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Existence of a global solution to a semi-linear wave equation
with initial data of non-compact support
in low space dimensions

Koji KuBOoTA
(Received June 19, 1992,

§ 1. Introduction

We study the existence of global (in time) solutions to the Cauchy
problem of the form

ue—Au=Alul’ in R"X[0, ),
u(x, 0)=7(x), ulx,0)=g(x) for xER"

where n=2 or n=3, A and p are constants with A>0, p>1, f€C3R")
and g€ CR").

First suppose the supports of the initial data f, ¢ are compact. For #n
=3, John has shown in [7], that there exists a C? global solution of
(1.1) provided

p>po(3)=1++/2

and the initial data are small, where po(%) denotes the positive root of the
quadratic

(n—1)p*—(n+1)p—2=0,

1.D

and that nontrivial C? solutions of (1.1) blow up at finite time provided
1< p<po(3).

For n=2, Glassey has obtained the similar results in [4], [5], where ps(3)
is replaced by p(2)=(3++17)/2. He has also proven in that the criti-
cal value p=po(3) in three space dimensions is the case where C? solutions
of (1.1) blow up at finite time provided the initial data are appropriately
prescribed. Similar results for #=2 and 3 are obtained also by Schaeffer
110].

Now consider the case where the supports of the initial data f, g are
not necessarily compact. Assume
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n+t1+v(n+17>+8(n—1)

(1.2)n  p>p(n)= 5(n—1)

and

(1.3) ‘ESIDﬁf(x)IJI-mZéZIDﬁg(x)Ié ( for xER"

___ &
1+ )"
hold, where »=|x|, and x, ¢ are positive constants. For =3, Asakura

has shown in that there exists a C? global solution of (1.1) provided

2
p—1

holds and the constant e is small, and that C? solutions of (1.1) blow up
at finite time provided

(1. 4) x>

e, px>x+2

(1.5)  f(x)=0, g(x)g(H—f,)m for xER"
with € >0 and

O<x<p—zl—.
Thus x=2/(p—1) is a critical value.

For the two dimensional case #=2, recently, Tsutaya [11] and Agemi
and Takamura have independently obtained the similar blow-up
results under (1.5). Moreover, Tsutaya and the present author [9]
have independently shown that there exists a C? global soluion of (1.1)
provided (1.2); and (1. 3) hold with (1.4) and small &>0.

The main purpose of this paper is to show that the results of [9]
imply the global existence also for the critical value x=2/(p—1), unless
p=>5 for n=2. Thus it remains open the case where

p»=5 and xz% for n=2

(see Remark 1.3 below and [Theorem 5.4 in section 5).
Now, the main results of this paper are the following two theorems.

THEOREM 1.1. Let n=2. Assume
(1.2):  p>p0(2)=(3+17)/2
and (1. 3) hold with
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2
x%p_l for p=5,
2 _1 _
x>p_1—2 for p=5

and the constant e small enough according as A, p and x. Then there
exists uniquely a C* global solution of (1.1).

(1.6)

THEOREM 1.2. Let n=3. Assume

(1.2)s  p>po(3)=1++/2
and (1. 3) hold with

x;% for p=3,
1.7 9
J{>ﬁ=1 for p=3

and € small enough according as A, p and x. Then there exists uniquely
a C? global solution of (1.1).

REMARK 1.3. The presence of the irregular value p=5 in (1.6) is
due to the fact that the decay rate of the soltion to the linear wave equa-
tion (i.e.(1.1) with A=0) has an extra factor log((1+¢+7)/(1+|t—7])
for x=1/2. (See [Proposition 2.1 in section 2).

One can easily generalize [Theorem 1.1 as follows. Consider the fol-
lowing Cauchy problem
us—Au=F(u) in R*X|0, o),
u(x,0)=7(x), u«x,0)=g(x) for xER?

where f€ C(R?) and g€ CR?). We impose the following hypothesis (H)
on F.

(H) FeC¥R"), F0O)=F0)=F"(0)=0
and there exist constants p>s(2), A >0 such that

|F"(u)—F"(v)]
< Ap(p—Dlu—vl(max{lul, [v]})*=*  for |ul,|v|<1.

Note that the function F(z#)=A|u|? in (1.1) satisfies this hypothesis if
p>p0(2). Moreover (H) implies

|F ()| < Aplul?, |F(u)<Alul® for |u|<1.
We now state a generalization of [Theorem 1.1l

(1.8
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THEOREM 1.4. Assume (H) and (1.3) hold with (1.6) and € small
enough accovding as A, p and x. Then there exists uniquely a C* global
solution of (1.8).

One can also generalize analogously [Theorem 1.7, where F(u)
satisfies the same hypothesis as in Asakura [3].

Now, the proof of [Theorem 1.1 is fairly long. The main task is to
examine the decay rate of the solution to the linear wave equation (see
[Proposition 2.1 below) and to estalish a basic a priori estimate for a linear
operator L defined by (1.11) below (see Lemma 4.2). A basic tool in
doing so is, as in [1], a fundamental identity (Lemma 2.3) for spherical
means which follows from the fundamental identity for the integral of a
plane wave function (see John [6], page 8)

(1.9 flwl:lg(y-w)dSwan—lf_ig(lylv)ﬂ“nz)"T_sdv,

where g(s) is a continuous function of s&(—co, c0) and
0 =2/7" /r(7k> (k=1)

the surface measure of the unit sphere in R*.

REMARK 1.5. Tsutaya has employed Kovalyov’s result instead
our Lemma 2.3, so that there is a loss: log(2+]|t—7|) for 0<x<1 in the
decay rate of the solution to the linear wave equation.

The plan of this paper is as follows. In the next section we study the
decay rate of the linear wave equaion in two space dimension #=2.

As is well known, a solution of (1.1) is furnished by a solution to the
following integral equation

(1.10)  wu=uwuo+ L(A|ul|?),

where o is the solution of the linear wave equation and L a positive lin-
ear operator on C(R"X%[0, o)) defined by

A Llw=g [(¢-ode [, PETERED G sor n=2

or

11D L), == [ (t=dr [ w(x+(t-D&0dSe for n=3.

|&]

In section 3 we research how the decay rate of L(|x|”)(x,¢) depends on
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that of u(x, ¢) in two space dimensions. In section 4 we prove theorem 1.
4 by applying the results obtained in sections 2 and 3. We also examine
in section 5 lower bounds for the lifespan of the solutions to (1.1) in the
case where either (1.2). or (1.6) is violated. In section 6 we prove Theo-
rem 1.2. Finally we show in Appendix that the decay rate obtained in
section 2 is optimal inside the characteristic cone.

§ 2. The linear wave equation in two space dimensions

The goal of this section is the following estimate for solutions of the
linear wave equation with =2, which has been obtained in .

PROPOSITION 2.1. Let u(x, t) be the solution of the Cauchy problem

us—Au=0 in R*X[0, o),
u(x, 0)=7(x), wux, 0)=g(x) for x<ER?

where 1€ C(R?) and g= C*(R?). Suppose (1.3) holds for n=2. Then
2.2 2 |Diulx, t)| £ Coc®(r, t) for (x, t)ER*X|[0, o),

la|=2

2.1

where r=|x|, Co is a constant depending only on x and ®(r, t) a positive
valued function on [0, ) X[0, ) defined by dividing into five cases :

1 .
>1,
T itry1t]i—7] ¥ ox
log(2+|t—7|) i ox=1
VI+t+rv1+|t—7| ’
_ 1 B
o(r, )= 1
(7, t) JItitr A+i—7])® if 2 <x<l1,
;< M) o1
i, \IHloeqqoy) o x=5
1 ) 1
(1+t+7r) if 0<x< 5

REMARK 2.2. In the appendix below we will show that the decay
rate (2.2) is optimal for 07 =<t and ¢ =1 if f(x)=0 and

g(x) %(H—i)m-

Moreover we note that the irregular value x=1/2 in (2.2) corresponds to
x=1 in three space dimensions (see [Proposition 6.0 in section 6).

Now, as is well known, the Cauchy problem (2.1) has a unique C*
solution which is represented as
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_ glx+ 1) 0 (_t f(x+tE)
2.3) u(x, )= 27r 1g1<1 2 dg+ ot \ 27 Jig1<1 2 df)
v 1—|&] v 1—|&]

provided € C}(R?) and g= C*(R?). Hence by virtue of (1.3) we have

5
(2.4) Z !DXU(x b= T )/;I 1W(1+|x+t§|)l+x

for (x, t)ER*X][0, ).

First of all we shall show

2 4 1+kx 2
(2.5) |E2|Dxu(x,t)|gz€(——~l L +7> for (x. )ER*X[0, 1).

Let 0=¢=<1. If »<2, then (2. 4) implies

d5:25§25(—4——>1”.

2 IDxu(x Hl= 1+¢t+7

oo
If »=2, then 2 =1+ ¢+ 7» and hence

1+|x+ =21+ r—t=r=

’

1+t+»
2
o (2. 4) yields

> Dtulr, D52 ) " [t
2 T = g\ 1+ttt g1<1/1—|&J?

Therefore (2.5) follows.
From now on we assume

t=1.

Then, changing variables in (2.4) by
y=x-+1t&

and switching to polar coordinates
y=x+ow, |ow|=

we have

(2.6)

t
o <€(_po 1
Rt D= [ e [, T gy S
We shall apply the following identity to the integral over the unit sphere.
LEMMA 2.3. Let b(A) be a continuous function of AS[0, ). Let
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xER™N0 (n=2) and 0>0. Then
ptT
@D [ b+ podSe=2""wn (ol [ A6, o, 7)di,
jw|=1 lo—r|

where
(2.8) h(/i, 0, 7’)2(/12—(0— 7,)2)(n—3)/2((p+ 7,)2_/12)(71—3)/2.

PrROOF: Since

lx + pw|=v 2+ 0*+20x - w,

we set

a(s)= { b(yr*+p*+s) for s=—ri—p?

b(0) for s<—#i—p>

Then ¢(s) is a continuous function of s&(—co, ). Applying (1. 9) with
y=2px, we get therefore

1
_,/wl:lqu‘*'ﬂ)w‘)dswz(Unq[lb(\/rz—l— o2+ 270n)(1— n2)"=3"24p.

Moreover we introduce a variable of integration A instead of 7 by

A=V r*+p*+2707.
Then a simple calculation yields (2.7). The roof is complete.

REMARK. When #=2, the lemma has been implicitly proven in [5].
For n=3, see the proof of in [1], where g(s) is not necessarily
continuous.

We shall now return to (2.6). Appying with n=2, we
have

L Su=t [ A h(A, o, r)dA
(2. 9> -/I-w|=1(1+|x+pa)|)l+xd a)_4 IP—TIW ( y O, r) .

Since

A1
A+ =T+

for A=0,

by virtue of (2.6) we obtain
(2.10) I‘”Z‘.SZID,?u(x, HI=2el(r, t)

with
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.10 I(r, )=2 f PR LS SR )
. y 1 Jo /_“‘—tz_pz o lo—7] (1_|_/1)K y O,

Moreover, since condition
lo—7|£AZp+7» and =0
is equivalent to
A—7|£p<A+r and A0,
one can rewrite (2.8) with =2 as

1
JoR—Q—rPJ(A+r)—

Furthermore we shall invert the order of the (p, A) integral in (2.11).
First suppose

(2.12) (A, o, 7)=

r<t.
Then condition
0=p=<t and |p—7|£AZp+7
is equivalent to
0<A<t+7» and |A—7»|£p<min{t, A+7}.

Hence the right hand side of (2.11) is divided into two parts as follows.

t

1+A AHVQF‘—‘h“ o, 7)dp
th ’ T Ao )do if r=t
1+/1) A= r|/7 » ="

2.13)  I(r, t)—zf

Next suppose
r>t.
Then p<7» and t<A+7 for 0=p=¢ and A=0. Therefore condition
0=p=t and |r—p|SA=Zr+op
is equivalent to
r—t<A<r+t and |[A—7|Zp<t.
Thus (2.11) becomes
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2.14) I(7, t): —E—n(A p, ¥)do if r=t.

(1+A)K/A TP

Notice that (2.14) and the first term on the right hand side of (2.13) are
unified, because t—r»=|t—r| if »<¢, and »—t=|t—r| if »=¢. Thus we
set

t+7r d/'{

(2.15)  L(r, t):z - (1+A)K ; rl\/?zi

—==—="(4, o, 7)dp

and when » <f{,

A+T

216 b, =2 [y [ A o, )

where %(A, p, 7) is given by (2.12). Then (2.13) and (2. 14) imply
2.1  I(r,t)=L(r, )+ L(r,t) for r=t

and

(2.18) I(r,t)=L(r,t) for r=t.

In order to estimate the o-integrals in (2.15) and (2.16) we will also
employ the following identity which refines [5], Lemma 3.

LEMMA 2.4. Let a, b be real nubers such that 0=a<b. Then

dp=

[=# 7
a P_aszz_pz 2

PrROOF: For convenience we denote the left hand side by /. Chang-
ing variable by x=p? we have

b2

2 dx.
= e V(x— az)( =)
Since
2_ 2
(x—az)(bz—x)=<b 2a >Z—<x—b2+a2)2,
we obtain

2 2 2_ 2 x=5b2
2]=[arcsin<<x— b ;a )/b 5 a )Lzazzarcsinl—arcsin(——l)zn

Hence the desired identity follows.
We are now in a position to prove [Proposition 2.1 which is a direct
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consequence of (2.5) and the following two lemmas.
LEMMA 2.5. Let t=1. Then
(2. 19) [1(7’, f)é C1¢1(7’, t),

where
1 if x>i,
(}51(7’ t): Y 1+t+7’(1+|t_7’|)’c—(1/2)
®(r, t) if 0<x§%
and Ci is a constant depending only on x.
LEMMA 2.6. Let <t and t=1. Then
(2.20) ]2(7’, t)éCquz(?’, l‘),
where
. 1
o7, t) if x>
P D=1 4 o 1
— -~ < -
T L= if 0<a=y

and C, is a constant depending only on x.

PROOF OF LEMMA 2.5: We shall apply with a=|1—7|
and b=t to the p-integral in (2.15). In view of (2.12) we must estimate
(A+7)?—0® from below by a quantity independent of p. Since

At 7= =A+r+0)A+r—p)Z(A+7)A+r—1) for 0=<p=<t,
At+rz(t+7r)/2 for A=|t—7]

and
t+r=2(1+t+7#)/2 for t=1,
it follows from (2. 15) and that

t+r 1

2 >
mv/l;—rl (1+A)xm dA for t=1.

Moreover, intergrating by parts, we have

t+r 1 _ 2M+r—t}”’ BT JA+r—1t
«/I;—rl (1+/1)"~//1+r~td/1_[ (1+2)" lt—rl+2x/|'t—fl 1+ a

(2. 21) [1(7’,t)§
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_2V2r t —k—(1/2)
S e +2ﬁx[_r (1+2) 142,

since yA+r—t=<JA+A for A=|t—~|. Noting that

r_ 1
A+i+7) = A+ i+ )=

and
2 1
2x—1 (A+i=rom 1 x>
1+t+7 . 1
£k—(1/2) S
[_ (1+A4)” dAZ < log 1+1i—7] if x 5

2 (1/2)—« L
1_2;{(1%—1‘-#—7’) if 0<x<2,

we therefore obtain (2.19) from (2.21). The proof is complete.

PROOF OF LEMMA 2.6: We shall apply with a=|A—

and b=A+7 to the p-integral in (2.16). Since
tP—0*=t+p)t—p)2t(t—A—7r) for 0=Zp<A+7r,
it follows that

i—r
2.22) L7, t)é%l (1+A)K}ZHdA for r<t and tz1.

We shall now divide the integral on the right hand side as

(t=1)/2 -
/ a’/l/ dr+ | da Lt Lo,

—7)

so that

(2 23) ]2(7’, t)é J]%—(]z,1+12,2)

For L, we have
1 t=r 1
XS <1+ I—vr > /t nezJt—r —Ad/l'
2
Since the last integral equals

t—r
2 5

133

7|
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if 0<x<1/2 then

1

t—vr
@+ 2

[y=2

)"—(1/2) <2(1+¢— )R-k

and if x=1/2 then

22
[2,2§ (1+t_\£__),¢_(1/2).

Hence we obtain

1
AT t—rm

(2 24) [2,2§2”+1 for x>0.

Finally consider L,;. Suppose

t—r=1.

Then
. (t—=17)/2 1 2 t—r 1

b= (e e KA el MG e

and
1 if x>1
-r x—1
ﬁ _—(1+A)”d/1§ log(1+t—7) if x=1

T%;ﬂ+¢—r?* if 0<x<L.

Moreover ¢t —7» =1 implies

t—r=2(1+t—7r)/2

2 __ 2
Vi—r =Vivi—r

Thus we obtain

hence
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2 1 .
f x>1
x—1 J1+¢t—7r Ao
2log(1+¢—7) .
< =
(2- 25> [2,1 = m lf X 1
2

T A=) if 0<x<1

for t—r=1.
Now suppose 0=f—7=1. Then

bis [ —ai=2yT=7 g%.
Thus (2.20) follows from (2.22), (2.24) and (2. 25), since
3t2l+t+r for 0=r=¢ and (2L
The proof is complete.

END OF PROOF OF PROPOSITION 2.1: If 0=¢<1, then (2.2) follows
immediately from (2.5). Now let #=1. If x=1/2, then (2.2) is a direct
consequence of Lemmas and 2.6, according to (2.10) through (2.18).
If 0<x<1/2, we have

7,l)(l/Z)—/c 1

1 _ < 1
Nyl =W+iTry

hence (2.2) follows from (2.19) and (2. 20).Thus we prove the proposition.
§ 3. The basic estimates in two space dimensions

In this section we study how the decay rate of L(|u|?)(x, ) depends on
that of u(x, t), where L is the linear operator defined by (1.11). To do so
we assume throughout the present section that u(x, t)= C*(R*%[0, T)) and

M

G- fule, =P =r1

for (x,t)eR*x[0, T),

where »=|x|, T is a positive number or 7=, and M a constant. More-
over u, v are real numbers with #>0, v=0 which will be chosen appropri-
ately, according as the decay rate (2.2) or p.

As will be seen, the decay rate of L(|«|?) depends on that of u if

1,1
O<x<2+p,

but does not if
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1.1
x>2+p.

More recisely, we will prove the following three propositions which are
the main results in this section. First of all we notice that

1,1 2 _p—3p—2
G2 St =05

hence (1. 2). implies

1,15 2
Tt T

Thus (1.6) is divided into three cases provided (1.2); holds.

PROPOSITION 3.1.  Assume p>2 and

(3.3) 0<x <%+%, particularly p(x —%) <1.

Suppose (3.1) holds with

3.4 ﬂ:‘;—, u=x—% if —%—<x<%+%

or
(3.5)  u=x v=0 if o<xg%<

Then
(3.6) IL(|u|®)(x, t)|< CiM*®.(7, t) for (x, )ER*X[0, T),

where Ci is a constant depeding only on p and x (but independent of T),
and ®\(r, t) a positive valued function on [0, ©0)X[0, ) defined by divid-
ing into five cases:
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L if 3<px<£+1
IFEFryitli—7] P+,
(log(2+(t —r]))? i 3
JIFE+7V1+]t—7] ’
_ 1 5
(7, t)= 5
1) JI+t+7 1+t —r|)Pe-62 if 5 <px<y,
S — dtitr _5
(s ) 7 =
1 ) 5
(1+¢+7)P*2 i 0<px<-.

PROPOSISITION 3.2.  Assume p>2 and

1 1 . 1
3.7 x>—2—+?, ie., p(x—7>>1.

Suppose (3. 1) holds with 1=1/2 and a positive number v such that

1 - 1 1
(3.8) Z><u§m1n{;f 5 2}.

Then o
3.9 |L(|wl?)(x, )| < C:MP®u(7, t)  for (x, t)ER*X[0, T),

where C; is a constant depending only on p, v, and ®:(r, t) a function
defined by

1 .
>4
TFitr V117 Job
log(2+[¢t —7]|) i p=t
1+t+rV1+|t—7] ’
— 1 .
Do(7, t)=
& D= A = y 3<p<4,
1 1+¢+7 L
1+t+r<1+10g1+|t—7’|> yor=3
1 .
(It 1+ 7)P27 if 2<p<3.
REMARK. ®(7, t)=®:(7, t) if X:i‘f‘i and p=4.

2 b
PROPOSITION 3.3.  Assume p>2 and
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(3.10) x=%+%, ie., p(x——lz—)zL

Suppose (3.1) holds with 1=1/2 and v=1/p. Then
(3.1 |L(ulP)(x, 1) CsM?®s(r, t) for (x, t)ER*X[0, T),

where Cs is a constant depending only on p, and ®(7, t) a function
defined by

@2(7, t) Z:f p>4:
Os(7, t)= {sz(r, HDlog(2+|t—7]) if 3<p=4,
@.(7, t)log(2+t+7r) if 2<p=3

with ®, the function in the preeding proposition.

REMARK 3.4. Suppose the supports of the initial data f, g are com-
pact. Then (1.3) holds for any x>1 and hence the first estimate of (2.2)
is valid. Glassey has shown in that (3.9) in Proposition 3.2 holds for
p>po(2) under (3.1) with the right hand side replaced by M®.(r,t).
Notice that (p—3)/2>1/p for p>pe(2). Moreover it has been shown in [1]
that the decay rate in (3.9) is optimal for p>4.

Before proving the propositions we shall state two corollaries of Prop-
osition 3.1, the latter of which is a complement to the proposition, because
the solution of (2.1) does not satisfy (3.1) with (3.5) for x=1/2. The
former has been implicitly proven in [9].

COROLLARY 3.5. Let the hypotheses of Proposition 3.1 be fulfilled.
Assume (1.2)2 and (1. 6) holds. Moreover suppose x*1/2. Then

1
A+t+r)*"Q+t—7))"
for (x, t)ER*X[0, T),

|L(|2|?)(x, t)|<CM?

(3.12)

where 1, v are the numbers defined by (3.4) or (3.5), and C is a con-
stant depending only on p and x.

PrOOF: First suppose

1 1.1
2<;c<2+p.

Then (1.6) implies

px;x+2>%
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and
5 1
> =
D 9 =X 9

Therefore (3.6) yields (3.12) with x=1/2, v=x—(1/2) and another con-
stant C, because

1 11 >
X 2< =5 for p=2.

1
D
Next suppose

0<x<%.

Then it is clear that (3.6) implies (3.12) with #=x and v=0, since px—2
=x under (1.6). The proof is complete.

COROLLARY 3.6. Let x=1/2. Assume (1.6) holds and

05%%) for (x, t)ER®*X[0, T).

(3.13)  lulx, 1)< M

Then

olog(2+t+7)
J1+t+7r

(3.1  |L(ul”)(x, )I=CM for (x, t)ER?*X[0, T),

where C is a constant depending only on p.
PROOF: Notice that (1.6) with x=1/2 implies p>5. Set

=9
2p’

so that 0<x’<1/2. Put

v 4

Cp=sug>s""‘”2)log(1+s).
S
Then (3.13) yields

l2e(x, t)| éMCpm.

Therefore by virtue of Proposition 3.1 with x replaced by x" we obtain

1 <1+10 1+¢t+7 )
J+i+r E1+li—+1)

|L(lu|?)(x, t)|= C(MCy)?



140 K. Kubota

which yields (3. 14) with

Cc= cl(cp)f(1 - +1).

The roof is complete.
The rest of this section will be devoted to prove Propositions B.1], 3.2,
and 3.3, although the main procedures will appear in the proof of the first.

PROOF OF PROPOSITION 3.1: Note that (3.4) or (3.5) implies
(3.15) ptv==x.
Moreover (1.11) and (3.1) yield

(3.16)  |L(ul®)(x, t)|
M dé
Al f)dfflem/1—"‘|5“"|2(1+T+A>w(1+|z—A|)w’

where we have set

=lx+(t—1)&l.

First we deal with the case where ¢ is small.
LEMMA 3.7. Let 0=t=<1. Then

4 )P#+PV

BAD IL(ul)s, DS M

PrROOF: It is clear that (3.16) implies

LAY, Dl [ =) [, Lt

Since
JoT I8 % “do=2n
if 0=¢=1and 0=7»=2 then
» » p 4 >P,U+Pu
Ll x, DI SMPE M1t

Next suppose 0=t=<1 and #=2. Then A=|x+(t—1)é|=2r—(t—1)
hence A—r=»—t=r—1. Therefore 1+|A—rc|=». Besides, 1+A+r=7.
Since

2r=21+t+r for r=2 and {1,
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we have

1 < 2 pu+py
(1+r+/1)"”(1+|r—/1|)‘°“=<1+t+r> '
Therefore it follows from (3.16) that

» » 2 >P#+Pv
L), =M 2—)"",

which implies (3.17). The proof is omplete.
From now on we assume

t=1.

Changing variables in (3.16) by
y=x+(t—1)&

and switching to polar coordinates
y=x+p0, |o|=1,

we have

A4P t t-t 0

p

L), Ol =g [ e [~ p=Besdo x
[ (et )P e A) S,

where we have set A=|x+pw|. To the integral over the unit sphere we
apply with
b(AD)=1+c+A)**QA+[c—A)~*.
Then, noting that A=1+ 7+ A, we obtain
3.18)  |L(ul?)x, < MPI(r, £),

where

(3.19  I(r, t)=%£tdr'[—r\/(t_przdpx

[ At e+ @+ = AR, 0, r)dA
with %(A, o, ») given by (2.12).

Notice that the domain of (p, A)-integration in (3.19) coincides with the
one in (2.11) with ¢ replaced by t—r. Therefore, the procedure by which
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we derived (2.13) and (2.14) yields that if »<¢—r, i.e, t=¢—7 then
t—7 p+Tr t—7+71 t—7 t—7—-71 A+T
[Tao [ ar= ar[aow [ aa [ do,
0 lo—7| |t—7—7] |A+7] 0 [A=7|
and that if »=¢t—r, i.e.,, 7=t —7 then
t—t o+7 t—1t+7 t—-t
[Tao [ aa= ar [ dp.
0 lo—71| |[t—1—7| |A+7]
Note that, when » >¢, the latter case only occurs. Thus, setting

t t—7+7r
@200 K, =2 [(ar [T e

t—-7

X (1+|z—A)~"dA h(A, o, »)dp

0
-1l J(t—1)*—p°
and, when » </,
_1 t—r t
3.2 Lir, £)= ﬂfo dr'/o‘

Atr
x(+le=A)y*da [ Y (T

with %(A, o, ) given by (2.12), we have, analogously to (2.17) and (2. 18),
(3.22) I(r,t)=L(r,t)+L(r,t) for r=t

-7

T A

h(A, o, r)do

and
(3.23) I(r,t)=IL(r,t) for r=t.

Here we remark that the domain of (r, A)-integration in (3.20) coin-
cides with the one in three space dimensions (see (2.12) of or (6.19)
below).

Now, we shall estimate I, and I separately. From now on we will
often use for convenience the following notations

(3.24) a=7t+A B=r—A

Besides, by C we will denote various constants depending only p and x.
LEMMA 3.8. Let t=1. Then

(3.25)  L(r, t)SC®u(7, t),

whevre
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1 . 5 b
@4(7’ t): m(l—'—lt—rbpx—(S/Z) Zf 2 <px< 2 +1)
(7, 1) if O<px§%

and C is a constant depending only on p and x.
LEMMA 3.9. Let 0<r<t and t=1. Then
(3.26) L(r, t)<Cos(r, t),

where

®i(7, ) if 3§px<§+1,
1

JItirrQ+i—ppeem ¥ 0<px<3

Os(7, t)=

and C is a constant depending only on p and x.

PROOF OF LEMMA 3.8: We shall apply with a=|1—7|
and b=t¢—r to the p-integral in (3.20). Since

A+7r)=0*=A+r+o)A+r—o)=r(A+r—t+1),
we have from (2.12) and (3.24)

_2_ t—r 0 < 1
TJIx-r| 1/(If——f)z—pz h(/i’ @, 7’)dp= ﬁ\/af-i-r—t

hence
¢ t-T47
(3 27) I1(7’,l‘)§%'/0' dz"/l'_r_rl(1+a)1—p#(1+|6|)—pu(a/+ T_t)—llzd/i.

Here we shall make a change of variables by (3.24). We first claim
3.28) |t—7r|<ast+r

if [t—r—7|SA<t—7+4+7 and r20. In fact, t—r—»<A<t—17+r implies
t—r=a=r+Ast+r. Moreover A=Z—(t—r—) and r=0 yield A+r=
r—t+2r=r—t. Hence (3.28) follows. In addition,

—as=pB=st—vr
if A2z—(¢t—7—7) and a+8=2r=20. By virtue of (3.27) we thus obtain

1 I 1-pp )12 e —pv
s )+t =) da [ (1+18) 7 dB.

(3. 29) [1(7’, t)é
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Furthermore we claim

(3.30) / :”(1+|3|>—P~d3§2 [ "1+ 8)"ds for a=|t—r|.

Indeed, if £ =7 then

[Cas L[

and

[ a+igy=as= [+ *ds.

If =t then

[ a1 rap= [ a+pyrdps [ 1+ 8)y*ap.

Hence we get (3. 30).

Now, since (3.3), (3.4) and (3.5) imply
3.3 pv<l],
it follows from (3.30) that

2
1—pv

[:_r(l+|3|)_p”d3§ (1+a)*".

Therefore by (3.29) and (3.15) we obtain

t+7r
l—lpy %ﬁ_rl (1+a)z’p”(a+ r—1t) "% da.

(3.32) Ly, )<

We are now in a position to prove (3.25). First suppose
(3.33) t=227 and t21,
which implies
(3.30)  6(t—r)zl+t+r.
If px >2, then

t+r
[Jr (1+a)* *™(a+7r—1t) "*da

t—r|

t+r
<(1+f—r)r? f Tatr—t " da=(+t— )2 27

hence (3. 32) yields
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242 1
h= 1—py (1+t—r)**

Moreover by (3. 34) we get

1 _ 1
(1 +t— V)p"—z o m(l +t— r)plc—(S/Z)
< V6
T V1t t+r (1+¢—yp)Pe-G@:

Hence we obtain

1
JIFt+7 (L[t =7

(3.35) L(r,t)sC
which implies (3.25) for px >2, because

.

(14|t — VI)%‘p"é(l-i-t-F r)%“”‘ for px=

no|wn

If 0<px<2, we also get similarly (3. 35).
Next suppose

(3.36) 1=t=2r,
which implies
(3.37) 5r=1+t+vr.

Integrating by parts we have

(3.38%) '/I‘tt_:(l-{—a)z“”‘(a-f— r—t) V2da

/ 7 t+r t+r
:[%] r|+2(px—2)'[t_rl(1+a)“‘”‘¢a+r—tda,.

|t—

2y 2r — A 1-pk — !
= AFt+ ) +2(px 2)_/|;_H(1+a) Ja+r—tda.

Therefore, if 0<px <2, we obtain (3.25) by (3. 32).
Finally suppose

2<px<§+1

and (3.36) hold. Then, since

Jatr—t<J2a for a=|t—r7],
it follows from (3.32) and (3. 38) that
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242 ( 1 px—2 (3/2)- px
.[1(7’, t)_l pV\(1+t+7’)pK 2+ ﬁ ey I( +a) da’)

By virtue of (3.37) we thus obtain (3. 25), by dividing into two cases :
px>5/2, px<5/2.
The proof is complete.

PROOF OF LEMMA 3.9: We shall apply with a=|[A—7|
and b=A+7 to the p-integral in (3.21). Noting that

l—r—p2t—r—A—r=t—r—a
and
t—t+o2t—rt+A—r=t—r—25,

we obtain

3.3 Kr0= [ [T ar a1 x

1
% «/z‘—r—au/z‘—r—/)’d/1

On the other hand, since

t—t+p=t—r=2t—(t—r) for p=0 and r<¢—7,

we also get

3400 Blr, )<= f ar [ T Ha) e

Moreover, since (3.24) yields ¢=|8|, we have
1+a)" =<1+ a) 221 +|6))°
for 6=20. Changing variables in (3.39) by (3.24), we thus get
L(r t)<i/t_r(1+af)“p“+"(t—r——a')‘”zda'x
AT =0,
t—1
< [ a8~ B g

for 6=0. Similarly to (3.30) we have also

/::—T(1+|Bl)—pu_3(t_ r—B)124dB
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<2 ﬁ A4 Bt —r—B)2dB
for 0= a=<¢—7, since

(t—7r+pB)V*<(t—r—p) " for B=0.

Consequently we obtain
(3.41)  L(r, t)élt_r(l—{— )Pt —y — )V da X
t—r
XA A+ pB) 7 %(t—r—B)"dB

for any 6=0. Analogously we have from (3. 40)

t—7r

342 Lir, 5= [ (kay (= r—a) da [ (14 BB

for any 6 =0. _
In what follows we will often use the following estimate.

LEMMA 3.10. Let 0=#<t and t=1. Set

Use "L):.[ r(1+a)“}ﬁfada’
where a is an arbitrary real numbey. Then
(3.43)  J(r, )SC®e(7, 1),
where C is a constant depending only on a and

1
Ari—7 if 1<a<oo,

o7, )= IOJ%;]L_';—” i a=1,

(1+t_17,)a—(1/z) Zf —oo< ag<l1.

Proor: If a=0, we have

I, SO+t =)y [T e da= (1t t =) 27,

which implies (3.43) with C=2.
In what follows we suppose a>0. First consider the case where {—7»
>1 so that 2(¢t—#»)=1+¢t—~. Then, dividing the integral as
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(t—1)/2 t—r
]Zl: da+ da,

(t—1)/2

we have

2 t-r 1 1 t-r 1
J(r, t)é\/ t—r,£ (1+a')“da+(1+t—r)“,£ mda’.
2 T3, P

Hence we obtain (3.43). If 0=5t—#» <1, we have

t—r

J(r, )= Jt—_lT-quZZVf*Véz

0

hence (3. 43) follows immediately. The proof is complete.
Now, we shall continue to prove (3.26). First suppose

(3.44) 0 <px<3.
Then we take the 6 in (3.41) and (3. 42) in such a way that
pu—2<6<l—pv and J=0,

which is possible according to (3.15), (3.31) and (3.44). If (3.33) holds, it
follows from (3.41) and with ¢<1 that

1 1
L(r, t)éc(1+t_r)P#—l—8—(l/2) A+ f—p)Pr eam
C C

- (1+¢t—yp)Prrbv-2 - m<1+t_7,)px—(5/2)'

Hence by (3.34) we obtain (3.26) with (3.44). If (3.36) holds, by (3.42)
and (3.37) we get (3.26), as above.
From now on we suppose

(3. 45) 3§px<§+1.

Then
(3.46)  pu—1—pyv>0.

In fact, this is clear provided ¢ and v are given by (3.5). Consider the
case (3.4). Then, since (3.45) implies p>4, we see from (3.31) that

pu—l—pu>§—2>0.

Hence (3. 46) follows.



Existence of a global solution to a semi-linear wave equation
with initial data of non-compact support in low space dimensions 149

First suppose (3.33) holds. Then it follows from (3.15) and (3. 41)
with d=(pu—1—pv)/2 that

t—r 1 2
L(7, t)£<_/; (I+a)* V2/f—7—q da) .

Hence by with =1 we have

1 .
Cm if px>3,

]2(7’, l‘)é _ 2
2

By (3.34) we thus obtain (3.26) with (3. 45).
Next suppose (3.36) holds. Then it follows from (3.42) with 6= (pu
—1—pv)/2 that

1 t—r 1 t—r 1
L(r, 1)< ‘/7‘/0‘ At 2=y —a da/X/O ELGERE ag.

Therefore by virtue of and (3.37) we btain (3.26). The proof
is complete.

END OF PROOF OF PROPOSITION 3.1: If 0=<¢<1, by we
obtain (3.6). Now let ¢t=1. If px=5/2, then (3.6) is a direct conse-
quence of Lemmas and B.9, because of (3.18) through (3.23). Let 0<
px<5/2. Then

1 _ 1 /1+|t_7|>(5/2)—px
THE+7r (=7 )P Q+t+ 7))\ 1+t +7
1
=
T (It +r)et

Hence (3.6) follows from (3.25) and (3.26). Thus we complete the proof.

PROOF OF PROPOSITION 3.2: We have only to modify a little the
proof of [Proposition 3.1 Note that (3.31) is replaced by (3.8) and that
(3.15) breaks down. Nevertheless and (3.18) through (3.23)
are still valid with' (3.8) and p¢=1/2, while Lemmas and are re-
placed by the following two lemmas.

LEMMA 3.11. Let t=1. Then
(3. 47) 11(7’, If)é C(I)7(7’, t),

where
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1 .
@7, t)= { ATirratii—peoe ¥ 223
&u(7, t) if 2<p<3

and C is a constant depending only on p and v.
LEMMA 3.12: Let 0<r<t and t=1. Then
(3.48)  L(r, )< Cds(7, 1),

where
(7, t) if p=4,
Os(7, t)= { 1 -
Ty sl peoe ¥ 2<e<d

PROOF OF LEMMA 3.11: We have only to modify little the proof of
Lemma 3.8 Note that (7, t)=4(7, t) if we set

1,1 . _b
(3.49) x—2+p, e, pxr="y +1.
Moreover (3.29) and (3.30) are still valid with #=1/2 and pv>1. Since
now

a oy 1
Ja+prrass—ty,

we have

1

11(7’, l‘)é pv—1

t+7r
% , (1+a)(2_p)/2(a‘+r—t)_l/zda,

_r|

which coincides, except the constant, with (3.32) for x satisfying (3. 49).
Therefore we obtain (3. 47) analogously to (3.25). The proof is complete.

PRrOOF OF LEMMA 3.12: We have only to modify a little the proof of
Lemma 3.9. Note that ®s(#, t)=®s(7, t) with (3.49) if p*4. Moreover
(3.41) and (3.42) are still valid with x=1/2 and pv>1. We shall take ¢
=(. First suppose (3.33) holds. Then by (3.41) and Lemma 10 with a=
(p—2)/2 or a=pv we get (3.48), because (3.34) implies

(1+t—7»)12</6(1+t+7) M2

Next suppose (3.36) holds. Then by (3.42) and (3.37) we obtain (3. 48),
as above. The proof is complete.

END OF PROOF OF PROPOSITION 3.2: The desired estimate (3.9) is a
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direct consequence of Lemmas B.7, and B.12, since ®s(7, t)<®y(7, t)
for 2<p<3. Thus we prove the propostion.

PROOF OF PROPOSITION 3.3: We shall modify the proof of Proposi-
tion 3.1. Note that (3. 31) is replaced by

(3.50) pv=L1.

Then (3.15) through (3.23) are still valid with x=1/2. However, Lem-
mas 3.8 and 3.9 are replaced by the following two lemmas.

LEMMA 3.13. Let t=21. Then
(3.5  L(r, t)SCd(7, t),

where
log(2+|t—r|) )
@7, t)={ IritrQtii—peor 1 223
Ds(7, ¢) if 2<p=3

and C is a constant depending only on p.
LEMMA 3.14. Let 0<7r<t and t=1. Then
(3.52) L7, )< Cdw(7, t),

where
®5(7, 1) if pz4,
uo(7, t)= log(2+¢t—7r .
) {m?gf((1+t—2>w—w i 2<p<4

and C is a constant depending only on p.

PROOF OF LEMMA 3.13: We shall modify the proof of Lemma 3.8.
First we observe that (3.29) and (3.30) are still valid with x=1/2 and pv
=1. Moreover (3.30) and (3.50) imply

t—r
[ a+18) ds=210g(1+ @)
Therefore we have from (3. 29)

3.53) 47, t)é"#f.tii:(l*b 2)* P"(log(1+a))(a+r—t)"da.

First suppose (3.33) holds. Then
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L — (2-p)/2 i __+)-1/2
h(r, ) S £ )P log(L+t4+) [ (et r =) de,

since p>2. By (3.34) we therefore obtain

log(1+t+7)
1+i+7) P27

(3.54)  L(r, t)éc(
provided p>2 and (3.33) holds. If 2<p=3, then (3.54) implies (3.51). If
p>3, we have ,

log(2+|t—7])
1+t —r|)2-372>

log(1+t+7) _

<3 55) (1 +t+ r)(P—S)/Z =

C
(
because the function
[1, 0) s +——s%P"og s

is decreasing for s> exp(2/(p—3)). Therefore (3.54) yields (3.51) for
p>3.
From now on we suppose (3.36) holds. Integrating by parts we have
t+r
[ @+ @) " 10g1+ ) a+r—1)da
=[1+a)*P"*(log(1+a))2Va+r—t i
t+r
-—fl_rl{(l-f-a)(z’p”zlog(1+a)}’2Ja+—r—7da.

t

Since
—{Q+a)®?Pog(1+ )} é—p——g—z—(l + )" *Plog(1+a),

by (3.53) we get, as before,

log(1+¢+7)
1+t+7)e7272

+V2(p— 2)%/;7'(1 + )P 0g(1+a)da.

(3.56) L(r, t)éZﬁ(

If 2<p=3, by (3.37) we get (3.51), since the last integral is dominated by
t+r
log(1+¢+ r)_[t_rl(1+a)“‘p”2da.

Now suppose
p>3.

Integrating by parts we have
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t+7r
[ (1+a’)“_p)’zlog(1+a)da

=3 [1+ )P og(1+ )i+ p Py lt_ |(1-1-61)“ P2 o
< p SE 1+t )P og(1+ =) —(525  Ta+ @) 20
s 1+lt= e log(+t —r)+525 )

Therefore by virtue (3.37), (3.55) and (3.56) we obtain (3.51) for p>3.
The roof is complete.

PrROOF OF LEMMA 3.14: We have only to modify a little the proof of
Lemma 3.9 Note that (3.10) implies

png-l-l.

Moreover (3.41) and (3.42) are still valid with (3.50) and ¢=1/2.
First suppose
2< p=4.

Then we take 6=0 hence (3.41) and (3. 42) become, respectively,

, t—r 1 t—r 1
(3.41D) [2(7’, t)é./o' (1+a)(P—2)/2m da’X—/O‘ (1+B)m ap

and

) 1 t—r 1 t-r 1
(3.42)" L(r, t)= ﬁ_/()‘ 1+a)? 22 /t—r—a da’/o‘ 1+Bd'8'

Therefore, if 2<p<4 and (3. 33) holds, by virtue of (3.41) and
3.10 with ¢=<1 we obtain

log(2+t—7)
<
B 0= C A= = e

which together with (3.34) yields (3.52). If 2<p<4 and (3.36) holds,
using (3.42) and (3.37) instead of (3.41) and (3.34) we get (3.52).
Analogously we obtain (3.52) for p=4.

Next suppose p>4. Then (3. 46) is still valid with #=1/2 and pv=1.
Therefore, analogously to the proof of (3.26) we obtain

1
J1+t+rJ1+t—7r

[2(7’, t)éC
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because now

px—1_p
= >1.

The proof is complete.

END OF PROOF OF PROPOSITION 3.3: If 0=¢=<1, then (3.11) follows
immediately from CLemma 3.7. If #=1, then (3.11) is a direct consequence
of Lemmas and B.14, because ®o(7, t)<®s(7, ¢) for 2<p<3. Thus we
prove the proposition.

§4. Proof of Theorem 1.4

For a continuous function u(x, )& C*(R?%[0, ©)) we define a norm of
u by

(4.1 Ilu||=( sup  |u(x, H)|¥(r, 1),

x, ) R*X[0, )

where W(r,t) is a positive valued function on [0, c0) X [0, c©) defined by
dividing into five cases.

CASE 1: Let
1 1 1
<+ 1 1
0<x=2+p and x#z.
Then

(4.2) W(r, )=1+¢t+r)(1+|t—7])",

where g, v are the numbers given by (3.4) or (3.5) with

_1 1 1.1
=2, V—-p for «x 2+1).
Note that (1.2): implies p>2 and hence
1.1
(4. 3) 5 + z)<1.
CASE 2: Let
1,1
5 + p<x<1.

Then
4.4  W(r, )=J1+t+rQ+|t—7|)"
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with

1 ﬁ—S}
v—mm{x 2 T -

Note that (1.2). implies

1_p-3
(4.5) p<—2 :

which yields (3.8) for the above v.
CASE 3: Let x>1. Then

4.6 W, D=4,

where @, is the function in (3.9).
CASE 4: Let x=1/2. Then

__J1+t+r
WD Yo D=1 Gt

CASE 5: Let x=1. Then

VI+ti+r 1+t =] o
4.8  ¥(r, t)= log2+[t—7]) if p=4,

VIHt+r 1+t —r P2 if  po(2)<p<d.

We now introduce a Banach space X defined by

4.9 X={ucsCAR*X[0,®); Dfue C(R**[0,)) and
|Dgull<oo  for |a|<2).

Then [Proposition 2.1 implies

LAMMA 4.1.  Let uo be the solution of (2.1). Assume p>2 and
(1.3) holds. Then u.=X.

The following lemma will play a basic role in the proof of
14.

LEMMA 4.2. Let L be the linear operator defined by (1.11).
Assume (1.2); and (1.6) hold. Suppose u< C(R2X[0, ) and 2¢]| < o0.
Then

(4.100  [L(ul”)= Callul?,

where Cy is a constant depending only on p and x.
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ProoF: C4Ase 1: If

1,1 1
O<x<2+p and x#z,

then (4.10) is a direct consequence of (4.1), (4.2) and [Corollary 3.5 with
M=|u| and T=o0. If

1.1
x—z—i—p,

then (4.10) follows immediately from [Proposition 3.3, because of (4.5).

CASE 2: Since (4.4), (4.5) and assumption

1.1
x>2+p

imply (3.8), by virtue of Proposition 3.2 with M =|«| we obtain

4. 1D |L(lel?)x, DI (r, )= ClulP@ur, )¥ (7, t)
for (x, t)€R*x|[0, ),

where C is the constant in (3.9). Moreover (4.4) yields that ®.(r,¢) ¥
(7, t) is bounded. Hence (4.10) follows from (4. 11).

CASE 3: Since (4.3) and assumption x>1 imply (3.7), we take a
positive number v satisfying (3.8) in such a way that

1 : LP_—3}
Z)<u<m1n{2, L

which is possible according to (4.5), and set

C.=1 +suP s og(1+s).
S

By (4.6) we have then
JI+t+rQ+|t—r)* = C¥(r, t)
hence (4.1) yields

1

< Il
|u(x) t)l—CU"u” J1+t+r(1+|t_r|)v

for (x, t)ER*x[0, ). By virtue of Proposition 3.2 with M=C.|u| we
therefore obtain (4. 10).

CASE 4: The desired estimate (4.10) is a direct consequence of (4.
7) and [Corollary 3.6
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CASE 5: If po(2)<p<4, we take v=(p—3)/2 in Proposition 3.2.
Then (4.8) yields

1

<4/l
Iu(x’ t)‘—”u” 1+t+1’(1+|t‘7’l)u

for (x, 1)ER?X[0,). Noting that (4.5) implies (3.8), we obtain (4. 10),
since

@7, )W (7, t)=1 for 3<p<d.
Next suppose p=4. Then (4.8) yields

log(2+|t—7|)
e =l T =1

for (x, t)ER*X[0, ). Hence, taking v=1/3 so that (3.8) holds, we have

1
<
Iu(x, t)|—C1“u" /__1+t+7(1+|t~7|)1/3’
where

C =sup s V®log(1+3s).

By virtue of Proposition 3.2 we obtain therefore
|L(|u|?)(x, t)| = C(Cilluel Yo ®o(7, 1),
which yields (4.10) for p=4. Thus we prove the lemma.

PROOF OF THEOREM 1.4: The procedure is analogous to Glassey
or Asakura [3], because of Lemmas A1 and £2. It is well known that, if
a function u(x, t)& C*(R*X[0, )) satisfies the following integral equation,
like (1.10),

(4.12)  u=wuo+L(F(u))

with the operator L defined by (1.11), then u is a solution of the Cauchy
problem (1.8) (see for instance [3], Proposition 2.2). Besides, the unique-
ness of a solution to (1.8) is also valid (see for instance John , Appen-
dix 1).

To look for a solution of (4.12) we define a sequence of functions by

Ur+1— uo+L(F(uk)), k=0,

where uo is the solution of the Cauchy problem (2.1). Note that opera-
tors Dx and L commute. Moreover it follows from (4.2), (4.4) and (4.6)
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through (4.8) that ¥(7, t)=1, because log(1+s)<s for s=1. Hence (4.1)
yields

lu(x, DI=|ul for (x,t)ER?*X[0, ).
In addition, we have
I {zl®lol* [ =[ul®o]'-® for 0=6=1.

Thus, if the norm of %o is so small that
413)  p2ACIwlP <1 and Jul=,

where C. is the constant in Lemma 4.2, one can exactly follow [5], pp.
257-260 or [3], pp. 1477-1480 and hence find a solution #E€X of the inte-
gral equation (4.12), where X is the Banach space defined by (4.9).
Furthermore, by virtue of [Proposition 2.1 we get

“ Mo” = Coné‘,

where C, is a constant depending only on p. Therefore we obtain (4. 13),
taking € small enough according as A, p and x. Thus we prove Theorem
1.4 and hence [[heorem 1.1|.

REMARK 4.3. Let u€X be the solution of the integral equation (1.
10), where X is the Banach space defined by (4.9). Suppose the assump-
tions of [Theorem 1.1 are fulfilled. Then one can see that the decay rate
of «— uo is better than that of #. For instance consider the case where

1 1.1
2<;c<2+p.

Define another norm by

llolll=  sup  (lolx, DI/ @:(7, 1)),
(x, YER**[0, )

where ®, is the function in [Proposition 3.1 In view of (4.1) and (4.2)
with £=1/2 and v=x—(1/2) we find from (3.6) with M=|«| that

Il — wolll = AC .

Note that the ratio of the decay rate of (#—uo)(x, ¢) to that of u(x, ) is
given by ®,(7, t) ¥(r, t). For example, if 5/2<px<3, then

1
@\(7, 1)¥(r, t)= A+ — 7P D2
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§ 5. The life span in two space dimensions

In this section we study lower bounds for the lifespan of solutions to
the Cauchy Problem (1.1) with =2 and p>2. To this end we assume
throughout the present section that (1.3) holds for #=2. By the lifespan
we mean the least upper bound of the set of positive numbers 7 such that
there exists a C? solution of (1.1) with the time interval [0, o) replaced
by [0, T). We also denote the lifespan by T(e). Agemi and Takamura
have shown in that 7(e) is finite under (1.5). More precisely, they
have given an upper bound for 7(¢) by

-2
T(e)éC(%)l/(p_l ) for p>1.

(See also Remark 5.5 below).

Now, we have already shown that 7(e) is infinite provided the
hypotheses of [ITheorem 1.1 are fulfilled. So, we shall study lower bounds
for T(e) in the case where (1.2); or (1.6) is violated. Note that the case
can be divided into the following four ones.

5.1 2<p<po(2), O<x<—%—+% and xﬂ%,
11
(5.2) 2<p§po(2) and x£7+?,

(5.3 p>po(2), 0<X<—p—3—1* and x#—%—

and

(5. 4) x=i§% (hence 2<p<5).

2
Note that (3.2) yields

(5.5) %%;éﬁ for H=p(2)
and

1,1 2
(5.6) 7+$>ﬁ for p>po(2).

Moreover (5.4) with p=5 is related to the irregular value in (1. 6).
The main results in this section are the following four theorems.

THEOREM 5.1. Let (5.1) hold. Then
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(e ezc( L) i D
(5.7 - :
T(e)5 PP og T(e) = C<?> i o -7

for 0<e=eo, where C and eo are positive constants depending only on A,
p and x

THEOREM 5.2. Let (5.2) hold. Then

1 p-1
T(e)‘”‘”logT(e)zC(?> iF b3,

1 2

(5.8)
T(e)"*(log T(e))*= C(?) if p=3

for 0<e=e,, where

_1_ p=3__p—3p—2

and C, €o are positive cunstants depending only on A and p.
REMARK. If

1.1
x—2+p,

then 2—(p—1)x=¢q(p). Moreover we have g(»)=0 for p=7po(2).
THEOREM 5.3. Let (5.3) hold. Then (5.7) is valid.
THEOREM 5.4. Let (5.4) hold. Then

logT(e)= C<L>4/5 if p=5
(5.10) ¢ ’

p-1
T(e)®"(log T(e))p‘lzC(%> if 2<p<5
for 0<e=eo, where C, €0 are positive constants depending only on A and
b.
REMARK 5.5. It follows from Theorem 5.1 and [2], Theorem 3 that

2 2,
cGy“*)gﬂagon“*)
€ €

for small €>0 and some positive constants C, C’, provided (5.1), (1.5)

hold and pr=5/2. Moreover (5.8) is the same lower bound as in [2],
Theorem 1 except the constant C, since
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2__Qp_
a2, p)=L=3L=2,

Notice that the upper bound in [2], Theorem 2 is better than the one in
Theorem 3 when 1< p<po(2) and

1 1 _2
2+p<x<p—1’

because (3.2) implies

1.1 2 _ q@p)

2" p p—1 p(p—1)
hence
_p(p—1) 2\
42,0 <(p~1 ")
for such x.

The rest of this section will be devoted to prove the above theorems.
The procedure is similar to the one in the proof of [ITheorem 1.4 For a
continuous function u(x, t)E C(R*X[0, T)) we define, as (4.1), a norm of
u by

(5.11) ||u||=( sup  |ulx, H)¥(r, t),

x, HER*X[0, T)
where ¥(7, t) is a positive valued function on [0, o) X[0, c©) defined by

1

(1+t+7r)" if 0<x<+,

JITEF7 [log2+t+7)  if x=%,

TFEF P (k=)0 i g<r<y+a,

J1+t+7»(Q+|t—7|)V? if xg_%_+

(5.12) W(r, t)=

1
5

Note that [Proposition 2.1 implies

|IDSuo| <o for |a|<2 and T >0,

where u is the solution of (2.1).
The following four lemmas are essential to prove the theorems.

LEMMA 5.6. Let (5.1) hold. Then px<3 and
(5.13) &7, 1)¥(7, t)<Ni(7, ¢t)
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for (7, t)E[0, 00)X[0, o), where ®:(7, t) is the function in Proposition 3.1
and

(1+¢+7)2#-0" if p;(¢%’
2

_4 (5-p)/(2p) . _ 5
l0g2(1+t-1-7’) log(2+t+7) i b=

Nl(?', f):

PROOF: Since (2)<4, we have px<3 from (5.1). First suppose
0<x<1/2. Then px<2. Therefore it follows from (5.12) and the
definition of ®: that

(5.14) (131(7/’ t)\I’(T, l‘):(l_I_ t+ 7,)2—plc+/c.
Next suppose

1 1 1
2<X<2+p’

so that (5.12) implies
W(r, )=VI+t+r(Q+|t—7|) V2.
If 5/2<px<3, we have
(5.15) @7, )V (7, 1)=(1+|t — 7| P < (14 4 7)2Pe,
since 2—px +x >0 according to (5.5) and the assumption

1,1
X<7+p.

If px<5/2, then
(5.16)  @(7, )W(r, 1)=Q+t+ 7)1+t —p|) VDK (L + ¢ + )2 Pet*
since x >1/2. Finally, if px=5/2, we have

GAD @y, W, )=(1+logE LA+ — )0

2

<
~ log?2

(log(2+t+ 7)1+ ¢+ »)E-PreEe)
since
_1_5=p _5
0<x 5 =" for px x

Thus we prove the lemma.
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LEMMA 5.7. Let (5.2) hold. Then
®s(7, t)W(7, t)SNy7, t)

for (7, t)E[0, )X [0, ), where ®s(7, t) is the function in Proposition 3.3
and

(1+t+7)"Plog(2+t+7) if p*3,
2 1/3 2 - _
lng(l-i-z,‘-%-r) (log(2+t+7))? if p=3.

PROOF: Recall that (5.12) implies

No(7, t)= {

Y(r, )= /TFEF7 (14|t for xzg+.

Moreover q(p)=0, because of (5.9) and assumption p=pe(2). Hence, if
3<p= po(2)(<4), it follows from the definition of ®s that

&s(7, t)U(r, )=+t —7])*Plog(2+]|t —7])
<(A+t+7)Plog2+t+7).

If 2<p<3, we have

(7, Y(r, =0+t + 72T (14|t — | Blog(2+t + )
<(A+t+7)5 T log(2+t+7).

If p=3, then
@s(7, 1)¥(r, t)=(1+|¢_7|)l/p(10g(2+t+7))(1+logg%>
1/p 2 2
<(1+t+7r) logz(log(2+t+r)),

The proof is complete.
LEMMA 5.8. Let (5.3) hold. Then px<3 and (5.13) is valid.
PROOF: If p=5, then condition x<2/(p—1) implies that x<1/2 and

2 35
p—17= 2"
Therefore we obtain (5.13) from (5. 14).
Next suppose po(2)<p<5. If x<1/2, then px<5/2 hence (5.14)
implies (5.13). If
1 2

7<X<F,

px <2+
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we have px<2+p—31—<3, since p>po(2)>3. Therefore we obtain (5.13)

by virtue of (5.6), (5.15), (5.16) and (5.17). The proof is complete.
LEMMA 5.9. Let (5.4) hold. Then

(5.18)  |[L(|ul")(x, O (7, t)= Cillul*Na(7, t)

for (x, t)ER*X[0, T), where C\ is the constant in (3.6) and

(1+t+7)5P%(log(2+t+7)P" if 2<p<5,
No(r, )= { 102gZ (log(2+¢t+7))° if p=b.

PROOF:  Since (5.11) and (5.12) imply

og(2+t+7r) ,
Nrir,  for (nHEEX0, T),

we observe that the estimate (3.16), at the opening of the proof of Propo-
sition 3.1, is still valid with #=1/2, v=0 and

M=|u|log(2+t+7r),

lCx, )=l

noting that
A=lx+(t—0)é|£r+t—r1.
By (3.6) and (5.12) with x=1/2 we therefore obtain
|L(|e|?)(x, DI¥(r, )< Cillu|?®:(r, )V1+Et+7 (log2+t+7))P
Thus, if 2<p<5 so that px<5/2, we have
®:(7, )=1+t+7)>®?
hence (5.18) follows. If p=5, then

(7, t)J1+t+r=1+1og11—f|—’;—f—£-l—.

Consequently we obtain (5.18). The proof is complete.
To prove the theorems we need also another estimate for »>t.
LEMMA 5.10. Let (x, t)ER*X[0, T) and r 22t Then
(5.19)  |[L(|lul?)(x, (7, t)< ClullNi(2),

wherve C is a constant depending only on p, x and
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2—(p-1Dk y _1_ i L
(1+1¢)2- -0 if 0<x<2-|-p and  x*,
N7, £)=1 (A +¢)7® ifxg%+%,
(1+8)2%(log(2+ )P if x=% and 2<p=5.

PROOF: First suppose

1.1 1
0<x<2+p and x#z.

Then it follows from (5.11) and (5.12) that (3.1) holds with M=|«| and
the numbers g, v given by (3.4) or (3.5). Therefore by (3.16) we get

1
¥ \P¥
<1+2>

é(—;’—)xﬁ"“uﬂptz(l-i-7’)""”‘ for »=2t,

|L(2|”)(x, O (r, )< ull?t*(1+ ¢+ 7)*

because ¥(r, t)<(1+¢+7)* and
A=lx+(t—0)é|l=zr—(t—1)

hence

|/1—r|%r—t%77.
Noting that x —px<0 and » =¢, we thus obtain (5.19) with C=3%2°*"*
Next suppose

1 ].
> |1 -
X_—2‘|‘5.

Then

1
<
IU(X, t)|_”u”Jl+t+r(1+|t—r|)”‘”

namely, (3.1) holds with ¢=1/2 and v=1/p. Therefore, as above, we
have

| L(|2el*)(x, )% (7, t)éllull"tz(1+t+r)%+%<1+_§_> 2
1

1
_+_
é(%>2 p2§“||u||"t2(1+7’)%_g_% for »=2t.
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Since p>1 and

we thus obtain (5. 19).
Finally suppose x=1/2. Then

log(2+¢+7)
<

Hence, similarly to the proof of the preceding lemma we have

p/2

L), DI, Ol THTF 7 (145 log(2+ 4 7))

p-1
éC”u”ptz(lojg%%)) for »=2t.

Moreover, since the function

,log(1+s)

[1, c0) s 75

is decreasing for large s, we get

10g(2+t+7)<c0 o log(2+1)
1+t+r = T+t

Therefore we obtain (5.19). The proof is complete.
PROOF OF THEOREM 5.1: Suppose (5.1) holds. Then it follows
from [Proposition 3.1, (5.11), (5.12), (5.13) and (5.19) that

1L 2l = Cspr( Tl el?

where

(14 T2 if pr2,
¢1( T):

1+ T)F?"1og(2+ T)  if m=%

and Cs is a constant depending only on p and x. Moreover by virtue of
IProposition 2.1 we have

||u0|| = Coe,

where o is the solution of (2.1) and C, the constant in (2.2). Therefore,
if T and e satisfy the following relation, like (4.13),
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1

IJZPAC5¢1( T)(Cos)p-1 =1,
{ Co(:‘é?,

one can find a solution of the integral equation (1.10) in R*X[0, T'), as in
the proof of [Theorem 1.4. Thus we prove the theorem.

REMARK. The proofs of Theorems b.2, and 5.4 are analogous to
that of Theorem 5.1 hence left for the readers.

§6. Proof of Theorem 1.2

As is seen from the proof of [Theorem 1.4 we have only to establish
estimates analogous to Lemmas .1l and 4.2. The following proposition is
due to Asakura [3].

PROPOSITION 6.0. Let u(x, t) be the solution of the Cauchy problem

Us—Au=0 1n RSX[O,OO),
u(x, 0)=7F(x), ulx, 0)=9g(x) for x=R?

where fE CHR®) and g= C*(R?). Suppose (1.3) holds for n=3. Then
(6.2) S |D2u(x, t)|< Coe®(7, t) for (x, t)ER®*X]0, o),

lal=2

6. 1)

where
1 )
A+ernatli—rp=r ¥ *>L
— 1 1+t+7» . _
(7, t)= _1+t+r<1+10g~—71+|t—7|> if x=1,
W Zf 0<x<l1

and Co 1s a constant depending only on x.

The rest of this section will be devoted to study how the decay rate of
L(lu|?)(x, t) depends on that of u(x,t) and to establish an estimate analo-
gous to (4.10), where L is the operator defined by (1.12). Assume u(x, )
= CAR?*X[0, )) and

M
A+t+r)*Q+|t—7r|)"

6.3 ulx, )= for (x, t)ER*X[0, ),

where M, ¢ and v are constants. The following three lemmas correspond
to Propositions B.1, 3.2 and B.3 in two space dimensions.

LEMMA 6.1. Let p>1 and
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(6.4) 0<x<1 +%, particularly, p(x—1)<1.

Suppose (6. 3) holds with

(6.5) pu=1 v=x—1 if 1<x<1+%
or

(6.6) u=x, v=0 if 0<x=Il.
Then

6.7 |L(||?)(x, t)|< CiMP®i(7, t) for (x, t)ER*X][0, ),

where
1 )
A+ t+)A+t— )" if 3<px<p+l1,
_ 1 1+¢t+7» . _
(7, 1)= 1+t+r<1+10g1+|t—r|> v px=3,
1

if 0<px<3

(1+t+r)>?
and Ci is a constant depending only on p and x

LEMMA 6.2. Let p>1 and

(6.8) x>1+—};, ie., plx—1)>1.
Suppose (6. 3) holds with u=1 and a positive number v such that
6.9 —};< vEx—1.

Then
6.10)  |L(ul®)(x, )IS C:MP®o(7, t) for (x, t)ER*X][0, ),

where
1 .
Attrrna+le—ry2 ¥ 022
_)_ 1 1+t47\ .
oulr 0= { Ty og gy y) ¥ 02
1 if 1<p<2

(1+t+7)"!
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and C; is a constant depending only on p and v.

REMARK., ®@,(7, t)=®(r,t) for x=1+%.

LEMMA 6.3. Let p>1 and

(6.1 x=1+%, ie. plx—1)=1.

Suppose (6.3) holds with =1 and v=1/p. Then
(6.12)  [L(|u|®)(x, )< Cs@s(7, t) for (x, )ER*X[0, ),

where

e t):{q)z(r, Hlog2+|t—7rl) if p>2,
A @7, og2+t+7) if 1<p=2

and Cs is a constant depending only on p.
REMARK. Since

1412 _p—2p—1
p p—1 plp—1) "
we see that (1.2)s implies

6.13) 14++>-2_

p- p— 1"

Before proving Lemmas 6.1, and we shall state two corollaries
of Lemma 6.1, like Corollaries 3.5 and 3.6.

COROLLARY 6.4. Let the hypotheses of Lemma 6.1 be fulfilled.
Assume (1.2)s and (1.7) hold. Moreover suppose x=1. Then

6.1 |L(ul)x t)lécjw(1+t+r)“%1+|t—7’|)”

for (x, t)ER*X[0, =),

where 1, v are the numbers given by (6.5) or (6.6), and C is a constant
depending only on p and x.

PrOOF: First suppose

1
<x< —.
1<x 1+p

Then (1.7) implies
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px=x+2>3 and px—3=x—1.

Therefore (6.7) yields (6.14) with x=1, v=x—1 and C=C:. Next sup-
pose 0<x<1. Then it is clear that (6.7) implies (6.14) with x=x and
y=0, since px—2=x under (1.7). The proof is complete.

COROLLARY 6.5. Let x=1. Assume that (1.7) holds and that

log(2+¢+7)
1+t+7r

(6.15)  ulx, t)|=M for (x, t)ER*X[0, ).

Then

6.16)  |L(ul")(x. t)léCM"lO%(i_;i—y) for (x, )ER*X[0, o),

where C is a constant depending only on p.

PROOF: Noting that (1.7) with x=1 implies p>3, we set

X' ==

j/
so that 0<x'<1, and

Cp=sup s“og(1+s).

Then (6. 15) yields

1
|u(x, t)léMCp (1_+_t_+_r),¢r
Therefore by virtue of we obtain
1 1+t+7»
P < p
L)z, 05 GUMC Y i 1+ log 27 )

which yields (6.16) with

c= cl(cp)"( lolgz +1).

The proof is complete.
PROOF OF LEMMA 6.1: If follows from (1.12) and (6. 3) that

6.1 |L(lu|®)(x, t)]
MP t 1
T Al e s ey S
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where we have set

A=|x+(t—1)é&l.
Analogously to we have therefore

Lul)x, DS M (i) for (e, DERX[0,1]
6.18)  |L(lul?)(x, t)|= 7775 or (x,¢ 0,1],

which implies (6.7) for 0=¢<1.
In what follows we assume

t=1.

We shall apply with #=3 to the integral over the unit sphere
in (6.17). Then we have

1
.I/s|=1 A+ 7+ A1+ =) dS:

. 1 t—T+71 /1
=2 r(t—r1) ./!;—r—rl 1+ 4+ )1+ — AP dA.
Noting that

Ao 1
A+ o+ 07 = A+ o+ )P

we thus obtain
6.19  |L(ul®)(x, )=M?I1(r, 1),

where
1 t t—T+71 = pu by
I(r, t)_—27.£ dr./l;—r—r|(1+ r+ A1+ — AP dA.

(Compare with (3.27)). Moreover, analogously to (3.29) together with
(3.30) we get

6.20 10,025 [0+ da [0+ 8) .

Now, let the hypotheses of the lemma be fulfilled. Then, since pv<1,
we have

1
1—pv

A 1+ 8)"ap< (14 @)

hence, like (3. 32),
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6.21)  I(r, t)_l > 27/” r|(1+a)2 g,

First suppose (3.33) holds. If px >2, we have

11
—pv (1+t—r)* %

because (t+#)—|t—#|<2». Hence by (3.34) we get

I(r, t)= 1

1
I(r, t>§c(1+t+7)(1+|t—r|)""“3

with C=6(1—pv)™", which together with (6.19) implies (6.7), because
(1+|t=r|PP*<(1+¢t+7)>3" for px<3.
If 0<px=<2, we have from (6.21)

(6.22)

I(r, t)= (1+t+r)%

1
1—pv

Next suppose (3.36) holds. Then by (3. 37) and (6.21) we get (6.7),
since

1 1 .
px—3 (l+|l‘—7’|)p""3 if px >3
tr - 1+¢t+7 .
2—-pK - —
_/|;~r|(1+a/) da< 10g1+|t—r| if px=3,
1

3_px(1+t+';f)3-f"‘ if 0<px<3.

Thus we prove the lemma.

PROOF OF LEMMA 6.2: We have only to modify little the proof of
the preceding lemma. Note that (6.18), (6.19) and (6.20) are still valid
with #=1 and pv>1, while (6. 21) is replaced by

1 t+r
(1+ ) *da.

: 1 1
(6. 21) I(ry t)é py__l 27/ l£—7]

Notice that (6.21)" coincides with (6.21) except the constant if we take px
=p+1 in the latter. Therefore we obtain (6.10), as before. Te proof is
complete.

PrROOF OF LEMMA 6.3: We have only to modify a little the proof of
the preceding lemma. Note that (6.18), (6.19) and (6.20) are still valid
with =1 and pv=1, while (6. 21)’ is replaced by
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6.2 I(r, t)<— ft (1+a)"*log(1+ a)da.

Therefore, if 1<p=2, we obtain (6.12) as Dbefore, since log(l+ea)=log
(1+¢t+7).

Suppose now that p>2. If (3.33) holds, we have, similarly to (6.22),

_+_
Ir, s CELELET),

where C is a constant depending only on p. Moreover analogously to (3.
55) we get

log(14+¢+7) log(2+|t—r|)
(L + )Pz =Const-q 3 ye=-

Therefore we obtain (6.12). If (3.36) holds, integrating by parts we have

/|_ |(l-i-a/)1 Plog(1+e)da

o510+ logl+ i+ 515 [

1 ( 1
=G+ pr\eedFlt—rh+7= z)

Hence by (3.37) and (6.21)” we obtain (6.12). The proof is complete.

We are now in a position to establish an estimate analogous to
Lemma 4.2 For u(x, t)€ C(R®*X[0,©)) we define, as (4.1), a norm of
by

6.23)  lul= sup |ulx, )|¥(r,t),
(x, )YER¥X[0, o0)

2 (1+a/)1 *da

where
(1+t+7r) if 0<x<1,
(1+t+7)/log2+t+7) if x=1,
V(r, )="1{ (1+¢+2)A+]t— 7)) if 1<x§1+%,
A+t+)A+t=7l)”  if x>1+%
with

v=min{x—1, p—2}.
(This norm is the same one as in Asakura [3]). Then we have

LEMMA 6.6. Let n=3. Assume (1.2)s and (1.7) hold. Then
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6.24)  [IL(u”)l= Collull®

for usCUR*X[0, o)) with |ul|<oo, where Cs is a constant depending
only on p and x.

Proor: If (6.4) holds, then (6.24) is a direct consequence of Corol-
laries 6.4, 6.5 and (6.23). If (6.8) holds, we get (6.24) by Lemma 6.2,
because p>po(3)>2 hence ®i(7, t)¥(r, t)<1. Finally, suppose (6.11)
holds. Then

log(2+ |t —
Os(7, )W (7, t)= (1_€|gt(_ 7,||)p—27:|(2/p),

where ®; is the function in (6.12). Moreover (1.2); implies

g1
p=2=5>0.

Therefore by virtue of we obtain (6.24). The proof is com-
plete.

PROOF OF THEOREM 1.2: By virtue of [Proposition 6.0] and
6.6 one can prove the theorem analogously to hence we omit the
details.

REMARK. One can also derive lower bounds, like Theorems 5.1
through 5.4, for the lifespan of solutions to (1.1) in three space dimen-
sions, emplying Lemmas 6.1 and 6.3.

Appendix

The purpose of this appendix is to show that the decay rate (2.2) is
optimal in the region 07 <=¢, t=1.

PROPOSITION A. Let u(x, t) be the solution of (2.1) with f=0, g€
C*R?) and
(A.D g(x)%(l_{_—i)w— for xERZ,

where x>0, €>0. Suppose 0=r=t and t=21. Then
(A.2) ulx, )=Cie®(7, t),

where ®(r, t) is the same function as in Proposition 2.1 and Ci a positive
constant depending only on x.

ProOOF: It follows from (2.3) and (A.1) that
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et 1
27 St 1— [P+ [x + €)'

(A.3)  ulx, t)= dg.

Hence analogously to the proof of (2.10) with (2.13) we have
(A0 ulx, t)ze(li(r, )+ L(r, t)),
where

(A.5)  L(r t)=% W—’l—d/lft — 2 1A e r)d
. 1 ’ Tty (1+A)1+Ic A=7] /tz_pz y 0, ¥)Ap,

__‘2— t—1r /1 /H-r—p_—
(A.6) [2(7’, t)_ 7Z'./0‘ (1+A)1+x d/.{‘/I;—H mh(& O, 7/)dp,

and 4(A, o, 7) is the function given by (2.12). Moreover, if
y—A=<p=t and 0=AZt+7,

then
A+7r+0o=2(t+7) and A+7r—p=<24

hence

1 1
> .
WA 0,72 e Jo—Q—r)E

Therefore by virtue of (A.5) and with a=|A—7|, b=t we
obtain

1 t+7r ﬁ
AD K02y Ty

Similarly we hve from (A. 6)

1 t—71 A
>
(A.8) L7, t)ﬁﬁ‘/lﬂwl A+ ari=r %

since t tp=2t and t—p=t+A—7 for r—AS p=t.
First consider the case where

(A.9) t=2r+2 and »=0.
Then, since A+¢—r»=<2(t—r) for ASt—v, it follows from (A.8) that

1 1
=— )
b, 25 CoY ey =7

where we have set
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(A.10) Clx)= f }lﬁwam.

Hence by (A.4) we obtain (A.2) with x>1 and Co=C(x)/2. From (A.8)
we also have

1 t—71
>
Wr 02 A A = ke b

(t_ )3/2
4~/ 1+t+7(Q+t—r)+*
Noting that (A.9) implies t —»=(1+¢—7)/2, we obtain

1
=
b, t)2 8V2V 1+t +7r(1+t—r)~?

which yields (A.2) with 1/2<x<1.

Next suppose 0<x<1/2. Since vA=/1+1//2 for A=1, it follows
from (A.7) and (A.9) that

(A.11D) for x>0,

1 t+r 1
> kg
W2y ), Ak

x t+r 1
Nerjeae=d MR R

1 5K 1k
ZSﬁJ1+t+r{(1+t+7); —(1+t—7)z "),

Therefore by (A.11) we get

>

1
>
Lir, )+ L(r, )2 8J2(1+t+7)"

which gives (A.2) for 0<x<1/2.
Now suppose x=1/2. Then (A.7) and (A.9) imply

t+7r

‘2f¢1+t+r/;r 1+/1
_ 1 lo 1+¢t+7r
22 1titr Cl¥i—r

since VA =/1+A1/JV2. Hence by (A.11) we obtain (A.2) with Ci=1/

(8V2).
Finally suppose x=1. Then (A.8) implies

11(7’ l‘)

1 t-r /1
=
L7, t)_2J1+t+rJ1+t-rfo a+a %
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Moreover

fr(lj-mz‘“ [‘1?7] 1

—1+log(1+¢— r).
Furthermore by virtue of (A.9) we obtain
log(1+¢t—7)=log3
hence

1
log(1+¢ 7)21-1-(1 10g3>10g(1+t ).

Thus
1+log(1+1¢ r)g(l 10g3> (1+1log(1+¢t—7)).

Consequently we obtain

1( 1 )2 1
>2(1— _
LA, t)_Z 1 log3 «/1+t+r«/1+t—r(1+log(1+t 7))

which yields (A.2) with x=1.
Next consider the case where

(A.12) 0=t—7r=<2 and t+r=2.
Then (A.8) implies

Lir, t)= 1 Ji A i,
Eo 2 1+ o (1+A)1+"
since A+t—7<2(t—7)<4. Moreover it follows from (A.7) that

Lir, )= L / A+ )T+ f2 —i—am)
(2 AT T\ AT )

because VA =V1+A4/4/2 for A=1 and VA 24/V2 for 0=A=<2. Therefore we
obtain

1 / t+r —x—%
(A13) B, 0+ B, D2 [ (R O )

where C(x) is the constant given by (A.10). Clearly (A.13) yields (A.2)
with x>1/2 and Ct=C(x)/(24/2), since
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10g(2+|t—7|)

V1|t —7]

Now suppose 0<x<1/2. Note that (A.10) implies

(A.14) C(x)>31+,cf/1d/1 30 for x>0.

Moreover
[Ta+nra QT(L—;(> [Ta+nta

|:(1+/1)__,cj|t+r: 2 . v1+t+7’ . 2
EVE) 2 3/3 (A+t+r) 34+

Therefore by (A.13) we obtain

1 1
11(77 t)+[2(7’, t)g 3‘/6 (1_+_t_j’_r)lf)

which yields (A.2) for 0<x<1/2.
Finally suppose x=1/2. Then it follows from (A.13) and (A.14) that

1 t+7r 1 2 )
>
hir, )+ b, t>_2ﬁ¢1+t+r<£ A% t373)

Moreover

[T a 2 ([ 1 _pni14 )
, T+A% T35 3J‘(1+1og3)\ 1+/1 +1+log3
B 2

Thus we obtain

L(r, )+ L(r, t)= Caﬁ(ulog(utw)),

which yields (A.2), where

1
3V6(1+1og3)"

Finally consider the case where 0=7»=2—t¢ and ¢t=1. Then it follows
from (A.3) that

Co=

3 3

27 31+”./;|<1,/ _|5|2 ST

ulx, t)=
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Since ®(7, t)<2, we obtain (A.2). Thus we prove the proposition.

REMARK. We observe from the above proof that plays an
essential role.

REMARK. For fixed x >0 we set

g(x): C(X> (1+ 1,28)(1”)/2,

where
Clx)={1+40+x)+4(1+x)3+x)}™".
Then g= C*(R?),

g(x) = C(x)(l+_f’)1+” for xE R?

and (1.3) holds with f=0. Thus (2.2) is optimal under (1. 3).
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