leqq W .

Hence
\delta^{2}W\leqq|k|\leqq 2W .

Since W is a non-zero function, k is a non-zero function in H^{1} Hence
log W is in L^{1} Put g=ke^{-\log W-i(\log W)^{-}} Since |\phi|=1 ,

|1-\overline{\phi}ge^{i(\log W)-}|\leqq 1-\delta^{2} .

Since 0<\delta\leqq 1 and r=\delta(2-\delta^{2})^{1/2}0<r\leqq 1 . Then there exists a real func-
tion v in L^{\infty} such that

\overline{\phi}ge^{i(\log W)^{-}}=|g|e^{-iv} .

||v||_{\infty}\leqq\cos^{-1}r<\pi/2

(cf. [15, Lemma 2]). Hence (cos v ) /r\geqq 1 . Since \delta^{2}\leqq|g|\leqq 2 , g is in H^{\infty}

and there exists an inner function Q_{0} and a real function u in L^{\infty} such that
g=rQ_{0}e^{-u-i\overline{u}} . Since \overline{\phi}ge^{i(\log W)^{\sim}}=re^{-u-iv} we have

|1-re^{-u-iv}|\leqq 1-\delta^{2} .

Since r is a positive constant and

|1-re^{-u-iv}|^{2}-(1-\delta^{2})^{2}=r^{2}\{e^{-2u}-2\{\cos v)/r\}e^{-u}+1\} ,

we have

e^{-2u}-2\{(\cos v)/r\}e^{-u}+1\leqq 0 .

Since (cos v ) /r\geqq 1 , we have
|u|\leqq\cosh^{-1}\{(\cos v)/r\} .

Put V=u+\tilde{v}- log W. then V is in L^{1} , and there exists a real constant c
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such that \tilde{V}=\tilde{u}-v-(\log W)^{\sim}+c . Put Q=Q_{0}e^{iC} . then

\phi=ge^{i(v+(\log W)^{-})/|g|=Q_{0}e^{i(v-\overline{u}+(\prime ogW)^{-})}=Qe^{-i\overline{V}}} .

We shall show that (2) implies (1). By (2),

e^{-2u}-2\{(\cos v)/r\}e^{-u}+1\leqq 0 .

By the calculation,

|1-re^{-u-iv}|\leqq 1-\delta^{2} .

Put k=\phi Wre^{-u-iv} . then k is in H^{1} . since
k=rQe^{-i\overline{V}+(u+\overline{v}-V)-u-iv}=rQe^{-V-i\overline{V}}e^{\overline{v}-iv} .

Hence
|\phi W-k|=|\phi W(1-re^{-u-iv})|\leqq(1-\delta^{2})W .

By the Cotlar-Sadosky’s lifting theorem, for all f_{1} in A and f_{2} in \overline{A}_{0} ,

\int_{T}\{(1-\delta^{2})(|f_{1}|^{2}+|f_{2}|^{2})+2{\rm Re}(\phi f_{1}\overline{f}_{2})\}Wdm\geqq 0 .

Since |\phi|=1 ,

\delta^{2}\int_{T}(|f_{1}|^{2}+|f_{2}|^{2})Wdm\leqq\int_{T}|\phi f_{1}+f_{2}|^{2}Wdm .

This implies (1). This completes the proof.

COROLLARY 1. Suppose \phi is in L^{\infty} and W is a weight. Then the
following conditions are mutually equivalent.
(1) S_{\phi,(W)} is an isometry, that is, for all f in A+\overline{A}_{0} ,

||S_{\phi}f||_{W}=||f||_{(W)} .

(2) |\phi|=1 , and for all f in A+\overline{A}_{0} ,

||f||_{(W)}\leqq||S_{\phi}f||_{W} .

(3) There exists an inner function Q and a real function V in L^{1} such
that \phi=Qe^{-\iota\overline{V}}

.

and We =1

PROOF. By (1), for all f_{1} in A,

\int_{T}(|\phi|^{2}-1)|f_{1}|^{2}Wdm=0 .

This implies |\phi|=1 . Hence (1) implies (2). By Theorem 1, (2) and (3)

are equivalent. By (3), \phi W=Qe^{-V-i\overline{V}} and \phi W is in L^{1} . This implies
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\phi W is in H^{1} , and hence for all f_{1} in A and f_{2} in \overline{A}_{0} ,

\int_{T}|\phi f_{1}+f_{2}|^{2}Wdm-\int_{T}(|f_{1}|^{2}+|f_{2}|^{2})Wdm

=2{\rm Re} \int_{T}\phi f_{1}\overline{f_{2}}Wdm=0 .

This implies (1). This completes the proof.

Let H^{2}(W)\oplus\overline{H}_{0}^{2}(W) denote the algebraic direct sum of H^{2}(W) and
\overline{H}_{0}^{2}(W) (cf. [8, p. 78]). Then H^{2}(W)\oplus\overline{H}_{0}^{2}(W) is the Hilbert space equipped
with the inner product

(\langle f_{1}, f_{2}\rangle, \langle g_{1}, g_{2}\rangle)_{\langle W\rangle}=(f_{1}, g_{1})_{W}+(f_{2}, g_{2})_{W} ,

and the norm
||\langle f_{1}, f_{2}\rangle||_{\langle W\rangle}=(\langle f_{1}, f_{2}\rangle, \langle f_{1}, f_{2}\rangle)_{\langle W\rangle} .

For any f in L^{2}((W)) , there exists a sequence f_{1n} in A and a sequence f_{2n}

in \overline{A}_{0} such that f_{1n}+f_{2n} converges to f in the norm of L^{2}((W)) . Then
there exists an f_{1} in H^{2}(W) and an f_{2} in \overline{H}_{0}^{2}(W) such that \langle f_{1n}, f_{2n}\rangle con-
verges to \langle f_{1}, f_{2}\rangle in the norm of H^{2}(W)\oplus\overline{H}_{0}^{2}(W) . Let J denote the
isometry from L^{2}((W)) onto H^{2}(W)\oplus\overline{H}_{0}^{2}(W) defined by

Jf=\langle f_{1}, f_{2}\rangle .

This definition is correct in the sense that it does not depend on the partic-
ular choice of the Cauchy sequence which defines f_{1} and f_{2} . Let R_{\phi,W}

denote the operator from H^{2}(W)\oplus\overline{H}_{0}^{2}(W) to L^{2}(W) defined by

R_{\phi,W}\langle f_{1}, f_{2}\rangle=\phi f_{1}+f_{2} .

LEMMA 1. Suppose \phi is in L^{\infty}- and W is a weight. Then R_{\phi,W} is a
bounded operator from H^{2}(W)\oplus\overline{H}_{0}^{2}(W) to L^{2}(W) . R_{\phi} , W is ( left)
invertible if and only if S_{\phi,(W)} is (left) invertible.

PROOF. R_{\phi,W} is bounded, since for all \langle f_{1}, f_{2}\rangle in H^{2}(W)\oplus\overline{H}_{0}^{2}(W) ,

||R_{\phi,W} \langle f_{1}, f_{2}\rangle||_{W}\leqq\max\{||\phi||_{\infty}, 1\}(||f_{1}||_{W}+||f_{2}||_{W})

\leqq 2^{1/2}\max\{||\phi||_{\infty}, 1\}||\langle f_{1}, f_{2}\rangle||_{\langle W\rangle} .

Since S_{\phi,(W)}=R_{\phi,W}J , R_{\phi,W} is (left) invertible if and only if S_{\phi,(W)} is (left)
invertible.

LEMMA 2. Suppose \phi , \phi^{-1} are in L^{\infty} and W is a weight. If there
exists an inner function Q, outer functions \alpha , \beta such that |\alpha|^{2} W. |\beta|^{2}W

are in (HS), and \phi=Q\overline{\beta}/\alpha , then R_{\phi,W} and S_{\phi,(W\rangle} are left invertible. If
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T is defined by

Tf=\langle\alpha P_{+}(\overline{Q}f/\overline{\beta}), Q\overline{\beta}P_{-}(\overline{Q}f/\mathcal{B}\circ\rangle ,

for all f in L^{2}(W) , then T is the left inverse to R_{\phi,W} , and J^{-1}T is the
left inverse to S_{\phi,(W)} . Then

J^{-1}Tg=(\alpha P_{+}+Q\overline{\beta}P_{-})(\overline{Q}g/\beta\circ ,

for all g in \phi A+\overline{A}_{0} .

PROOF. Since |\alpha|^{2}W , |\beta|^{2}W are in (HS), (|\alpha|^{2}W)^{-1} , (|\beta|^{2}W)^{-1} are also
in (HS). Hence (|\alpha|^{2}W)^{-1} , (|\beta|^{2}W)^{-1} are in L^{1} . For all f in L^{2}(W) , by
the Schwarz inequality, f/\overline{\beta} is in L^{1} . By the Helson-Szeg\"o theorem (cf.
[12] ) , there exist constants \gamma , \gamma’ such that

||Tf||_{\langle W\rangle^{2}}= \int_{T}|\alpha P_{+}(\overline{Q}f/\overline{\beta})|^{2}Wdm+\int_{T}|Q\overline{\beta}P_{-}(\overline{Q}f/\overline{\beta}|^{2}Wdm

\leqq\gamma\int_{T}|\overline{Q}f/\overline{\beta}|^{2}|\alpha|^{2}Wdm+\gamma’\int_{T}|\overline{Q}f/\overline{\beta}|^{2}|\beta|^{2}Wdm

\leqq(\gamma||\phi^{-1}||_{\infty}^{2}+\gamma’)\int_{T}|f|^{2}Wdm .

For all f_{1} in H^{2}(W) and f_{2} in \overline{H}_{0}^{2}(W) , by the Schwarz inequality, f_{1}/\alpha is in
H_{1} and \overline{Q}f_{2}/\overline{\beta} is in \overline{H}_{0}^{1} . Hence

\alpha P_{+}(\overline{Q}(\phi f_{1}+f_{2})/\beta\circ=\alpha P_{+}(f_{1}/\alpha+\overline{Q}f_{2}/\beta\circ=\alpha P_{+}(f_{1}/\alpha)=f_{1} ,
Q\overline{\beta}P_{-}(\overline{Q}(\phi f_{1}+f_{2})/\beta\circ=Q\overline{\beta}P_{-}(f_{1}/\alpha+\overline{Q}f_{2}/\overline{\beta})=Q\overline{\beta}P_{-}(\overline{Q}f_{2}/\beta\circ=f_{2} .

This implies \alpha P_{+}(\overline{Q}f/\beta\circ is in H^{2}(W) and Q\overline{\beta}P_{-}(\overline{Q}f/\overline{\beta}) is in \overline{H}_{0}^{2}(W) .
Hence

TR_{\phi,W}\langle f_{1}, f_{2}\rangle=T(\phi f_{1}+f_{2})=\langle f_{1}, f_{2}\rangle .

Hence T is the left inverse to R_{\phi,W} . By Lemma 1, J^{-1}T is the left inverse
to S_{\phi,(W)} . For any g in \phi A+\overline{A}_{0} , there exists a g_{1} in A and a g_{2} in \overline{A}_{0} such
that g=\phi g_{1}+g_{2} . By the calculation, \alpha P_{+}(\overline{Q}g/\beta\circ=g_{1} , and Q\overline{\beta}P_{-}(\overline{Q}g/\beta\circ=g_{2} .
Hence \alpha P_{+}(\overline{Q}g/\beta\circ is in A, and Q\overline{\beta}P_{-}(\overline{Q}g/\beta\circ is in \overline{A}_{0} . Hence

J^{-1}Tg=J^{-1}\langle\alpha P_{+}(\overline{Q}g/\beta\circ, Q\overline{\beta}P_{-}(\overline{Q}g/\beta\gamma\rangle

=\alpha P_{+}(\overline{Q}g/\beta\circ+Q\overline{\beta}P_{-}(\overline{Q}g/\beta\circ=(\alpha P_{+}+Q\overline{\beta}P_{-})(\overline{Q}g/\beta\circ .

This completes the proof.

THEOREM 2. Suppose \phi is in L^{\infty} and W is a weight. Then the
following conditions on \phi and W are mutually equivalent.
(1) S_{\phi,(W)} is left invertible.
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(2) \phi^{-1} is in L^{\infty} and there exists an inner function Q and a real
function V in L^{1} such that We is in (HS), and

\phi/|\phi|=Qe^{-i\overline{V}}

(3) \phi^{-1} is in L^{\infty} , and there exists an inner function Q, outer functions
\alpha , \beta such that |\alpha|^{2} W. |\beta|^{2}W are in (HS), and \phi=Q\overline{\beta}/\alpha ,
(4) \phi^{-1} is in L^{\infty} . and there exists a k in H^{1} such that

||1-k/(\phi W)||_{\infty}<1 .

(5) There exists a positive constant \delta such that for all f in A+\overline{A}_{0} .

\delta||f||_{W}\leqq\min\{||S_{\phi}f||_{W}, ||S_{-\phi}f||_{W}\} .

PROOF. We shall show that (1) implies (4) and (2). By (1), there
exists a positive constant \delta such that

\delta||f||_{(W)}\leqq||S_{\phi}f||_{W} ,

for all f in A+\overline{A}_{0} . Hence

\int_{T}\{(|\phi|^{2}-\delta^{2})|f_{1}|^{2}+(1-\delta^{2})|f_{2}|^{2}+2{\rm Re}(\phi f_{1}\overline{f_{2}})\}Wdm\geqq 0 ,

for all f_{1} in A and f_{2} in \overline{A}_{0} . By the Cotlar-Sadosky’s lifting theorem, 0<\delta

\leqq 1 , \delta\leqq|\phi| and there exists a k in H^{1} such that
|\phi W-k|\leqq(1-\delta^{2})^{1/2}(|\phi|^{2}-\delta^{2})^{1/2}W\leqq(1-\delta^{2})^{1/2}|\phi|W .

This implies 4). Put \phi_{0}=\phi e^{-\log|\phi|-\iota(\log|\phi|)-}.k_{0}=ke^{-\log|\phi|-i(\log|\phi|)-} and
\delta_{0}=\{1-(1-\delta^{2})^{1/2}\}^{1/2} . Then |\phi_{0}|=1,0<\delta_{0}\leqq 1 , k_{0} is in H^{1} and

|\phi_{0}W-k_{0}|\leqq(1-\delta_{0}^{2})W .

By the Cotlar-Sadosky’s lifting theorem,

\int_{T}\{(1-\delta_{0}^{2})(|f_{1}|^{2}+|f_{2}|^{2})+2{\rm Re}(\phi_{0}f_{1}\overline{f_{2}})\}Wdm\geqq 0 .

Hence, for all f in A+\overline{A}_{0} ,

\delta_{0}||f||_{(W)}\leqq||S_{\phi_{0}}f||_{W} .

By Theorem 1, there exists an inner function Q, a real function V in L^{1} ,
and u , v in L^{\infty} such that

\phi_{0}=Qe^{-i\overline{V}} . We^{V}=e^{u+\overline{v}} ,
||v||_{\infty}\leqq\cos^{-1}\delta<\pi/2 , |v|\leqq\cosh^{-1}\{(\cos v)/\delta\} ,

since \delta_{0}(2-\delta_{0}^{2})^{1/2}=\delta . Hence
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\phi/|\phi|=\phi_{0}e^{i(\log|\phi|)^{-}}=Qe^{-i(V-\log|\phi|)^{-}}

We V-\log|\emptyset|=e^{u-\log|\emptyset|+\overline{v}} .

Since \delta\leqq|\phi| , \log|\phi| is in L^{\infty} This implies u-\log|\phi| is in L^{\infty} . and hence
We V-\log|\phi| is in (HS). We shall show that (2) implies (3). Put U=\log|\phi| ,

then U is in L^{\infty} Put

\alpha=e^{\frac{1}{2}(V-U+i(V-U))}\sim . \beta=e^{\frac{1}{2}(V+U+i(V+U))}\sim ,

then \alpha , \beta are outer functions, and \phi=Q\overline{\beta}/\alpha . Since We^{V} is in (HS), |\alpha|^{2}W

and |\beta|^{2}W are in (HS). This implies (3). By Lemma 2, (3) implies (1).

We shall show that (4) implies (1). By (4), there exists a constant \delta and
a k in H^{1} such that 0<\delta\leqq 1 , \delta\leqq|\phi|^{2} . and |\phi W-k|\leqq(1-\delta)|\phi|W . Then

(1-\delta^{2})(|\phi|^{2}-\delta^{2})-(1-\delta)^{2}|\phi|^{2}

=\delta(1-\delta)\{2|\phi|^{2}-\delta(1+\delta)\}

\geqq 2\delta(1-\delta)(|\phi|^{2}-\delta)\geqq 0 .

Hence
|\phi W-k|^{2}\leqq(1-\delta^{2})(|\phi|^{2}-\delta^{2})W^{2} .

By the Cotlar-Sadosky’s lifting theorem, for all f_{1} in A and f_{2} in \overline{A}_{0} ,

\int_{T}\{(|\phi|^{2}-\delta^{2})|f_{1}|^{2}+(1-\delta^{2})|f_{2}|^{2}+2{\rm Re}(\phi f_{1}\overline{f}_{2})\}Wdm\geqq 0 .

This implies (1). Since
||f||_{W}^{2}+||Sf||_{W}^{2}=||P_{+}f+P_{-}f||_{W}^{2}+||P_{+}f-P_{-}f||_{W}^{2}

=2(||P_{+}f||_{W}^{2}+||P_{-}f||_{W}^{2})=2||f||_{(W)}^{2} ,

we have
2^{1/2}||f||_{(W)}\leqq||f||_{W}+||Sf||_{W}\leqq 2||f||_{(W)} .

Hence, S_{\phi,(W)} is left invertible if and only if there exists a positive con-
stant \delta such that for all f in A+\overline{A}_{0} ,

\delta(||f||_{W}+||Sf||_{W})\leqq||S_{\phi}f||_{W} .

Since S^{2}f=f and S_{\phi}Sf=S_{\phi}(P_{+}-P_{-})f=\phi P_{+}f-P_{-}f=-S_{-\phi}f_{\uparrow} we have

S_{\phi}f=S_{\phi}S^{2}f=-S_{-\phi}Sf .

Hence
\delta||f||_{W}\leqq||S_{\phi}f||_{W} , \delta||Sf||_{W}\leqq||S_{-\phi}Sf||_{W} .

Since f is in A+\overline{A}_{0} if and only if Sf is in A+\overline{A}_{0} , (1) and (5) are equiva-
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lent. This completes the proof.

REMARK. (a) If S_{\phi,(W)} is left invertible, then log W is in L^{1}- and
there exists an inner function Q , real functions u , v in L^{\infty} such that
||v||_{\infty}<\pi/2 and

\phi/|\phi|=Qe^{i\{v-(u-\log W)^{-}\}} .

(b) By condition (2), S_{\phi,(W)} is left invertible if and only if \phi^{-1} is in L^{\infty}

and S_{\phi/|\phi|,(W)} is left invertible,

The equivalence of conditions (3) and (4) in Corollary 2 is the Helson
-Szeg\"o theorem (cf. [12]). Since ||f||_{W}^{2}+||Sf||_{W}^{2}=2||f||_{(W)}^{2} , we have

||f||_{W}\leqq 2^{1/2}||f||_{(W)} .

COROLLARY 2. For a weight W, the following conditions are
mutually equivalent.
(1) ||S_{1,(W)}||<2^{1/2} . That is, there exists a positive constant \epsilon such that for
all f in A+\overline{A}_{0} ,

||f||_{W}\leqq(2^{1/2}-\epsilon)||f||_{(W)} .

(2) S_{1,(W)} is left invertible. That is, there exists a positive constant \delta

such that for all f in A+\overline{A}_{0} ,

\delta||f||_{(W)}\leqq||f||_{W} .

(3) There exists a positive constant \gamma such that for all f in A+\overline{A}_{0} ,

||P_{+}f||_{W}\leqq\gamma||f||_{W} .

(4) W is in (HS).
(5) There exists a k in H^{1} such that

||1-k/W||_{\infty}<1 .

PROOF. We shall show that (1) implies (2). By (1), there exists a
positive constant \delta such that

||f_{1}-f_{2}||_{W}^{2}\leqq(2-\delta^{2})(||f_{1}||_{W}^{2}+||f_{2}||_{W}^{2}) ,

for all f_{1} in A and f_{2} in \overline{A}_{0} . Hence
(1-\delta^{2})||f_{1}||_{W}^{2}+(1-\delta^{2})||f_{2}||_{W}^{2}+2{\rm Re}(f_{1}, f_{2})_{W}\geqq 0 .

Hence
\delta(||fi||_{W}^{2}+||f_{2}||_{W}^{2})^{1/2}\leqq||fi+f_{2}||_{W} .
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This implies (2). This proof is reversible. Since ||P_{+}f||_{W}\leqq||f||_{(W)} , (2)
implies (3). We shall show that (3) implies (2). By (3),

||P_{-}f||_{W}\leqq||P_{+}f||_{W}+||f||_{W}\leqq\gamma’||f||_{W} ,

for some constant \gamma’ Hence
||f||_{(W)}^{2}=||P_{+}f||_{W}^{2}+||P_{-}f||_{W}^{2}\leqq(\gamma^{2}+\gamma^{\prime 2})||f||_{W}^{2}.

This implies (2). We shall show that (2) implies (4). By Theorem 2,
there exists an inner function Q and a real function V in L^{1} such that
We V is in (HS) and Qe^{-i\overline{V}}=1 . Since 1/(We V) is also in (HS), 1/(We V) is
in L^{1} . By the Schwarz inequality, e^{-V/2} is in L^{1} . Since Qe^{-V-i\overline{V}}=e^{-V} a
positive function e^{-V} is in H^{1/2} . By the Neuwirth-Newman theorem (cf.
[16] ) , V is a constant. Hence W is in (HS). Conversely when W is in
(HS), we can choose Q=1 , V=0, and \phi=1 in the condition (2) of TheO-
rem 2. Hence (4) implies (2). When \phi=1 , by Theorem 2, S_{1,(W)} is left
invertible if and only if there exists a k in H^{1} such that ||1-k/W||_{\infty}<1 .
Hence (2) and (5) are equivalent. This completes the proof.

Put W(e^{i\theta})=|1-e^{i\theta}|^{2} , \phi(e^{i\theta})=e^{i\theta} and k(e^{i\theta})=(1-e^{i\theta})^{2} then k is in H^{1}

and \phi W+k=0 . By Theorem 2, this implies S_{\phi,(W)} is left invertible. Since
W^{-1} is not in L^{1} . W is not in (HS). Then by Theorem 2, there exists a
positive constant \delta such that for all f in A+\overline{A}_{0} ,

\delta||f||_{W}\leqq||S_{\phi}f||_{W} .

By Corollary 2, the converse is not true. If W is not in (HS), then S_{1,(W)}

is not left invertible, and S_{1,W} is an isometry. But we have the following
result.

COROLLARY 3. Suppose \phi and (\phi-1)^{-1} are in L^{\infty} . and W is a
weight. If there exists a positive constant \delta such that for all f in A
+\overline{A}_{0} ,

\delta||f||_{W}\leqq||S_{\phi}f||_{W} ,

then S_{\phi-\epsilon,(W)} is left invertible for any constant \epsilon satisfying 0<\epsilon\leqq\delta^{2} .

PROOF. Since \epsilon\leqq\delta^{2} , for all f in A+\overline{A}_{0} ,

\int_{T}\{(|\phi|^{2}-\epsilon)|f_{1}|^{2}+(1-\epsilon)|f_{2}|^{2}+2{\rm Re}((\phi-\epsilon)f_{1}\overline{f}_{2})\}Wdm\geqq 0 .

By the Cotlar-Sadosky’s lifting theorem, \epsilon\leqq|\phi|^{2} . \epsilon\leqq 1 and there exists a k

in H^{1} such that
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|(\phi-\epsilon)W-k|^{2}\leqq(1-\epsilon)(|\phi|^{2}-\epsilon)W^{2}

=\{1-\epsilon(|\phi-1|/|\phi-\epsilon|)^{2}\}|(\phi-\epsilon)W|^{2} .

Since \phi and (\phi-1)^{-1} are in L^{\infty} there exists a constant \rho , 0\leqq\rho<1 such
that

\epsilon(|\phi-1|/|\phi-\epsilon|)^{2}\geqq 1-\rho^{2} .

Hence
|(\phi-\epsilon)W-k|\leqq\rho|\phi-\epsilon|W .

Since
|\phi-\epsilon|\geqq|\phi|-\epsilon\geqq\epsilon^{1/2}(1-\epsilon^{1/2})>0 ,

(\phi-\epsilon)^{-1} is in L^{\infty} . and
||1-k/\{(\phi-\epsilon)W\}||_{\infty}\leqq\rho<1 .

By Theorem 2, this implies S_{\phi-\epsilon,(W)} is left invertible.

COROLLARY 4. Suppose \phi is in L^{\infty} and W is a weight. If there
existes a real function s in L^{1} such that \phi=e^{is}|\phi| , and We is in L^{1} . then
the following conditions (1) and (2) are equivalent.
(1) S_{\phi,(W)} is left invertible.
(2) \phi^{-1} is in L^{\infty} . and We \overline{s} is in (HS).

PROOF. By Theorem 2, (1) implies \phi^{-1} is in L^{\infty} and there exists a k

in H^{1} such that ||1-k/(\phi W)||_{\infty}<1 . Hence
||1-(ke^{\overline{s}-is})/(|\phi|We^{\overline{s}})||_{\infty}<1 .

Since |\phi|We^{\tilde{s}} is in L^{1} , ke ^{\overline{s}} is in H^{1} . By Corollary 2, |\phi|We^{\zeta} is in (HS)

and hence We is in (HS). Conversely, (2) implies |\phi|We^{\tilde{s}} is in (HS).

By Corollary 2, there exists a k in H^{1} such that ||1-k/(|\phi|We^{\overline{5}})||_{\infty}<1 .
Hence

||1-ke^{is-\overline{s}}/(\phi W)||_{\infty}<1 .

By Theorem 2, this implies (1). This completes the proof.

COROLLARY 5. Suppose \phi is in L^{\infty} and W is a weight. Supposc the
argument of \phi is in L^{1} and it’s harmonic conjugate function is in L^{\infty} .

(This condition is satisfied if \phi is invertible in H^{\infty} or the argument of
\phi is Dini continuous.) Then the following conditions (1) and (2) are
cquiva lcnt.
(1) S_{\phi,(W)} is left invertible.
(2) \phi^{-1} is in L^{\infty} and W is in (HS).
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PROOF. There exists a real function s in L^{1} such that \phi=e^{is}|\phi| and
\tilde{s} is in L^{\infty} Hence We \overline{s} is in L^{1} . By Corollary 4, \phi and W satisfy (1) if
and only if \phi^{-1} is in L^{\infty} and We \overline{s} is in (HS). Since e^{\overline{s}} is invertible in L^{\infty}

We^{\zeta} is in (HS) if and only if W is in (HS). This completes the proof.

\S 3. Invertibility.

When P_{+} is continuous in the norm of L^{p}(W) , Rochberg [18] solved
the invertibility problem of the Toeplitz operator on the weighted Hardy
space H^{p}(W) . When S_{\phi,(W)} has a bounded inverse operator, we shall say
S_{\phi,(W)} is invertible.

Prof. T. Nakazi privately communicated me the equivalence of simple
conditions (1) and (2) in Theorem 3. We shall prove Theorem 3 using
Theorem 2. In Theorem 3, we shall give the form of the inverse to S_{\phi,(W)} .

THEOREM 3. Suppose \phi is in L^{\infty} and W is a weight. Then the
following conditions on \phi and W are mutually equivalent.
(1) S_{\phi,(W)} is invertible.
(2) \phi^{-1} is in L^{\infty} . and there exists a real constant c and a real function
V in L^{1} such that We is in (HS), and

\phi/|\phi|=e^{\iota(c-\overline{V})}. .

(3) \phi^{-1} is in L^{\infty} . and there exist outer functions \alpha , \beta such that |\alpha|^{2}W ,
|\beta|^{2}W are in (HS), and \phi=\overline{\beta}/\alpha .
(4) \phi^{-1} is in L^{\infty} and there exists an outer function k in H^{1} such that

||1-k/(\phi W)||_{\infty}<1 .

Suppose S_{\phi,(W)} is invertible. Let T be the operator defined in
Lemma 2 with Q=1 . Then S_{\phi,(W)}^{-1}=J^{-1}T For all g in \phi A+\overline{A}_{0} ,

S_{\phi,(W)}^{-1}g=(\alpha P_{+}+\overline{\beta}P_{-})(g/\overline{\beta}) .

PROOF. We shall show that (1) implies (2). Since S_{\phi,(W)} is inverti-
ble, by Theorem 2, there exists an inner function Q and a real function V
in L^{1} such that We^{V} is in (HS), and \phi/|\phi|=Qe^{-i\overline{V}} . Since S_{\phi,(W)} is inverti-
ble, there exists an f in L^{2}((W)) such that S_{\phi,(W)}f=1 . Hence there exists
an f_{1} in H^{2}(W) and an f_{2} in \overline{H}_{0}^{2}(W) such that \phi f_{1}+f_{2}=1 Then,

Qf_{1}(1-\overline{f_{2}})e^{-i\overline{V}-V}=|1-f_{2}|^{2}W/(|\phi|We^{V})\geqq 0 .

Since \phi is invertible in L^{\infty} and We V is in (HS), (|\phi|We^{V})^{-1} is in L^{1} . Since
f_{2} in \overline{H}_{0}^{2}(W) , |1-f_{2}|^{2}W is in L^{1} . Hence the left hand side is a non-nega-
tive function in H^{1/2} . By the Neuwirth-Newman theorem, Q=e^{ic} for
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some real constant c . Hence \phi/|\phi|=e^{i(c-\overline{V})} . This implies (2). By TheO-
rem 2 and it’s proof with Q=e^{iC} . (2) implies (3). We shall show that (3)
implies (1). By Lemma 1 and Lemma 2, it is sufficient to show that R_{\phi,W}

is right invertible. Let T be the operator defined in Lemma 2 with Q=1 .
By (3), log W is in L^{1} . Hence there exists an outer function h in H^{2} such
that W=|h|^{2} . Since |\beta|^{2}W is in (HS), (|\beta|^{2}W)^{p} is also in (HS) for some
p, p>1 . Hence (|\beta|^{2}W)^{-p} is in L^{1} . For all f in L^{2}(W) ,

\int_{T}|f/\overline{\beta}|^{2p/(p+1)}dm

\leqq\{\int_{T}|f|^{2}Wdm\}^{p/(p+1)}\{\int_{T}(|\beta|^{2}W)^{-p}dm\}^{1/(p+1)}<\infty .

Since 2p/(p+1)>1 , by the Riesz theorem (cf. [13, p. 132]), P_{+}(f/\beta\circ is in
H^{2p/(p+1)} . Since |\alpha|^{2}W is in (HS), by the Helson-Szeg\"o theorem, there
exists a constant \gamma such that for all f in L^{2}(W) ,

\int_{T}|\alpha hP_{+}(f/\beta\circ|^{2}dm=\int_{T}|P_{+}(f/\overline{\beta})|^{2}|\alpha|^{2}Wdm

\leqq\gamma\int_{T}|f/\overline{\beta}|^{2}|\alpha|^{2}Wdm\leqq\gamma||\phi^{-1}||_{\infty}^{2}\int_{T}|f|^{2}Wdm<\infty .

Hence \alpha hP_{+}(f/\beta\circ is in H^{2} . Similarly, \overline{\beta}\overline{h}P_{-}(f/\overline{\beta}) is in \overline{H}_{0}^{2} . By the Beur-
ling theorem (cf. [13, p. 110]), there exists a sequence g_{n} in A such that
hg_{n} converges to \alpha hP_{+}(f/\overline{\beta}) in the norm of L^{2} . Hence g_{n} converges to
\alpha P_{+}(f/\beta\circ in the norm of L^{2}(W) . This implies \alpha P_{+}(f/\beta\circ is in H^{2}(W) .
Similarly, \overline{\beta}P_{-}(f/\beta\gamma is in \overline{H}_{0}^{2}(W) . Hence

R_{\phi,W}Tf=R_{\phi,W}\langle\alpha P_{+}(f/\beta\gamma,\overline{\beta}P_{-}(f/\beta \mathfrak{h}\rangle

=\phi\alpha P_{+}(f/\beta\circ+\overline{\beta}P_{-}(f/\beta\circ=\overline{\beta}(P_{+}+P_{-})(f/\beta\circ=f .

Hence T=R_{\phi,W}-1 . We shall show that (2) implies (4). By (2), there
exist u , v in L^{\infty} and a real constant c such that ||v||_{\infty}<\pi/2 , We =e^{u+\overline{v}} and
\phi/|\phi|=e^{i(c-\overline{V})} . Hence there exists a real constant c’ such that

\phi/|\phi|=e^{i\{c’+V-(u-\log W)^{-}\}} .

Put k=e^{ic’-(u-\log W)-i(u-\log W)-} then k is an outer function. Since |k|=WC^{-y}-

k is in H^{1} . Put \epsilon=(\cos||v||_{\infty})/||\phi e^{u}||_{\infty} , then \epsilon>0 , since ||v||_{\infty}<\pi/2 . Put \gamma=

||(\phi e^{u})^{-1}||_{\infty} , then
\epsilon\leqq(\cos v)/(|\phi|e^{u})={\rm Re}\{k/(\phi W)\}

\leqq|k|/|\phi W|=|\phi e^{u}|^{-1}\leqq\gamma .

This implies (let the reader make a diagram)
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|\gamma^{2}/\epsilon-k/(\phi W)|\leqq(\gamma/\epsilon)(\gamma^{2}-\epsilon^{2})^{1/2} .

Put k’=(\epsilon/\gamma^{2})k , then k’ is an outer function in H^{1} such that
|1-k’/(\phi W)|\leqq\{1-(\epsilon/\gamma)^{2}\}^{1/2}<1 .

This implies (4). We shall show that (4) implies (2). By (4), k/(\phi W) is
invertible in L^{\infty} Since \log|k| is in L^{1} log W is in L^{1} . Since \phi^{-1} is in L^{\infty}-

k/W is invertible in L^{\infty} Put g=(k/W)e^{-i(\log W)^{-}} then g is invertible in H^{\infty}

Hence there exists a real function u in L^{\infty} and a real constant c such that
g=e^{u+i(\overline{\iota\ell}+c)} . Since

||1(g/\phi)e^{\iota(\log W)-}.||_{\infty}=||1-k/(\phi W)||_{\infty}<1 ,

there exists a real function v in L^{\infty} such that ||v||_{\infty}<\pi/2 , and (g/\phi)e^{i(\log W)^{\wedge}}=

|g/\phi|e^{-iU} . Put V=\tilde{v}-u- log W, then We V=e^{\overline{v}-u} . Hence We^{V} is in
(HS), and there exists a real constant c’ such that \phi/|\phi|=e^{i(c’-\overline{V})} . This
completes the proof.

REMARK. (a) Rochberg [18] showed that if We^{V} and We^{V} are in
(HS), and e^{\iota(c-\overline{V})}.=e^{i(c-\overline{V})}- then V-V’ is a constant.
(b) If |\alpha|^{2} W. |\beta|^{2} W. |\alpha’|^{2}W and |\beta’|^{2}W are in (HS) and \overline{\beta}/\alpha=\overline{\beta}’/\alpha’

then there exists a constant c such that \alpha’=c\alpha and \beta’=\overline{c}\beta , since \alpha’/\alpha ,
\beta’/\beta and their complex conjugate functions are in H^{1} . and hence they
are constants.
(c) If W^{-1} is in L^{1} and S_{\phi,(W)} is invertible, then S_{\phi,W} and S_{-\phi,W} have a
dense range, and there exists a positive constant \delta such that for all f in
A+\overline{A}_{0} ,

\delta||f||_{W}\leqq\min\{||S_{\phi}f||_{W}, ||S_{-\phi}f||_{W}\} .

COROLLARY 6. Suppose \phi is in L^{\infty} and W is a weight such that
W^{-1} is in L^{1} . Then, S_{\phi,(W\rangle} is invertible if and only if S_{\phi,(W)} and S_{\overline{\phi},(W)}1

arc left invertible.

PROOF. Suppose S_{\phi,(W)} and S_{\overline{\phi},(W^{-1})} are left invertible. By Theorem
2, there exist inner functions Q, Q’ and real functions V, V’ in L^{1} such
that We V. W^{-1}e^{V} are in (HS), and \phi/|\phi|=Qe^{-i\overline{V}}.\overline{\phi}/|\phi|=Q’e^{-i\overline{V}’} Hence

QQ’e^{-(V+V)-i(V+V’)-}=e^{-(V+V’)}\geqq 0 .

Since W^{-1}e^{-V} We^{-V’} are in L^{1} . e^{-(V+V’)/2} is in L^{1} . By the Neuwirth-New-
man theorem, Q and Q’ are constants. By Theorem 3, S_{\phi,(W)} is invertible.
Suppose S_{\phi,(W)} is invertible. By Theorem 3, there exists a real constant c
and a real function V in L^{1} such that We^{V} is in (HS), and \phi/|\phi|=e^{i(c-\overline{V})} .
Hence W^{-1}e^{-V} is in (HS), and \overline{\phi}/|\phi|=e^{i\{-c-(-\overline{V})\}} . By Theorem 2, this
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implies S_{\overline{\phi},(W^{-1})} is left invertible. This completes the proof.

Acknowledgement. We are very grateful to the referee, who im-
proved the exposition in the first draft of this paper.
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