Almost periodic solutions of functional differential equations with infinite delays in a Banach space

Shigeo Kato
(Received December 28, 1993)

§ 1. Introduction and preliminaries

Let E be a Banach space with norm $\|\cdot\|$ and let $J=\boldsymbol{R}=(-\infty, \infty)$ or $\boldsymbol{R}_{-}=(-\infty, 0]$. We shall mean by $C(J ; E)$ the set of E-valued continuous functions defined on J. By $C_{B}(J ; E)$ we denote the set of E-valued functions continuous and bounded on J with the sup-norm $\|\cdot\|_{\infty}$. For each $t \in \boldsymbol{R}$ and $u \in C_{B}(\boldsymbol{R} ; E)$, the symbol u_{t} is defined by $u_{t}(s)=u(t+s)$ for $s \in \boldsymbol{R}_{-}$. Clearly $u_{t} \in C_{B}\left(R_{-} ; E\right)$.

With these notations, we consider in this paper the following delaydifferential equation
(D. D. E) $\quad x^{\prime}=F\left(t, x, x_{t}\right), t \in \boldsymbol{R}$.

Here $F(t, x, \phi)$ is an E-valued function defined on $\boldsymbol{R} \times E \times C_{B}\left(\boldsymbol{R}_{-} ; E\right)$ which satisfies some conditions mentioned precisely later. By a solution of ($D . D . E$), we mean a continuously differentiable function u defined on \boldsymbol{R} such that $u^{\prime}(t)=F\left(t, u(t), u_{t}\right)$ for all $t \in \boldsymbol{R}$. In this paper the term " continuous" means " strongly continuous".

Recently, we proved the existence and uniqueness of a solution of ($D . D . E$) in the case of $E=\boldsymbol{R}^{n}$, the n-dimensional Euclidean space. Moreover, we showed that if $F(t, x, \phi)$ is almost periodic (a. p. for short) with respect to t uniformly for (x, ϕ) in closed bounded subsets of $\boldsymbol{R}^{n} \times$ $C_{B}\left(\boldsymbol{R}_{-} ; \boldsymbol{R}^{n}\right)$, then $(D . D . E)$ has a unique a.p. solution ([4]). These results give an affirmative answer to the open question proposed by G. Seifert [10]. The results of [4] and [10] are essentially based on a result of Medvedev [8] which guarantees the existence of a bounded solution on \boldsymbol{R} of a certain class of differential equation. The result of [8], however, can be treated in the framework of our previous papers [2,3]. The purpose of this paper is to extend these results to the case of a functional differential equation with infinite delay in a general Banach space.

We define the functional [,]: $E \times E \rightarrow \boldsymbol{R}$ by

$$
[x, y]=\lim _{h \rightarrow+0}(\|x+h y\|-\|x\|) / h .
$$

The following two lemmas will be needed later. For the proofs of these lemmas see $[2,3,7]$.

Lemma 1. Let x, y and z be in E. Then the functional [,] has the following properties:
(1) $[x, y]=\inf \{(\|x+h y\|-\|x\|) / h ; h>0\}$,
(2) $|[x, y]| \leqq\|y\|,[0, y]=\|y\|$,
(3) $[x, y+z] \leqq[x, y]+[x, z]$,
(4) let u be a function from a real interval I into E such that the strong derivative $u^{\prime}\left(t_{0}\right)$ exists for an interior point t_{0} of I, then $D_{+}\left\|u\left(t_{0}\right)\right\|$ exists and

$$
D_{+}\left\|u\left(t_{0}\right)\right\|=\left[u\left(t_{0}\right), u^{\prime}\left(t_{0}\right)\right],
$$

where $D_{+}\left\|u\left(t_{0}\right)\right\|$ denotes the right derivative of $\|u(t)\|$ at t_{0}.
Lemma 2. Let Q be a closed subset of E and let $a \in R$. Suppose that f is a continuous function from $[a, \infty) \times Q$ into E satisfying the following conditions:

$$
\begin{equation*}
[x-y, f(t, x)-f(t, y)] \leqq \omega(t)\|x-y\| \tag{1}
\end{equation*}
$$

for all $(t, x),(t, y) \in[a, \infty) \times Q$, where ω is a real-valued continuous function defined on $[a, \infty)$;
(2) $\liminf _{h \rightarrow 0} d(x+h f(t, x), Q) / h=0$
for all $(t, x) \in[a, \infty) \times Q$, where $d(z, Q)$ denotes the distance from $z \in E$ to Q. Then for each $(\tau, z) \in[a, \infty) \times Q$, the Cauchy problem

$$
\begin{equation*}
x^{\prime}=f(t, x), x(\tau)=z \tag{1.1}
\end{equation*}
$$

has a unique global solution u on $[\tau, \infty)$ such that $u(t) \in Q$ for all $t \in$ $[\tau, \infty)$.

Throughout this paper we assume that the E-valued function F is defined on $\boldsymbol{R} \times E \times C_{B}\left(\boldsymbol{R}_{-} ; E\right)$ and satisfies the following conditions:
(K_{1}) for each $r>0$ there exist $M(r)>0$ and $N(r)>0$ such that

$$
\|F(t, 0, \phi)\| \leqq M(r) \text { and }\|F(t, x, 0)\| \leqq N(r)
$$

for all $t \in \boldsymbol{R},\|x\| \leqq r$ and $\|\phi\|_{\infty} \leqq r,\left(\phi \in C_{B}\left(\boldsymbol{R}_{-} ; E\right)\right)$;
$\left(K_{2}\right)$ if for $x(t)$ uniformly continuous and bounded on $\boldsymbol{R}, F\left(t, x(t), x_{t}\right)$ is continuous on \boldsymbol{R} and $F\left(t, y, x_{t}\right)$ is continuous in (t, y) on $\boldsymbol{R} \times B_{r}(0)$, where $B_{r}(0)=\{x \in E ;\|x\| \leqq r\}$;
$\left(K_{3}\right)$ if there exist positive numbers p, r, L such that $p>\max \{M(r) / r$, $L\}$, where $M(r)$ is as in $\left(K_{1}\right)$, such that

$$
\begin{equation*}
\left[x-y, F(t, x, \phi)-F\left(t, y, \phi^{\prime}\right)\right] \leqq-\phi\|x-y\|+L\left\|\phi-\phi^{\prime}\right\|_{\infty} \tag{1.2}
\end{equation*}
$$

for all $t \in \boldsymbol{R},\|x\| \leqq r,\|y\| \leqq r,\|\phi\|_{\infty} \leqq r,\left\|\phi^{\prime}\right\|_{\infty} \leqq r\left(\phi, \phi^{\prime} \in C_{B}\left(\boldsymbol{R}_{-} ; E\right)\right.$).
Remark 1. It can be easily seen that if F is continuous on $\boldsymbol{R} \times E \times$ $C_{B}\left(\boldsymbol{R}_{-} ; E\right)$, it satisfies (K_{2}). From (2) in Lemma 1, (K_{1}) and (1.2) in (K_{3}) it follows that
(1.3) $\quad\|F(t, x, \phi)\| \leqq L r+N(r)$
for all $(t, x) \in \boldsymbol{R} \times B_{r}(0),\|\phi\|_{\infty} \leqq r\left(\phi \in C_{B}\left(\boldsymbol{R}_{-} ; E\right)\right)$.

§ 2. Existence of a bounded solution on \boldsymbol{R}

The following theorem is both an improvement and a generalization of a result of Medvedev [8] into a general Banach space.

Theorem 1. Let A be an E-valued function defined on $\boldsymbol{R} \times E$ and let $g \in C(\boldsymbol{R} ; E)$. Suppose that there exist positive numbers p, r, M such that A is continuous on $\boldsymbol{R} \times B_{r}(0),\|A(t, 0)+g(t)\| \leqq M(t \in \boldsymbol{R}), M / p<r$ and
(2. 1) $\quad[x-y, A(t, x)-A(t, y)] \leqq-p\|x-y\|$
for all $(t, x),(t, y) \in \boldsymbol{R} \times B_{r}(0)$. Then the equation
(2.2) $x^{\prime}=A(t, x)+g(t)$
has a solution u on \boldsymbol{R} such that $\|u(t)\| \leqq M / p$ for all $t \in \boldsymbol{R}$, and this solu. tion is unique in G_{r}, where $G_{r}=\left\{\varphi \in C_{B}(\boldsymbol{R} ; E) ;\|\varphi\|_{\infty} \leqq r\right\}$. Moreover, if v is any solution of (2.2) such that $\left\|v\left(t_{0}\right)\right\| \leqq M / p$ for some $t_{0} \in \boldsymbol{R}$, then $\|v(t)\| \leqq M / p$ and
(2.3) $\|v(t)-u(t)\| \leqq\left\|v\left(t_{0}\right)-u\left(t_{0}\right)\right\| \exp \left(-p\left(t-t_{0}\right)\right)$
for all $t \in\left[t_{0}, \infty\right)$.
Proof. If $A(t, 0) \neq 0$ for $t \in \boldsymbol{R}$, we replace $A(t, x)$ and $g(t)$ by $A(t, x)-A(t, 0)$ and $g(t)+A(t, 0)$, respectively. We assume henceforth that $A(t, 0) \equiv 0$ and $\|g(t)\| \leqq M$ for all $t \in \boldsymbol{R}$. Fix a $u_{0} \in E$ with $\left\|u_{0}\right\|=M / p$ and consider the following Cauchy problem for each positive integer n.

$$
\begin{equation*}
x^{\prime}=A(t, x)+g(t), x(-n)=u_{0} . \tag{2.4}
\end{equation*}
$$

For each $x \in E$ with $\|x\|=r$, (2.1) and (3) in Lemma 1 imply

$$
\begin{aligned}
{[x, A(t, x)+g(t)] } & \leqq[x, A(t, x)]+\|g(t)\| \leqq-p\|x\|+M \\
& =-p r+M<0 .
\end{aligned}
$$

It follows from the definition of the functional [,] that

$$
\|x+h(A(t, x)+g(t))\|<\|x\|=r
$$

for sufficiently small $h>0$. It therefore follows that, for each $(t, x) \in$ $[-n, \infty) \times B_{r}(0)$ there exists an $h_{0}=h_{0}(t, x)>0$ such that

$$
x+h(A(t, x)+g(t)) \in B_{r}(0) \text { for all } 0<h \leqq h_{0} .
$$

Lemma 2 can now be applied to guarantee the existence of a unique global solution u_{n} of (2.4) on $[-n, \infty)$ such that $u_{n}(t) \in B_{r}(0)$ for all $t \in$ $[-n, \infty)$. Moreover, we can show that $\left\|u_{n}(t)\right\| \leqq M / p$ for all $\mathrm{t} \in[-n, \infty)$. In fact, (2.1) and (4) in Lemma 1 imply

$$
\begin{aligned}
D_{+}\left\|u_{n}(t)\right\| & =\left[u_{n}(t), A\left(t, u_{n}(t)\right)+g(t)\right] \leqq-\phi\left\|u_{n}(t)\right\|+\|g(t)\| \\
& \leqq-\phi\left\|u_{n}(t)\right\|+M
\end{aligned}
$$

for all $t \in[-n, \infty)$. Solving this differential inequality we obtain

$$
\begin{aligned}
\left\|u_{n}(t)\right\| & \leqq u_{n}(-n) \| \exp (-p(t+n))+M \int_{-n}^{t} \exp (-p(t-s)) d s \\
& \leqq \frac{M}{p} \exp (-p(t+n))+\frac{M}{p}(1-\exp (-p(t+n)))=\frac{M}{p}
\end{aligned}
$$

for all $t \in[-n, \infty$) (see Proposition 1.3 in [7]). We next show that, for an arbitrary fixed number $a<0,\left\{u_{n}\right\}$ is a uniformly Cauchy sequence on $[a, \infty)$. Let m, n be positive integers such that $n \geqq m>-a$, then

$$
\begin{aligned}
D_{+}\left\|u_{n}(t)-u_{m}(t)\right\| & =\left[u_{n}(t)-u_{m}(t), A\left(t, u_{n}(t)\right)-A\left(t, u_{m}(t)\right)\right] \\
& \leqq-p\left\|u_{n}(t)-u_{m}(t)\right\| \text { for all } t \in[-m, \infty) .
\end{aligned}
$$

It follows as above that

$$
\begin{aligned}
\left\|u_{n}(t)-u_{m}(t)\right\| & \leqq \exp (-p(t+m))\left\|u_{n}(-m)-u_{m}(-m)\right\| \\
& \leqq \exp (-p(a+m))\left\|u_{n}(-m)-u_{0}\right\| \\
& \leqq \frac{2 M}{p} \exp (-p(a+m))
\end{aligned}
$$

for all $t \in[a, \infty)$. Thus, $\left\{u_{n}\right\}$ is a uniformly Cauchy sequence on $[a, \infty)$. Define $u(t)=\lim _{n \rightarrow \infty} u_{n}(t)$ for $t \in[a, \infty)$. Then $\|u(t)\| \leqq M / p$ for all $t \in[a, \infty)$. Since

$$
u_{n}(t)=u_{n}(a)+\int_{a}^{t}\left(A\left(s, u_{n}(s)\right)+g(s)\right) d s
$$

for each $t \in[a, \infty)$, letting $n \rightarrow \infty$ we have

$$
u(t)=u(a)+\int_{a}^{t}(A(s, u(s))+g(s)) d s \quad(t \in[a, \infty))
$$

This shows that u is a solution of (2.2) on $[a, \infty)$. Since $a<0$ is arbitrary, we conclude that there is a solution u of (2.2) on \boldsymbol{R} such that $\|u(t)\| \leqq M / p$ for all $t \in \boldsymbol{R}$.

To prove the uniqueness of a solution of (2.2) in G_{r}, let w be another solution of (2.2) in G_{r}. Then for each $t \in \boldsymbol{R}$

$$
\begin{aligned}
D_{+}\|u(t)-w(t)\| & =[u(t)-w(t), A(t, u(t))-A(t, w(t))] \\
& \leqq-p\|u(t)-w(t)\| .
\end{aligned}
$$

This implies

$$
\|u(t)-w(t)\| \leqq \exp (-p(t-s))\|u(s)-w(s)\| \leqq 2 r \exp (-p(t-s))
$$

for all $s \leqq t$. Letting $s \rightarrow-\infty$, we get $u(t) \equiv w(t), t \in \boldsymbol{R}$. To show the last assertion of the theorem, let v be any solution of (2.2) such that $\left\|v\left(t_{0}\right)\right\| \leqq$ M / p for some $t_{0} \in \boldsymbol{R}$. Then we have

$$
\begin{aligned}
D_{+}\|v(t)\| & =[v(t), A(t, v(t))+g(t)] \leqq-p\|v(t)\|+\|g(t)\| \\
& \leqq-p\|v(t)\|+M
\end{aligned}
$$

provided $\|v(t)\| \leqq r$ for $t \geqq t_{0}$, and hence

$$
\begin{aligned}
\|v(t)\| & \leqq \exp \left(-p\left(t-t_{0}\right)\right)\left\|v\left(t_{0}\right)\right\|+M \int_{t_{0}}^{t} \exp (-p(t-s)) d s \\
& \leqq \frac{M}{p} \exp \left(-p\left(t-t_{0}\right)\right)+\frac{M}{p}\left(1-\exp \left(-p\left(t-t_{0}\right)\right)\right)=\frac{M}{p}
\end{aligned}
$$

Consequently, $\|v(t)\| \leqq M / p$ for all $t \in\left[t_{0}, \infty\right)$. By the same argument as before we have also

$$
\|v(t)-u(t)\| \leqq \exp \left(-p\left(t-t_{0}\right)\right)\left\|v\left(t_{0}\right)-u\left(t_{0}\right)\right\|
$$

for all $t \in\left[t_{0}, \infty\right)$. This completes the proof.

§ 3. Existence of an almost periodic solution

In this section we consider the delay-differential equation ($D . D . E$). Let r be as in (K_{3}) and let $C_{r}{ }^{*}=\left\{\varphi \in C_{B}(\boldsymbol{R} ; E) ;\|\varphi\|_{\infty} \leqq r\right.$ and φ is uniformly continuous on $\boldsymbol{R}\}$. Then we have the following.

Theorem 2. Suppose that $\left(K_{1}\right)-\left(K_{3}\right)$ are satisfied. Then there exists a unique solution u of (D. D. E) in $C_{r}{ }^{*}$.

Proof. Let r, L be as in $\left(K_{3}\right)$ and $N(r)$ be as in (K_{1}). Define $S_{r}=$ $\left\{f \in C_{B}(\boldsymbol{R} ; E) ;\|f\|_{\infty} \leqq r,\left\|f(t)-f\left(t^{\prime}\right)\right\| \leqq(L r+N(r))\left|t-t^{\prime}\right|\right.$ for all $\left.t, t^{\prime} \in \boldsymbol{R}\right\}$, then S_{r} is a closed bounded subset of the Banach space $C_{B}(\boldsymbol{R} ; E)$ with the sup-norm $\|\cdot\|_{\infty}$. Define

$$
A(t, x, \phi)=F(t, x, \phi)-F(t, 0, \phi) \text { and } B(t, \phi)=F(t, 0, \phi)
$$

for $(t, x),(t, y) \in \boldsymbol{R} \times B_{r}(0)$ and $\|\phi\|_{\infty} \leqq r\left(\phi \in C_{B}\left(\boldsymbol{R}_{-} ; E\right)\right)$. We now define a mapping $T: S_{r} \rightarrow S_{r}$ as follows:
$x(t)=T f(t)$ is the unique solution in G_{r} of

$$
\begin{equation*}
x^{\prime}=A\left(t, x, f_{t}\right)+B\left(t, f_{t}\right), \tag{2.5}
\end{equation*}
$$

where G_{r} is as in Theorem 1 and $f \in S_{r}$. Such a solution x exists by Theorem 1 and satisfies $\|x\|_{\infty} \leqq M / p<r$. In fact, (K_{1}) and (K_{2}) imply that $A\left(t, x, f_{t}\right)$ is continuous in (t, x) on $\boldsymbol{R} \times B_{r}(0)$ and $B\left(t, f_{t}\right)$ is continuous on \boldsymbol{R} such that $\left\|B\left(t, f_{t}\right)\right\| \leqq M(r)$ for all $t \in \boldsymbol{R}$. Moreover, (1.2) in (K_{3}) implies

$$
\begin{aligned}
{[x-y,} & \left.A\left(t, x, f_{t}\right)-A\left(t, y, f_{t}\right)\right] \\
& =\left[x-y, F\left(t, x, f_{t}\right)-F\left(t, y, f_{t}\right)\right] \\
& \leqq-p\|x-y\| \quad \text { for all }(t, x),(t, y) \in \boldsymbol{R} \times B_{r}(0) .
\end{aligned}
$$

Since

$$
\left\|x(t)-x\left(t^{\prime}\right)\right\|=\left\|\int_{t^{\prime}}^{t} F\left(s, x(s), f_{s}\right) d s\right\| \leqq(L r+N(r))\left|t-t^{\prime}\right|
$$

for all $t, t^{\prime} \in \boldsymbol{R}$, we see that $x \in S_{r}$. We next show that T is a strict contraction on S_{r}. For each $f, g \in S_{r}$, putting $x=T f$ and $y=T g$, we see that

$$
\begin{aligned}
D_{+}\|x(t)-y(t)\| & =\left[x(t)-y(t), F\left(t, x(t), f_{t}\right)-F\left(t, y(t), g_{t}\right)\right] \\
& \leqq-\phi\|x(t)-y(t)\|+L\left\|f_{t}-g_{t}\right\|_{\infty} \quad \text { for all } t \in \boldsymbol{R} .
\end{aligned}
$$

Solving this differential inequality we have

$$
\begin{aligned}
&\|x(t)-y(t)\| \leqq \exp (-p(t-s))\|x(s)-y(s)\| \\
& \quad \quad L \int_{s}^{t} \exp (-p(t-\sigma))\left\|f_{\sigma}-g_{\sigma}\right\|_{\infty} d \sigma \\
& \leqq \frac{2 M(r)}{p} \\
& \quad \exp (-p(t-s)) \\
& \quad+\frac{L}{p}(1-\exp (-p(t-s)))\|f-g\|_{\infty} \\
&= \frac{1}{p}\left(2 M(r)-L\|f-g\|_{\infty}\right) \exp (-p(t-s))+\frac{L}{p}\|f-g\|_{\infty}
\end{aligned}
$$

for all $s \leqq t$. Letting $s \rightarrow-\infty$, we obtain

$$
\|x(t)-y(t)\| \leqq \frac{L}{p}\|f-g\|_{\infty} \quad \text { for all } t \in \boldsymbol{R},
$$

and this shows that $\|T f-T g\|_{\infty} \leqq \frac{L}{p}\|f-g\|_{\infty}$. Since $0<L / p<1$ by $\left(K_{3}\right), T$ has a unique fixed point u in S_{r} by the contraction principle. Clearly, u is a solution of (D.D.E).

To show that the above solution u is unique in C_{r}^{*} (note that $S_{r} \subset$ $C_{r}{ }^{*}$), let $v \in C_{r}{ }^{*}$ be another solution of (D.D.E). Then we have for each $t_{0} \in R$

$$
\begin{aligned}
D_{+}\|u(t)-v(t)\| & =\left[u(t)-v(t), F\left(t, u(t), u_{t}\right)-F\left(t, v(t), v_{t}\right)\right] \\
& \leqq-p\|u(t)-v(t)\|+L\left\|u_{t}-v_{t}\right\|_{\infty} \quad \text { for all } t \geqq t_{0} .
\end{aligned}
$$

Solving this differential inequality we obtain

$$
\begin{aligned}
& \|u(t+s)-v(t+s)\| \leqq \exp \left(-p\left(t-t_{0}\right)\right)\left\|u\left(t_{0}+s\right)-v\left(t_{0}+s\right)\right\| \\
& \quad+L \int_{t_{0}+s}^{t+s} \exp (-p(t+s-\sigma))\left\|u_{\sigma}-v_{\sigma}\right\|_{\infty} d \sigma \\
& \leqq \exp \left(-p\left(t-t_{0}\right)\right)\left\|u\left(t_{0}+s\right)-v\left(t_{0}+s\right)\right\| \\
& +\frac{L}{p}\left(1-\exp \left(-p\left(t-t_{0}\right)\right)\right)\left\|u_{t}-v_{t}\right\|_{\infty}
\end{aligned}
$$

for all $t \in\left[t_{0}, \infty\right)$ and $s \in \boldsymbol{R}_{-}$. Here we have used the fact that $\left\|u_{\sigma}-v_{\sigma}\right\|_{\infty}$ is nondecreasing in σ. It therefore follows that

$$
\left\|u_{t}-v_{t}\right\|_{\infty} \leqq \exp \left(-p\left(t-t_{0}\right)\right)\left\|u_{t_{0}}-v_{t_{0}}\right\|_{\infty}+\frac{L}{p}\left\|u_{t}-v_{t}\right\|_{\infty}
$$

for all $t \in\left[t_{0}, \infty\right)$, and this implies

$$
\left\|u_{t}-v_{t}\right\|_{\infty} \leqq \frac{p}{p-L} \exp \left(-p\left(t-t_{0}\right)\right)\left\|_{u_{0}}-v_{t_{0}}\right\|_{\infty} \quad\left(t \in\left[t_{0}, \infty\right)\right) .
$$

Consequently, we obtain

$$
\left\|u_{t_{0}}-v_{t_{0}}\right\|_{\infty} \leqq\left\|_{u_{t}}-v_{t}\right\|_{\infty} \leqq \frac{p}{p-L} \exp \left(-p\left(t-t_{0}\right)\right)\left\|u_{t_{0}}-v_{t_{0}}\right\|_{\infty}
$$

for all $t \in\left[t_{0}, \infty\right)$. Letting $t \rightarrow \infty$, we get $\left\|u_{t_{0}}-v_{t_{0}}\right\|_{\infty}=0$ and this implies, in particular, $u\left(t_{0}\right)=v\left(t_{0}\right)$.

ThEOREM 3. Suppose that $\left(K_{1}\right)-\left(K_{3}\right)$ are satisfied. Suppose further that $F(t, x, \phi)$ is a.p. in t uniformly for (x, ϕ) in closed bounded subsets of $E \times C_{B}\left(\boldsymbol{R}_{-} ; E\right)$. Then (D. D. E) has a unique a.p. solution in $C_{r}{ }^{*}$, where $C_{r}{ }^{*}$ is as in Theorem 2. Moreover, if v is any solution of
(D. D. E) such that $\left\|v_{t_{0}}\right\|_{\infty} \leqq M(r) / p$ for some $t_{0} \in \boldsymbol{R}$, then $v=u$.

Proof. Let u be the unique solution of (D.D.E) in C_{r}^{*} obtained in Theorem 2. Since $Q=B_{r}(0) \times\left\{\phi \in C_{B}\left(\boldsymbol{R}_{-} ; E\right) ;\|\phi\|_{\infty} \leqq r\right\}$ is a closed bounded subset of $E \times C_{B}\left(\boldsymbol{R}_{-} ; E\right)$, for each $\varepsilon>0$ there exists a positive number $l=l(\varepsilon, Q)$ such that any interval of length l contains a $\tau=\tau(\varepsilon)$ for which

$$
\left\|F\left(t+\tau, u(t+\tau), u_{t+\tau}\right)-F\left(t, u(t+\tau), u_{t+\tau}\right)\right\|<\varepsilon
$$

for all $t \in \boldsymbol{R}$. By virtue of (2)-(4) in Lemma 1 and (1.2) in (K_{3}) we have

$$
\begin{aligned}
D_{+}\|u(t+\tau)-u(t)\|= & {\left[u(t+\tau)-u(t), F\left(t+\tau, u(t+\tau), u_{t+\tau}\right)\right.} \\
& \left.-F\left(t, u(t), u_{t}\right)\right] \\
\leqq & -p\|u(t+\tau)-u(t)\|+L\left\|u_{t+\tau}-u_{t}\right\|_{\infty} \\
& +\left\|F\left(t+\tau, u(t+\tau), u_{t+\tau}\right)-F\left(t, u(t+\tau), u_{t+\tau}\right)\right\| \\
\leqq & -p\|u(t+\tau)-u(t)\|+L\left\|u_{t+\tau}-u_{t}\right\|_{\infty}+\varepsilon \\
& \text { for all } t \in \boldsymbol{R} .
\end{aligned}
$$

Solving this differential inequality we obtain

$$
\begin{aligned}
\|u(t+\tau+s)-u(t+s)\| \leqq & \exp (-p \beta\|u(t+\tau-\beta+s)-u(t-\beta+s)\| \\
& +L \int_{t+s-\beta}^{t+s} \exp (-p(t+s-\sigma))\left\|u_{\sigma+\tau}-u_{\sigma}\right\|_{\infty} d \sigma \\
& +\frac{\varepsilon}{p}(1-\exp (-p \beta)) \\
\leqq & 2 r \exp (-p \beta)+\frac{L}{p}(1-\exp (-p \beta))\left\|u_{t+\tau}-u_{t}\right\|_{\infty} \\
& +\frac{\varepsilon}{p} \\
\leqq & 2 r \exp (-p \beta)+\frac{L}{p}\left\|u_{t+\tau}-u_{t}\right\|_{\infty}+\frac{\varepsilon}{p}
\end{aligned}
$$

for all $\mathrm{t} \in \boldsymbol{R}, \mathrm{s} \in \boldsymbol{R}_{-}$and $\beta>0$. Here we have used again the fact that $\left\|u_{\sigma+\tau}-u_{\sigma}\right\|_{\infty}$ is nondecreasing in σ, and $u \in C_{r}{ }^{*}$. It follows from this

$$
\left\|u_{t+\tau}-u_{t}\right\|_{\infty} \leqq \frac{2 p r}{p-L} \exp (-p \beta)+\frac{\varepsilon}{p-L} \quad \text { for all } t \in \boldsymbol{R}
$$

Choose $\beta_{0}>0$ such that $2 r p \exp \left(-p \beta_{0}\right)<\varepsilon$, then

$$
\|u(t+\tau)-u(t)\| \leqq\left\|u_{t+\tau}-u_{t}\right\|_{\infty} \leqq \frac{2 \varepsilon}{p-L} \quad \text { for all } t \in \boldsymbol{R}
$$

Thus τ is a $2 \varepsilon /(p-L)$-translation number for u, and since $\varepsilon>0$ is arbitrary u is an a. p. solution of (D.D.E).

To show the last assertion of theorem, let v be any solution of ($D . D$.
$E)$ such that $\left\|v_{t_{0}}\right\|_{\infty} \leqq M(r) / p$ for some $t_{0} \in \boldsymbol{R}$. We note that $\left\|v_{t}\right\|_{\infty} \leqq M(r) / p$ for all $t \leqq t_{0}$. Define $\Gamma=\left\{t \in\left[t_{0}, \infty\right) ;\|v(s)\| \leqq r\right.$ for all $\left.s \in\left[t_{0}, t\right]\right\}$ and define $\alpha=\sup \Gamma$. Then $\alpha>t_{0}$ because $\left\|v_{t_{0}}\right\|_{\infty} \leqq M(r) / p<r$. Suppose, for contradiction, that $\alpha<\infty$. For sufficiently large integer n there exists a $t_{n} \in \Gamma$ such that $t_{0}<\alpha-\frac{1}{n}<t_{n}$. In view of (2)-(4) in Lemma 1 and (1.2) in (K_{3}) we have

$$
\begin{aligned}
D_{+}\|v(s)\| & =\left[v(s), F\left(s, v(s), v_{s}\right)\right] \\
& \leqq\left[v(s), F\left(s, v(s), v_{s}\right)-F\left(s, 0, v_{s}\right)\right]+\left\|F\left(s, 0, v_{s}\right)\right\| \\
& \leqq-p\|v(s)\|+M(r) \quad \text { for all } s \in\left[t_{0}, t_{n}\right) .
\end{aligned}
$$

From this we get

$$
\begin{aligned}
\left\|v\left(t_{n}\right)\right\| & \leqq \exp \left(-p\left(t_{n}-t_{0}\right)\right)\left\|v\left(t_{0}\right)\right\|+\frac{M(r)}{p}\left(1-\exp \left(-p\left(t_{n}-t_{0}\right)\right)\right) \\
& \leqq \frac{M(r)}{p}
\end{aligned}
$$

Letting $n \rightarrow \infty$, we conclude that $\|v(\alpha)\| \leqq M(r) / p<r$. By the continuity of v at α, there exists a $\delta>0$ such that $\|v(\alpha+t)-v(\alpha)\|<r-\|v(\alpha)\|$ for $|t| \leqq \delta$. This implies that $\|v(\alpha+t)\|<r$ for $|t| \leqq \delta$. Choosing a positive integer n such that $\alpha-\delta<t_{n}$, it can easily be seen that

$$
\|v(t)\| \leqq M(r) / p \quad \text { for } t \in\left[t_{0}, t_{n}\right] \quad \text { and }\|v(t)\|<r \quad \text { for } t \in\left[t_{n}, \alpha+\delta\right] .
$$

This contradicts to the definition of α. Consequently, $\left\|v_{t}\right\|_{\infty} \leq M(r) / p$ holds for all $t \in \boldsymbol{R}$. By the same argument as in the proof of Theorem 2 we see that $v \in S_{r}$, and hence $v=u$ by the uniqueness of solutions of (D.D.E) in $C_{r}{ }^{*}$.

Remark 2. The conditions $\left(K_{1}\right),\left(K_{2}\right)$ of this paper are the same as those of [4], but $\left(K_{3}\right)$ of this paper is somewhat stronger than that of [4]. The reason to strengthen the condition $\left(K_{3}\right)$ of [4] is that we cannot use the Ascoli-Arzela theorem in a general Banach space. The following condition $\left(K_{4}\right)$ of [4], however, is superfluous in this paper.
$\left(K_{4}\right)$ If for $x^{k}(t), y^{k}(t), x(t)$ and $y(t)$ continuous and such that $\left\|x^{k}(t)\right\| \leqq r,\left\|y^{k}(t)\right\| \leqq r$ for all $t \in \boldsymbol{R}$ and $k \geqq 1$ and $x^{k}(t) \rightarrow x(t), y^{k}(t) \rightarrow y(t)$ as $k \rightarrow \infty$ for $t \in \boldsymbol{R}$, we have

$$
F\left(t, x^{k}(t), y_{t}^{k}\right) \rightarrow F\left(t, x(t), y_{t}\right) \text { as } k \rightarrow \infty \quad \text { for } t \in \boldsymbol{R}
$$

Acknowledgment. The author would like to express his hearty thanks to the referee for his valuable comments and remarks.

References

[1] A. G. Kartsatos, The Existence of Bounded Solutions on the Real Line of Perturbed Nonlinear Evolution Equations in General Banach Spaces, Nonlinear Analysis, 17 (1991), 1085-1092.
[2] S. Kato, On the Global Existence of Unique Solutions of Differential Equations in a Banach Space, Hokkaido Math. Jour., 7 (1978), 58-73.
[3] S. Kato, Some Remarks on Nonlinear Ordinary Differential Equations in a Banach Space, Nonlinear Analysis, 5 (1981), 81-93.
[4] S. KATO, Almost Periodic Solutions of Functional Differential Equations with Infinite Delays, submitted to Funkcialaj Ekvac.
[5] V. LAKSHMIKANTHAM and S. LEELA, Differential and Integral Inequalities, vol. II., Academic Press, New York (1969).
[6] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, Eng. ed., (1982).
[7] R. H. Martin, Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Wiley Interscience, (1976).
[8] N. V. Medvedev, Certain Tests for the Existence of Bounded Solutions of Systems of Differential Equations, Differential'nye Uravneniya 4 (1968), 1258-1264.
[9] G. Seifert, Almost Periodic Solutions for a Certain Class of Almost Periodic Systems, Proc. Am. Math. Soc. 84 (1982), 47-51.
[10] G. Seifert, Almost Periodic Solutions for Delay-Differential Equations with Infinite Delays, J. Differential Equations, 41 (1981), 416-425.
[11] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Lectures in Appl. Math., vol. 14, Springer-Verlag, Berlin and New York, (1975).

Kitami Institute of Technology Kitami, Hokkaido, Japan

