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On a division ring with discrete valuation

Kozo SUGANO
(Received September 8, 1993, Revised December 14, 1993)

Throughout this paper A will be a division ring with non-trivial valu-
ation v, and C will be the center of A. A has the completion with respect
to the v-topology, which is also a division ring. We will denote it by A*.
For each division subring B of A the closure of B in A* with respect to
the v-topology will be also denoted by B*. B*is isomorphic to the com-
pletion of B as topological ring.

The aim of this paper is to show that B* coincides with the double
centralizer of B in A* for each division C-subalgebra B of A, in the case
where A is finite over C and v is discrete.

In this paper we will use the same terminology as and [6]. In
particular for each division subring B of A we write

O(B)={xEB|v(x)<1}, P(B)={x=B|v(x)<1}.

Let v be non-archimedean and B an arbitrary division subring of A.
O(B) is a local ring with the maximal ideal P(B). Hence O(B)/P(B) is
a division ring, which will be denoted by E(B). Write E(B)=K and
E(A)=E. Then K is a division subring of E. We will write f-(A/B)=
[E:K]),, fi{A/B)=[E:K]; and e(A/B)=[v(A°): v(B°)], where A° and B*
are the unit groups of A and B, respectively. In the case where [E: K]
=[E: K],, we will write f(A/B) in stead of f-(A/B) or fi(A/B). Note
that we have e(A*/A)=f(A*/A)=1 by Proposition 17.4 and Corollary 17.4
b [4]. Furthermore the Domination Principle, that is, v(x)<wv(y) implies
v(x+y)=v(y), holds also for a division ring with non-Archimedean valua-
tion (See §17.2 [4]).

The next lemma is well known in the case where A is a commutative
field, and holds also in the case where v|B is trivial

LEMMA 1. Let A, B and v be as above, then we have e(A/B)
f(A/B)<[A:B],. If [A:B],<, both e(A/B) and f,(A/B) are finite.

PrROOF. Since v(ab)=v(a)v(b)=v(b)v(a)=v(ba) for any a, bEA,
and the Domination Principle holds for A, we can follow the same lines as
the proof of Theorem 4.5 Chap. 2 [2].
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Let v be discrete, and write O=0(A) and P=P(A). Then there
exists zEP such that P=z0=0z. Such z is called a uniformizer at v.
Let v(z2)=d. Then 0<d<1, and we have v(A°)={d"|nEZ}, where Z is
the set of rational integers (See § 17.5 [4]). For each n€Z we can choose
an element z.< A such that v(z.)=d". On the other hand we can obtain a
set T which contains 0 and consists of the representatives in O of the
cosets of P, that is, T satisfies the following conditions;

(r) 0€TCO.
(7,) If @, bET and a=+b, then a*b (P).
(75) For each x€ O there exists cET such that x=c¢ (P).

The next two lemmas are also well known in the case of commutative
field (See Theorems 4.6 and 4.7 Chap. 2 [2] and Exercise 3 § 17.5 [4]).

LEMMA 2. Assume that v is discrvete and A is complete. Let z,
{z2} and T be as above. Then each element a of A has a unique
Laurent series representation, namely, a=2) anzn, were ar<TI' and a,=0
for almost all 0 >n<EZ, in particular we have a=2) a.z" with a,€ T,
n>k for some k& Z.

PROOF. Completely same as the proof of Theorem 4.6 [2].

LEMMA 3. Let F be a commutative field and A an F-algebra.
Assume furthermore that v is discrete, v|F is non-trivial, F is complete
and f(A/F)=f<co. Then A is complete, and we have e(A/F)f(A/F)
=[A: F]< 0.

PROOF. First assume that A is complete. We will show the equality
by the same methods as the proof of Theorem 4.7 Chap. 2 [2]. Let z and
¢ be uniformizers at v and v|F, respectively, and v(z)=d. Then v(c)=
d® for some natural number ¢, and we have e=e(A/F)<co. Moreover
the set {c'z’| i, J€Z, 0<j<e} has the same condition as the set {z.} in
Lemma 2. On the other hand by our assumption there exist wi, we, -, wr
in O(A) such that @i, s, -, @, form a basis of E(A) over E(F), and we
can construct a set T' satisfying the conditions (71), (72) and (7s) as a sub-
set of the set {3 kw:| k. EO(F), 1<i<f}. Then since A is complete for
each € A we can write by

a=iixainwic’z", an<OF), 1,j,kEZ, 1=i=f, 0=k<e.

If v(a)=d", we have a; =0 for all j<[n/e] by the Domination Principle,
where [ ] is the Gauss symbol. Hence bx=2;a:c’ is an element of F,
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since F is complete. But we have a=2 baw:z*, since A is an F-algebra.
Therefore we have [A: Fl<ef. By we have [A: F|=ef.
Hence we have [A: F]=ef<co. Next assume that A may not be com-
plete. But A* is also an F-algebra by Lemma 1.4 [6]. Since e(A*/A)=
Ff(A*/A)=1 we have

e(A*/F)=e(A*/A)e(A/F)=e(A/F)=e and
f(A*/F)=f(A*/ A)f(A/F)=f(A/F)=f.

Then by and the above argument we have [A: F]<[A*: F]=
ef<[A:F)]. Thus we have [A: F]=[A*: F] and A=A*.

Now suppose that A is finite dimensional over C. Then for any divi-
sion C-subalgebra B of A Va(B) is a finite dimensional division C-subal-
gebra, where Vi(B) is the centralizer of B in A, and we have B=
Va(Va(B)) (See e.g., Theorem 12.7 [4]). Therefore A is an H-separable
extension of every division C-subalgebra B of A by [5].
Moreover {A/B, A*/B”} have the centralizer property in the sense of [6],
and we have [A:B]=[A*:B”] and B"DB*, where B"=V4(V a(B)) by
Theorem 1.3 (3), (4) [6]. In particular C* is contained in the center of
A*.

Now we are ready to have our main theorem.

THEOREM 1. Let A be a division ring with non-trivial discrete
valuation v. Assume A is finite dimensional over its center C. Then
we have

(1) The closure C* of C in A* coincides with the center of A*, and
we have [A*: C*]=[A: C].

(2) For any division C-subalgebra B of A, we have B*=V a«(V a(B)),
A*=B*A=AB* B*NA=B and [A: Bl=[A*: B*]=e¢(A/B)f(A/B)=
e(A*/B*)f(A*/B¥).

PROOF. (1). Write C'=Va(Va{(C)). C” coincides with the center

of A* by Proposition 1.4 . Since v is non-archimedean, we have
e(C*/C)=e(A*/A)=1 and f(A*/A)=7(C*/C)=1. Then since

e(A*/C)=e(A*/C*)e(C*/C)=e(A*/A)e(A/C),

we have e(A/C)=e(A*/C*). Similarly we have f(A*/C*)=7(A/C)<co.
On the other hand, v|C and »|C* are non-trivial, otherwise by
we have

Ro=|v(A%)|=e(A/C)<e(A/C)f(A/C)E[A: C]< >
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a contradiction. Then by Lemmas 1 and 3 we have
[A*: C*]=e(A*/C*)f(A*/C*)=e(A/C)F(A/C)<[A: C].

But by Theorem 1.7 (3) [6] we have [A: C]=[A*: C"]<[A*: C*]. Hence
we have [A*: C*]=[A*: C”] and C*=C".

(2). Put B"=Va(Va(B)). B” is complete, and [A*: B"]=[A: B] by
Theorem 1.7 (3) and (4) [6] On the other hand since e(B*/B)=f(B*/B)
=1, we have

e(A*/B*)f(A*/B*)=e¢(A/B)f(A/B)<[A: B]
e(B*/C*)f(B*/C*)=e(B/C)f(B/C)<[B: Cl.

Where the inequalities <’ s are due to Lemma 1. Then we have

[A*: C*]=e(A*/C*)f(A*/C*)
=e(A*/B*)e(B*/C*)f(A*/B*)f(B*/C*)
<[A:B][B: Cl=[A: C]=[A*: C*].

This means that e(A/B)f(A/B)=[A:B] and e(B/C)f(B/C)=[B:C].
The latter equality shows [B: Cl=e(B*/C*)f(B*/C*)=[B*: C*]. Then
[A*: B"]=[A: B]=[A*: B*] and we have B*=B”". The proof of the
remaining part is due to Theorem 1.7 [6].
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