The extremal case in Toponogov's comparison theorem and gap-theorems

V. MARENICH

Dedicated to Professor Toponogov on his 60th birthday (Received August 17, 1990, Revised February 4, 1993)

1. Introduction and results.

The extremal case in Toponogov's comparison theorem asserts that:

PROPOSITION 1. If for a triangle $\triangle pqr$ in a riemannian manifold M^n with sectional curvature $K_{\sigma} \ge k$ we have:

$$\angle p = \angle p', \angle q = \angle q', \angle r = \angle r',$$

where $\triangle p'q'r'$ is a triangle with the same sides in a space form S_k^2 of constant curvature k; then the closed curve, consisting of minimal geodesics pq, pr and some geodesic from q to r, is a boundary of a totally geodesic film in M^n obtained as an image of isometric embedding of a part of a surface S_k^2 , bounded by the triangle $\triangle p'q'r'$.

If the triangle $\triangle pqr$ is small—say it vertices lie in r_{in} -neighborhood of the vertex p (where r_{in} is the injectivity radius of M^n), then the mentioned geodesic from q to r coincides with the minimal geodesic qr, and we will also have the extremal case in the "inverse-Toponogov's" theorem:

PROPOSITION 2. If for a small triangle $\triangle pqr$ in a riemannian manifold M^n with sectional curvature $K_{\sigma} \leq k$ we have:

$$\angle p = \angle p', \angle q = \angle q', \angle r = \angle r',$$

where $\triangle p'q'r'$ is a triangle with the same sides in a space form S_k^2 of constant curvature k; then the closed curve, consisting of minimal geodesics pq, pr, qr, is a boundary of a totally geodesic film in M^n obtained as an image of isometric embedding of a part of a surface S_k^2 , bounded by the triangle $\triangle p'q'r'$.

There is an easy consequence from Proposition 1 for surfaces:

THEOREM 1 [T]. If in the closed surface M^2 with a curvature $K \ge k$ there exists a closed geodesic S^1 with length equal to $2\pi/\sqrt{k}$, then M^2 is

isometric to S_k^2 .

According to [S] this result may be considered as a gap-theorem about manifolds in a neighborhood of the space form. The author of [S] conjectured that the following generalization of Theorem 1 is true:

CONJECTURE 4 [S]. Let M^n be an open hemisphere of the S_1^n . Then its structure cannot be changed in any compact subset with $K_M \ge 1$.

In this paper we show that this conjecture is an easy consequence of Proposition 1 and a method of continuation of isometries to convex sets, given in [SZ] for symmetric spaces of rank ≥ 3 .

THEOREM 2. If the riemannian manifold M^n with continuous sectional curvature $K_{\sigma} \ge k > 0$ contains some isometrically embedded open neighborhood of S_k^{n-1} in S_k^n , then M^n is isometric to S_k^n .

Using Proposition 2 instead of Proposition 1 we also obtained:

THEOREM 3. If the riemannian manifold M^n , $n \ge 3$ with continuous sectional curvature $K_{\sigma} \le k$ contains some isometrically embedded open neighborhood of S_k^{n-1} in S_k^n , then M^n is isometric to S_k^n .

For n=2 this result is obviously false.

For negatively curved manifolds the same construction gives us the proof of the conjecture 3 in [S] in the case $n \ge 3$:

THEOREM 4. Let M^n be a complete riemannian manifold of dimension ≥ 3 . Suppose that $K_{\sigma} \geq -1$ and M^n is isometric at infinity to the n-dimensional hyperbolic space $H^n(-1)$ of constant curvature -1 (that is: $M^n \setminus W$ is isometric to $H^n(-1) \setminus V$ outside some compact sets W and V). Then M^n is isometric to $H^n(-1)$.

and also:

THEOREM 5. Let M^n be a complete riemannian manifold of dimension ≥ 3 . Suppose that $K_{\sigma} \leq -1$ and M^n is isometric at infinity to the n-dimensional hyperbolic space $H^n(-1)$ of constant curvature -1 (that is: $M^n \setminus W$ is isometric to $H^n(-1) \setminus V$ outside some compact sets W and V). Then M^n is isometric to $H^n(-1)$.

This was also proved in [S]—see Theorem 1.2.

2. Proofs of Theorems 2 and 3.

Let M^n be a riemannian manifold with sectional curvature $K_{\sigma} \ge k > 0$

which contains an embedded 2d-neighborhood of S_k^{n-1} isometric to the standard one in S_k^n . Let us denote by S the image of S_k^{n-1} under this isometry. Then S is a totally geodesic hypersurface in M, we have two parallel vector fields of normals v^+ and v^- to S, and M is a union of equidistants S_t^+ and S_t^- , $0 \le t \le diam(M)$:

$$S_t^{\pm} = \{a | \rho(a, S) = t, \overline{ba} = v^{\pm}(b)\},$$

where b is some point on S which is nearest to a. The whole M is a union of two sets: $M = C^+ \cup C^-$ where $C^{\pm} = \bigcup_{o \le t} S_t^+$ (we don't exclude the case

that $int(C^+ \cap C^-) \neq \emptyset$) and if

$$C_t^+ = \bigcup_{t \leq t'} S_{t'}^+$$

then $S_t^{\pm} = \partial C_t^{\pm}$. We easily see that $\partial C_t = S_t$ for 0 < t < 2d are standard spheres, isometric to the corresponding one in S_k^n . And from $K_{\sigma} \ge k$ for every $t \ge 2d$ all normal geodesic curvatures of ∂C_t at every point in its regular part is not less then 2kd. This enable us to pierce C_t across every point q which is not far from ∂C_t by two-dimensional balls, which have small size and almost tangent directions. Define this procedure more precisely:

For a point $a \in C_t$, t > 2d, find some point b on ∂C_d nearest to a:

$$\rho(a, b) = \rho(a, \partial C_d)$$

and denote by \overline{ab} the unit vector tangent to the minimal geodesic ab which connects points a and b. Denote by N_a^{δ} all unit vectors which are δ -normal to some vector \overline{ab} (that is $v \in N_a^{\delta}$ iff $|(v, \overline{ab})| \leq \delta$), where b is some point on S_a which is nearest to a. For $v \in N_a^{\delta}$ define a geodesic $a_v(s) = \exp(sv)$.

LEMMA 1. For a distance function $f(s) = \rho(a(s), S_d)$ the following is true:

$$|f'(0)| \le \delta$$
, $f''(s) \le -kd(1-(f'(s)^2)^{1/2})$

for every s, when a(s) lies in C_d .

PROOF. It easily follows from the first and second variation formulas — see [CG] or [MT].

In what follows we will assume that $\delta < 1/4$. Let us also denote by s(2d) the first moment when a(s), $s \ge 0$ leaves C_{2d} and by s(d) the first moment when a(s), $s \ge 0$ leaves C_d .

LEMMA 2. For every
$$v$$
 of $N_a^{2\delta} \setminus N_a^{\delta}$
 $s(2d) \leq 3((t-2d)/\delta + 16\delta/kd)$. (1)

PROOF. Let us denote by

$$s^* = (t-2d)/\delta + 16\delta/kd$$

and suppose for the moment that a(s) belongs to C_{2d} (i. e. $f(s)-d \ge 0$) for all $0 \le s \le 3s^*$.

a). If for every $0 \le s \le s^*$ the absolute value of f'(s) is less than 1/2, then according to Lemma 1

$$f''(s) \le -kd(1-1/4) < -kd/2$$

and

$$f'(s) \leq f'(0) \leq 2\delta$$
.

Therefore

$$f(s) - d = f(0) - d + f'(0)s + \int_0^s \int_0^\theta f''(\mu) d\mu d\theta$$

$$\leq (t - 2d) + 2\delta s - kds^2/4.$$

But for $s=s^*$ the right side of the last inequality is negative:

$$2\delta s^* = (kds^*/8)(16\delta/kd) < (kds^*/8)((t-2d)/\delta + 16\delta/kd)$$

= $(kd(s^*)^2/4)/2$

and

$$(t-2d) = ((t-2d)/2\delta)2\delta < 2\delta((t-2d)/\delta + 16\delta/kd)$$

= $2\delta s^* < (kd(s^*)^2/4)/2$.

b). If for some $0 < s_0 < s^*$

$$|f'(s_0)| = 1/2$$

then (from $\delta < 1/4$) it follows that $f'(s_0) = -1/2$, and from the second statement of Lemma 1 we hold for $0 \le s \le s^*$

$$f'(s) \leq f'(0) \leq 2\delta$$

and for $s^* \le s \le 3s^*$

$$f'(s) \le f'(s^*) \le -1/2.$$

Therefore

$$f(3s^*) - d = f(0) - d + \int_0^{s^*} f'(s) ds + \int_{s^*}^{3s^*} f'(s) ds$$

$$\leq (t - 2d) + 2\delta s^* - 2s^*/2 < 0.$$

because $\delta < 1/4$ implies $2\delta s^* < s^*/2$ and

$$t-2d < ((t-2d)/\delta)/2 < ((t-2d)/\delta + 16\delta/kd)/2 = s^*/2.$$

So in all considered cases $f(3s^*)-d<0$. This contradiction proves our statement $s(2d)<3s^*$. Lemma 2 is proved.

From the definition we see that $s(d)-s(2d) \ge d$. Therefore the following statement follows from the estimate on s(2d) in Lemma 2:

LEMMA 3. For any given \overline{K} , there exist $\overline{\delta}$ and some $\overline{\tau} > 0$, such that for all $0 < \tau < \overline{\tau}$ and all a of $C_{2d} \setminus C_{2d+\tau}$ and all v of $N_a^{2\bar{\delta}} \setminus N_a^{\bar{\delta}}$

$$s(d)/s(2d) > \overline{K}$$
.

The proof is obvious and easily follows from Lemma 2: take for example

$$\delta = \overline{K}^{-1}kd^2/32$$
 and $\bar{\tau} = \overline{K}^{-1} \delta d/2$.

Choose at the point a unit vectors u, v, w of $N_a^{2\bar{\delta}} \backslash N_a^{\bar{\delta}}$ so that they lie in some two-dimensional direction σ and:

$$\angle(u, v) = \angle(u, w) = \angle(v, w)$$

$$u + v + w = 0.$$
(2)

For s > s(2d) denote by $\triangle(s)$ the triangle $\triangle pqr$ with vertices: $p = a_u(s)$, $q = a_v(s)$, $r = a_w(s)$. If $s \le r_{in}$, then the triangle $\triangle(s)$ is a small one: all vertices and sides pq, pr, qr lie in r_{in} -neighborhood of the vertex p and we may use propositions 1 and 2. Consider this triangle: On the minimal geodesic pq choose an arbitrary point e. From the continuity of the curvature it easily follows that the vector \overline{ae} has continuous dependence of e and almost lies in a plane σ generated by \overline{ap} and \overline{aq} :

LEMMA 4. For some consnant L

$$\angle(\overline{ae}, \sigma) \leq Ls^2$$
.

PROOF. Let $(x^1, ... x^n)$ be a normal coordinate system with a center at the point a. That is: a point q has coordinates $(x^1, ... x^n)$ if q is the image under the exponential map \exp_a of a point in T_aM with the same coordinates in some euclidean coordinate system. Without loss of general-

ity we may assume that σ coincides with a plane generated by first coordinate vectors e_1 and e_2 of this system, and points p and q have following coordinates: $p=(s,0...0), q=(-s/2,\sqrt{3}s/2,0...0)$. If $x(\theta)=(x^1(\theta),...x^n(\theta)), 0 \le \theta \le \theta_0$ is a minimal geodesic connecting these points and parameterized by an arc length, then:

$$\dot{x}^{k}(\theta) + \Gamma_{ii}^{k}(x(\theta))\dot{x}^{i}(\theta)\dot{x}^{j}(\theta) = 0.$$

It is well known that in this setting \exp_a is a quasi isometry, so in some \overline{s} -neighborhood of a point a for some constants K, k' depending only on M:

$$|\dot{x}^{i}(\theta)| \leq K, \quad |\Gamma_{ij}^{k}(x(\theta))| \leq K\rho(a, x(\theta)),$$

$$\rho(a, x(\theta)) \geq k's. \tag{3}$$

So

$$|\ddot{x}^{k}(\theta)| \le Ks \text{ and } 0 \le \theta_0 \le Ks.$$
 (4)

But for every k > 2 $x^{k}(0) = x^{k}(\theta_{0}) = 0$, therefore for some θ_{k} $\dot{x}^{k}(\theta_{k}) = 0$ and from (4) it follows:

$$|\dot{x}^k(\theta)| \le K\theta_0^2 \text{ and } |x^k(\theta)| \le K\theta_0^3$$
 (5)

this obviously leads to the following inequality for the angle between the plane σ and the vector $\overline{ax}(\theta)$:

$$\angle(\sigma, ax(\theta)) \le K(\Sigma(x^k(\theta))^2)^{1/2}/\rho(a, x(\theta))$$

or

$$\angle(\overline{ae}, \sigma) \leq Ls^2$$

where the constant L may be chosen the same for all points a of M.

So, if vectors u and v lie in N_a^{δ} , then for all points e of pq vector \overline{ae} lies in N_a^{δ} with $\delta' = \delta + Ls^2$. At last we may define all needed constants: take δ' so small that

$$(192)^2 L(k')^{-2} \delta'/(kd)^2 < 1/8$$

and for $\overline{K} = (k')^{-1}$ find $\overline{\delta} \leq \delta'$ and $\overline{\tau}$ according to Lemma 3. Then for $s_1 = 3(k')^{-1} s^*$ for $s^* = (\tau/\overline{\delta} + 16 \overline{\delta}/kd)$, find $\tau_1 < \overline{\tau}$ so that for all $\tau < \tau_1$

$$L(s_1)^2 < \overline{\delta}/4 \tag{6}$$

(To find τ_1 consider last inequality:

$$L(s_1)^2 = L(3(k')^{-2}(\tau/\overline{\delta} + 16\overline{\delta}/kd)^2 \le$$

$$\leq 18L(k')^{-2}\tau^{2}/\overline{\delta}^{2} + 18L(k')^{-2}(16\ \overline{\delta}/kd)^{2} \leq 18L(k')^{-2}\tau^{2}/\overline{\delta}^{2} + \overline{\delta}/8$$

so for $\tau < \tau_1 < (\overline{\delta}^3 (k')^2/144L)^{1/2}$ we have (6). Hence for all u, v, w of $N_a^{\delta_1} \setminus N_a^{\delta_2}$, where $\delta_1 = 3\overline{\delta}/2$ and $\delta_2 = \overline{\delta}/2$ we have:

$$\rho(a, \exp_a(s_1(\overline{ae}))) \ge s(2d)$$
 and $\rho(\exp_a(s_1(\overline{ae}), S_d)) \le d$.

So all sides of the triangle $\triangle(s_1)$ lie outside C_{2d} where the sectional curvature of M^n is equal to k. It is easy to see that the angles of $\triangle(s_1)$ are equal to angles of the triangle with the same sides in S_k^n . To see this one may choose the nearest point \bar{a} on S_d to the point p and construct the family of triangles \triangle_{μ} , $0 \le \mu \le 1$ with vertices p_{μ} , q_{μ} , r_{μ} , which lie on $\bar{a}p$, $\bar{a}q$, $\bar{a}r$ and divide them in ratio $\mu: (1-\mu)$. Then all $p_{\mu}q_{\mu}$, $p_{\mu}r_{\mu}$, $q_{\mu}r_{\mu}$ lie in 2d-neighborhood of S_k^{d-1} where M^n is isometric to S_k^n , and therefore all angles of $\triangle(s_1)$ are equal to the corresponding one of the triangle in S_k^n with the same sides. Using Proposition 1 we obtain:

LEMMA 5. There exist a totally geodesic film π of constant curvature k, which has the following boundary: $\partial \pi = \triangle(s_1) = pq \cup qr \cup rp$.

LEMMA 6. The point a belongs to π .

PROOF. From the $\triangle(s_1)$ construction we see that the point a' — the nearest point on π to the point a lies in the interior of π . $\triangle(s_1)$ is small, so if $a' \neq a$ then we have three small triangles $\triangle aa'p$, $\triangle aa'q$, $\triangle aa'r$ in which all angles a' are equal to $\pi/2$. For small triangles, when aa' doesn't contain focal points to p, q and r this means that all other angles are strictly less then $\pi/2$. So:

$$(\overline{aa'}, \overline{ap}) > 0, (\overline{aa'}, \overline{aq}) > 0, (\overline{aa'}, \overline{ar}) > 0$$

or

$$(\overline{aa}', \overline{ap}) + (\overline{aa}', \overline{aq}) + (\overline{aa}', \overline{ar}) > 0,$$

but this inequality obviously contradicts (2).

So we find some $\tau > 0$ such that we can construct a totally geodesic film π across every point a in $C_{2d} \setminus C_{2d+\tau}$ in every direction σ , generated by vectors from $N_a^{\delta_1} \setminus N_a^{\delta_2}$. But this set of directions has non-empty interior, so the sectional curvature of M^n in all points in $C_{2d} \setminus C_{2d+\tau}$ and in every direction is equal to k.

By standard continuation arguments, we can easily prove that M has constant curvature in the complement to some set with empty interior, or

using the continuity of curvature of M — that M is a manifold of constant curvature. But the only manifold of constant curvature which contains some neighborhood of S_k^{n-1} is a standard sphere. This completes the proof of Theorem 2.

To prove Theorem 3 it is sufficient to repeat all arguments above using Proposition 2 instead of Proposition 1.

3. Proofs of Theorems 4 and 5.

To obtain Theorems 4 and 5 we proceed by the same way: in H^n we can find a ball B which contains W and consider $i(B \setminus W)$, where i is supposed an isometry at infinity. So B is a convex set in H^n , then $C = i(B \setminus W) \cup V$ is also a convex set. Then repeating previous consideration, we can extend isometry to $C \setminus C_d$, until C_d is a convex set. But B_d is convex for all d, so is C_d , and we obtain an isometry between M^n and H^n .

References

- [T] V. TOPONOGOV, Estimate of the length of closed geodesic on the convex surface; Dokl. Akad. Nauk., v. 124 (1959), p. 182-284. (in russian).
- [S] K. SUGAHARA, Gap theorems for riemannian manifolds of constant curvature outside a compact set; Hokkaido Math. Journ. 18:3 (1989), p. 459-468.
- [SZ] V. SCHROEDER, W. ZILLER, Local rigidity of symmetric spaces; Trans. AMS. 320:1 (1990), p. 145-160.
- [CG] J. CHEEGER, D. GROMOLL, On the structure of complete manifolds of nonnegative curvature; Ann. of Math., v. 96:3 (1972), p. 413-443.
- [MT] V. MARENICH, V. TOPONOGOV, Open manifolds of nonnegative curvature; Itogy Nauky i Techniky. VINITI. Problemy geometree. 21 (1989), p. 67-91. (in russian).

Institute of Mathematics Novosibirsk-90 630090, Russia

e-mail: vmarenic@math. nsk. su