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1. Introduction and results.

The extremal case in Toponogov’s comparison theorem asserts that:

PROPOSITION 1. If for a triangle \triangle pqr in a riemannian manifold
M^{n} with sectional curvature K_{\sigma}\geq k we have:

\angle p=\angle p’,\angle q=\angle q’ , \angle r=\angle r’,

where \triangle p’q’r’ is a triangle with the same sides in a space form S_{k}^{2} of con-
stant curvature k ; then the closed curve, consisting of minimal geodesies
pq , pr and some geodesic from q to r , is a boundary of a totally geodesic
fifilm in M^{n} obtained as an image of isometric embedding of a part of a

surface S_{k}^{2} , bounded by the triangle \triangle p’q’r’

If the triangle \triangle pqr is small –say it vertices lie in r_{in}-neighborhood
of the vertex p (where r_{in} is the injectivity radius of M^{n} ), then the
mentioned geodesic from q to r coincides with the minimal geodesic qr ,

and we will also have the extremal case in the “ inverse-Toponogov’s”
theorem:

PROPOSITION 2. If for a small triangle \triangle pqr in a riemannian mani-
fold M^{n} with sectional curvature K_{\sigma}\leq k we have:

\angle p=\angle p’ , \angle q=\angle q’ , \angle r=\angle r’,

where \triangle p’q’r’ is a triangle with the same sides in a space form S_{k}^{2} of con-
stant curvature k,\cdot then the closed curve, consisting of minimal geodesies
pq , pr , qr , is a boundary of a totally geodesic fifilm in M^{n} obtained as an
image of isometric embedding of a part of a surface S_{k}^{2} , bounded by the
triangle \triangle p’q’r’

There is an easy consequence from Proposition 1 for surfaces:

THEOREM 1 [T]. If in the closed surface M^{2} with a curvature K\geq k

there exists a closed geodesic S^{1} with length equal to 2\pi/\sqrt{k} . then M^{2} is
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isometric to S_{k}^{2} .

According to [S] this result may be considered as a gap-theorem
about manifolds in a neighborhood of the space form. The author of [S]
conjectured that the following generalization of Theorem 1 is true:

CONJECTURE 4 [S]. Let M^{n} be an open hemisphere of the S_{1}^{n} . Then
its structure cannot be changed in any compact subset with K_{M}\geq 1 .

In this paper we show that this conjecture is an easy consequence of
Proposition 1 and a method of continuation of isometries to convex sets,
given in [SZ] for symmetric spaces of rank \geq 3 .

THEOREM 2. If the riemannian manifold M^{n} with continuous sec-

tional curvature K_{\sigma}\geq k>0 contains some isometrically embedded open neigh-
borhood of S_{k}^{n-1} in S_{k}^{n} , then M^{n} is isometric loS_{k}^{n} .

Using Proposition 2 instead of Proposition 1 we also obtained:
THEOREM 3. If the riemannian manifold M^{n} . n\geq 3 with continuous

sectional curvature K_{\sigma}\leq k contains some isometrically embedded open neigh-
borhood of S_{k}^{n-1} in S_{k}^{n} , then M^{n} is isometric to S_{k}^{n} .

For n=2 this result is obviously false.

For negatively curved manifolds the same construction gives us the
proof of the conjecture 3 in [S] in the case n\geq 3 :

THEOREM 4. Let M^{n} be a complete riemannian manifold of dimen-
sion\geq 3. Suppose that K_{\sigma}\geq-1 and M^{n} is isometric at infifinity to the n-
dimensional hyperbolic space H^{n}(-1) of constant curvature -1 {that is :
M^{n}\backslash W is isometric to H^{n}(-1)\backslash V outside some compact sets W and V).
Then M^{n} is isometric to H^{n}(-1) .

and also:

THEOREM 5. Let M^{n} be a complete riemannian manifold of dimen-
sion\geq 3. Suppose that K_{\sigma}\leq-1 and M^{n} is isometric at infifinity to the n-
dimensional hyperbolic space H^{n}(-1) of constant curvature -1 {that is :
M^{n}\backslash W is isometric to H^{n}(-1)\backslash V outside some compact sets W and V).
Then M^{n} is isometric to H^{n}(-1) .

This was also proved in [S] –see Theorem 1. 2.

2. Proofs of Theorems 2 and 3.

Let M^{n} be a riemannian manifold with sectional curvature K_{\sigma}\geq k>0
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which contains an embedded 2d-neighborhood of S_{k}^{n-1} isometric to the
standard one in S_{k}^{n} . Let us denote by S the image of S_{k}^{n-1} under this
isometry. Then S is a totally geodesic hypersurface in M, we have two
parallel vector fields of normals \nu^{+} and \nu^{-} to S , and M is a union of
equidistants S_{t}^{+} and S_{t}^{-}O\leq t\leq diam(M) :

S_{t}^{\pm}=\{a|\rho(a, S)=t_{y}\overline{ba}=\nu^{\pm}(b)\} ,

where b is some point on S which is nearest to a . The whole M is a
union of two sets: M=C^{+} \cup C^{-}whereC^{\pm}=\bigcup_{0\leq t}S_{t}^{+}(we don’t exclude the case

that int(C^{+}\cap C^{-})\neq\emptyset) and if

C_{t}^{+}= \bigcup_{t\leq t}S_{t’}^{+}

then S_{t}^{\pm}=\partial C_{t}^{\pm} . We easily see that \partial C_{t}=S_{t} for 0<t<2d are standard
spheres, isometric to the corresponding one in S_{k}^{n} . And from K_{\sigma}\geq k for
every t\geq 2d all normal geodesic curvatures of \partial C_{t} at every point in its
regular part is not less then 2kd . This enable us to pierce C_{t} across
every point q which is not far from \partial C_{t} by tw0-dimensional balls, which
have small size and almost tangent directions. Define this procedure more
precisely:

For a point a\in C_{t} , t>2d , find some point b on \partial C_{d} nearest to a :

\rho(a, b)=\rho(a, \partial C_{d})

and denote by \overline{ab} the unit vector tangent to the minimal geodesic ab
which connects points a and b . Denote by N_{a}^{8} all unit vectors which are \delta

-normal to some vector \overline{ab} (that is v\in N_{a}^{8} iff | ( v , \overline{ab}) |\leq\delta), where b is
some point on S_{d} which is nearest to a . For v\in N_{a}^{8} define a geodesic
a_{v}(s)=\exp(sv) .

LEMMA 1. For a distance function f(s)=\rho(a(s), S_{d}) the following is
true:

|f’(0)|\leq\delta , f’(s)\leq-kd(1-0’(s)^{2})^{1/2}

for every s , when a(s) lies in C_{d} .

PROOF. It easily follows from the first and second variation formulas
-see [CG] or [MT].

In what follows we will assume that \delta<1/4 . Let us also denote by
s(2d) the first moment when a(s) , s\geq 0 leaves C_{2d} and by s(d) the first
moment when a(s) , s\geq 0 leaves C_{d} .
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LEMMA 2. For every v of N_{a}^{28}\backslash N_{a}^{8}

s(2d)\leq 3((t-2d)/\delta+16\delta/kd) . (1)

PROOF. Let us denote by

s^{*}=(t-2d)/\delta+16\delta/kd ,

and suppose for the moment that a(s) belongs to C_{2d}(i. e. f(s)-d\geq 0) for
all 0\leq s\leq 3s^{*} .
a) . If for every 0\leq s\leq s^{*} the absolute value of f’(s) is less than 1/2, then
according to Lemma 1

f’(s)\leq-kd(1-1/4)<-kd/2

and

f’(s)\leq f’(0)\leq 2\delta .

Therefore

f(s)-d=f(0)-d+f’(0)s+ \int_{0}^{s}\int_{0}^{\theta}f’(\mu)d\mu d\theta

\leq(t-2d)+2\delta s-kds^{2}/4 .

But for s=s^{*} the right side of the last inequality is negative:

2 \delta s^{*}=(kds^{*}/8)(16\delta/kd)<(kds^{*}/8)((t-2d)/\delta+16\delta/kd)

=(kd(s^{*})^{2}/4)/2

and

(t-2d)=((t-2d)/2\delta)2\delta<2\delta((t-2d)/\delta+16\delta/kd)

=2\delta s^{*}<(kd(s^{*})^{2}/4)/2 .

b) . If for some 0<s_{0}<s^{*}

|f’(s_{0})|=1/2

then (from \delta<1/4 ) it follows that f’(s_{0})=-1/2 , and from the second state-
. ment of Lemma 1 we hold for 0\leq s\leq s^{*}

f’(s)\leq f’(0)\leq 2\delta ,

and for s^{*}\leq s\leq 3s^{*}

f’(s)\leq f’(s^{*})\leq-1/2 .

Therefore



The extremal case in Toponogov’s comparison theorem and gap-theorems 119

f(3s^{*})-d=f(0)-d+ \int_{0}^{S^{*}}f’(s)ds+\int_{S^{*}}^{3S^{*}}f’(s)ds

\leq(t-2d)+2\delta s^{*}-2s^{*}/2<0 ,

because \delta<1/4 implies 2\delta s^{*}<s^{*}/2 and

t-2d<((t-2d)/\delta)/2<((t-2d)/\delta+16\delta/kd)/2=s^{*}/2 .

So in all considered cases f(3s^{*})-d<0 . This contradiction proves our
statement s(2d)<3s^{*} . Lemma 2 is proved.

From the definition we see that s(d)-s(2d)\geq d . Therefore the fol-
lowing statement follows from the estimate on s(2d) in Lemma 2:

LEMMA 3. For any given \overline{K}r

, there exist \overline{\delta} and some \overline{\tau}>0 , such that
for all 0<\tau<\overline{\tau} and all a of C_{2d}\backslash C_{2d+\tau} and all v of N_{a}^{2\overline{\delta}}\backslash N_{a}^{\overline{\delta}}

s(d)/s(2d)>\overline{K}.

The proof is obvious and easily follows from Lemma 2: take for
example

\delta=\overline{K}^{-1}kd^{2}/32 and \overline{\tau}=\overline{K}^{-1}\delta d/2 .

Choose at the point a unit vectors u , v , w of N_{a}^{2\overline{8}}\backslash N_{a}^{\overline{8}} so that they lie
in some tw0-dimensional direction \sigma and:

\angle(u, v)=\angle(u, w)=\angle(v, w)

u+v+w=0. (2)

For s>s(2d) denote by \triangle(s) the triangle \triangle pqr with vertices: p=a_{u}(s) , q
=a_{v}(s) , r=a_{w}(s) . If s\leq r_{in} , then the triangle \triangle(s) is a small one: all
vertices and sides pq , pr , qr lie in r_{in}-neighborhood of the vertex p and
we may use propositions 1 and 2. Consider this triangle: On the minimal
geodesic pq choose an arbitrary point e . From the continuity of the cur-
vature it easily follows that the vector \overline{ae} has continuous dependence of e
and almost lies in a plane \sigma generated by \overline{ap} and \overline{aq} :

LEMMA 4. For some consnant L
\angle(\overline{ae}, \sigma)\leq Ls^{2}.

PROOF. Let (X_{ }^{1},\ldots x^{n}) be a normal coordinate system with a center
at the point a . That is: a point q has coordinates (X_{ }^{1},\ldots x^{n}) if q is the
image under the exponential map \exp_{a} of a point in T_{a}M with the same
coordinates in some euclidean coordinate system. Without loss of general-
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ity we may assume that \sigma coincides with a plane generated by first coordi-
nate vectors e_{1} and e_{2} of this system, and points p and q have following
coordinates: p= (s, 0 \ldots 0) , q=(-s/2, \sqrt{3}s/2,0\ldots 0) . If x(\theta)=(x^{1}(\theta) , \ldots

x^{n}(\theta)) , 0\leq\theta\leq\theta_{0} is a minimal geodesic connecting these points and par-
ameterized by an arc length, then:

\ddot{x}^{k}(\theta)+\Gamma_{ij}^{k}(x(\theta))\dot{x}^{i}(\theta)\dot{x}^{j}(\theta)=0 .

It is well known that in this setting \exp_{a} is a quasi isometry, so in
some \overline{s}- neighborhood of a point a for some constants K, k’ depending
only on M :

|\dot{x}^{i}(\theta)|\leq K , |\Gamma_{ij}^{k}(x(\theta))|\leq K\rho(a, x(\theta)) ,
\rho(a, x(\theta))\geq k’s . (3)

So
|\ddot{x}^{k}(\theta)|\leq Ks and 0\leq\theta_{0}\leq Ks . (4)

But for every k>2x^{k}(0)=x^{k}(\theta_{0})=0 , therefore for some \theta_{k}\dot{x}^{k}(\theta_{k})=0

and from (4) it follows:
|\dot{x}^{k}(\theta)|\leq K\theta_{0}^{2} and |x^{k}(\theta)|\leq K\theta_{0}^{3} (5)

this obviously leads to the following inequality for the angle between the
plane \sigma and the vector \overline{ax}(\theta) :

\angle(\sigma, ax(\theta))\leq K(\Sigma(x^{k}(\theta))^{2})^{1/2}/\rho(a, x(\theta))

or
\angle(\overline{ae}, \sigma)\leq Ls^{2} .

where the constant L may be chosen the same for all points a of M.
So, if vectors u and v lie in N_{a}^{8}, then for all points e of pq vector \overline{ae}

lies in N_{a}^{s} with \delta’=\delta+Ls^{2} . At last we may define all needed constants:
take \delta’ so small that

(192)^{2}L(k’)^{-2}\delta’/(kd)^{2}<1/8

and for \overline{K}=(k’)^{-1} find \overline{\delta}\leq\delta’ and \overline{\tau} according to Lemma 3. Then for s_{1}=

3(k’)^{-1}s^{*} for s^{*}=(\tau/\overline{\delta}+16\overline{\delta}/kd) , find \tau_{1}<\overline{\tau} so that for all \tau<\tau_{1}

L(s_{1})^{2}<\overline{\delta}/4 (6)

(To find \tau_{1} consider last inequality:

L(s_{1})^{2}=L(3(k’)^{-2}(\tau/\overline{\delta}+16\overline{\delta}/kd)^{2}\leq
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\leq 18L(k’)^{-2}\tau^{2}/\overline{\delta}^{2}+18L(k’)^{-2}(16\overline{\delta}/kd)^{2}\leq

\leq 18L(k’)^{-2}\tau^{2}/\overline{\delta}^{2}+\overline{\delta}/8

so for \tau<\tau_{1}<(\overline{\delta}^{3}(k’)^{2}/144L)^{1/2} we have (6). Hence for all u , v , w of N_{a}^{8_{1}}\backslash

N_{a}^{8_{2}} , where \delta_{1}=3\overline{\delta}/2 and \delta_{2}=\overline{\delta}/2 we have:
\rho(a, \exp_{a}(s_{1}(\overline{ae})))\geq s(2d) and \rho(\exp_{a}(s_{1}(\overline{ae}), S_{d}))\leq d .

So all sides of the triangle \triangle(s_{1}) lie outside C_{2d} where the sectional
curvature of M^{n} is equal to k . It is easy to see that the angles of \triangle(s_{1})

are equal to angles of the triangle with the same sides in S_{k}^{n} . To see this
one may choose the nearest point \overline{a} on S_{d} to the point p and construct the
family of triangles \triangle_{\mu} , 0\leq\mu\leq 1 with vertices p_{\mu} , q_{\mu} , r_{\mu} , which lie on \overline{a}p ,
\overline{a}q,\overline{a}r and divide them in ratio \mu : (1-\mu) . Then all p_{\mu}q_{\mu} , p_{\mu}r_{\mu} , q_{\mu}r_{\mu} lie
in 2d-neighborhood of S_{k}^{d-1} where M^{n} is isometric to S_{k}^{n} , and therefore all
angles of \triangle(s_{1}) are equal to the corresponding one of the triangle in S_{k}^{n}

with the same sides. Using Proposition 1 we obtain:

LEMMA 5. There exist a totally geodesic fifilm \pi of constant curvature
k , which has the following boundary : \partial\pi=\triangle(s_{1})=pq\cup qr\cup pp .

LEMMA 6. The point a belongs to \pi .

PROOF. From the \triangle(s_{1}) construction we see that the point a’- the
nearest point on \pi to the point a lies in the interior of \pi . \triangle(s_{1}) is small,
so if a’\neq a then we have three small triangles \triangle aa’p , \triangle aa’q , \triangle aa’r in
which all angles a’ are equal to \pi/2 . For small triangles, when aa’
doesn’t contain focal points to p, q and r this means that all other angles
are strictly less then \pi/2 . So:

(\overline{aa}’.\overline{ap})>0 , (\overline{aa}’\overline{aq})>0 , (\overline{aa}’\overline{ar})>0

or
(\overline{aa}’.\overline{ap})+(\overline{aa}’.\overline{aq})+(\overline{aa}’\overline{ar})>0 ,

but this inequality obviously contradicts (2).
So we find some \tau>0 such that we can construct a totally geodesic

film \pi across every point a in C_{2d}\backslash C_{2d+\tau} in every direction \sigma , generated by
vectors from N_{a}^{8_{1}}\backslash N_{a}^{8_{2}} . But this set of directions has non-empty interior,
so the sectional curvature of M^{n} in all points in C_{2d}\backslash C_{2d+\tau} and in every
direction is equal to k .

By standard continuation arguments, we can easily prove that M has
constant curvature in the complement to some set with empty interior, or
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using the continuity of curvature of M- that M is a manifold of constant
curvature. But the only manifold of constant curvature which contains
some neighborhood of S_{k}^{n-1} is a standard sphere. This completes the
proof of Theorem 2.
To prove Theorem 3 it is sufficient to repeat all arguments above using
Proposition 2 instead of Proposition 1.

3. Proofs of Theorems 4 and 5.

To obtain Theorems 4 and 5 we proceed by the same way: in H^{n} we
can find a ball B which contains W and consider i(B\backslash W) , where i is sup-
posed an isometry at infinity. So B is a convex set in H^{n} . then C=i(B\backslash

W)\cup V is also a convex set. Then repeating previous consideration, we
can extend isometry to C\backslash C_{d} , until C_{d} is a convex set. But B_{d} is convex
for all d , so is C_{d} , and we obtain an isometry between M^{n} and H^{n} .
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