Almost periodic solutions of functional differential equations with infinite delays in a Banach space

Shigeo KATO (Received December 28, 1993)

§ 1. Introduction and preliminaries

Let *E* be a Banach space with norm $\|\cdot\|$ and let $J = \mathbf{R} = (-\infty, \infty)$ or $\mathbf{R}_{-} = (-\infty, 0]$. We shall mean by C(J; E) the set of *E*-valued continuous functions defined on *J*. By $C_B(J; E)$ we denote the set of *E*-valued functions continuous and bounded on *J* with the sup-norm $\|\cdot\|_{\infty}$. For each $t \in \mathbf{R}$ and $u \in C_B(\mathbf{R}; E)$, the symbol u_t is defined by $u_t(s) = u(t+s)$ for $s \in \mathbf{R}_{-}$. Clearly $u_t \in C_B(R_-; E)$.

With these notations, we consider in this paper the following delaydifferential equation

 $(D. D. E) \quad x' = F(t, x, x_t), \ t \in \mathbf{R}.$

Here $F(t, x, \phi)$ is an *E*-valued function defined on $\mathbf{R} \times E \times C_B(\mathbf{R}_-; E)$ which satisfies some conditions mentioned precisely later. By a solution of (D, D, E), we mean a continuously differentiable function u defined on \mathbf{R} such that $u'(t) = F(t, u(t), u_t)$ for all $t \in \mathbf{R}$. In this paper the term "continuous" means "strongly continuous".

Recently, we proved the existence and uniqueness of a solution of (D. D. E) in the case of $E = \mathbf{R}^n$, the *n*-dimensional Euclidean space. Moreover, we showed that if $F(t, x, \phi)$ is almost periodic (a. p. for short) with respect to t uniformly for (x, ϕ) in closed bounded subsets of $\mathbf{R}^n \times C_B(\mathbf{R}_-; \mathbf{R}^n)$, then (D. D. E) has a unique a. p. solution ([4]). These results give an affirmative answer to the open question proposed by G. Seifert [10]. The results of [4] and [10] are essentially based on a result of Medvedev [8] which guarantees the existence of a bounded solution on \mathbf{R} of a certain class of differential equation. The result of [8], however, can be treated in the framework of our previous papers [2, 3]. The purpose of this paper is to extend these results to the case of a functional differential equation with infinite delay in a general Banach space.

We define the functional $[,]: E \times E \rightarrow \mathbf{R}$ by

$$[x, y] = \lim_{h \to +0} (\|x + hy\| - \|x\|) / h$$

The following two lemmas will be needed later. For the proofs of these lemmas see [2, 3, 7].

LEMMA 1. Let x, y and z be in E. Then the functional [,] has the following properties :

- (1) $[x, y] = \inf\{(||x + hy|| ||x||)/h; h > 0\},\$
- $(2) |[x, y]| \le ||y||, [0, y] = ||y||,$
- $(3) [x, y+z] \leq [x, y] + [x, z],$

(4) let u be a function from a real interval I into E such that the strong derivative $u'(t_0)$ exists for an interior point t_0 of I, then $D_+||u(t_0)||$ exists and

 $D_+ \|u(t_0)\| = [u(t_0), u'(t_0)],$

where $D_+ \|u(t_0)\|$ denotes the right derivative of $\|u(t)\|$ at t_0 .

LEMMA 2. Let Q be a closed subset of E and let $a \in R$. Suppose that f is a continuous function from $[a, \infty) \times Q$ into E satisfying the following conditions:

(1) $[x-y, f(t, x)-f(t, y)] \le \omega(t) ||x-y||$

for all (t, x), $(t, y) \in [a, \infty) \times Q$, where ω is a real-valued continuous function defined on $[a, \infty)$;

(2) $\liminf_{h \to +0} d(x + hf(t, x), Q)/h = 0$

for all $(t, x) \in [a, \infty) \times Q$, where d(z, Q) denotes the distance from $z \in E$ to Q. Then for each $(\tau, z) \in [a, \infty) \times Q$, the Cauchy problem

(1.1) $x'=f(t, x), x(\tau)=z$

has a unique global solution u on $[\tau, \infty)$ such that $u(t) \in Q$ for all $t \in [\tau, \infty)$.

Throughout this paper we assume that the *E*-valued function *F* is defined on $\mathbf{R} \times E \times C_B(\mathbf{R}_-; E)$ and satisfies the following conditions:

 (K_1) for each r > 0 there exist M(r) > 0 and N(r) > 0 such that

$$||F(t, 0, \phi)|| \le M(r)$$
 and $||F(t, x, 0)|| \le N(r)$

for all $t \in \mathbf{R}$, $||x|| \leq r$ and $||\phi||_{\infty} \leq r$, $(\phi \in C_B(\mathbf{R}_-; E))$;

(*K*₂) if for x(t) uniformly continuous and bounded on **R**, $F(t, x(t), x_t)$ is continuous on **R** and $F(t, y, x_t)$ is continuous in (t, y) on $\mathbf{R} \times B_r(0)$, where $B_r(0) = \{x \in E ; ||x|| \le r\}$;

466

 (K_3) if there exist positive numbers p, r, L such that $p > max\{M(r)/r, L\}$, where M(r) is as in (K_1) , such that

(1.2)
$$[x-y, F(t, x, \phi) - F(t, y, \phi')] \leq -p ||x-y|| + L ||\phi - \phi'||_{\infty}$$

for all $t \in \mathbf{R}$, $||x|| \leq r$, $||y|| \leq r$, $||\phi||_{\infty} \leq r$, $||\phi'||_{\infty} \leq r$ $(\phi, \phi' \in C_B(\mathbf{R}_-; E))$.

REMARK 1. It can be easily seen that if F is continuous on $\mathbf{R} \times E \times C_B(\mathbf{R}_-; E)$, it satisfies (K_2) . From (2) in Lemma 1, (K_1) and (1.2) in (K_3) it follows that

(1.3)
$$||F(t, x, \phi)|| \leq Lr + N(r)$$

for all $(t, x) \in \mathbb{R} \times B_r(0), \|\phi\|_{\infty} \leq r \ (\phi \in C_B(\mathbb{R}_-; E)).$

§ 2. Existence of a bounded solution on R

The following theorem is both an improvement and a generalization of a result of Medvedev [8] into a general Banach space.

THEOREM 1. Let A be an E-valued function defined on $\mathbf{R} \times E$ and let $g \in C(\mathbf{R}; E)$. Suppose that there exist positive numbers p, r, M such that A is continuous on $\mathbf{R} \times B_r(0)$, $||A(t, 0)+g(t)|| \leq M$ $(t \in \mathbf{R})$, M/p < r and

(2.1)
$$[x-y, A(t, x)-A(t, y)] \leq -p ||x-y||$$

for all (t, x), $(t, y) \in \mathbf{R} \times B_r(0)$. Then the equation

(2.2)
$$x' = A(t, x) + g(t)$$

has a solution u on \mathbf{R} such that $||u(t)|| \leq M/p$ for all $t \in \mathbf{R}$, and this solution is unique in G_r , where $G_r = \{\varphi \in C_B(\mathbf{R}; E); \|\varphi\|_{\infty} \leq r\}$. Moreover, if v is any solution of (2.2) such that $\|v(t_0)\| \leq M/p$ for some $t_0 \in \mathbf{R}$, then $\|v(t)\| \leq M/p$ and

$$(2.3) \|v(t) - u(t)\| \le \|v(t_0) - u(t_0)\| \exp(-p(t-t_0))$$

for all
$$t \in [t_0, \infty)$$
.

PROOF. If $A(t, 0) \equiv 0$ for $t \in \mathbf{R}$, we replace A(t, x) and g(t) by A(t, x) - A(t, 0) and g(t) + A(t, 0), respectively. We assume henceforth that $A(t, 0) \equiv 0$ and $||g(t)|| \leq M$ for all $t \in \mathbf{R}$. Fix a $u_0 \in E$ with $||u_0|| = M/p$ and consider the following Cauchy problem for each positive integer n.

$$(2.4) x' = A(t, x) + g(t), \ x(-n) = u_0.$$

For each $x \in E$ with ||x|| = r, (2.1) and (3) in Lemma 1 imply

S. Kato

$$[x, A(t, x) + g(t)] \leq [x, A(t, x)] + ||g(t)|| \leq -p||x|| + M$$

= -pr + M < 0.

It follows from the definition of the functional [,] that

$$||x+h(A(t, x)+g(t))|| < ||x|| = r$$

for sufficiently small h > 0. It therefore follows that, for each $(t, x) \in [-n, \infty) \times B_r(0)$ there exists an $h_0 = h_0(t, x) > 0$ such that

$$x + h(A(t, x) + g(t)) \in B_r(0) \quad \text{for all } 0 < h \le h_0.$$

Lemma 2 can now be applied to guarantee the existence of a unique global solution u_n of (2.4) on $[-n, \infty)$ such that $u_n(t) \in B_r(0)$ for all $t \in [-n, \infty)$. Moreover, we can show that $||u_n(t)|| \leq M/p$ for all $t \in [-n, \infty)$. In fact, (2.1) and (4) in Lemma 1 imply

$$D_{+} \|u_{n}(t)\| = [u_{n}(t), A(t, u_{n}(t)) + g(t)] \leq -p \|u_{n}(t)\| + \|g(t)\|$$

$$\leq -p \|u_{n}(t)\| + M$$

for all $t \in [-n, \infty)$. Solving this differential inequality we obtain

$$\|u_{n}(t)\| \leq \|u_{n}(-n)\|\exp(-p(t+n)) + M \int_{-n}^{t} \exp(-p(t-s)) ds$$
$$\leq \frac{M}{p} \exp(-p(t+n)) + \frac{M}{p} (1 - \exp(-p(t+n))) = \frac{M}{p}$$

for all $t \in [-n, \infty)$ (see Proposition 1.3 in [7]). We next show that, for an arbitrary fixed number a < 0, $\{u_n\}$ is a uniformly Cauchy sequence on $[a, \infty)$. Let m, n be positive integers such that $n \ge m > -a$, then

$$D_{+} \| u_{n}(t) - u_{m}(t) \| = [u_{n}(t) - u_{m}(t), A(t, u_{n}(t)) - A(t, u_{m}(t))] \\ \leq -p \| u_{n}(t) - u_{m}(t) \| \text{ for all } t \in [-m, \infty).$$

It follows as above that

$$\|u_{n}(t) - u_{m}(t)\| \leq \exp(-p(t+m)) \|u_{n}(-m) - u_{m}(-m)\|$$

$$\leq \exp(-p(a+m)) \|u_{n}(-m) - u_{0}\|$$

$$\leq \frac{2M}{p} \exp(-p(a+m))$$

for all $t \in [a, \infty)$. Thus, $\{u_n\}$ is a uniformly Cauchy sequence on $[a, \infty)$. Define $u(t) = \lim_{n \to \infty} u_n(t)$ for $t \in [a, \infty)$. Then $||u(t)|| \le M/p$ for all $t \in [a, \infty)$. Since

$$u_n(t) = u_n(a) + \int_a^t (A(s, u_n(s)) + g(s)) ds$$

for each $t \in [a, \infty)$, letting $n \to \infty$ we have

$$u(t) = u(a) + \int_{a}^{t} (A(s, u(s)) + g(s)) ds \quad (t \in [a, \infty)).$$

This shows that u is a solution of (2, 2) on $[a, \infty)$. Since a < 0 is arbitrary, we conclude that there is a solution u of (2, 2) on \mathbf{R} such that $||u(t)|| \le M/p$ for all $t \in \mathbf{R}$.

To prove the uniqueness of a solution of (2.2) in G_r , let w be another solution of (2.2) in G_r . Then for each $t \in \mathbf{R}$

$$D_{+} \| u(t) - w(t) \| = [u(t) - w(t), A(t, u(t)) - A(t, w(t))]$$

$$\leq -p \| u(t) - w(t) \|.$$

This implies

$$||u(t) - w(t)|| \le \exp(-p(t-s))||u(s) - w(s)|| \le 2r \exp(-p(t-s))$$

for all $s \leq t$. Letting $s \to -\infty$, we get $u(t) \equiv w(t)$, $t \in \mathbf{R}$. To show the last assertion of the theorem, let v be any solution of (2.2) such that $||v(t_0)|| \leq M/p$ for some $t_0 \in \mathbf{R}$. Then we have

$$D_{+} \|v(t)\| = [v(t), A(t, v(t)) + g(t)] \leq -p \|v(t)\| + \|g(t)\|$$

$$\leq -p \|v(t)\| + M$$

provided $||v(t)|| \leq r$ for $t \geq t_0$, and hence

$$\|v(t)\| \leq \exp(-p(t-t_0)) \|v(t_0)\| + M \int_{t_0}^t \exp(-p(t-s)) ds$$

$$\leq \frac{M}{p} \exp(-p(t-t_0)) + \frac{M}{p} (1 - \exp(-p(t-t_0))) = \frac{M}{p}.$$

Consequently, $||v(t)|| \leq M/p$ for all $t \in [t_0, \infty)$. By the same argument as before we have also

$$||v(t) - u(t)|| \le \exp(-p(t-t_0))||v(t_0) - u(t_0)||$$

for all $t \in [t_0, \infty)$. This completes the proof.

§ 3. Existence of an almost periodic solution

In this section we consider the delay-differential equation (D. D. E). Let r be as in (K_3) and let $C_r^* = \{\varphi \in C_B(\mathbf{R}; E); \|\varphi\|_{\infty} \leq r \text{ and } \varphi \text{ is uniform-ly continuous on } \mathbf{R}\}$. Then we have the following.

THEOREM 2. Suppose that $(K_1)-(K_3)$ are satisfied. Then there exists a unique solution u of (D, D, E) in C_r^* .

PROOF. Let r, L be as in (K_3) and N(r) be as in (K_1) . Define $S_r = \{f \in C_B(\mathbf{R}; E); \|f\|_{\infty} \leq r, \|f(t) - f(t')\| \leq (Lr + N(r))|t - t'| \text{ for all } t, t' \in \mathbf{R}\},$ then S_r is a closed bounded subset of the Banach space $C_B(\mathbf{R}; E)$ with the sup-norm $\|\cdot\|_{\infty}$. Define

$$A(t, x, \phi) = F(t, x, \phi) - F(t, 0, \phi)$$
 and $B(t, \phi) = F(t, 0, \phi)$

for (t, x), $(t, y) \in \mathbb{R} \times B_r(0)$ and $\|\phi\|_{\infty} \leq r$ ($\phi \in C_B(\mathbb{R}_-; E)$). We now define a mapping $T: S_r \to S_r$ as follows: x(t) = Tf(t) is the unique solution in G_r of

(2.5)
$$x' = A(t, x, f_t) + B(t, f_t),$$

where G_r is as in Theorem 1 and $f \in S_r$. Such a solution x exists by Theorem 1 and satisfies $||x||_{\infty} \leq M/p < r$. In fact, (K_1) and (K_2) imply that $A(t, x, f_t)$ is continuous in (t, x) on $\mathbf{R} \times B_r(0)$ and $B(t, f_t)$ is continuous on \mathbf{R} such that $||B(t, f_t)|| \leq M(r)$ for all $t \in \mathbf{R}$. Moreover, (1.2) in (K_3) implies

$$[x-y, A(t, x, f_t) - A(t, y, f_t)] = [x-y, F(t, x, f_t) - F(t, y, f_t)] \leq -p ||x-y||$$
 for all $(t, x), (t, y) \in \mathbf{R} \times B_r(0)$

Since

$$\|x(t) - x(t')\| = \left\| \int_{t'}^{t} F(s, x(s), f_s) ds \right\| \leq (Lr + N(r))|t - t'|$$

for all $t, t' \in \mathbf{R}$, we see that $x \in S_r$. We next show that T is a strict contraction on S_r . For each $f, g \in S_r$, putting x = Tf and y = Tg, we see that

$$D_{+} \|x(t) - y(t)\| = [x(t) - y(t), F(t, x(t), f_{t}) - F(t, y(t), g_{t})] \\ \leq -p \|x(t) - y(t)\| + L \|f_{t} - g_{t}\|_{\infty} \quad \text{for all } t \in \mathbf{R}.$$

Solving this differential inequality we have

$$\begin{aligned} \|x(t) - y(t)\| &\leq \exp(-p(t-s)) \|x(s) - y(s)\| \\ &+ L \int_{s}^{t} \exp(-p(t-\sigma)) \|f_{\sigma} - g_{\sigma}\|_{\infty} d\sigma \\ &\leq \frac{2M(r)}{p} \exp(-p(t-s)) \\ &+ \frac{L}{p} (1 - \exp(-p(t-s))) \|f - g\|_{\infty} \\ &= \frac{1}{p} (2M(r) - L \|f - g\|_{\infty}) \exp(-p(t-s)) + \frac{L}{p} \|f - g\|_{\infty} \end{aligned}$$

for all $s \leq t$. Letting $s \rightarrow -\infty$, we obtain

$$\|x(t)-y(t)\| \leq \frac{L}{p} \|f-g\|_{\infty}$$
 for all $t \in \mathbf{R}$,

and this shows that $||Tf - Tg||_{\infty} \leq \frac{L}{p} ||f - g||_{\infty}$. Since 0 < L/p < 1 by (K_3) , T has a unique fixed point u in S_r by the contraction principle. Clearly, u is a solution of (D, D, E).

To show that the above solution u is unique in C_r^* (note that $S_r \subset C_r^*$), let $v \in C_r^*$ be another solution of (D, D, E). Then we have for each $t_0 \in R$

$$D_{+} \| u(t) - v(t) \| = [u(t) - v(t), F(t, u(t), u_{t}) - F(t, v(t), v_{t})] \\ \leq -p \| u(t) - v(t) \| + L \| u_{t} - v_{t} \|_{\infty} \quad \text{for all } t \geq t_{0}.$$

Solving this differential inequality we obtain

$$\|u(t+s) - v(t+s)\| \leq \exp(-p(t-t_0)) \|u(t_0+s) - v(t_0+s)\| + L \int_{t_0+s}^{t+s} \exp(-p(t+s-\sigma)) \|u_{\sigma} - v_{\sigma}\|_{\infty} d\sigma$$

$$\leq \exp(-p(t-t_0)) \|u(t_0+s) - v(t_0+s)\| + \frac{L}{p} (1 - \exp(-p(t-t_0))) \|u_t - v_t\|_{\infty}$$

for all $t \in [t_0, \infty)$ and $s \in \mathbf{R}_-$. Here we have used the fact that $||u_{\sigma} - v_{\sigma}||_{\infty}$ is nondecreasing in σ . It therefore follows that

$$\|u_t - v_t\|_{\infty} \leq \exp(-p(t-t_0)) \|u_{t_0} - v_{t_0}\|_{\infty} + \frac{L}{p} \|u_t - v_t\|_{\infty}$$

for all $t \in [t_0, \infty)$, and this implies

$$\|u_t - v_t\|_{\infty} \leq \frac{p}{p - L} \exp(-p(t - t_0)) \|u_{t_0} - v_{t_0}\|_{\infty} \quad (t \in [t_0, \infty))$$

Consequently, we obtain

$$\|u_{t_0} - v_{t_0}\|_{\infty} \leq \|u_t - v_t\|_{\infty} \leq \frac{p}{p-L} \exp(-p(t-t_0))\|u_{t_0} - v_{t_0}\|_{\infty}$$

for all $t \in [t_0, \infty)$. Letting $t \to \infty$, we get $||u_{t_0} - v_{t_0}||_{\infty} = 0$ and this implies, in particular, $u(t_0) = v(t_0)$.

THEOREM 3. Suppose that $(K_1)-(K_3)$ are satisfied. Suppose further that $F(t, x, \phi)$ is a. p. in t uniformly for (x, ϕ) in closed bounded subsets of $E \times C_B(\mathbf{R}_-; E)$. Then (D. D. E) has a unique a. p. solution in C_r^* , where C_r^* is as in Theorem 2. Moreover, if v is any solution of S. Kato

(D. D. E) such that $||v_{t_0}||_{\infty} \leq M(r)/p$ for some $t_0 \in \mathbb{R}$, then v = u.

PROOF. Let u be the unique solution of (D. D. E) in C_r^* obtained in Theorem 2. Since $Q = B_r(0) \times \{ \phi \in C_B(\mathbf{R}_-; E) ; \|\phi\|_{\infty} \leq r \}$ is a closed bounded subset of $E \times C_B(\mathbf{R}_-; E)$, for each $\varepsilon > 0$ there exists a positive number $l = l(\varepsilon, Q)$ such that any interval of length l contains a $\tau = \tau(\varepsilon)$ for which

 $\|F(t+\tau, u(t+\tau), u_{t+\tau}) - F(t, u(t+\tau), u_{t+\tau})\| < \varepsilon$

for all $t \in \mathbf{R}$. By virtue of (2)-(4) in Lemma 1 and (1.2) in (K₃) we have

$$D_{+} \| u(t+\tau) - u(t) \| = [u(t+\tau) - u(t), F(t+\tau, u(t+\tau), u_{t+\tau}) - F(t, u(t), u_{t})]$$

$$\leq -p \| u(t+\tau) - u(t) \| + L \| u_{t+\tau} - u_{t} \|_{\infty} + \| F(t+\tau, u(t+\tau), u_{t+\tau}) - F(t, u(t+\tau), u_{t+\tau}) \|$$

$$\leq -p \| u(t+\tau) - u(t) \| + L \| u_{t+\tau} - u_{t} \|_{\infty} + \varepsilon$$
for all $t \in \mathbf{R}$.

Solving this differential inequality we obtain

$$\begin{aligned} \|u(t+\tau+s) - u(t+s)\| &\leq \exp(-p\beta \|u(t+\tau-\beta+s) - u(t-\beta+s)\| \\ &+ L \int_{t+s-\beta}^{t+s} \exp(-p(t+s-\sigma)) \|u_{\sigma+\tau} - u_{\sigma}\|_{\infty} d\sigma \\ &+ \frac{\varepsilon}{p} (1 - \exp(-p\beta)) \\ &\leq 2r \exp(-p\beta) + \frac{L}{p} (1 - \exp(-p\beta)) \|u_{t+\tau} - u_{t}\|_{\infty} \\ &+ \frac{\varepsilon}{p} \\ &\leq 2r \exp(-p\beta) + \frac{L}{p} \|u_{t+\tau} - u_{t}\|_{\infty} + \frac{\varepsilon}{p} \end{aligned}$$

for all $t \in \mathbf{R}$, $s \in \mathbf{R}_{-}$ and $\beta > 0$. Here we have used again the fact that $||u_{\sigma+\tau} - u_{\sigma}||_{\infty}$ is nondecreasing in σ , and $u \in C_r^*$. It follows from this

$$\|u_{t+\tau} - u_t\|_{\infty} \leq \frac{2pr}{p-L} \exp(-p\beta) + \frac{\varepsilon}{p-L} \quad \text{for all } t \in \mathbf{R}.$$

Choose $\beta_0 > 0$ such that $2rp \exp(-p\beta_0) < \varepsilon$, then

$$\|u(t+\tau)-u(t)\| \leq \|u_{t+\tau}-u_t\|_{\infty} \leq \frac{2\varepsilon}{p-L}$$
 for all $t \in \mathbf{R}$.

Thus τ is a $2\varepsilon/(p-L)$ -translation number for u, and since $\varepsilon > 0$ is arbitrary u is an a. p. solution of (D, D, E).

To show the last assertion of theorem, let v be any solution of (D. D.

E) such that $||v_{t_0}||_{\infty} \leq M(r)/p$ for some $t_0 \in \mathbb{R}$. We note that $||v_t||_{\infty} \leq M(r)/p$ for all $t \leq t_0$. Define $\Gamma = \{t \in [t_0, \infty) ; ||v(s)|| \leq r$ for all $s \in [t_0, t]\}$ and define $\alpha = \sup \Gamma$. Then $\alpha > t_0$ because $||v_{t_0}||_{\infty} \leq M(r)/p < r$. Suppose, for contradiction, that $\alpha < \infty$. For sufficiently large integer *n* there exists a $t_n \in \Gamma$ such that $t_0 < \alpha - \frac{1}{n} < t_n$. In view of (2)–(4) in Lemma 1 and (1.2) in (K_3) we have

$$D_{+} \|v(s)\| = [v(s), F(s, v(s), v_{s})]$$

$$\leq [v(s), F(s, v(s), v_{s}) - F(s, 0, v_{s})] + \|F(s, 0, v_{s})\|$$

$$\leq -p \|v(s)\| + M(r) \quad \text{for all } s \in [t_{0}, t_{n}).$$

From this we get

$$\|v(t_n)\| \leq \exp(-p(t_n-t_0)) \|v(t_0)\| + \frac{M(r)}{p} (1 - \exp(-p(t_n-t_0)))$$
$$\leq \frac{M(r)}{p}.$$

Letting $n \to \infty$, we conclude that $||v(\alpha)|| \le M(r)/p < r$. By the continuity of v at α , there exists a $\delta > 0$ such that $||v(\alpha+t)-v(\alpha)|| < r - ||v(\alpha)||$ for $|t| \le \delta$. This implies that $||v(\alpha+t)|| < r$ for $|t| \le \delta$. Choosing a positive integer n such that $\alpha - \delta < t_n$, it can easily be seen that

$$||v(t)|| \leq M(r)/p$$
 for $t \in [t_0, t_n]$ and $||v(t)|| < r$ for $t \in [t_n, \alpha + \delta]$.

This contradicts to the definition of α . Consequently, $||v_t||_{\infty} \leq M(r)/p$ holds for all $t \in \mathbf{R}$. By the same argument as in the proof of Theorem 2 we see that $v \in S_r$, and hence v = u by the uniqueness of solutions of (D. D. E) in C_r^* .

REMARK 2. The conditions (K_1) , (K_2) of this paper are the same as those of [4], but (K_3) of this paper is somewhat stronger than that of [4]. The reason to strengthen the condition (K_3) of [4] is that we cannot use the Ascoli-Arzela theorem in a general Banach space. The following condition (K_4) of [4], however, is superfluous in this paper.

(K₄) If for $x^{k}(t)$, $y^{k}(t)$, x(t) and y(t) continuous and such that $||x^{k}(t)|| \leq r$, $||y^{k}(t)|| \leq r$ for all $t \in \mathbf{R}$ and $k \geq 1$ and $x^{k}(t) \rightarrow x(t)$, $y^{k}(t) \rightarrow y(t)$ as $k \rightarrow \infty$ for $t \in \mathbf{R}$, we have

$$F(t, x^{k}(t), y_{t}^{k}) \rightarrow F(t, x(t), y_{t})$$
 as $k \rightarrow \infty$ for $t \in \mathbf{R}$.

Acknowledgment. The author would like to express his hearty thanks to the referee for his valuable comments and remarks.

References

- [1] A. G. KARTSATOS, The Existence of Bounded Solutions on the Real Line of Perturbed Nonlinear Evolution Equations in General Banach Spaces, Nonlinear Analysis, 17 (1991), 1085-1092.
- [2] S. KATO, On the Global Existence of Unique Solutions of Differential Equations in a Banach Space, Hokkaido Math. Jour., 7 (1978), 58-73.
- [3] S. KATO, Some Remarks on Nonlinear Ordinary Differential Equations in a Banach Space, Nonlinear Analysis, 5 (1981), 81-93.
- [4] S. KATO, Almost Periodic Solutions of Functional Differential Equations with Infinite Delays, submitted to Funkcialaj Ekvac.
- [5] V. LAKSHMIKANTHAM and S. LEELA, *Differential and Integral Inequalities*, vol. II., Academic Press, New York (1969).
- [6] B. M. LEVITAN and V. V. ZHIKOV, Almost Periodic Functions and Differential Equations, Cambridge University Press, Eng. ed., (1982).
- [7] R. H. MARTIN, Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Wiley Interscience, (1976).
- [8] N. V. MEDVEDEV, Certain Tests for the Existence of Bounded Solutions of Systems of Differential Equations, Differential'nye Uravneniya 4 (1968), 1258-1264.
- [9] G. SEIFERT, Almost Periodic Solutions for a Certain Class of Almost Periodic Systems, Proc. Am. Math. Soc. 84 (1982), 47-51.
- [10] G. SEIFERT, Almost Periodic Solutions for Delay-Differential Equations with Infinite Delays, J. Differential Equations, 41 (1981), 416-425.
- [11] T. YOSHIZAWA, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Lectures in Appl. Math., vol. 14, Springer-Verlag, Berlin and New York, (1975).

Kitami Institute of Technology Kitami, Hokkaido, Japan