On a division ring with discrete valuation

Kozo Sugano (Received September 8, 1993, Revised December 14, 1993)

Throughout this paper A will be a division ring with non-trivial valuation v, and C will be the center of A. A has the completion with respect to the v-topology, which is also a division ring. We will denote it by A^* . For each division subring B of A the closure of B in A^* with respect to the v-topology will be also denoted by B^* . B^* is isomorphic to the completion of B as topological ring.

The aim of this paper is to show that B^* coincides with the double centralizer of B in A^* for each division C-subalgebra B of A, in the case where A is finite over C and v is discrete.

In this paper we will use the same terminology as [4] and [6]. In particular for each division subring B of A we write

$$O(B) = \{x \in B | v(x) \le 1\}, P(B) = \{x \in B | v(x) < 1\}.$$

Let v be non-archimedean and B an arbitrary division subring of A. O(B) is a local ring with the maximal ideal P(B). Hence O(B)/P(B) is a division ring, which will be denoted by E(B). Write E(B)=K and E(A)=E. Then K is a division subring of E. We will write $f_r(A/B)=[E:K]_r$, $f_l(A/B)=[E:K]_l$ and $e(A/B)=[v(A^\circ):v(B^\circ)]$, where A° and B° are the unit groups of A and B, respectively. In the case where $[E:K]_l=[E:K]_r$, we will write f(A/B) in stead of $f_r(A/B)$ or $f_l(A/B)$. Note that we have $e(A^*/A)=f(A^*/A)=1$ by Proposition 17.4 and Corollary 17.4 b [4]. Furthermore the Domination Principle, that is, v(x) < v(y) implies v(x+y)=v(y), holds also for a division ring with non-Archimedean valuation (See § 17. 2 [4]).

The next lemma is well known in the case where A is a commutative field, and holds also in the case where v|B is trivial

LEMMA 1. Let A, B and v be as above, then we have e(A/B) $f_r(A/B) \leq [A:B]_r$. If $[A:B]_r < \infty$, both e(A/B) and $f_r(A/B)$ are finite.

PROOF. Since v(ab)=v(a)v(b)=v(b)v(a)=v(ba) for any $a, b \in A$, and the Domination Principle holds for A, we can follow the same lines as the proof of Theorem 4.5 Chap. 2 [2].

424 K. Sugano

Let v be discrete, and write O=O(A) and P=P(A). Then there exists $z \in P$ such that P=zO=Oz. Such z is called a uniformizer at v. Let v(z)=d. Then 0 < d < 1, and we have $v(A^\circ)=\{d^n|n\in Z\}$, where Z is the set of rational integers (See § 17.5 [4]). For each $n\in Z$ we can choose an element $z_n\in A$ such that $v(z_n)=d^n$. On the other hand we can obtain a set Γ which contains 0 and consists of the representatives in O of the cosets of P, that is, Γ satisfies the following conditions;

- (γ_1) $0 \in \Gamma \subset O$.
- (γ_2) If $a, b \in \Gamma$ and $a \neq b$, then $a \not\equiv b$ (P).
- (γ_3) For each $x \in O$ there exists $c \in \Gamma$ such that $x \equiv c$ (P).

The next two lemmas are also well known in the case of commutative field (See Theorems 4.6 and 4.7 Chap. 2 [2] and Exercise 3 § 17.5 [4]).

LEMMA 2. Assume that v is discrete and A is complete. Let z, $\{z_n\}$ and Γ be as above. Then each element a of A has a unique Laurent series representation, namely, $a = \sum a_n z_n$, were $a_n \in \Gamma$ and $a_n = 0$ for almost all $0 > n \in Z$, in particular we have $a = \sum a_n z^n$ with $a_n \in \Gamma$, n > k for some $k \in Z$.

PROOF. Completely same as the proof of Theorem 4.6 [2].

LEMMA 3. Let F be a commutative field and A an F-algebra. Assume furthermore that v is discrete, v|F is non-trivial, F is complete and $f(A/F)=f<\infty$. Then A is complete, and we have $e(A/F)f(A/F)=[A:F]<\infty$.

PROOF. First assume that A is complete. We will show the equality by the same methods as the proof of Theorem 4.7 Chap. 2 [2]. Let z and c be uniformizers at v and v|F, respectively, and v(z)=d. Then $v(c)=d^e$ for some natural number e, and we have $e=e(A/F)<\infty$. Moreover the set $\{c^iz^j\mid i,\ j\in Z,\ 0\leq j< e\}$ has the same condition as the set $\{z_n\}$ in Lemma 2. On the other hand by our assumption there exist $w_1,\ w_2,\ \cdots,\ w_f$ in O(A) such that $\bar{w}_1,\ \bar{w}_2,\ \cdots,\ \bar{w}_f$ form a basis of E(A) over E(F), and we can construct a set Γ satisfying the conditions $(\gamma_1),\ (\gamma_2)$ and (γ_3) as a subset of the set $\{\sum k_iw_i\mid k_i\in O(F),\ 1\leq i\leq f\}$. Then since A is complete for each $a\in A$ we can write by Lemma 2

$$a = \sum_{i,j,k} a_{ijk} w_i c^j z^k$$
, $a_{ijk} \in O(F)$, $i, j, k \in \mathbb{Z}$, $1 \le i \le f$, $0 \le k < e$.

If $v(a)=d^n$, we have $a_{ijk}=0$ for all j<[n/e] by the Domination Principle, where [] is the Gauss symbol. Hence $b_{ik}=\sum_j a_{ijk}c^j$ is an element of F,

since F is complete. But we have $a = \sum b_{ik}w_iz^k$, since A is an F-algebra. Therefore we have $[A:F] \leq ef$. By Lemma 1 we have $[A:F] \geq ef$. Hence we have $[A:F] = ef < \infty$. Next assume that A may not be complete. But A^* is also an F-algebra by Lemma 1.4 [6]. Since $e(A^*/A) = f(A^*/A) = 1$ we have

$$e(A^*/F) = e(A^*/A)e(A/F) = e(A/F) = e$$
 and $f(A^*/F) = f(A^*/A)f(A/F) = f(A/F) = f$.

Then by Lemma 1 and the above argument we have $[A:F] \le [A^*:F] = ef \le [A:F]$. Thus we have $[A:F] = [A^*:F]$ and $A = A^*$.

Now suppose that A is finite dimensional over C. Then for any division C-subalgebra B of A $V_A(B)$ is a finite dimensional division C-subalgebra, where $V_A(B)$ is the centralizer of B in A, and we have $B = V_A(V_A(B))$ (See e.g., Theorem 12.7 [4]). Therefore A is an H-separable extension of every division C-subalgebra B of A by Theorem 1 [5]. Moreover $\{A/B, A^*/B''\}$ have the centralizer property in the sense of [6], and we have $[A:B]=[A^*:B'']$ and $B''\supset B^*$, where $B''=V_{A^*}(V_{A^*}(B))$ by Theorem 1.3 (3), (4) [6]. In particular C^* is contained in the center of A^* .

Now we are ready to have our main theorem.

THEOREM 1. Let A be a division ring with non-trivial discrete valuation v. Assume A is finite dimensional over its center C. Then we have

- (1) The closure C^* of C in A^* coincides with the center of A^* , and we have $[A^*:C^*]=[A:C]$.
- (2) For any division C-subalgebra B of A, we have $B^* = V_{A^*}(V_{A^*}(B))$, $A^* = B^*A = AB^*$, $B^* \cap A = B$ and $[A:B] = [A^*:B^*] = e(A/B)f(A/B) = e(A^*/B^*)f(A^*/B^*)$.

PROOF. (1). Write $C'' = V_{A^*}(V_{A^*}(C))$. C'' coincides with the center of A^* by Proposition 1.4 [6] . Since v is non-archimedean, we have $e(C^*/C) = e(A^*/A) = 1$ and $f(A^*/A) = f(C^*/C) = 1$. Then since

$$e(A^*/C) = e(A^*/C^*)e(C^*/C) = e(A^*/A)e(A/C),$$

we have $e(A/C)=e(A^*/C^*)$. Similarly we have $f(A^*/C^*)=f(A/C)<\infty$. On the other hand, v|C and $v|C^*$ are non-trivial, otherwise by Lemma 1 we have

$$\aleph_0 = |v(A^\circ)| = e(A/C) \le e(A/C) f(A/C) \le [A:C] < \infty$$

426 *K. Sugano*

a contradiction. Then by Lemmas 1 and 3 we have

$$[A^*: C^*] = e(A^*/C^*)f(A^*/C^*) = e(A/C)f(A/C) \le [A:C].$$

But by Theorem 1.7 (3) [6] we have $[A:C]=[A^*:C''] \leq [A^*:C^*]$. Hence we have $[A^*:C^*]=[A^*:C'']$ and $C^*=C''$.

(2). Put $B'' = V_{A^*}(V_{A^*}(B))$. B'' is complete, and $[A^*:B''] = [A:B]$ by Theorem 1.7 (3) and (4) [6] On the other hand since $e(B^*/B) = f(B^*/B)$ = 1, we have

$$e(A^*/B^*)f(A^*/B^*) = e(A/B)f(A/B) \le [A:B]$$

 $e(B^*/C^*)f(B^*/C^*) = e(B/C)f(B/C) \le [B:C].$

Where the inequalities \leq 's are due to Lemma 1. Then we have

$$[A^*: C^*] = e(A^*/C^*)f(A^*/C^*)$$

= $e(A^*/B^*)e(B^*/C^*)f(A^*/B^*)f(B^*/C^*)$
 $\leq [A:B][B:C] = [A:C] = [A^*:C^*].$

This means that e(A/B)f(A/B)=[A:B] and e(B/C)f(B/C)=[B:C]. The latter equality shows $[B:C]=e(B^*/C^*)f(B^*/C^*)=[B^*:C^*]$. Then $[A^*:B'']=[A:B]=[A^*:B^*]$ and we have $B^*=B''$. The proof of the remaining part is due to Theorem 1.7 [6].

References

- [1] E. ARTIN, and G. WHAPLES: The theory of simple rings, Amer. J. Math., 65 (1943), 87-107.
- [2] S. IYANAGA: Number Theory (in Japanese), Iwanami (1969).
- [3] K. HIRATA: Some types of separable extensions of rings, Nagoya Math. J., 33 (1968), 107-115.
- [4] R. PIERCE: Associative Algebras, Springer GTM 88 (1980).
- [5] K. SUGANO: On *H*-separable extensions of two-sided simple rings, Hokkaido Math. J., 11 (1982), 246-252.
- [6] K. SUGANO: On bicommutators of modules over *H*-separable extension rings III, Hokkaido Math. J. 23 (1994), 277-289.

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060, Japan