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Lower bounds for the life span of solutions
of semilinear wave equations

with data of non compact support
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1 Introduction

We consider the life span of classical solutions of the Cauchy problem
for the semilinear wave equation

\{

\partial_{t}^{2}u-\triangle u=|u|^{p-1}u , (x, t)\in R^{n}\cross(0, \infty) , (1. 1)
u(x, 0)=\epsilon f(x) , \partial_{t}u(x, O)=\epsilon g(x) , x\in R^{n} .

where p>1 , n=2,3 and \epsilon>0 is a small parameter.
Given f, g , p , we define the life span ’\Gamma^{*}=T^{*}(\epsilon) as the supremum ()f

all T such that a C^{2}-solution of (1. 1) exists for all x\in R^{n} and 0\leq_{-}t\swarrow’\Gamma

Existence of global solutions and blow-up of local solutions in finite time
correspond to T^{*}(\epsilon)=\infty , T^{*}(\epsilon)<\infty , respectively. In the case T^{*}(\epsilon)<\infty

the basic problem consists in estimating T^{*}(\epsilon) in terms of \acute{c} both from
above and from below, namely, upper and lower bounds for T^{*}(\epsilon) .

Upper and lower bounds are related to the construction of blow up and
local solutions, respectively, and it is expected that both bounds have the
same growth rate as \epsilonarrow 0 . There is a large literature on this problem
[1-16], though there still remains a gap betw een the upper and lower
bounds for T^{*}(\epsilon) . The purpose of this paper is to improve the prcvi () n\vee b

lower bound estimates and reduce that gap. Before we state our result
more precisely, we summarize a number of available results on the life
span of solutions of (1. 1). In the sequel it is convenient to introduce thc_{-}^{Y}

critical power p_{0}(n) defined by the positive root ()f the quadratic eqnati ()11

(n-1)p^{2}-(n+1)p-2=0 (n=2,3) .

We note that p_{0}(3)=1+ - and p_{0}(2)=(3+\sqrt{17})/2 . It is well unde\Gamma_{r}b^{\backslash }t()()d

that in most cases the situation is remarkably different between the ts^{\backslash }n\lfloor) ct^{-}

critical case p>p_{0}(n) , the critical case p=p_{0}(n) , and the subcritical c_{\acute{c}}\iota(^{Y}

p<p_{0}(n) . Moreover, recent developments reveal that the compactness ()f

the data f , g has a definitive influence on the problem. \prime 1^{\backslash }heref()rc^{1}
WC^{\backslash }

describe the previous results by dividing into two cases, whef1_{1er} f, .(/h_{\acute{\epsilon}\{}\backslash ^{r}c^{1}
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compact support or not. First, we assume that the data f(x) , g(x) are
smooth and “ compactly supported ”

John [5, 6] , Glassey [3, 4] and Schaeffer [10] have proved in two and
three space dimensions that if p>p_{0}(n) and \epsilon is sufficiently small, then
T^{*}(\epsilon)=\infty , and also that if 1<p\leq p_{0}(n) , T^{*}(\epsilon)<\infty for small data.

In the case that blow-up occurs in finite time, that is, T^{*}(\epsilon)<\infty ,
there arises the problem of estimating the life span T^{*}(\epsilon) in terms of \epsilon .
John [5] has shown that

A\epsilon^{-2}\leq T^{*}(\epsilon)\leq B\epsilon^{-2}

with certain constants A , B in the case n=3 and p=2 . Recently,
Lindblad [8] has proved the following results:

(i) if n=3 and 1<p<p_{0}(3) ,

\lim_{\epsilonarrow 0}\epsilon^{p(p-1)/(D-p)}T^{*}1+22(\epsilon)=T>0 exists,

(ii) if n=2 and p=2 ,

\lim_{carrow 0}\epsilon T^{*}(\epsilon)=T>0 exists, provided \int g(x)dx=0 ,

and

\lim_{\epsilonarrow 0}a(\epsilon)^{-1}T^{*}(\epsilon)=T>0 exists, provided \int g(x)dx\neq 0 ,

where a(\epsilon) satisfies

\epsilon^{2}a(\epsilon)^{2}\ln(1+a(\epsilon))=1 .

In [15, 16] , Zhou has proved the following:

(iii) when n=3 ,

A\epsilon^{-p(p- 1)/(1+2p-D^{2})}\leq T^{*}(\epsilon)\leq B\epsilon^{-p(p-1)/(1+2p- p)}2 . if 2\leq p<p_{0}(3) , (1. 2)

and

\exp\{A\epsilon^{-\beta(p-1)}\}\leq T^{*}(\epsilon)\leq\exp\{B\epsilon^{-p(p-1)}\} , if p=p_{0}(3) ,

(iv) when n=2 ,

\lim_{\epsilonarrow 0}\epsilon^{2p(p- 1)/(\beta-p)}T^{*}2+32(\epsilon)=T>0 exists, if 2<p<p_{0}(2) ,

and

\exp\{A\epsilon^{-\beta(p- 1)}\}\leq T^{*}(\epsilon)\leq\exp\{B\epsilon^{-p(\beta-1)}\} , if p=p_{0}(2) ,
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where A and B are positive constants. Concerning the above results due

to Zhou for the case p=p_{0}(n)(n=2,3) , the simplified proofs of the upper

bound of T^{*}(\epsilon) have been recently given by Takamura [11]. He has
proved that if p=p_{0}(n)(n=2,3)

and

f(x)=0 , g(x)\geq 0 , g(x)\not\equiv 0 , (1. 3)

then
T^{*}(\epsilon)\leq\exp\{B\epsilon^{-p(p-1)}\} , (1. 4)

even if the data are not compactly supported. In [1], Agemi and Ta-

kamura have proved similar results to Lindblad and Zhou’s for the case
n=2 . Especially, the upper bound of T^{*}(\epsilon) in [1]

T^{*}(\epsilon)\leq B\epsilon^{-2p(p-1)/(2+3p-p)}2 , if 1<p<p_{0}(2) (1. 5)

holds even with the data of non compact support, under the condition
(1. 3). In the case n=3 and 1<p<p_{0}(3) , we can also derive for the data of

non compact support, the upper bound of T^{*}(\epsilon) in (1. 2),

T^{*}(\epsilon)\leq B\epsilon^{-p(p-1)/(1+2p-p)}2 (1. 6)

under (1. 3).
We next assume that the data do not have compact support. Asakura

[2], Kubota [7] and the author [12, 13, 14] have proved the following:

Let the data f(x)\in C^{3}(R^{n}) , g(x)\in C^{2}(R^{n}) satisfy

D_{x}^{a}f(x) , D_{x}^{\beta}g(x)=O(|x|^{-1-k}) as |x|arrow\infty , |\alpha|\leq 3 , |\beta|\leq 2 .

If k\geq 2/(p-1) , p>p_{0}(3) for n=3 and p>p_{0}(2) for n=2 , and \epsilon is small,

then T^{*}(\epsilon)=\infty (see also Pecher [9]).

On the other hand, Asakura [2], Agemi and Takamura [1] and the

author [12] have also proved that if the data satisfy

f(x)=0 , g(x) \geq\frac{1}{(1+|x|)^{1+k}}

and 0<k<2/(p-1) , then T^{*}(\epsilon)<\infty , even with p>p_{0}(n)(n=2,3) . In this
case, the upper bound for T^{*}(\epsilon) is

T^{*}(\epsilon)\leq B\epsilon^{-(p-1)/\{2-k(p-1)\}} for n=2,3 , (1. 7)

where B is a constant depending only on p and k .
We note here that when 1<p<p_{0}(n)(n=2,3) , if k>1/2+1/p (resp. 0<

k<1/2+1/p) for n=2 and k>1+1/p (resp. 0<k<1+1/p) for n=3, then
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the upper bounds of T^{*}(\epsilon) in (1. 5), (1. 6) (resp. in (1. 7)) are sharper than
those in (1. 7) (resp. in (1. 5), (1. 6)), respectively.

For the lower bound, it has been shown by Kubota [7] and the author
[13, 14] that if p>p_{0}(n)(n=2,3) and 0<k<2/(p-1) ,

T^{*}(\epsilon)\geq A\epsilon^{-(p-1)/\{2-k(p-1)\}} .

For n=2 , Kubota has also obtained the lower bounds in the other cases:

p=p_{0}(2) and k \geq\frac{1}{2}+\frac{1}{p} ,

2<p\leq p_{0}(2) and 0<k< \frac{1}{2}+\frac{1}{p} ,

2<p<p_{0}(2) and k \geq\frac{1}{2}+\frac{1}{p} .

In particular, for the critical case p=p_{0}(2) and k\geq 1/2+1/p , the lower
bound due to Kubota is the following:

T^{*}(\epsilon)\geq\exp\{A\epsilon^{-(p-1)}\} . (1. 8)

We note that there is a gap between (1. 4) and (1. 8) about the order of \epsilon

in the estimates of life span. In this paper, we shall improve the lower
bound (1. 8) and give an almost optimal lower bound for T^{*}(\epsilon) for the
critical cases p=p_{0}(2) and k>1/2+1/p , and p=p_{0}(3) and k>1+1/p in two
and three space dimensions.

The crucial part of the proof of our theorem below is to establish the
basic estimate for (1. 1). We now state the difference between the proofs
of the basic estimates for the data of compact support and for those of
non compact support. The weight function in the norm is related with the
decay estimate of the solution to the linear problem. In three space
dimensions, if the data f(x) , g(x) satisfy supp{f, g} \subset\{x\in R^{3} : |x|\leq K\} , then,
as \dot{1}S well known, the solution u^{0} of \partial_{t}^{2}u^{0}-\triangle u^{0}=0 is equal to zero in the
inside of the characteristic cone \Gamma=\{(x, t):|x|+K\leq t\} by Huygens’ Pr\dot{l}nc\overline{l}-

ple. Hence we can define the special weight function (see [5], (58b) and
also [15], (3. 5) ) . This leads to the sharp basic estimate. In two space
dimensions, we need to use another method due to the lack of Huygens’
Principle. In fact, Zhou [16] has applied the Friedlander radiation field
technique to (1. 1) to obtain the sharp estimate. However, the above
methods do not seem to be applicable to our problem, since the data are
not compactly supported.

The main idea in the proof of the theorem is to introduce new weight
functions which are slightly different from those used in [7]. The logar-
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ithmic factor in the weight function gives more precise information on the
space-time behavior of solutions and plays an important role to prove our
main theorem (see (3. 6)). Accordingly, our method is simpler than those
by John and Zhou.

2 Assumptions and main theorem

We study the Cauchy problem for the semilinear wave equation

\{

\partial_{t}^{2}u-\triangle u=F(u) , (x, t)\in R^{n}\cross(0^{ },\infty) , (2. 1)
u(x, 0)=\epsilon f(x) , \partial_{t}u(x, O)=\epsilon g(x) , x\in R^{n}

Before stating the main result, we make the following hypotheses:
Let p=p_{0}(n) .
(HI) F(u)\in C^{2}(R) and there exists \mathcal{A}>0 such that

|F^{(j)}(u)|\leq\lambda|u|^{p-j} for |u|\leq 1 , j=0,1,2 ,

and

|F’(u)-F’(v)|\leq\{
\mathcal{A}p(p-1)|u-v|^{p-z} . if n=3 ,
\lambda p(p-1)|\Phi|^{p-s}|u-v| , if n=2

for |u| , |v|\leq 1 , where

\Phi=\max\{|u|, |v|\} .

(H2) f(x)\in C^{3}(R^{n}) , g(x)\in C^{2}(R^{n})(n=2,3) satisfy

\sum_{|a|\leq 3}|D_{x}^{a}f(x)|+\sum_{|\beta|\leq 2}|D_{x}^{\beta}g(x)|\leq\frac{1}{(1+|x|)^{1+k}}

with k>0 .
Our main theorem is the following:

THEOREM 2. 1. Let n=2,3 , p=p_{0}(n) and k>2/(p-1) . Assume
(H1) and (H2) . Then there exist two sufficiently small constants A, \epsilon_{0}>0

depending only on \mathcal{A} , p and k such that for all 0<\epsilon\leq\epsilon_{0} , (2. 1) has a
C^{2}- solution for 0\leq t<T^{*}(\epsilon) , where T^{*}(\epsilon) satisfies the following:

(\ln(3+T^{*}(\epsilon)))^{1/p}(\ln(\ln(3+T^{*}(\epsilon))))^{1/(p-1)}\epsilon^{p-1}\geq A . (2. 2)

REMARK 2. 2. If the left-hand side of (2. 2) does not include the fac-
tor (\ln(\ln(3+T^{*}(\epsilon))))^{1/(p-1)} of slower growth, the estimate is sharp, since
the dominant factor (\ln(3+T^{*}(\epsilon)))^{1/p} with the growth rate A\epsilon^{-(p-1)} gives
precisely (1. 4). In this respect (2. 2) is almost optimal.

The plan in the present paper is as follows. In Section 3, we first
describe the decay estimates for the homogeneous wave equat\dot{l}on (see [2],
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[7], [12, 13, 14] ) . Next, we derive the basic estimates needed for the proof
of Theorem 2. 1. Finally, in Section 4 we prove Theorem 2. 1. We
denote a constant in the estimates by C, which will change from step to
step.

3 Decay estimates and basic estimates

We consider the linear problem

\{

\partial_{t}^{2}u-\triangle u=w(x, t) , (x, t)\in R^{n}\cross(0, \infty) , (3. 1)
u(x, 0)=\epsilon f(x) , \partial_{t}u(x, 0)=\epsilon g(x) , x\in R^{n}(n=2,3) .

We see that the solution u(x, t) of (3. 1) is given by

u(x, t)=u^{0}(x, t)+Lw(x, t) , (3. 2)

where u^{0}(x, t) is the solution of \partial_{t}^{2}u^{0}-\triangle u^{0}=0 with initial data \epsilon f(x) ,
\epsilon g(x) , and

Lw(x, t)=\{

\frac{1}{4\pi}\int_{0}^{t}(t-\tau)\int_{|\omega|=1}w(x+(t-\tau)\omega, \tau)d\omega d\tau (n=3) ,
(3. 3)

\frac{1}{2\pi}\int_{0}^{t}\int_{0}^{t-s}\frac{\rho}{\sqrt{(t-s)^{2}-\rho^{2}}}\int_{|\omega|=1}w(x+\rho\omega, s)d\omega d\rho ds(n=2)

\dot{1}S the solution of \partial_{t}^{2}u-\triangle u=w with zero data, where d\omega is the surface
measure on the unit sphere |\omega|=1 . Note that w\geq 0\overline{1}mpliesLw\geq 0 .

The following lemma is proved in [2], [7] and [12, 13, 14].

LEMMA 3. 1. Assume that f(x), g(x) satisfy (H2) . Then_{y} the solution
u^{0} of \partial_{t}^{2}u^{0}-\triangle u^{0}=0 with initial data \epsilon f(x) , \epsilon g(x) satisfies the following:

(i) if n=3,

\sum_{|a|\leq 2}|D_{x}^{a}u^{0}(x, t)|\leq

\frac{C_{k}\epsilon}{(1+t+r)(1+|t-r|)^{k-1}} (k>1) ,

\frac{C_{k}\epsilon}{1+t+r}(1+\ln\frac{1+t+r}{1+|t-r|}) (k=1) , (3. 4)

- \frac{C_{k}\epsilon}{(1+t+r)^{k}} (0<k<1) ,

(ii) if n=2 ,
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(k>1) ,

(k=1) ,

\sum_{|a|\leq 2}|D_{x}^{a}u^{0}(x,
(\frac{1}{2}<k<1) , (3. 5)

(k= \frac{1}{2}) ,

(0<k< \frac{1}{2}) ,

where r=|x| , and a constant C_{k} depends only on k.

We next introduce the function

Z_{n}(|x|, t)

=(1+t+|x|)^{m}(1+|t-|x||)^{1/p}(\ln(3+|t-|x||))^{1/p}(\ln(\ln(3+|t-|x||)))^{1/(p-1)} ,
(3. 6)

where

m=\{

1 (n=3) ,

\frac{1}{2} (n=2) ,

and define the norm for functions u(x, t) which are continuous on
R^{n}\cross[0, T)

||u||_{n}=
0 \leq t<T\sup_{x\in R^{n}},

Z_{n}(|x|, t)|u(x, t)| . (3. 7)

The following lemma provides the basic estimate for the existence proof.

LEMMA 3. 2. If p=p_{0}(n)(n=2,3) , then there exists a constant C_{p}

depending only on p such that
||L|u|^{p}||_{n}\leq C_{p}(\ln(3+T))^{1/p}(\ln(\ln(3+T)))^{1/(p-1)}||u||_{n}^{p}. (3. 8)

PROOF. Following [13], we first prove the lemma above in the case
n=3 . If w is spherically symmetric, i . e. , w(x, t)=w(r. t) , then from
(3. 3) we can write the solution of \partial_{t}^{2}u-\triangle u=w with zero data in the form

u(r, t)= \frac{1}{2r}\int_{0}^{t}\int_{|r-t+\tau|}^{r+t-\tau}\rho w(\rho, \tau)d\rho d\tau . (3. 9)

We denote (3. 9) by u=Pw. We define the function
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\tilde{u}(r, t)=\sup_{=r}|u(x|_{X}|’ t)| .

Then, we have

|(Lw)(x, t)|\leq(P\tilde{w})(r. t) (3. 10)

(see [2], p. 1470 and also [5], Lemma II ). Thus, it is sufficient to estimate

(P \tilde{u}^{p})(r, t)=\frac{1}{2r}\int_{0}^{t}\int_{|r-t+\tau|}^{r+t-\tau}\rho\tilde{u}(\rho, \tau)^{p}d\rho d\tau .

We use the follow\dot{l}ng lemma.

LEMMA 3. 3. Let k>1 . Then,

\frac{1}{2r}\int_{|r-t|}^{r+t}\frac{1}{(1+\rho)^{k}}d\rho\leq\frac{\max(1,k-1)\min(r,t)}{(k-1)r(1+t+r)(1+|t-r|)^{k-1}}

for all t, r\geq 0 .

PROOF. See [2]. \blacksquare

To prove (3. 8), we distinguish two cases, r\geq t and t\geq r .
(a) r\geq t .

By (3. 6) and (3. 7), we have

(P \tilde{u}^{p})(r, t)\leq\frac{||u||_{3}^{p}}{2r}\int_{0}^{t}\int_{r-t+\tau}^{r+t-\tau}\frac{\rho}{(1+\tau+\rho)^{p}(1+\rho-\tau)}

\cross\frac{1}{\ln(3+\rho-\tau)(\ln(\ln(3+\rho-\tau)))^{p/(p-1)}}d\rho d\tau .

Changing variables by

\alpha=\rho+\tau , \beta=\rho-\tau , (3. 11)

we obtain
(P\tilde{u}^{p})(r, t)

We have used here Lemma 3. 3. Since the function \varphi(x)=x/(\ln(3+x))^{q}

(0<q<1) is increasing for x\geq 0 and p-2=1/p, we obtain
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(P\tilde{u}^{p})(r, t) \leq\frac{C||u||_{3}^{p}(\ln(3+t))^{1/F}}{(1+t+r)(1+r-t)^{p- 2}(1n(3+r-t))^{1p}(\ln(\ln(3+r-t)))^{1/(p- 1)}},

\leq\frac{C||u||_{3}^{p}(\ln(3+t))^{1/p}}{(1+t+r)(1+r-t)^{1/p}(1n(3+r-t))^{1p}(\ln(\ln(3+r-t)))^{1/(p- 1)}}, .

(b) t\geq r .
We have

(P \tilde{u}^{p})(r. t)\leq\frac{||u||_{3}^{p}}{2r}\int_{0}^{t}\int_{|r-t+\tau|}^{r+t-\tau}\frac{\rho}{(1+\tau+\rho)^{p}(1+|\tau-\rho|)}

\cross\frac{1}{\ln(3+|\rho-\tau|)(\ln(\ln(3+|\rho-\tau|)))^{p/(p-1)}}d\rho d\tau .

By (3. 11),

(P\tilde{u}^{p})(r, t)

\leq\frac{||u||_{3}^{p}}{4r}\int_{t-r}^{t+r}\int_{r-t}^{a}\frac{1}{(1+\alpha)^{p-1}(1+|\beta|)\ln(3+|\beta|)(\ln(\ln(3+|\beta|)))^{p/(p-1)}}d\beta d\alpha

= \frac{||u||_{3}^{p}}{4r}\int_{t-r}^{t+r}\frac{1}{(1+\alpha)^{p-1}}\int_{r-t}^{t-r}\frac{l}{(1+|\beta|)\ln(3+|\beta|)(1n(\ln(3+|\beta|)))^{p/(p-1)}}d\beta d\alpha

+ \frac{||u||_{3}^{p}}{4r}\int_{t-r}^{t+r}\frac{1}{(1+\alpha)^{p-1}}\int_{t-r}^{a}\frac{1}{(1+\beta)\ln(3+\beta)(\ln(\ln(3+\beta)))^{p/(p-1)}}d\beta d\alpha

= \frac{||u||_{3}^{p}}{2r}\int_{t-r}^{t+r}\frac{1}{(1+\alpha)^{p-1}}\int_{0}^{t-r}\frac{1}{(1+\beta)\ln(3+\beta)(\ln(\ln(3+\beta)))^{p/(p-1)}}d\beta d\alpha

+ \frac{||u||_{3}^{p}}{4r}\int_{t-r}^{t+r}\frac{1}{(1+\alpha)^{p-1}}\int_{t-r}^{a}\frac{1}{(1+\beta)\ln(3+\beta)(\ln(\ln(3+\beta)))^{p/(p-1)}}d\beta d\alpha

\leq\frac{C||u||_{3}^{p}}{r}\int_{t-r}^{t+r}\frac{1}{(1+\alpha)^{p-1}}d\alpha .

We use Lemma 3. 3 to obtain

(P\tilde{u}^{p})(r, t)

\leq\frac{C||u||_{3}^{p}(1n(3+t))^{1/p}(\ln(1n(3+t)))^{1/(p-1)}}{(1+t+r)(1+t-r)^{1/p}(\ln(3+t-r))^{1p}(\ln(1n(3+t-r)))^{1/(p-1)}}, .

Next, the proof of Lemma 3. 2 for the case n=2 proceeds in the same
way as that of Lemma 4. 1 in [14] except that we need to use the follow-
ing inequality instead of Lemma 4. 3 in [14].

\int_{0}^{a}\frac{1}{\sqrt{a+t-\beta}(1+\beta)\ln(3+\beta)(\ln(\ln(3+\beta)))^{k}}d\beta\leq\frac{C_{k}}{\sqrt{t+a}} (3. 12)

for k>1 and 0\leq\alpha\leq t+a ,

where C_{k} is a constant depending only on k . Slight modification of the
proof of Lemma 4. 3 in [14] leads to (3. 12).
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This completes the proof of Lemma 3. 2. \blacksquare

4 Proof of Theorem 2. 1

Let X_{n} be the linear space defined by

X_{n}= { u (x , t ) :D_{x}^{a}u(x, t)\in C(R^{n}\cross[0, T)) , ||D_{x}^{a}u||_{n}<\infty for |\alpha|\leq 2 },
n=2,3 .

We can verify easily that X_{n} is complete with respect to the norm
||u||_{X_{n}}= \sum_{|a|\leq 2}||D_{x}^{a}u||_{n} .

We define the sequence of functions \{u_{n}\} by

u_{0}=u^{0} . u_{n+1}=u^{0}+LF(u_{n}) .

Here we note that

k> \frac{2}{p-1}=\{\begin{array}{l}1+\frac{1}{p} (n=3),\frac{1}{2}+\frac{1}{p} (n=2),\end{array}

>\{

1 (n=3) ,

\frac{1}{2} (n=2) .

Then, Lemma 3. 1 yields

||u^{0}||_{X_{n}}\leq C_{k}\epsilon .

Hence, u^{0}\in X_{n} .

We now assume that \epsilon is so small that

2^{p}p\lambda C_{p}(\ln(3+T))^{1/p}(\ln(\ln(3+T)))^{1/(p-1)}(C_{k}\epsilon)^{p-1}\leq 1 and C_{k} \epsilon\leq\frac{1}{2} ,

(4. 1)

where C_{p} is a constant given in Lemma 3. 2. Then, we have

2^{p}p\lambda C_{p}(\ln(3+T))^{1/p}(\ln(\ln(3+T)))^{1/(p-1)}||u^{0}||_{n}^{p-1}\leq 1 and ||u^{0}||_{n} \leq\frac{1}{2} .

(4. 2)

Therefore, as in [5], [2], we see that if u^{0} satisfies (4. 2), there exists a
unique local solution of (2. 1). The lower bound estimate (2. 2) follows
immediately from (4. 1).
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This completes the proof of Theorem 2. 1. \blacksquare
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