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On a division ring with discrete valuation

Kozo SUGANO
(Received September 8, 1993, Revised December 14, 1993)

Throughout this paper A will be a division ring with non-trivial valu-
ation v , and C will be the center of A. A has the completion with respect
to the v-topology, which is also a division ring. We will denote it by A^{*} .

For each division subring B of A the closure of B in A^{*} with respect to
the v-topology will be also denoted by B^{*} . B^{*} is isomorphic to the com-
pletion of B as topological ring.

The aim of this paper is to show that B^{*} coincides with the double
centralizer of B in A^{*} for each division C-subalgebra B of A, in the case
where A is finite over C and v is discrete.

In this paper we will use the same terminology as [4] and [6]. In
particular for each division subring B of A we write

O(B)=\{x\in B|v(x)\leqq 1\} , P(B)=\{x\in B|v(x)<1\} .

Let v be non-archimedean and B an arbitrary division subring of A .
O(B) is a local ring with the maximal ideal P(B) . Hence O(B)/P(B) is
a division ring, which will be denoted by E(B) . Write E(B)=K and
E(A)=E. Then K is a division subring of E. We will write f_{r}(A/B)=

[E:K]_{r} , f_{l}(A/B)=[E:K]_{l} and e(A/B)=[v(A^{o}):v(B^{o})] , where A^{o} and B^{o}

are the unit groups of A and B, respectively. In the case where [E:K]_{l}

=[E:K]_{r} , we will write f(A/B) in stead of f_{r}(A/B) or f_{l}(A/B) . Note
that we have e(A^{*}/A)=f(A^{*}/A)=1 by Proposition 17.4 and Corollary 17.4
b[4] . Furthermore the Domination Principle, that is, v(x)<v(y) implies
v(x+y)=v(y) , holds also for a division ring with non-Archimedean valua-
tion (See \S 17. 2 [4]).

The next lemma is well known in the case where A is a commutative
field, and holds also in the case where v|B is trivial

LEMMA 1. Let A , B and v be as above, then we have e(A/B)
f_{r}(A/B)\leqq[A:B]_{r} . If [A:B]_{r}<\infty , both e(A/B) and f_{r}(A/B) are finite.

PROOF. Since v(ab)=v(a)v(b)=v(b)v(a)=v(ba) for any a , b\in A ,

and the Domination Principle holds for A, we can follow the same lines as
the proof of Theorem 4.5 Chap. 2 [2].
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Let v be discrete, and write O=O(A) and P=P(A) . Then there
exists z\in P such that P=zO=Oz. Such z is called a uniformizer at v .
Let v(z)=d . Then 0<d<1 , and we have v(A^{o})=\{d^{n}|n\in Z\} , where Z is
the set of rational integers (See \S 17.5 [4]). For each n\in Z we can choose
an element z_{n}\in A such that v(z_{n})=d^{n}- On the other hand we can obtain a
set \Gamma which contains 0 and consists of the representatives in O of the
cosets of P, that is, \Gamma satisfies the following conditions;

(\gamma_{1})0\in\Gamma\subset O .
(\gamma_{2}) If a , b\in\Gamma and a\neq b , then a\not\equiv b(P) .
(\gamma_{3}) For each x\in O there exists c\in\Gamma such that x\equiv c(P) .

The next two lemmas are also well known in the case of commutative
field (See Theorems 4.6 and 4.7 Chap. 2 [2] and Exercise 3 \S 17.5 [4]).

LEMMA 2. Assume that v is discrete and A is complete. Let z ,
\{z_{n}\} and \Gamma be as above. Then each element a of A has a unique
Laurent series representation, namely, a= \sum anzn , were a_{n}\in\Gamma and a_{n}=0

for almost all 0>n\in Z , in particular we have a=\Sigma a_{n}z^{n} with a_{n}\in\Gamma .
n>k for some k\in Z .

PROOF. Completely same as the proof of Theorem 4.6 [2].

LEMMA 3. Let F be a commutative field and A an F-algcbra.

Assume furthermore that v is discrete, v|F is non-trivial, F is complete

and f(A/F)=f<\infty . Then A is complete, and we have e(A/F)f(A/F)
=[A:F]<\infty .

PROOF. First assume that A is complete. We will show the equality
by the same methods as the proof of Theorem 4.7 Chap. 2 [2]. Let z and
c be uniformizers at v and v|F . respectively, and v(z)=d . Then v(c)=
d^{e} for some natural number e , and we have e=e(A/F)<\infty . Moreover
the set \{c^{i}z^{j}|i, j\in Z, 0\leqq j<e\} has the same condition as the set \{z_{n}\} in
Lemma 2. On the other hand by our assumption there exist w_{1} , w_{2} , \cdots , w_{f}

in O(A) such that \overline{w}_{1},\overline{w}_{2} , \cdots , \overline{w}_{f} form a basis of E(A) over E(F) , and we
can construct a set \Gamma satisfying the conditions (\gamma_{1}) , (\gamma_{2}) and (\gamma_{3}) as a sub-
set of the set \{\Sigma k_{i}w_{i}|k_{i}\in O(F), 1\leqq i\leqq f\} . Then since A is complete for
each a\in A we can write by Lemma 2

a= \sum_{i,j,k}a_{ijk}w_{i}c^{j}z^{k} , a_{ijk}\in O(F) , i , j , k\in Z , 1\leqq i\leqq f , 0\leqq k<e .

If v(a)=d^{n}- we have a_{ijk}=0 for all j<[n/e] by the Domination Principle,

where [ ] is the Gauss symbol. Hence b_{ik}= \sum_{j}a_{ijk}c^{j} is an element of F,
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since F is complete. But we have a= \sum b_{ik}w_{i}z^{k} since A is an F-algebra.
Therefore we have [A:F]\leqq ef . By Lemma 1 we have [A:F]\geqq ef .
Hence we have [A : F]=ef<\infty . Next assume that A may not be com-
plete. But A^{*} is also an F-algebra by Lemma 1.4 [6]. Since e(A^{*}/A)=

f(A^{*}/A)=1 we have

e(A^{*}/F)=e(A^{*}/A)e(A/F)=e(A/F)=e and
f(A^{*}/F)=f(A^{*}/A)f(A/F)=f(A/F)=f .

Then by Lemma 1 and the above argument we have [A: F]\leqq[A^{*} : F]=

ef\leqq[A:F] . Thus we have [A:F]=[A^{*} : F] and A=A^{*} .

Now suppose that A is finite dimensional over C. Then for any divi-
sion C-subalgebra B of A V_{A}(B) is a finite dimensional division C-subal-
gebra, where V_{A}(B) is the centralizer of B in A , and we have B=
V_{A}(V_{A}(B)) (See e . g. , Theorem 12.7 [4]). Therefore A is an H-separable
extension of every division C-subalgebra B of A by Theorem 1 [5].

Moreover \{A/B, A^{*}/B’\} have the centralizer property in the sense of [6],

and we have [A:B]=[A^{*} : B’] and B’\supset B^{*} . where B’=V_{A}*(V_{A}*(B)) by
Theorem 1.3 (3), (4) [6]. In particular C^{*} is contained in the center of
A^{*} .

Now we are ready to have our main theorem.

THEOREM 1. Let A be a division ring with non-trivial discrete
valuation v . Assume A is finite dimensional over its center C. Then
we have

(1) The closure C^{*} of C in A^{*} coincides with the center of A^{*} , and
we have [A^{*} : C^{*}]=[A:C] .

(2) For any division C-subalgebra B of A, we have B^{*}=V_{A}*(V_{A}*(B)) ,
A^{*}=B^{*}A=AB^{*} , B^{*}\cap A=B and [A:B]=[A^{*} : B^{*}]=e(A/B)f(A/B)=

e(A^{*}/B^{*})f(A^{*}/B^{*}) .

PROOF. (1). Write C’=V_{A}*(V_{A}*(C)) . C’ coincides with the center
of A^{*} by Proposition 1.4 [6] Since v is non-archimedean, we have
e(C^{*}/C)=e(A^{*}/A)=1 and f(A^{*}/A)=f(C^{*}/C)=1 . Then since

e(A^{*}/C)=e(A^{*}/C^{*})e(C^{*}/C)=e(A^{*}/A)e(A/C) ,

we have e(A/C)=e(A^{*}/C^{*}) . Similarly we have f(A^{*}/C^{*})=f(A/C)<\infty .
On the other hand, v|C and v|C^{*} are non-trivial, otherwise by Lemma 1
we have

\aleph_{0}=|v(A^{o})|=e(A/C)\leqq e(A/C)f(A/C)\leqq[A:C]<\infty
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a contradiction. Then by Lemmas 1 and 3 we have

[A^{*} : C^{*}]=e(A^{*}/C^{*})f(A^{*}/C^{*})=e(A/C)f(A/C)\leqq[A:C] .

But by Theorem 1.7 (3) [6] we have [A:C]=[A^{*} : C’]\leqq[A^{*} : C^{*}] . Hence
we have [A^{*} : C^{*}]=[A^{*} : c^{rr}] and C^{*}=C’

(2). Put B’=V_{A}*(V_{A}*(B)) . B’ is complete, and [A^{*} : B’]=[A:B] by
Theorem 1.7 (3) and (4) [6] On the other hand since e(B^{*}/B)=f(B^{*}/B)

=1 , we have

e(A^{*}/B^{*})f(A^{*}/B^{*})=e(A/B)f(A/B)\leqq[A:B]

e(B^{*}/C^{*})f(B^{*}/C^{*})=e(B/C)f(B/C)\leqq[B:C] .

Where the inequalities \leqq’ s are due to Lemma 1. Then we have
[A^{*} : C^{*}]=e(A^{*}/C^{*})f(A^{*}/C^{*})

=e(A^{*}/B^{*})e(B^{*}/C^{*})f(A^{*}/B^{*})f(B^{*}/C^{*})

\leqq[A:B][B:C]=[A:C]=[A^{*} : C^{*}] .

This means that e(A/B)f(A/B)=[A:B] and e(B/C)f(B/C)=[B:C] .
The latter equality shows [B:C]=e(B^{*}/C^{*})f(B^{*}/C^{*})=[B^{* }: C^{*}] . Then
[A^{*} : B’]=[A:B]=[A^{* }: B^{*}] and we have B^{*}=B’ The proof of the
remaining part is due to Theorem 1.7 [6].
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