On a division ring with discrete valuation

Kozo Sugano
(Received September 8, 1993, Revised December 14, 1993)

Throughout this paper A will be a division ring with non-trivial valuation v, and C will be the center of A. A has the completion with respect to the v-topology, which is also a division ring. We will denote it by A^{*}. For each division subring B of A the closure of B in A^{*} with respect to the v-topology will be also denoted by $B^{*} . B^{*}$ is isomorphic to the completion of B as topological ring.

The aim of this paper is to show that B^{*} coincides with the double centralizer of B in A^{*} for each division C-subalgebra B of A, in the case where A is finite over C and v is discrete.

In this paper we will use the same terminology as [4] and [6]. In particular for each division subring B of A we write

$$
O(B)=\{x \in B \mid v(x) \leqq 1\}, P(B)=\{x \in B \mid v(x)<1\} .
$$

Let v be non-archimedean and B an arbitrary division subring of A. $O(B)$ is a local ring with the maximal ideal $P(B)$. Hence $O(B) / P(B)$ is a division ring, which will be denoted by $E(B)$. Write $E(B)=K$ and $E(A)=E$. Then K is a division subring of E. We will write $f_{r}(A / B)=$ $[E: K]_{r}, f_{l}(A / B)=[E: K]_{l}$ and $e(A / B)=\left[v\left(A^{\circ}\right): v\left(B^{\circ}\right)\right]$, where A° and B° are the unit groups of A and B, respectively. In the case where $[E: K]_{l}$ $=[E: K]_{r}$, we will write $f(A / B)$ in stead of $f_{r}(A / B)$ or $f_{l}(A / B)$. Note that we have $e\left(A^{*} / A\right)=f\left(A^{*} / A\right)=1$ by Proposition 17.4 and Corollary 17.4 b [4]. Furthermore the Domination Principle, that is, $v(x)<v(y)$ implies $v(x+y)=v(y)$, holds also for a division ring with non-Archimedean valuation (See § 17.2 [4]).

The next lemma is well known in the case where A is a commutative field, and holds also in the case where $v \mid B$ is trivial

Lemma 1. Let A, B and v be as above, then we have $e(A / B)$ $f_{r}(A / B) \leqq[A: B]_{r}$. If $[A: B]_{r}<\infty$, both $e(A / B)$ and $f_{r}(A / B)$ are finite.

Proof. Since $v(a b)=v(a) v(b)=v(b) v(a)=v(b a)$ for any $a, b \in A$, and the Domination Principle holds for A, we can follow the same lines as the proof of Theorem 4.5 Chap. 2 [2].

Let v be discrete, and write $O=O(A)$ and $P=P(A)$. Then there exists $z \in P$ such that $P=z O=O z$. Such z is called a uniformizer at v. Let $v(z)=d$. Then $0<d<1$, and we have $v\left(A^{\circ}\right)=\left\{d^{n} \mid n \in Z\right\}$, where Z is the set of rational integers (See § 17.5 [4]). For each $n \in Z$ we can choose an element $z_{n} \in A$ such that $v\left(z_{n}\right)=d^{n}$. On the other hand we can obtain a set Γ which contains 0 and consists of the representatives in O of the cosets of P, that is, Γ satisfies the following conditions;
$\left(\gamma_{1}\right) 0 \in \Gamma \subset 0$.
$\left(\gamma_{2}\right)$ If $a, b \in \Gamma$ and $a \neq b$, then $a \neq b(P)$.
$\left(\gamma_{3}\right)$ For each $x \in O$ there exists $c \in \Gamma$ such that $x \equiv c(P)$.
The next two lemmas are also well known in the case of commutative field (See Theorems 4.6 and 4.7 Chap. 2 [2] and Exercise 3 § 17.5 [4]).

Lemma 2. Assume that v is discrete and A is complete. Let z, $\left\{z_{n}\right\}$ and Γ be as above. Then each element a of A has a unique Laurent series representation, namely, $a=\sum a_{n} z_{n}$, were $a_{n} \in \Gamma$ and $a_{n}=0$ for almost all $0>n \in Z$, in particular we have $a=\sum a_{n} z^{n}$ with $a_{n} \in \Gamma$, $n>k$ for some $k \in Z$.

Proof. Completely same as the proof of Theorem 4.6 [2].
Lemma 3. Let F be a commutative field and A an F-algebra. Assume furthermore that v is discrete, $v \mid F$ is non-trivial, F is complete and $f(A / F)=f<\infty$. Then A is complete, and we have $e(A / F) f(A / F)$ $=[A: F]<\infty$.

Proof. First assume that A is complete. We will show the equality by the same methods as the proof of Theorem 4.7 Chap. 2 [2]. Let z and c be uniformizers at v and $v \mid F$, respectively, and $v(z)=d$. Then $v(c)=$ d^{e} for some natural number e, and we have $e=e(A / F)<\infty$. Moreover the set $\left\{c^{i} z^{j} \mid i, j \in Z, 0 \leqq j<e\right\}$ has the same condition as the set $\left\{z_{n}\right\}$ in Lemma 2. On the other hand by our assumption there exist $w_{1}, w_{2}, \cdots, w_{f}$ in $O(A)$ such that $\bar{w}_{1}, \bar{w}_{2}, \cdots, \bar{w}_{f}$ form a basis of $E(A)$ over $E(F)$, and we can construct a set Γ satisfying the conditions $\left(\gamma_{1}\right),\left(\gamma_{2}\right)$ and $\left(\gamma_{3}\right)$ as a subset of the set $\left\{\Sigma k_{i} w_{i} \mid k_{i} \in O(F), 1 \leqq i \leqq f\right\}$. Then since A is complete for each $a \in A$ we can write by Lemma 2

$$
a=\sum_{i, j, k} a_{i j k} w_{i} C^{j} z^{k}, \quad a_{i j k} \in O(F), i, j, k \in Z, 1 \leqq i \leqq f, 0 \leqq k<e .
$$

If $v(a)=d^{n}$, we have $a_{i j k}=0$ for all $j<[n / e]$ by the Domination Principle, where [] is the Gauss symbol. Hence $b_{i k}=\sum_{j} a_{i j k} c^{j}$ is an element of F,
since F is complete. But we have $a=\sum b_{i k} w_{i} z^{k}$, since A is an F-algebra. Therefore we have $[A: F] \leqq e f$. By Lemma 1 we have $[A: F] \geqq e f$. Hence we have $[A: F]=e f<\infty$. Next assume that A may not be complete. But A^{*} is also an F-algebra by Lemma 1.4 [6]. Since $e\left(A^{*} / A\right)=$ $f\left(A^{*} / A\right)=1$ we have

$$
\begin{aligned}
& e\left(A^{*} / F\right)=e\left(A^{*} / A\right) e(A / F)=e(A / F)=e \text { and } \\
& f\left(A^{*} / F\right)=f\left(A^{*} / A\right) f(A / F)=f(A / F)=f
\end{aligned}
$$

Then by Lemma 1 and the above argument we have $[A: F] \leqq\left[A^{*}: F\right]=$ $e f \leqq[A: F]$. Thus we have $[A: F]=\left[A^{*}: F\right]$ and $A=A^{*}$.

Now suppose that A is finite dimensional over C. Then for any division C-subalgebra B of $A V_{A}(B)$ is a finite dimensional division C-subalgebra, where $V_{A}(B)$ is the centralizer of B in A, and we have $B=$ $V_{A}\left(V_{A}(B)\right.$) (See e.g., Theorem 12.7 [4]). Therefore A is an H-separable extension of every division C-subalgebra B of A by Theorem 1 [5]. Moreover $\left\{A / B, A^{*} / B^{\prime \prime}\right\}$ have the centralizer property in the sense of [6], and we have $[A: B]=\left[A^{*}: B^{\prime \prime}\right]$ and $B^{\prime \prime} \supset B^{*}$, where $B^{\prime \prime}=V_{A^{*}}\left(V_{A^{*}}(B)\right)$ by Theorem 1.3 (3), (4) [6]. In particular C^{*} is contained in the center of A^{*}.

Now we are ready to have our main theorem.
THEOREM 1. Let A be a division ring with non-trivial discrete valuation v. Assume A is finite dimensional over its center C. Then we have
(1) The closure C^{*} of C in A^{*} coincides with the center of A^{*}, and we have $\left[A^{*}: C^{*}\right]=[A: C]$.
(2) For any division C-subalgebra B of A, we have $B^{*}=V_{A^{*}}\left(V_{A^{*}}(B)\right)$, $A^{*}=B^{*} A=A B^{*}, B^{*} \cap A=B$ and $[A: B]=\left[A^{*}: B^{*}\right]=e(A / B) f(A / B)=$ $e\left(A^{*} / B^{*}\right) f\left(A^{*} / B^{*}\right)$.

Proof. (1). Write $C^{\prime \prime}=V_{A^{*}}\left(V_{A^{*}}(C)\right)$. $C^{\prime \prime}$ coincides with the center of A^{*} by Proposition 1.4 [6] . Since v is non-archimedean, we have $e\left(C^{*} / C\right)=e\left(A^{*} / A\right)=1$ and $f\left(A^{*} / A\right)=f\left(C^{*} / C\right)=1$. Then since

$$
e\left(A^{*} / C\right)=e\left(A^{*} / C^{*}\right) e\left(C^{*} / C\right)=e\left(A^{*} / A\right) e(A / C)
$$

we have $e(A / C)=e\left(A^{*} / C^{*}\right)$. Similarly we have $f\left(A^{*} / C^{*}\right)=f(A / C)<\infty$. On the other hand, $v \mid C$ and $v \mid C^{*}$ are non-trivial, otherwise by Lemma 1 we have

$$
\boldsymbol{\aleph}_{0}=\left|v\left(A^{\circ}\right)\right|=e(A / C) \leqq e(A / C) f(A / C) \leqq[A: C]<\infty
$$

a contradiction. Then by Lemmas 1 and 3 we have

$$
\left[A^{*}: C^{*}\right]=e\left(A^{*} / C^{*}\right) f\left(A^{*} / C^{*}\right)=e(A / C) f(A / C) \leqq[A: C] .
$$

But by Theorem 1.7 (3) [6] we have $[A: C]=\left[A^{*}: C^{\prime \prime}\right] \leqq\left[A^{*}: C^{*}\right]$. Hence we have $\left[A^{*}: C^{*}\right]=\left[A^{*}: C^{\prime \prime}\right]$ and $C^{*}=C^{\prime \prime}$.
(2). Put $B^{\prime \prime}=V_{A^{*}}\left(V_{A^{*}}(B)\right) . \quad B^{\prime \prime}$ is complete, and $\left[A^{*}: B^{\prime \prime}\right]=[A: B]$ by Theorem 1.7 (3) and (4) [6] On the other hand since $e\left(B^{*} / B\right)=f\left(B^{*} / B\right)$ $=1$, we have

$$
\begin{aligned}
& e\left(A^{*} / B^{*}\right) f\left(A^{*} / B^{*}\right)=e(A / B) f(A / B) \leqq[A: B] \\
& e\left(B^{*} / C^{*}\right) f\left(B^{*} / C^{*}\right)=e(B / C) f(B / C) \leqq[B: C] .
\end{aligned}
$$

Where the inequalities \leqq 's are due to Lemma 1. Then we have

$$
\begin{aligned}
{\left[A^{*}: C^{*}\right] } & =e\left(A^{*} / C^{*}\right) f\left(A^{*} / C^{*}\right) \\
& =e\left(A^{*} / B^{*}\right) e\left(B^{*} / C^{*}\right) f\left(A^{*} / B^{*}\right) f\left(B^{*} / C^{*}\right) \\
& \leqq[A: B][B: C]=[A: C]=\left[A^{*}: C^{*}\right] .
\end{aligned}
$$

This means that $e(A / B) f(A / B)=[A: B]$ and $e(B / C) f(B / C)=[B: C]$. The latter equality shows $[B: C]=e\left(B^{*} / C^{*}\right) f\left(B^{*} / C^{*}\right)=\left[B^{*}: C^{*}\right]$. Then $\left[A^{*}: B^{\prime \prime}\right]=[A: B]=\left[A^{*}: B^{*}\right]$ and we have $B^{*}=B^{\prime \prime}$. The proof of the remaining part is due to Theorem 1.7 [6].

References

[1] E. Artin, and G. Whaples: The theory of simple rings, Amer. J. Math., 65 (1943), 87-107.
[2] S. Iyanaga: Number Theory (in Japanese), Iwanami (1969).
[3] K. Hirata: Some types of separable extensions of rings, Nagoya Math. J., 33 (1968), 107-115.
[4] R. PIerce: Associative Algebras, Springer GTM 88 (1980).
[5] K. SUGANO: On H-separable extensions of two-sided simple rings, Hokkaido Math. J., 11 (1982), 246-252.
[6] K. SUGANO: On bicommutators of modules over H-separable extension rings III, Hokkaido Math. J. 23 (1994), 277-289.

