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Introduction

Groups of diffeomorphisms of one-dimensional manifolds are con-
nected with codimension one foliations and present interesting facts.
Polycyclic groups of diffeomorphisms of the real line are studied by J. F.
Plante [PI], [P3]. Their results are applied to codimension one foliations
on manifolds with solvable fundamental groups (see S. Matsumoto [Ma]

and [P3] ) . We are interested in the case where the groups have fixed
points. This case reduces to the groups of diffeomorphisms of the half-
line. For these groups in case where they are abelian, several facts are
already known. We are concerned with both abelian and non-abelian
cases in this paper. Partial results for polycyclic groups of
diffeomorphisms of the half-line are obtained by Plante [P2], Plante and
Thurston [P-T]. Our results describe the classification of such polycyclic
groups, that is, polycyclic groups of the diffeomorphisms on the half-line
can be essentially classified into two types. The main result is the follow-
ing.

THEOREM. Let \Gamma be a polycyclic subgroup of Diffff^{r}[0, \infty) , N
the nilradical of \Gamma and let r=2 , ... . \infty . Assume that Fix(P)
(=\{x\in[0^{ },\infty)|f(x)=x for any f\in\Gamma }) =\{0\} . Then the following hold.

(i) If Fix(P) =\{0\} , then \Gamma|_{(0,\infty)} is C^{r} conjugate to a subgroup of the
group Affff^{+}(R) of the orientation preserving affine maps of the real line.

(ii) If Fix(N)\neq {0}, then there exists a contraction f\in Diffff^{r}[0^{ },\infty) such
that \Gamma is isomorphic to a semi-direct product N>\triangleleft Z_{f} of N and Z_{f} where
Z_{f} denotes the infifinite cyclic group generated by f.

For the detailed definitions, see Sections 1, 5 and 6. The proof of the
theorem is in Section 6. Examples of the polycyclic groups are given in
Section 5.

The author would like to express his hearty thanks to Professor
Haruo Suzuki and Professor Toshiyuki Nishimori for helpful conversa-
tions and valuable comments.
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1. Preliminary

1.A. Polycyclic groups.
A group \Gamma is said to be polycyclic if there is a finite sequence of sub-

groups

\Gamma=\Gamma_{0}\supset\Gamma_{1}\supset\cdots\supset\Gamma_{n}=\{e\}

such that for each i=1 , \cdots . n , \Gamma_{i} is normal in \Gamma_{i-1} and \Gamma_{i-1}/\Gamma_{i} is (finite or
infinite) cyclic. In particular, if each \Gamma_{i-1}/\Gamma_{i} is infinite cyclic, \Gamma is said to
be strongly polycyclic. It follows immediately that every subgroup of a
polycyclic group is again polycyclic. Clearly a polycyclic group is finitely
generated. We quote from [Ra] several results for polycyclic groups
which we need in this paper.

Let \Gamma be a polycyclic group.

(1. 1) PROPOSITION. \Gamma admits a unique maximal non-trivial normal
nilpotent subgroup.

(cf. Corollary 2 to Lemma 4. 7 of [Ra])

The normal subgroup of \Gamma in the above proposition is called the
nilradical of \Gamma and we denote it by N.

(1. 2) PROPOSITION. Let \Gamma’ be a normal subgroup of \Gamma such that
\Gamma’\supset N and let N’ be the nilradical of \Gamma’ Then N’=N.

(cf. Remark 4. 9 of [Ra])

Remark that the nilradical N of \Gamma does not necessarily contain the
commutator subgroup [\Gamma, \Gamma] of \Gamma . that is, \Gamma/N is not necessarily abelian.

(1. 3) PROPOSITION. \Gamma admits a normal subgroup \Gamma_{0} of fifinite index
such that \Gamma_{0}\supset N and N\supset[\Gamma_{0}, \Gamma_{0}] (that is, \Gamma 0/N is abelian).

(cf. Corollary 4. 11 of [Ra])

1.B. Diffeomorphisms of the half-line.
Denote by Diffff^{r}[0, \infty) the group of C^{r} diffeomorphisms of the half-line

[0, \infty) where r is a positive integer or \infty . Let \Gamma be a subgroup of
Diffr[O,\infty ). Then \Gamma acts naturally on [0, \infty) by the map (g, x)-,g(x) .
For a diffeomorphism g, we define Fix(g) to be the set \{x\in[0^{ },\infty)|g(x)=x\}

and call it the fixed point set of g . Also for a subgroup \Gamma\subset Diffff^{r}[0^{ },\infty) , we
define Fix(#)= {x\in[0, \infty)|g(x)=x for every g\in\Gamma } and call it the fifixed
point set of \Gamma . We say that a subset S of [0, \infty) is g-invariant if g(S)(=
\{g(x)|x\in S\})=S . And we say that S is \Gamma- invariant if g(S)=S for every
g\in\Gamma If \Gamma_{0} is a normal subgroup of \Gamma_{-} then Fix(\Gamma_{0}) is \Gamma- invariant. The
following lemma is an immediate consequence of a lemma of Kopell
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(cf. Lemma 1 of [Ko]).

(1. 4) LEMMA. Assume that \Gamma is an abelian subgroup of Diffr [0, \infty)

and r\geq 2 . If Fix(g)\cap (0, \infty)\neq\phi for some g\in\Gamma with g\neq identity, then
Fix(\Gamma )\cap (0, \infty)\neq\emptyset .

A map f of [0, \infty) into itself is said to be a contraction if \lim_{narrow\infty}f^{n}(x)=0

for any x\in[0^{ },\infty) . It follows obviously that if f is a continuous map of
[o, \infty) and f(x)<x for any x\in(0^{ },\infty) , then f is a contraction. We denote
by f_{k} the k-times iteration of f, instead of the usual f^{k} in this paper. Fix

a contraction f and a point a\in(0^{ },\infty) and let a_{0}=a and a_{j}=f_{j}(a) . We
obtain the following three lemmas from [C-C] (cf. also [Sa]).

(1. 5) LEMMA. Assume that f\in Diffff^{r}[0^{ },\infty) is a contraction and
r\geq 2 . Then, for any x\in[a_{1}, a_{0}]

e^{-c} \cdot\frac{a_{j}-a_{j+1}}{a_{0}-a_{1}}\leq f_{j}’(x)\leq e^{c}\cdot\frac{a_{j}-a_{j+1}}{a_{0}-a_{1}}

where c=a\cdot \sup\{|f’(x)/f’(x)||x\in[0, a]\} .

This lemma follows from Lemma(2. 6) of [C-C] and the mean value
theorem. Next is an immediate consequence of the above lemma.

(1. 6) LEMMA. Under the same assumption as the lemma above, the
sequence \{f_{j}’\} converges uniformly to 0 on [a_{1}, a_{0}] .

Take g\in Diffff^{r}[0^{ },\infty) such that Fix(g)\supset\{a_{j}|j\geq 0\} and let h_{n}=f_{-n}\circ g\circ f_{n}

for n\geq 0 (where f_{-n}=f_{n}^{-1} ). Then a generalized Kopell lemma (Theorem

(2. 8) of [C-C] ) implies the following.

(1. 7) LEMMA. Under the same assumption as Lemma (1. 5) and the

notation above, the sequence \{h_{n}\} converges uniformly to the identity on
[a_{1}, a_{0}] .

We shall need a more general version of Lemma(l. 5). Take h_{i}\in

Diffff^{r}[0, \infty)(i=1, \ldots.m) and let g_{p}=h_{p}\circ h_{p-1^{\circ\cdots\circ}}h_{1}(p=1, \ldots.m) . Fix a
compact subinterval J of [0, a] . Write J_{p}=g_{p}(J) , J_{0}=J and denote by |J_{p}|

the length of J_{p} . We assume that each J_{p} is subinterval of [0, a] and does

not meet the interior of other J_{i}(i\neq p) . Put

\theta=\sup\{|h_{\acute{\acute{p}}}(x)/h_{\acute{p}}(x)||x\in[0, a], p=1, \ldots.m\}(>0)

Then, in the same way as Lemma (1. 5), we have the following lemma.

(1. 8) LEMMA. Under the above assumption and notation, if z\in J,
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then

e^{-a\theta} \frac{|J_{m}|}{|J|}\leq g_{\acute{m}}(z)\leq e^{a\theta}\frac{|J_{m}|}{|J|} .

Moreover we fix numbers \lambda and 1\nearrow such that \lambda>1 and

0<1’<|J|10\lambda\vec{a\theta\lambda e^{a\theta}} .

Then, by induction, it is proved that if x_{0}\in J and |w-x_{0}|<1’ , then
g_{\acute{p}}(w)<\lambda g_{\acute{p}}(x_{0})

(cf. [Sa, p. 83]). Combining this fact and Lemma(l. 8), we get the follow-
ing fact.

(1. 9) LEMMA. Let J_{\mu} be a \mu- neighborhood of J. Then, under the
above assumption and notation,

\frac{1}{\lambda}e^{-a\theta}\frac{|J_{m}|}{|J|}\leq g_{\acute{m}}(z)\leq\lambda e^{a\theta}\frac{|J_{m}|}{|J|}

if z\in J_{\nu} .

We remark that 1\nearrow depends only on a , \theta , |J| and \lambda .

2. The function defined by a contraction.
Let /eDiffr[0, \infty) be a contraction and r\geq 2 . We define

H_{k}(x)= \frac{f_{k}’(x)}{f_{k}’(x)}

for k\geq 1 where
f_{k}= \frac{k}{f\circ\cdots\circ f}

and

H(x)= \lim_{karrow\infty}H_{k}(x) .

The aim of this section is to prove the following fact. This fact and
Corollary (2. 6) are needed in next two sections.

(2. 1) PROPOSITION. H is a well-defifined C^{r-2} function of (o, \infty) .
In the sequel, we fix a\in(0^{ },\infty) and a_{k}=f_{k}(a) , and let f_{j}x=f_{j}(x) . For

the proof, it suffices to show that \{H_{k}^{(p)}\} converges uniformly on [a_{1}, a_{0}]

for each p(0\leq p\leq r-2) , where H_{k}^{(p)} is the p-th derivative of H_{k} . We
need the following lemma.

(2. 2) LEMMA. H_{k}^{(p)}(x) is expressed in the following polynomials of
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two types:

(i) We have

H_{k}^{(p)}(x)= \frac{f_{k}^{(p+2)}(x)}{f_{k}(x)},+P_{p,k}(x)

where P_{p,k}(x) ,s are polynomials in \frac{f_{k}’(x)}{f_{k}(x)},, \cdots \frac{f_{k}^{(p+1)}(x)}{f_{k}(x)}, and for fifixed p they

have the same expression as polynomials.

(ii) We have

H_{k}^{(p)}(x)= \sum_{j=0}^{k-1}\frac{Q_{p,j}(x)}{\{f’(f_{j}x)\}^{p+1}}

where Q_{p,j}(x) is a polynomial in f’(f_{j}x) , \cdots . f^{(p+2)}(f_{j}x) and f_{j}’(x) , \cdots

f_{j}^{(p+1)}(x) such that for fifixed p Q_{p,j}(x) ’s have same expressions and the
degree of each term with respect to f_{j}’(x) , \cdots . f_{j}^{(p+1)}(x) is greater than one.
{For j=0, we consider that f_{0}(x)\equiv x.)

PROOF. We fix k and prove these assertion by induction on p.

(i) When p=0 , the assertion is clearly true. Assume that the asser-
tion is true for an integer p\geq 0 . Then we have

H_{k}^{(p+1)}(x)=(H_{k}^{(p)}(x))’

= \frac{f_{k}^{(p+3)}(x)}{f_{k}(x)},-\frac{f_{k}^{(p+2)}(x)\cdot f_{k}’(x)}{\{f_{k}’(x)\}^{2}}+(P_{p,k}(x))’

\equiv\frac{f_{k}^{(p+3)}(x)}{f_{k}(x)},+P_{p+1,k}(x) .

Since we can easily see that (P_{p,k}(x))’ is a polynomial in \frac{f_{k}’(x)}{f_{k}(x)}, , \cdots

\frac{f_{k}^{(p+2)}(x)}{f_{k}(x)}, , the assertion is true for p+1 .

(ii) This is certainly true for p=0 . Indeed, since f_{k}’(x)= \prod_{j=0}^{k-1}f’(f_{j}x)

we obtain
H_{k}^{(0)}(x)=H_{k}(x)=( \log f_{k}’(x))’=\sum_{j=0}^{k-1}\log f’(f_{j}x))’=\sum_{j=0}^{k-1}\frac{f’(f_{j}x)\cdot f’(x)}{f’(f_{j}x)} .

Assume that the assertion is true for an integer p\geq 0 . We have

( \frac{Q_{p,j}(x)}{\{f’(f_{j}x)\}^{p+1}})’=\frac{Q_{\acute{p},j}(x)\cdot f’(f_{j}x)-(p+1))Q_{p,j}(x)\cdot f’(f_{j}x)\cdot f_{j}’(x)}{\{f’(f\cdot x)\}^{p+2}}

\equiv\frac{Q_{p+1,j}(x)}{\{f’(f_{j}x)\}^{p+2}} .
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Clearly Q_{\acute{p},j}(x) is a polynomial in f’(f_{j}x) , \cdots , f^{(p+3)}(f_{j}x) and f_{j}’(x) , \cdots

f_{j}^{(p+2)}(x) . It follows immediately that the assertion is true for p+1 . \blacksquare

We shall prove Proposition (2. 1) by induction on p and need the fol-
lowing definition.

DEFINITION. By assertions (Ap) and (Bp) we mean the following:
(A_{p})-\{H_{k}^{(p)}\} converges uniformly on [a_{1}, a_{0}] .
(B_{p})–There exists a number C_{p}\geq 0 which does not depend on k such

that |f_{k}^{(p+2)}(x)|\leq C_{p}f_{k}’(x) for all x\in[a_{1}, a_{0}] and k\geq 1 .

(2. 3) LEMMA. The assertion (A_{0}) is valid, that is, \{H_{k}\} converges
uniformly on [a_{1}, a_{0}] .

PROOF. From the equation in the proof of ( ii) of Lemma (2. 2), we
have

|H_{k+l}(x)-H_{k}(x)|=| \sum_{j=k}^{k+l-1}\frac{f’(f_{j}x)\cdot f’(x)}{f’(f_{j}x)}|

\leq M\sum_{j=k}^{k+l-1}|f_{j}’(x)|

(where M= \max\{|f^{\gamma\gamma}(x)/f’(x)||x\in[0, a_{0}]\} )
\leq Me^{c^{k+l-1}}\Sigma\underline{a_{j}-a_{j+1}}

j=k a_{0}-a_{1}

(by Lemma (1. 5))

\leq\frac{Me^{C}}{a_{0}-a_{1}}\cdot a_{k}

for any x\in[a_{1}, a_{0}] and l\geq 1 . Since f is a contraction, the sequence \{a_{k}\}

converges to 0. Therefore we see that \{H_{k}\} converges uniformly on
[a_{1}, a_{0}] . \blacksquare

(2. 4) LEMMA. If assertions (B_{0}) , \cdots (B_{p-1}) and (Ap) are valid,

then (Bp) is valid.

PROOF. For p=0 , clearly (A_{0}) implies (B_{0}) . Next fix p\geq 1 . (We

will use ( i) of Lemma (2. 2).) From (B_{0}) , \cdots , (B_{p-1}) , it follows that there
exists a number D_{2}\geq 0 such that

|f_{k}^{(i)}(x)/f_{k}’(x)|\leq D_{2}(i=2, \cdots 7p+1)

for all x\in[a_{1}, a_{0}] and k\geq 1 . Since P_{p,k}(x) is a polynomial in \frac{f_{k}’(x)}{f_{k}(x)}, , \cdots

\frac{f_{k}^{(p+1)}(x)}{f_{k}(x)}, , there exists a number D_{3}\geq 1 such that
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|P_{p,k}(x)|\leq D^{3}

for all x\in[a_{1}, a_{0}] and k\geq 1 . On the other hand, by (Ap), we see that
there exists a number D_{1}\geq 0 such that

|H_{k}^{(p)}(x)|\leq D_{1}

for all x\in[a_{1}, a_{0}] and k\geq 1 . Therefore, from ( i) of Lemma (2.2), it fol-
lows that there exists a number C_{p}\geq 0 such that |f_{k}^{(p+2)}(x)/f_{k}’(x)|\leq C_{p} for
all x\in[a_{1}, a_{0}] and k\geq 0 . \blacksquare

(2. 5) LEMMA. Assume that assertions (B_{0}) , \cdots . (B_{p-1}) are valid for
p\geq 1 . Then also (Ap) is valid.

PROOF. Fix p\geq 1 . From ( ii) of Lemma (2. 2), we have

|H_{k+l}^{(p)}(x)-H_{k}^{(p)}(x)| \leq\sum_{j=k}^{k+l-1}|\frac{Q_{p,j}(x)}{\{f’(f_{j}x)\}^{p+1}}|

(where Q_{p,j} is a polynomial in f’(f_{j}x) , \cdots , f^{(p+2)}(f_{j}x) and f_{j}’(x) , \cdots , f_{j}^{(p+1)}(x) ).

We estimate Q_{p,j}(x) . Clearly there exists a number D_{1} such that

|f^{(j)}(f_{j}x)|\leq D_{1}(i=1, \cdots 7p+2)

for all x\in[0, a_{0}] and j\geq 0 because f_{j}(x)\leq a_{0} for x\in[0, a_{0}] . From the
assumption of the lemma, it follows that there exists a number D_{2} such
that

|f_{j}^{(i)}(x)|\leq D_{2}f_{j}’(x)(i=2, \cdots, p+1)

for all x\in[a_{1}, a_{0}] and j\geq 0 . By Lemma (1. 6), we can choose a sufficiently
large integer L such that if j\geq L then |f_{j}’(x)|\leq 1 for all x\in[a_{1}, a_{0}] . there
fore, if j\geq L and q\geq 1 , then we have \{f_{j}’(x)\}^{q}\leq f_{j}’(x) for all x\in[a_{1}, a_{0}] .
Hence, there exists a number D_{3} such that if j\geq L , then

|Q_{p,j}(x)|\leq D_{3}f_{j}’(x)

for all x\in[a_{1}, a_{0}] . Let m= \min\{f’(x)|x\in[0, a_{0}]\} . Clearly m>0 . Then if
k , k+l\geq L , we have for all x\in[a_{1}, a_{0}]

|H_{k+l}^{(p)}(x)-H_{k}^{(p)}(x)| \leq\frac{D_{3}}{m^{p+1}}\sum_{j=k}^{k+l-1}f_{j}’(x)

\leq\frac{D_{3}\cdot e^{c}}{m^{p+1}(a_{0}-a_{1})}\sum_{j=k}^{k+l-1}(a_{j}-a_{j+1})

(by Lemma (1. 5))
\leq D\cdot a_{k}

(where D=D_{3}\cdot e^{c}/m^{p+1}(a_{0}-a_{1}) ).
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We see that this implies that \{H_{k}^{(p)}(x)\} converges uniformly on [a_{1}, a_{0}]

because \lim_{karrow\infty}a_{k}=0 . \blacksquare

Now we prove the proposition.

PROOF OF PROPOSITON (2. 1). From lemmas (2. 3), (2. 4) and (2. 5), by
induction, we conclude that assertions (Ap) and (Bp) (0\leq p\leq r-2) are
valid. In particular, for each p(0\leq p\leq r-2) , H^{(p)}(x) exists on (0, \infty)

and is continuous there. Therefore H(x) is a C^{r-2} function of (0, \infty) . \blacksquare

The following is the assertion (Bp).

(2. 6) COROLLARY. Let f\in Diffffr[0, \infty)(r\geq 2) be a contraction.
Then for each p(2\leq p\leq r) there exists a number C_{p} such that

|f_{k}^{(p)}(x)|\leq C_{p}f_{k}’(x)

for all x\in[a_{1}, a_{0}] and k\geq 1 .

REMARK. In addition to the assumption of Proposition (2. 1), sup-
pose that f’(0)\neq 1 . Then H(0) exists and H(x) is a C^{r-2} function of
[0, \infty) . This fact is described in [St] in somewhat different fashion.

3. Abelian groups of the diffeomorphisms

Let \Gamma be an abelian subgroup of Diffr [0, \infty) (r=2, \cdots , \infty) such that
Fix(\Gamma )={0}. From Lemma (1. 4), it follows that Fix(/) =\{0\} for any f\in\Gamma

with f\neq identity . Therefore either f or f^{-1} is a contraction if f\neq identity .
Suppose that f’(0)\neq 1 for some f\in\Gamma- Then a theorem of Sternberg

(cf. [St]) says that f is C^{r} conjugate to the linear map x-,ax where a=
f’(0) . Therefore we easily see that there exists a C^{r} flow \varphi:R\cross

[0, \infty)arrow[0, \infty) such that \Gamma is contained in the group \{\varphi_{t}|t\in R\} .
In case where f’(0)=1 for all f\in\Gamma and r=\infty , from results in [Se],

[Ta] and [Ko], it follows there exists a C^{1} flow \varphi such that \varphi is of class
C^{\infty} on (0, \infty) and \Gamma is contained in the group \{\varphi_{t}\} . Also for finite r , we
obtain the following result.

(3. 1) THEOREM. Let \Gamma be an abelian subgroup of Diffr [0, \infty) (r=2 ,
\ldots-\infty) such that Fix(\Gamma ) =\{0\} . Then there exists a C^{1} flow \varphi on [0, \infty)

which is of class C^{r} on (0, \infty) such that \Gamma is contained in the group
\{\varphi_{t}|t\in R\} . Furthermore \varphi is unique up to parameter change.

For finite r , we don’t know whether this result follows from results in
[Se], [Ta] and [Ko]. We give here a detailed proof because we need this
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result in the proof of the main theorem.
We prove the theorem in case where f’(0)=1 for all f\in\Gamma In the

sequel we assume that f’(0)=1 for all f\in\Gamma . We need several lemmas for
the proof.

Fix a contraction f\in\Gamma . Since \Gamma is abelian, f_{k}\circ g=g\circ f_{k} for any g\in\Gamma

Differentiating both sides of this equation, we have f_{k}’(gx)g’(x)=

g’(f_{k}x)f_{k}’(x) , namely

g’(x)=g’(f_{k}x) \cdot\frac{f_{k}’(x)}{f_{k}’(gx)} .

We define formally the function H(x, y) by

H(x, y)= \lim_{karrow\infty}\frac{f_{k}’(y)}{f_{k}’(x)}=\prod_{j=0}^{\infty}\frac{f’(f_{j}y)}{f’(f_{j}x)} .

Taking the limit as karrow\infty on the above equation, we have g’(x)=
g’(0)H(g(x), x) , hence

g’(x)=H(g(x), x)

by the assumption g’(0)=1 . So we can think of g\in\Gamma as the solution of
this differential equation (cf. [Ko] and [Se]).

Now we investigate H(x, y) . Let D_{n}=\{(x, y)\in[0^{ },\infty)\cross[0^{ },\infty)|f_{n}(x)\leq

y\leq f_{-n}(x)\} for n>0 .

(3. 2) LEMMA. H(x, y) exists on each D_{n}, and it is continuous and
positive on there. Moreover H(x, y) is of class C^{r-1} on int D_{n} {where
int D_{n} denotes the interior of D_{n} ). Therefore H(x, y) is a C^{r-1} function
on (0, \infty)\cross(0, \infty) .

PROOF. Define H_{k}(x, y)= \frac{f’(y)}{f_{k}(x)},,=\prod_{j=0}^{k-1}\frac{f^{rr}(f_{j}y)}{f(f_{j}x)} for x, y\geq 0 and let
B_{k}(x, y)=\log H_{k}(x, y) . Then

B_{k}(x, y)=\log f_{k}’(y)- log f_{k}’(x)

= \sum_{j=0}^{k-1} (\log f’(f_{j}y)- log f’(f_{j}x) ).

First we show that the sequence \{B_{k}(x, y)\}_{k\in N} converges uniformly on
D_{n}(a)=D_{n}\cap[0, a]\cross[0, a] for any a>0 . From the mean value theorem, it
follows that for p\geq 0 ,

|B_{k+p}(x, y)-B_{k}(x, y)| \leq\sum_{j=k}^{k+p-1}|\log f’(f_{j}y)- log f’(f_{j}x)|

= \sum_{j=k}^{k+p-1}|\frac{f’(\xi_{j})}{f’(\xi_{j})}||f_{j}(y)-f_{j}(x)|
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where \xi_{j} is some value between f_{j}(x) and f_{j}(y) . Therefore, letting M=
\sup\{|f’(x)/f’(x)||0\leq x\leq a\} , we have for (x, y)\in D_{n}(a)

|B_{k+p}(x, y)-B_{k}(x, y)| \leq M\sum_{j=k}^{k+p-1}|f_{j}(y)-f_{j}(x)|

\leq\{

M\Sigma(f_{j}(x)-f_{j+n}(x)) (if x\geq y )
M\Sigma(f_{j}(y)-f_{j+n}(y)) (if y\geq x )

\leq M\max\{\sum_{j=k}^{k+p-1}(f_{j}(v)-f_{j+n}(v))|v=x , y\}

\leq M\max\{\sum_{j=k}^{k+n-1}f_{j}(v)-\sum_{j=u}^{k+p-1}f_{j+n}(v)|v=x , y\}

(where u=k+p-n)

\leq M\max\{\sum_{j=k}^{k+n-1}f_{j}(v)|v=x , y\}

\leq M\max\{n\cdot f_{k}(v)|v=x, y\}

\leq Mnf_{k}(a)

(where p\geq 0 ). Since f is a contraction, for any \epsilon>0 , there exists
sufficiently large L such that if k\geq L then |f_{k}(a)|<\epsilon/Mn . Therefore, if
k , l\geq L , then |B_{k}(x, y)-B_{l}(x, y)|<\epsilon for all (x, y)\in D_{n}(a) . Thus
\{B_{k}(x, y)\} converges uniformly on D_{n}(a) . Let

B(x, y)= \lim_{karrow\infty}B_{k}(x, y)

for (x, y)\in(0^{ },\infty)\cross(0, \infty) or (x, y)=(0,0) . Then B(x, y) is a continuous
function.

Next we show that B(x, y) is of. class C^{r-1} on (0, \infty)\cross(0^{ },\infty) . By the
definition in Section 2, we have

\frac{\partial}{\partial x}B_{k}(x, y)=\frac{\partial}{\partial x}(log f_{k}’(y)-\log f_{k}’(x) )

=- \frac{f_{k}’(x)}{f_{k}’(x)}

=-H_{k}(x)

and

\frac{\partial}{\partial y}B_{k}(x, y)=H_{k}(y) .

From the arguments in Section 2, it follows that the sequences \{\partial B_{k}/\partial x\}

and \{\partial B_{k}/\partial y\} converge uniformly on any compact domain in (0, \infty)\cross

(0^{ },\infty) . Therefore the partial derivatives of B exist and

\frac{\partial B}{\partial x}=-H(x) , \frac{\partial B}{\partial y}=H(y) .
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Hence, by Proposition (2. 1), we see that B is a C^{r-1} function on (0, \infty)\cross

(0^{ },\infty) . It follows that also H=\exp B is C^{r-1} function on (0, \infty)\cross(0, \infty) . \blacksquare

By this lemma, we can conclude the following lemma.

(3. 3) LEMMA. If g\in Diffff^{r}[0, \infty) commutes f (that is, f\circ g=g\circ f),

then the function y=g(x) is the solution of the differential equation

(A) \frac{dy}{dx}=H(y, x) .

Let y=g(x) be the solution of the equation (A) such that its domain
of definition is maximal and define g at 0 by g(0)=0 . Remark that the
function y=f_{n}(x) is the solution of this equation. We obtain the following
lemma.

(3. 4) LEMMA. The map g is a C^{1} diffeomorphism of [0, \infty) which
is of class C^{r} on (0, \infty) .

PROOF. Fix a\in(0, \infty) and let b=g(a) . If there is an integer m such
that b=f_{m}(a) , then, from the uniqueness of solutions on initial conditions,

it follows that g(x)\equiv f_{m}(x) . Therefore, in this case, the lemma follows
clearly. Next we assume that f_{m}(a)<b<f_{m-1}(a) for some m. Let \alpha and
\beta(\alpha<\beta) be the end points of the domain of definition of g . Since f_{m-1}

and f_{m} are the solutions, we see that f_{m}(x)<g(x)<f_{m-1}(x) for x\in(\alpha, \beta) .
Therefore, by the fact that H(y, x)>0 , we can easily see that \alpha=0 , \beta=\infty

and \lim_{Xarrow+0}g(x)=0 (by the standard argument on the domain of definition of

the solution of an ordinary differential equation). Thus g is a continuous
function of [0, \infty) and clearly g is of class C^{r} on (0, \infty) because H is of
class C^{r-1} on (0, \infty)\cross(0^{ },\infty) . Moreover, since H is continuous on D_{m} , we
have

\lim_{\chiarrow+0}g’(x)=\lim_{\chiarrow+0}H(g(x), x)=H(0,0)=1

Therefore g is of class C^{1} at 0. Thus, since g’(x)>0 for all x\in[0^{ },\infty) , g is
a C^{1} diffeomorphism of [0, \infty) . \blacksquare

Let a , b\in R^{*}=(0^{ },\infty) and let g_{a,b} be the solution of the equation (A)

such that g_{a,b}(a)=b . Define the map \Psi:R^{*}\cross R^{*}\cross[0, \infty)arrow[0^{ },\infty) by
\Psi(a, b, x)=g_{a,b}(x) . From the theorems in ordinary differential equations
on the dependence of solutions on initial conditions, it follows that \Psi is of
class C^{r-1} on R^{*}\cross R^{*}\cross(0^{ },\infty) . Furthermore \Psi is continuous on R^{*}\cross R^{*}\cross

[0, \infty) . Let G be the set of all solutions of (A). Define the map



410 Y. Moriyama

\emptyset : Garrow R^{*} by \phi(g)=g(1) . From the uniqueness of solutions on initial con-
ditions, it follows that \emptyset is bijective and \phi^{-1}(t)=g_{1,t} . We define the C^{\infty}

structure of G by the map \emptyset . Then clearly G is diffeomorphic to R.

(3. 5) LEMMA. G is a group under composition of maps. Moreover
G is a Lie group and isomorphic to R.

PROOF. For g, h\in G we have

(g\circ h)’(x)=g’(hx)\cdot h’(x)
=H(g(hx), h(x))\cdot H(h(x), x)

= \prod_{j=0}^{\infty}\frac{f’(f_{j}(hx))}{f’(f_{j}(g\circ hx))}\cdot\prod_{j=0}^{\infty}\frac{f’(f_{j}x)}{f’(f_{j}(hx))}

= \prod_{j=0}^{\infty}\frac{f’(f_{j}x)}{f’(f_{j}(g\circ hx))}

=H(g\circ h(x), x)

and

(g^{-1})’(x)= \frac{1}{g’(g^{-1}(x))}

= \frac{1}{H(g(g^{-1}(x)),g^{-1}(x))}

= \prod_{j=0}^{\infty}\frac{f’(f_{j}x)}{f’(f_{j}(g^{-1}x))}

=H(g^{-1}(x), x) .

It follows that g\circ h , g^{-1}\in G , that is, G is a group. Let \rho:G\cross G- G be
the group operation and \gamma : Garrow G the inversion. Then, for
(t, s)\in R^{*}\cross R^{*} , we have

\phi\circ\rho\circ(\phi^{-1}\cross\phi^{-1})(t, s)=\phi(g_{1,t}\circ g_{1,S})

=g_{1,t}(g_{1,s}(1))

=\Psi(1, t, s)

and

\phi\circ\gamma\circ\phi^{-1}(t)=\psi(g_{1,t}^{-1})

=\psi(g_{t,1})

=\Psi(t, 1, 1) .

Therefore \rho and \gamma are C^{r-1} maps. It follows that G is a topological
group. Since G is a C^{\infty} manifold, by the theorems on Lie groups (cf.
[M-Z] ) , we see that G is a Lie group. Hence G is isomorphic to R as a
Lie group. \blacksquare
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PROOF OF THEOREM (3. 1). Let \iota : Rarrow G be the isomorphism of Lie
groups such that \iota(1)=f . Define the map \varphi:R\cross[0, \infty)arrow[0^{ },\infty) by \varphi(t, x)=

(\iota(t))(x) . Since
\varphi\circ((\iota^{-1}\circ\phi^{-1})\cross id)(s, x)=g_{1,S}(x)=\Psi(1, s, x)

(where id denotes the identity map), we see that \varphi is a C^{0} flow on [0, \infty) .
Moreover, by the theorems on Lie groups (cf. [M-Z] ), we see that \varphi is of
class C^{1} on R\cross[0^{ },\infty) because each \varphi_{t} is of class C^{1} on [0, \infty) . Similarly
\varphi is of class C^{r} on R\cross(0^{ },\infty) because each \varphi_{t} is of class C^{r} on (0, \infty) .
Clearly \Gamma is contained in G=\{\varphi_{t}\} . This completes the proof. \blacksquare

REMARK. Also in case where f’(0)\neq 1 for some f\in\Gamma- we can prove
the theorem in the similar way. But it is much simpler to use a theorem
of Sternberg.

4. The quasi-invariant vector fields on the half-line

Let f\in Diffff^{r+1}[0, \infty)(r\geq 0) and let \alpha be a positive number. We say
that a vector field X on [0, \infty) is (f. \alpha)-quasi-invariant if f_{*}X=\alpha X . Fix-
ing \alpha with 0<\alpha<1 and a contraction f such that f’(0)=1 , we shall show
that there exist many (/, 1/\alpha)-quasi-invariant C^{r} vector fields on [0, \infty) .
We shall need such vector fields in order to describe an example of polycy-
clic subgroups of Diffff^{r}[0^{ },\infty) . For the construction of these vector fields,
we need the following fact.

(4. 1) PROPOSITION. Let f\in Diffff^{r+1}[0^{ },\infty) (r=1, \cdots \infty) be a contrac-
tion and let X be a(f, 1/\alpha)-quasi-invariant C^{0} vector fifield on [0, \infty)

where 0<\alpha<1 . If X is of class C^{r} on (0, \infty) and f’(0)=1 , then X is of
class C^{r} at 0, therefore X is C^{r} vector fifield on [0, \infty) .

In the sequel we assume that f is a contraction and X is a (/, 1/\alpha)-

quasi-invariant C^{0} vector field on [0, \infty) which is of class C^{r} on (0, \infty)

and 0<\alpha<1 . Let

X(x)=F(x) \frac{\partial}{\partial x} .

Then clearly F(x) is of class C^{r} on (0, \infty) . For the proof of Proposition
(4. 1) it suffices to show that F(x) is of class C^{r} at 0. First we calculate
F^{(p)}(f_{k}x) . By the assumption on X, we easily see that

f_{k}’(x) \cdot F(x)=\frac{1}{\alpha^{k}}F(f_{k}x) .
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Therefore,

F(f_{k}x)=\alpha^{k}f_{k}’(x)F(x) .

This implies that

F’(f_{k}x)= \frac{\alpha^{k}}{f_{k}(x)},\{f_{k}’(x)F(x)+f_{k}’(x)F’(x)\} .

(4. 2) LEMMA. We have

F^{(p)}(f_{k}x)=, \frac{\alpha^{k}}{\{f_{k}(x)\}^{2p-1}}\cdot Q_{p,k}(x) for any x\in(0, \infty)

where Q_{p,k}(x) is a polynomial in f_{k}’(x) , \ldots
f_{k}^{(p+1)}(x) and F(x), \ldots

F^{(p)}(x)

such that the expression of Q_{p,k}(x) does not depend on k and each its term
contains at least one f_{k}^{(i)}(x) (for some i=1 , \ldots . p+1).

PROOF. We prove the lemma by induction on p. When p=1 , this is
tlle observation above. For some p we assume that the equation is true.
Then we have

F^{(p+1)}(f_{k}x)= \frac{\alpha^{k}}{f_{k}’(x)}[\frac{(1-2p)f_{k}’(x)}{\{f_{k}(x)\}^{2p}},\cdot Q_{p,k}(x)+\frac{1}{\{f_{k}’(x)\}^{2p-1}}\cdot Q_{\acute{p},k}(x)]

= \frac{\alpha^{k}}{\{f_{k}’(x)\}^{2p+1}}\{(1-2p)f_{k}’(x)Q_{p,k}(x)+f_{k}’(x)Q_{\acute{p},k}(x)\}

\equiv\frac{\alpha^{k}}{\{f_{k}’(x)\}^{2p+1}}Q_{p+1,k}(x) .

By the assumption of induction, we see immediately that Q_{p+1,k}(x) has
the desired property. This completes the proof. \blacksquare

(4. 3) LEMMA. Fix a\in(0, \infty) and a positive integer q. Assume that
f’(0)=1 . Then the sequence \{\alpha^{k}/\{f_{k}’(x)\}^{q}\}_{k\in N} converges uniformly to 0 on
the closed interval [0, a] .

PROOF. From the assumption of the lemma, it follows that for any
\epsilon>0 there exists \delta such that f’(x)\geq 1-\epsilon for all x\in[0, \delta] . Since f is a
contraction, there exists a sufficiently large integer L such that if k\geq L

then f_{k}(a)\leq\delta . Therefore, if k\geq L , then f’(f_{k}x)\geq 1-\epsilon for all x\in[0, a] .
Thus we have

f_{k}’(x)=f’(f_{k-1}x)\cdots f’(f_{L}x)\cdot f’(f_{L-1}x)\cdots f’(x)

\geq(1-\epsilon)^{k-L}C^{L}
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for all x\in[0, a] where C= \min\{f’(x)|x\in[0, a]\} . It follows that

0 \leq\frac{\alpha^{k}}{\{f_{k}’(x)\}^{q}}\leq\frac{\alpha^{k}}{(1-\epsilon)^{q(k-L)}C^{qL}}

= \frac{(1-\epsilon)^{qL}}{C^{qL}}\{\frac{\alpha}{(1-\epsilon)^{q}}\}^{k}

Now we choose \epsilon sufficiently small such that 0< \frac{\alpha}{(1-\epsilon)^{q}}<1 for 0<\alpha<1 .

And for this \epsilon we choose such \delta and L as above. Then, by the inequality
above, we see that \{\alpha^{k}/\{f_{k}’(x)\}^{q}\} converges uniformly to 0 on [0, a] . \blacksquare

PROOF OF PROPOSITION (4. 1). By Lemma (4. 2), we have

F^{(p)}(f_{k}x)= \frac{\alpha^{k}}{\{f_{k}’(x)\}^{2p-1}}Q_{p,k}(x) .

Fix p and a\in(0^{ },\infty) . By the property of Q_{p,k}(x) and Corollary (2. 6), we
see that there exists C_{p} such that

|Q_{p,k}(x)|\leq C_{p}f_{k}’(x)

for all x\in[a_{1}, a_{0}] and k\geq L , where L is chosen so that if k\geq L then
f_{k}’(x)\leq 1 for all x\in[a_{1}, a_{0}] . It follows that

|F^{(p)}(f_{k}x)| \leq\frac{C_{p}\alpha^{k}}{\{f_{k}’(x)\}^{2(p-1)}}

for all x\in[a_{1}, a_{0}] . Therefore, from Lemma (4. 3), the sequence of func-
tions \{F^{(p)}(f_{k}x)\}_{k\in N} converges uniformly to 0 on [a_{1}, a_{0}] . This implies that

\lim_{xarrow+0}F^{(p)}(x)=0

for each p(p=1, \cdots-r) . By using de l’Hopital’s theorem, we see that
F(x) is of class C^{r} at 0. This completes the proof. \blacksquare

From Proposition (4. 1) we obtain the following result, which is the
purpose of this section.

(4. 4) THEOREM. Let f\in Diffff^{r+1}[0, \infty) (r=1,2, \ldots.\infty) be a contrac-
tion such that f’(0)=1 and let 0<\alpha<1 . Then there exist non-trivial
(f, 1/\alpha)-quasi-invarianl C^{r} vector fifields on [0, \infty) .

PROOF. There exists a C^{r} function F on (0, \infty) such that

f’(x) \cdot F(x)=\frac{1}{\alpha}F(fx) .
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Indeed, fixing a\in(0^{ },\infty) , we can take a function F_{0} on [a_{1}, a_{0}] (where a_{1}=

f(a) , a_{0}=a) such that F_{0}(a_{1})=\alpha f’(a_{0})F_{0}(a_{0}) . Then define F by F(x)=
\alpha^{k}f_{k}’(f_{k}^{-1}x)F_{0}(f_{k}^{-1}x) for x\in[a_{k+1}, a_{k}] (where a_{k}=f_{k}(a_{0}) ). It follows easily
that F is well-defined and satisfies the equation above. Reforming F_{0} in
neighborhoods of a_{1} and a_{0} , we can make the function F of class C^{r} We
see that F(x) extends a continuous function on [0, \infty) by defining F(0)=0 .
Define X(x)=F(x)\cdot \partial/\partial x . Then, clearly X is (/, 1/\alpha)-quasi-invariant
vector field on [0, \infty) and from Proposition (4. 1) it follows that X is of
class C^{r} on [0, \infty) . \blacksquare

REMARK. We must mention whether the vector field X in the above
proof is complete or not, for we need a complete one to construct an
example of polycyclic groups in the next section. It is sufficient for our
purpose to notice that if X(x)=0 for some x\in(0^{ },\infty) , then X is complete.

5. Examples of polycyclic groups of diffeomorphisms

We describe examples of different two types of polycyclic groups of
diffeomorphisms on the half-line. First one is quoted from [P2]. Second
one needs the result in the previous section.

EXAMPLE 1. Denote by Affff^{+}(R) the subgroup of Diffff^{\infty}(R) consisting
of orientation preserving affine maps (x\}arrow ax+b for some a>0 and b\in R).
Then Affff^{+}(R) admits Lie group structure of dimension 2 and the natural
action \Psi:Affff^{+}(R)\cross R-arrow R is real-analytic. We denote this Lie group by
\mathscr{A} Let \phi:Rarrow R^{+}(=(0, \infty)) be a C^{\infty} diffeomorphism such that

\phi(t)=

some smooth function
t

(-\infty<t\leq 0)

(0<t\leq 2)

(2<t<\infty) .

Then there is the action \Phi of \mathscr{A} on R^{+} which is induced from \Psi by \emptyset .
Moreover this induced action \Phi extends on [0, \infty) by defining \Phi(g, 0)=0

for g\in \mathscr{A}. It follows immediately that \Phi is a C^{\infty} action on [0, \infty) . We
denote by T_{g} the diffeomorphism of [0, \infty) defined by x-arrow\Phi(g, x) . Define
the subgroup G of Diffff^{\infty}[0, \infty) by G=\{T_{g}|g\in \mathscr{A}\} . Clearly G is isomorphic
to \mathscr{A} Since \mathscr{A} has many polycyclic subgroups, so does G . We notice
the following fact.

(5. 1) LEMMA. Let \Gamma be a polycyclic subgroup of G. Then the fol-

lowing hold.
(i) \Gamma is isomorphic to a semi-direct product Z^{n}\lambda Z^{k} of Z^{n} and Z^{k}
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for some n, k.
(ii) The orbit of the natural action of \Gamma on [0, \infty) at x\in(0^{ },\infty) is

dense in [0, \infty) if n>1 .

EXAMPLE 2. Let A\in SL(n, Z) and let 0<\alpha<1 . Assume that \alpha is an
eigenvalue of {}^{t}A (the transposed matrix of A) and take a corresponding
eigenvector {}^{t}(a_{1}, \ldots,a_{n}) where a_{i}\in R(i=1, \ldots n) . Let f\in Diffffr+1[0^{ },\infty)

(r=2, ... , \infty) be a contraction such that f’(0)=1 . Then, from Theorem
(4. 4), we can take a non-trivial (/, 1/\alpha)-quasi-invariant C^{r} vector field X
such that X(x)=0 for some x\in(0^{ },\infty) . Since X is complete, we have the
C^{r} flow \Phi:R\cross[0^{ },\infty)- [0, \infty) associated by X. Clearly f\circ\Phi_{t}\circ f^{-1}=\Phi_{\frac{1}{a}t} ,

that is,

f^{-1}\circ\Phi_{t}\circ f=\Phi_{at} .

From these data A, \alpha,
t(a_{1} , ... a_{n}) , f and \Phi , we construct a polycyclic

subgroup \Gamma_{A} of Diffff^{r}[0, \infty) as follows.
Let A=(m_{ij}) , m_{ij}\in Z and let g_{i}=\Phi a_{i} for i=1 , \ldots n . Since

{}^{t}(a_{1_{ }},\ldots , a_{n}) is an eigenvector of {}^{t}A in respect to eigenvalue \alpha , we have

\sum_{j=1}^{n}m_{ji}a_{j}=\alpha a_{i} .

Therefore
f^{-1}\circ g_{i}\circ f=\Phi_{aa_{i}}

=\Phi\Sigma m_{ji}a_{j}

=g_{1}^{m_{1i}}\circ\cdots\circ g_{j}^{m_{ji}}\circ\cdots\circ g_{n}^{m_{ni}} .

Denote by N the subgroup generated by g_{1} , \ldots , g_{n} and let \Gamma_{A} be the sub-
group generated by g_{1} , \ldots , g_{n} and f. Clearly N is a free abelian group and
the normal subgroup of \Gamma_{A} . It follows that \Gamma_{A} is a polycyclic subgroup of
rank\leq n+1 and N is the nilradical of \Gamma_{A} . We notice the following fact.

(5. 2) LEMMA. ( i) \Gamma

A is isomorphic to a semi-direct product
Z^{m}\lambda Z for some m.

(ii) Let p\in(0, \infty) be a point such that X(p)=0 . Then the orbit
through p of the natural action of \Gamma_{A} on [0, \infty) is discrete in (0, \infty) .

Lemmas (5. 1) and (5. 2) show the difference between Example 1 and
Example 2.
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6. Main theorem

Let \Gamma be a polycyclic subgroup of Diffr [0, \infty) (r=2, \ldots, \infty) and let N
be the nilradical of \Gamma . It is well known that N is a free abelian group
(e . g. , cf. [P-T] ). Define \Gamma_{*}=\Gamma|_{(0,\infty)}=\{f|_{(0,\infty)}\in Diffff^{r}(0^{ },\infty)|f\in\Gamma\} . We say
that \Gamma_{*} is C^{s} conjugate to a subgroup of Affff^{+}(R)(s\leq r) if there exists a C^{s}

diffeomorphism h:(0, \infty)- R such that h\Gamma_{*}h^{-1}=\{h\circ f\circ h^{-1}\in Diffff^{s}(R)|f\in\Gamma_{*}\}

is contained in Affff^{+}(R) . It has been shown in [P2] that if Fix(N) =\{0\} ,
then \Gamma_{*} is C^{0} conjugate to a subgroup of Affff^{+}(R) . In this section, we
prove the following theorem, which is the purpose of this paper.

(6. 1) THEOREM. Let \Gamma be a polycyclic subgroup of Diffff^{r}[0, \infty) and
let r=2, \ldots-\infty . Assume that Fix(F) =\{0\} . Then the following hold.

(i) If Fix(N) =\{0\} , then \Gamma|_{(0,\infty)} is C^{r} conjugate to a subgroup of
Affff^{+}(R) .

(ii) If Fix(N)\neq {0}, then there exists a contraction f\in Diffff^{r}[0, \infty) such
that \Gamma is isomorphic to a semi-direct product N>\triangleleft Z_{f} of N and Z_{f} where
Z_{f} denotes the infifinite cyclic group generated by f.

PROOF OF ( i ) . Assume that Fix(N) =\{0 ). Since N is abelian, from
Theorem (3. 1), it follows that there exists a C^{1} flow \varphi on [0, \infty) which is
of class C^{r} on (0, \infty) such that N\subset\{\varphi_{t}\} . We define the map h:(0, \infty)- R
by h^{-1}(t)=\varphi(t, 1) . Since the flow \varphi has no fixed point in (0, \infty) , h is a
well-defined C^{r} diffeomorphism. Denote by \tau_{b} the translation of R by b

(t-arrow t+b) . Then, since for any g\in N there exists b such that g=\varphi_{b} , we
obtain that

h\circ g\circ h^{-1}(t)=h\circ\varphi_{b}(\varphi(t, 1))=b+t=\tau_{b}(t) .

That is, for any g\in N , the map h\circ g\circ h^{-1} is a translation of R. If
rank(N)=1, it follows easily that \Gamma=N . Then the assertion ( i) of the
theorem follows clearly.

Next we assume that rank(N) \geq 2 . Let \overline{N}=hN_{*}h^{-1} and let B=
\{b\in R|\tau_{b}\in\overline{N}\} . It is well known that B is a dense subset of R. For
f\in\Gamma\backslash N , let \tilde{f}=h\circ f\circ h^{-1}- Since \overline{N} is a normal subgroup of h\Gamma_{*}h^{-1} , for
any \tau_{b}\in\tilde{N} , there exists \tau_{c}\in\overline{N} such that \overline{f}\circ\tau_{b}=\tau_{c}\circ\overline{f} Differentiating the
both sides of the equation above, we have \tilde{f}’(t+b)=\tilde{f}’(t) . Applying
t=0, we obtain \tilde{f}’(b)=\overline{f}’(0) for any b\in B . Since B is dense in R and
\tilde{f}’ is continuous, \tilde{f}’(t) is identically equal to \tilde{f}’(0) . That is, \overline{f} is an
affine map. This completes the proof of ( i) of the theorem. \blacksquare

For the proof of ( ii) of the theorem, we assume that Fix(N)\neq {0} in
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the sequel. By Proposition (1. 3), we can take a normal subgroup \Gamma_{0} of
finite index in \Gamma such that N\subset\Gamma_{0} and [\Gamma_{0}, \Gamma_{0}]\subset N . From Propositon (1. 2),

it follows that N is also the nilradical of \Gamma_{0} . Notice that for each f\in\Gamma_{0}

the subset Fix(iV) is f-invariant. First we shall prove ( ii) for \Gamma_{0} and
next we shall prove ( ii) for F.

The preliminary step of the proof of ( ii) for \Gamma 0 is to show that
Fix(f)={0} for each f\in\Gamma_{0}\backslash N .

Fix f\in\Gamma_{0}\backslash N and let p\in Fix(f) . Then the following three cases are
considered:

Case(a) p\in Fix(N) and there exists a sequence \{p_{n}\} converging to p

such that p_{n}\in Fix(N) and p_{n}\not\in Fix(f) .
Case(b) p\in Fix(N) but there exist no such sequences as in Case(a).
Case(c) p\not\in Fix(N) .

We shall show that Fix(/) =\{0\} . To prove this fact, we prepare the fol-
lowing lemmas.

(6. 2) LEMMA. Let p\in Fix(f) in Case(a). Then p\in Fix(g) for any
g\in\Gamma_{0}\backslash N .

PROOF. Suppose on the contrary that p\not\in Fix(g) . There exists an
interval (q, q_{1}) containing p such that q\in Fix(g) , (q, q_{1})\cap Fix(g)=\phi and
q_{1}\in Fix(g) or q_{1}=\infty . We assume that g is a contraction of [q, q_{1})

because we may replace g with g^{-1} if necessary. Then clearly \lim_{narrow\infty}g_{n}(p)=q

(where g_{n} is the n-times iteration of g). Since p\in Fix(N)\cap Fix(f) and
\Gamma 0/N is abelian, it follows easily that g_{n}(p)\in Fix(N)\cap Fix(f) . Therefore
we see that q\in Fix(N)\cap Fix(f) because Fix(N)\cap Fix(f) is a closed set.
For each positive integer n , there exists h_{n}\in N such that g_{n}^{-1}\circ f^{-1}\circ g_{n}=

f^{-1}\circ h_{n} . We consider g and f^{-1} to be restricted on the interval [q, q_{1}) .
Then, applying Lemma (1. 7) to p and g, f^{-1}\in Diffff^{r}[q, q_{1}) , we see that the
sequence \{f^{-1}\circ h_{n}\}_{n\in N} converges uniformly to id on [p_{1}, p] (where p_{1}=

g(p)) . In other words, \{h_{n}\} converges uniformly to f on [p_{1}, p] . On the
other hand, from the assumption of the lemma, there exists a point
p’\in[p_{1}, p] such that p’\in Fix(N) but p’\not\in Fix(f) . Therefore \{h_{n}\}(\subset N) can
not converge to f at p’ . This is a contradiction. Hence p\in Fix(g) . \blacksquare

Lemma (6. 2) implies the next lemma.

(6. 3) LEMMA. If there exists p\in Fix(f) in Case(a), then p=0 and
Fix(f)={0}.

PROOF. From Lemma (6. 2) it follows that p\in Fix(\Gamma 0) . Since
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Fix(\Gamma )={0}, clearly Fix(\Gamma_{0})=\{0\} . Thus we have p=0.
Fix a point q_{0}\in Fix(N) such that q_{0}\neq 0 and q_{0}\not\in Fix(f) . This q_{0} exists

clearly from the assumption of the lemma. Let p_{M}= \max\{x\in Fix(f)|0<x<q_{0}\}

and p_{m}= \min\{x\in Fix(f)|x>q_{0}\} . Now we assume that Fix(f)\neq {0}. Then
either p_{M} or p_{m} exists. First suppose that p_{M} exists. Clearly 0<p_{M}<q_{0}

and (p_{M}, q_{0}]\cap Fix(f)=\emptyset . Furthermore \{f_{n}(q_{0})\}_{n\in Z} is contained in Fix(N)
and \lim_{narrow\infty}f_{n}(q_{0})=p_{M} or \lim_{narrow-\infty}f_{n}(q_{0})=p_{M} . That is, p_{M} is such a point as in
Case(a). Therefore, by the first assertion of this lemma, we see that
p_{M}=0 . This contradicts p_{M}>0 . Similarly, supposing that p_{m} exists leads
to a contradiction. Hence Fix(/) =\{0\} . \blacksquare

(6. 4) LEMMA. Let p\in Fix(f) in Case{c), that is, p\not\in Fix(N) . Then
p\in int Fix(/).

PROOF. Suppose that p\not\in int Fix(/). From the assumption of the
lemma, p\neq 0 . Therefore there exists an open interval (q, q_{0}) containing p

such that (q, q_{0})\cap Fix(N)=\emptyset , q\in Fix(N) and q_{0}\in Fix(N) or q_{0}=\infty .
Notice that q\in Fix(f) . In fact, if q\not\in Fix(f) , then \{f_{n}(q)|n\in Z\}\cap(q, q_{0})\neq\emptyset .
Since \{f_{n}(q)\}\subset Fix(N) , we see that (q, q_{0})\cap Fix(N)\neq\emptyset . This contradicts
the choice of (q\} q_{0}) . Hence q\in Fix(f) . Moreover we have the following
fact.

CLAIM. q\in Fix(g) for any g\in\Gamma_{0}\backslash N .

PROOF. Suppose that q\not\in Fix(g) . Then neither g^{-1}(q) nor g(q) can
be contained in (q, q_{0}) because g^{-1}(q) , g(q)\in Fix(N) . Since q_{0}\leq g^{-1}(q)<\infty

or q_{0}\leq g(q)<\infty , we have q_{0}<\infty and q_{0}\in Fix(N) . Therefore, by the same
argument as above, we see that q_{0}\in Fix(f) . And there exists the interval
(u, v) which contains [q, q_{0}] such that (u, v)\cap Fix(g)=\phi , u\in Fix(g) and
v\in Fix(g) or v=\infty . Without loss of generality, we assume that g is a
contraction of [u, v) . Then, in the same way as in the proof of Lemma
(6. 2), (applying Lemma (1. 7) to these g, f and q_{0}), we see that there
exists a sequence \{h_{n}\}\subset N such that \{h_{n}\} converges uniformly to f on
[g(q_{0}), q_{0}] . Remarking that g(q_{0})\leq q , we see that \{h_{n}\} converges uniformly
to f on [q, q_{0}] . Restrict N on [q, q_{0}) . Since (q, q_{0})\cap Fix(N)=\emptyset , we can
apply the proof of ( i) of Theorem (6. 1) to N. By this observation, we
see that N is conjugate to a subgroup of translation group of R. There-
fore f= \lim h_{n} must be the identity on [q, q_{0}) because \phi\neq Fix(f)\cap(q, q_{0})\ni p .
That is, p\in(q, q_{0})\subset Fix(f) . This contradicts our assumption that p\not\in

int Fix(f). Therefore q\in Fix(g) . This completes the proof of Claim.
The above claim implies that q\in Fix(\Gamma_{0}) . Since Fix(\Gamma_{0})=\{0\} , it fol-
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lows that q=0 . Therefore, we see that q_{0}<\infty and q_{0}\in Fix(N) by the
assumption Fix(N)\neq {0} and the choice of (q, q_{0}) . Moreover q_{0}\in Fix(g)

for any g\in\Gamma_{0}\backslash N . Indeed, if q_{0}\not\in Fix(g) , then \emptyset\neq\{g_{n}(q_{0})|n\in Z\}\cap(q, q_{0})\subset

Fix(/)\cap (q, q_{0}). This contradicts the choice of (q, q_{0}) . Thus q_{0}\in Fix(g)

for any g\in\Gamma_{0}\backslash N . Therefore q_{0}\in Fix(\Gamma_{0})=\{0\} . This contradicts the choice
of q_{0} . Hence we conclude that p\in int Fix(/). \blacksquare

Now we can show the following.

(6. 5) LEMMA. Fix(f) =\{0\} for any f\in\Gamma_{0}\backslash N.

PROOF. Suppose that Fix(f)\neq {0} for f\in\Gamma_{0}\backslash N . By Lemma (6. 3)
and (6. 4), we observe that if p\in Fix(f)\backslash \{0\} and p\not\in int Fix(/), then p is a
point in Case(b), that is, p\in Fix(N) and there is no sequence such as \{p_{n}\}

where limp_{n}=p , p_{n}\in Fix(N) but p_{n}\not\in Fix(f) . Let J=(a, b) be a comp0-
nent of (0, \infty)\backslash Fix(f) . Then the above observation implies that a\in Fix(f)

and a\in Fix(/) , and if b<\infty , then b\in Fix(f) and b\in Fix(N) . And J\cap

Fix(N)= \emptyset . In fact, if q\in J\cap Fix(N)\neq\emptyset , then a and b (if b<\infty ) are
adherent points of the set \{f_{n}(q)|n\in Z\}(\subset Fix(N)) . That is, a and b (if
b<\infty) are points in Case(a). Therefore, from Lemma (6. 3), it follows
that a=0 and b=\infty , contradicting the assumption that Fix(f)\neq {0}. Thus
we see that J\cap Fix(N)=\emptyset . Now we have the following.

CLAIM. For any h\in N , f\circ h=h\circ f on J.

PROOF. Denote by \Gamma_{f} the subgroup of \Gamma_{0} generated by f and N. We
restrict \Gamma_{f} to [a, b) , and denote by \Gamma_{f}^{*} the restriction of \Gamma_{f} to (a, b) .
Since Fix(/)\cap [a, b ) =a and clearly Fix(\Gamma_{f})\cap[a, b)=\{a\} , by applying ( i)
of the theorem, we see that \Gamma_{f}^{*} is C^{r} conjugate to a subgroup of Affff^{+}(R) .
The conjugation maps N into the translation group since N is abelian and
Fix(/)\cap (a, b ) =\phi . Furthermore f|_{(a,b)} is also conjugate to a translation
because Fix(f)\cap (a, b ) =\emptyset . Therefore \Gamma_{f}^{*} must be conjugate to a subgroup
of the translation group. It follows that \Gamma_{f}^{*} is abelian. This completes
the proof of Claim.

This implies that f\circ h=h\circ f on [0, \infty) for any h\in N . That is, \Gamma_{f} is an
abelian group. And \Gamma_{f} is a normal subgroup of \Gamma_{0} because \Gamma_{f}\supset N\supset

[\Gamma_{0}, \Gamma_{0}] . This contradicts the maximality of N. Therefore Fix(f) =\{0\} . \blacksquare

The following lemma completes the proof of ( ii) for \Gamma_{0} .

(6. 6) LEMMA. \Gamma_{0}/N is a free abelian group of rank 1 and has a
generator which is represented by a contraction.

PROOF. On the contrary, assume that \Gamma_{0}/N is of rank \geq 2 . Then
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there exist contractions f, g\in\Gamma_{0} such that the subgroup of \Gamma_{0}/N generated
by the elements which are represented by f and g is of rank 2. Let \Lambda be
the subgroup of \Gamma_{0} generated by f and g. Notice that Fix(N) is un-
bounded since Fix(N) is f- invariant and Fix(N)\neq {0}. Notice that
Fix(N) \neq[0, \infty) . (Otherwise N=\{id\} and \Gamma_{0}\cong\Gamma_{0}/N is abelian, which con-
tradicts the maximality of N) Let a\in Fix(N)(a\neq 0) be the upper end-
point of a certain component of [0, \infty)\backslash Fix(N) . We consider the orbit
through a of the natural action of \Lambda on [0, \infty) . Denote this orbit by \mathscr{O}

and denote its closure by \overline{\mathscr{O}} . Since \overline{\mathscr{O}}\subset Fix(N) , there exists c\in\overline{\mathscr{O}} such
that (c, a)\cap\overline{\mathscr{O}}=\phi . Letting J=[c, a] , we see that if h_{1} , h_{2}\in\Lambda and h_{1}(a)\neq

h_{2}(a) , then int(h_{1}(J)\cap h_{2}(J))=\emptyset . Furthermore we see that c\not\in \mathscr{O} . Indeed,
if c\in \mathscr{O} and c=h(a) for some h\in\Lambda , then \mathscr{O}=\{h^{n}(a)|n\in Z\}=\overline{\mathscr{O}}\cap(0, \infty) .
It follows that f(a)=h^{i}(a) for some i\in Z . Since h^{-i}\circ f(a)=a\neq 0 , by
Lemma (6. 5), we have that h^{-i}\circ f\in N . In a similar way, we obtain that
h^{-j}\circ g\in N for some j . These imply that the subgroup of \Gamma_{0}/N generated
by the elements which are represented by f and g is generated by the
element which is represented by h . This contradicts the choice of f and
g . Therefore, we have c\not\in \mathscr{O} .

It follows that there exists a strictly increasing sequence \{a_{m}\}\subset \mathscr{O}

such that a_{m}<c and \lim_{marrow\infty}a_{m}=c . For each m, there exist m_{1} , m_{2}\in Z such

that a_{m}=f_{m_{1}}\circ g_{m_{2}}(a) . Since a_{m}<a , we see that m_{1}>0 or m_{2}>0 . Replacing
\{a_{m}\} with its subsequence if necessary, we can assume that m_{2}>0 without
loss of generality. Let h_{m}=f_{m_{1}}\circ g_{m_{2}} and hm(J) . Since the points a_{m}=

h_{m}(a) are distinct, the intervals h_{m}(J) are disjoint. Applying Lemma
(1. 9), we see that there exist \alpha , \nu>0 such that

0<h_{\acute{m}}(z)\leq\alpha|Jm|

for all z\in\hat{J} (where |J_{m}| denotes the length of J_{m} and \hat{J} denotes the
\nu-neighborhood of J). Since \lim_{m\sim\infty}|Jm|=0 , for sufficiently large m, h_{\acute{m}}(z)

can be made arbitrarily small uniformly for all z\in\hat{J} Therefore, since
\lim_{marrow\infty}a_{m}=c and c\in\overline{I}- for sufficiently large m we have

h_{m}(\hat{J})\subset\hat{J}

It follows that h_{m} has a fixed point in \overline{J} (cf. [Sa, p. 83]). By Lemma (6. 5)
we see that h_{m}=f_{m_{l}}\circ g_{m_{2}}\in N . This contradicts the choice of f and g .
Thus we conclude that \Gamma_{0}/N is of rank 1.

Next we show that \Gamma 0/N is free abelian. Since Fix(/) =\{0\} for any
f\in\Gamma_{0}\backslash N and Fix(f_{n})=Fix(f) , we see that Fix(f_{n})=\{0\} for all n\in Z .
Therefore f_{n}\not\in N for any f\in\Gamma_{0}\backslash N and n\in Z . It follows \Gamma_{0}/N has no ele-
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ment of finite order. Thus \Gamma_{0}/N is free abelian of rank 1 and therefore, is
generated by only one generater which is represented by some f such that
Fix(f) =\{0\} . Since f or f^{-1} is clearly a contraction, the lemma follows. \blacksquare

PROOF OF ( ii) OF THEOREM (6. 1). We show that the same assertion
as the lemma above holds for \Gamma/N . Since \Gamma/\Gamma_{0} is polycyclic and of finite
order, there exists a sequence of subgroups

\Gamma=\Gamma^{k}\supset\Gamma^{k-1}\supset\cdots\supset\Gamma^{0}=\Gamma 0

such that for each i=1 , \ldots , k , \Gamma^{i-1} is normal in \Gamma^{i} and \Gamma^{i}/\Gamma^{i-1} is a finite
cyclic group. By induction, we show that the same assertion as Lemma
(6. 6) for each \Gamma^{i} is valid. For i=0 , this is Lemma (6. 6). Assume that
the assertion is valid for some i . That is, \Gamma^{i}/N is infinite cyclic group
and generated by an element g which is represented by a contraction g .
Since \Gamma i/N is normal in \Gamma i+1/N , it follows that for each \overline{f}\in\Gamma i+1/N ,
\overline{f}\circ\overline{g}\circ\overline{f}^{-1}=\hat{g} or \hat{g}^{-1} . But each_{-}f\in Diffff_{-}^{r}[0, \infty) preserves the order of
points in [0, \infty) . Therefore \overline{f}\circ g\circ\overline{f}^{-1}=g for each \overline{f}\in\Gamma^{i+1}/N , which
means that \Gamma^{i+1}/N is abelian. By Proposition (1. 3) we see that N is also
the nilradical of \Gamma^{i+1} . Since we can apply the same argument as \Gamma_{0} to
\Gamma^{i+1} . by Lemma (6. 6), we conclude that the assertion for \Gamma^{i+1} is valid.
This completes the proof. \blacksquare

REMARK. By Lemma (5. 1) and Theorem (6. 1), we notice that every
polycyclic subgroup of Diffr [0, \infty) (r\geq 2) is strongly polycyclic.
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