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Notes on spatial representations of graphs
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\S 1. Introduction

Throughout this paper, every graph is assumed to be finite, simple,
and connected. We refer to [2] for basic terminology and notation of
graph theory. We regard a graph as a topological space in the natural
way. The image of a tame embedding of a graph G into the 3 -dimen-
sional Euclidean space R^{3} is called a spatial representation of G . We will
denote a spatial representation of a graph G always by \overline{G} .

In [5], Kobayashi defined several kinds of spatial representations of
graphs and discussed their properties from the knot-theoretic point of
view (see [3] for knot theory).

DEFINITION 1. Let G be a graph and let \mathscr{C}=\{C_{1}, C_{2}, \cdots, C_{n}\} be a set
of cycles in G that represents a basis of H_{1}(G;Z) . A spatial representa-
tion \overline{G} of G is locally unknotted (with respect to \mathscr{C} ) if there exist inter-
nally disjoint disks D_{1} , D_{2} , \cdots , D_{n} in R^{3} such that D_{i}\cap\overline{G}=\partial D_{i}=\overline{C_{i}} for
i=1,2 , \cdots , n .

Kobayashi showed that any complete graph has a locally unknotted
spatial representation, but he mentioned nothing about other class of
graphs. In Section 2, we will show that any graph has a locally unknot-
ted spatial representation.

DEFINITION 2. A spatial representation \overline{G} of a graph G is globally
unknotted if \overline{C} is a trivial knot for every cycle C in G .

For a spatial representation of the complete graph, Kobayashi estab-
lished several connections between local unknottedness and global un-
knottedness. In Section 3, we will present another relationship between
them.

For n\geq 0 , a subspace of R^{3} consisting of a line (called a binder) and
n distinct half-planes (called sheets) with the line as their common bound-
ary is called a book with n sheets. A graph containing a Hamilton path is
called pseudO-Hamiltonian. For the class of pseud0-Hamiltonian graphs,
Kobayashi defined the folllowing spatial representation.
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DEFINITION 3. Let G be a pseud0-Hamiltonian graph and let P be a
Hamilton path in G . A spatial representation \overline{G} is called a book presenta-
tion with n sheets (with respect to P) if \overline{G} satisfies that P is embedded
into the binder, any edge of E(G)-E(P) is embedded into exactly one
sheet, and at least one edge of E(G)-E(P) is embedded into any sheet.

As an example, consider the complete graph with seven vertices.
Fig. 1 illustrates a book presentation with 4 sheets. Notice that \overline{e} can be
embedded into any other sheet.

Fig. 1

Let G be a pseud0-Hamiltonian graph and let P be a Hamilton path

in G . It is easy to show that there exists a book presentation of G with
respect to P. The minimum number of sheets requiring for a book pre-

sentation of G is called the sheetnumber of G , where minimum is taken
over all Hamilton paths in G . If the number of sheets of a book presenta-

tion of G is equal to the sheetnumber of G , then the book presentation is
called a minimal book presentation of G . Let B_{n} be a book with n sheets
S_{1} , S_{2} , \cdots , S_{n} and let L be the binder of B_{n} . A self-homeomorphism h of
B_{n} is called a sheet translation if the restriction of h to L is the identity

map and there is a permutation \sigma of \{1, 2, \cdots, n\} such that h(S_{i})=S_{\sigma(i)} for
i=1,2 , \cdots , n . Kobayashi conjectured that a minimal book presentation
of the complete graph is unique up to sheet translations and ambient
isotopies of R^{3} . In Section 4, we will characterize the book presentation
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of the complete graph and verify the conjecture.

\S 2. Locally unknotted spatial representations.

In this section, we shall show the following.

THEOREM 1. Any graph G has a locally unknotted spatial
representation.

In order to prove Theorem 1, we need to prepare two lemmas. A
cycle C of a graph G is called a dominating cycle (D- cycle) if every
edge of G is incident with .least one vertex of C. A graph containing a
D-cycle is called D-cyclil_{-}^{-} .

LEMMA 1. A D-cyclic graph G has a locally unknotted spatial
representation.

PROOF. Let C be a D-cycle in G. We can construct a locally un-
knotted spatial representation of G as follows: At first, we choose the
unit circle in the xy-plane in R^{3} as the representation curve of C and
represent the edges corresponding to the chords of C by internally disjoint
arcs in the lower half space separated by the xy-plane. Next, we repre-
sent all vertices of V(G)-V(C) by distinct points in the z-axis (z>0)
and represent edges joining a vertex of V(C) and a vertex of V(G)
- V(C) by internally disjoint arcs in the upper half space separated by
the xy-plane (see Fig. 2). It is not hard to see that the resulting spatial
representation is locally unknotted. \square

Fig. 2
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Remark that, in the proof of Lemma 1, the D-cycle C can be chosen
as an element of a basis of H_{1}(G;Z) .

Let G_{1} and G_{2} be graphs and let f:K_{1}arrow K_{2} be an isomorphism from a
subgraph K_{1} of G_{1} to a subgraph K_{2} of G_{2} . The amalgamation G_{1^{*}f}G_{2} is
the graph obtained from the union of G_{1} and G_{2} by identifying the sub-
graphs K_{1} and K_{2} according to f.

LEMMA 2. Let G_{i} be a \dot{g}raph and let \mathscr{C}_{i} be a set of cycles in G_{i}

that represcnts a basis of H_{1}(G_{i} ; Z)(i=1,2) . Let f:P_{1}arrow P_{2} be an
isomorphism, where P_{i} is a section of some cycle C_{i} in \mathscr{C}_{i}(i=1,2) . If
G_{i} has a locality unknotted spatial representation with respect to \mathscr{C}_{i}(i=1 ,
2), then the amalgamation G_{1}*_{f}G_{2} has a locally unknotted spatial
representation with respect to \mathscr{C}_{1}\cup \mathscr{C}_{2} .

PROOF. Let \overline{G_{i}} be a locally unknotted spatial representation of G_{i}

with respect to \mathscr{C}_{i}(i=1,2) . We may \underline{assume} that \overline{G_{1}} and \overline{G_{2}} are splitted
in R^{3} . Let D_{i} be a disk bounded by C_{i} in R^{3} as in the definition of the
locally unknotted spatial representation (i=1,2) . Then, by using the disk
D_{i} , we can show that there exist disjoint 3-balls B_{1} and B_{2} in R^{3} such that
\overline{G_{i}}\subset B_{i} and \overline{G_{i}}\cap\partial B_{i}=\overline{C_{i}}(i=1,2) . By sewing B_{1} and B_{2} by some
homeomorphism h:P_{1}arrow P_{2} , we obtain a spatial representation of G_{1}*_{f}G_{2} .
It is easy to see that the resulting spatial representation is locally unknot-
ted with respect to \mathscr{C}_{1}\cup \mathscr{C}_{2} . \square

In order to prove Theorem 1, we shall actually prove a slightly stron-
ger result.

THEOREM 2. Let G be a graph and let C be a cycle in G. Then
there is a basis \mathscr{C} of H_{1}(G,\cdot Z) that contains C, and there exists a
locally unknotted spatial representation of G with respect to \mathscr{C} .

PROOF. We may assume that the minimum degree of G is more than
or equal to 3, since we consider a basis of H_{1}(G;Z) with a set of cycles
in G . The proof proceeds by induction on the number |E(G-V(C))| .
Suppose first that |E(G-V(C))|=0 . Then the result follows from
Lemma 1, since C is a D-cycle and hence G is D-cyclic.

Now assume that the theorem holds for any graph G and any cycle C
in G with |E(G-V(C))|<N , and let G be a graph and C be a cycle in G

with |E(G-V(C))|=N\geq 1 . Let G’ be a connected component of G-V(C)
such that E(G’)\neq\phi . Let e be an edge of G’ such that its end-vertex u_{1} is
adjacent to some vertex, say v_{1} , of C and let e_{1} be the edge joining u_{1} and
v_{1} . Two cases now arise, depending on whether v_{1} is a cut vertex or not.



Notes on spatial representations of graphs 387

Case 1. Suppose that v_{1} is not a cut vertex. Then there is an edge
e_{2}=u_{2}v_{2} such that u_{2}\in V(G’) and v_{2}\in V(C)-\{v_{1}\} . Let P be a path con-.
necting v_{1} and v_{2} in C . Then we may assume, without loss of generality,
that any vertex of C that is adjacent to a vertex of G’ contains in P
(see Fig. 3).

Fig. 3

Let Q be a (u_{1}, u_{2})-path in G’ (if u_{1}=u_{2} , then Q=u_{1} ). Let G_{1}=

G-V(G’) and let G_{2} be the subgraph of G induced by the edges incident
to a vertex of G’ together with the edges of P. We denote two cycles C

and P\cup e_{1}\cup e_{2}\cup Q by C_{1} and C_{2} , respectively, then we have |E(G_{i}-

V(C_{i}))|<N(i=1,2) . Hence, by the induction hypothesis, there exists a
locally unknotted spatial representation \overline{G}_{i} such that C_{i} is contained in the
basis of H_{1}(G_{i} ; Z)(i=1,2) . The theorem, therefore, follows from Lemma
2, since G is the amalgamation of G_{1} and G_{2} at P.

Case 2. Suppose that v_{1} is a cut vertex. If e_{1} is not a cut edge, then
a similar argument can be used to show that G has a locally unknotted
spatial representation. Hence we assume that e_{1} is a cut edge. Let G^{*} be
the connected component of G-e_{1} containing v_{1} , and let C’ be a cycle in
G’(C’ always exists because the minimum degree of G is more than or
equal to 3). Clearly it holds that |E(G’-V(C’))|<N and |E(G^{*}-V(C))|

<N . Thus there exist locally unknotted spatial representations G’ and
\overline{G^{*}} . Then the spatial representation obtained from the disjoint union of
\overline{G’} and \overline{G^{*}}by attaching an arc joining \overline{u}_{1} and \overline{u}_{2} is a spatial representa-
tion of G . Obviously this spatial representation is locally unknotted and
C is an element of a basis of H_{1}(G,\cdot Z) . \square

We shall conclude this section with one remark. From Theorem 2,
we can choose an arbitrary cycle as an element of a basis of H_{1}(G,\cdot Z) .
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But it is not true that, for a given set \mathscr{C}=\{C_{1}, C_{2}, \ldots, C_{n}\} of cycles in G

that represents a basis of H_{1}(G;Z) , there exists a locally unknotted spa-
tial representation of G with respect to \mathscr{C} In Fig. 4, it is impossible to
construct a locally unknotted spatial representation of G such that C_{1} , C_{2}

and C_{3} are contained in the basis of H_{1}(G;Z) .

Fig. 4

\S 3. Local unknottedness and global unknottedness.

In this section, we concern only with the class of complete graphs.
The complete graph with n vertices is denoted by K_{n} .

DEFINITION 4. A spatial representation \overline{K_{n}} of the complete graph K_{n}

is locally unknotted with respect to a triangle basis if there is a basis \mathscr{C} of
H_{1}(K_{n} ; Z) consisting of 3-cycles in K_{n} and \overline{K_{n}} is locally unknotted with
respect to \mathscr{C} .

In [5], Kobayashi showed that any complete graph has a locally un-
knotted spatial representation with respect to a triangle basis. Kobayashi
asked if, for K_{5} or K_{6} , there exists a locally unknotted spatial representa-
tion with respect to a triangle basis that is not globally unknotted.
Remark that, by the result of Conway and Gordon [4], there exists always
such a spatial representation of K_{n}(n\geq 7) .

PROPOSITION 1. If a spatial representation of K_{5} is locally
unknotted wilh respect to a triangle basis, then it is globally unknotted.
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PROPOSITION 2. There exists a spatial representation of K_{6} that is
locally unknotted with respect to a triangle basis and is not globally

unknotted.

PROOF OF PROPOSITION 1. Let \overline{K_{5}} be a locally unknotted spatial rep-
resentation of K_{5} with respect to a triangle basis. We assume that there
exists a cycle C in K_{5} such that \overline{C} represents a nontrivial knot in R^{3} . We
choose C with the minimum length. Note that, in the following argument,

the arithmetric on the indices of the vertices of C is done modulo the
length of C .

Suppose first that C=v_{1}v_{2}v_{3}v_{4}v_{5}v_{1} is a Hamilton cycle in K_{5} . Then the
3-cycle \overline{v_{i}v_{i+1}v_{i+2}v_{i}} does not bound a disk in R^{3}(i=1,2, \cdots, 5) since a knot-
ted 4-cycle does not exist. Thus the number of 3-cycles in K_{5} that can
not bound disks in R^{3} is at least 5. Since the number of 3 -cycles in K_{5} is
10 and the number of 3-cycles that are needed to bound disks in R^{3} is 6,
\overline{K_{5}} cannot be locally unknotted with respect to a triangle basis. This is a
contradiction.

Suppose next that C=v_{1}v_{2}v_{3}v_{4}v_{1} is a 4-cycle. Then, by the
minimulity of the length of C , each 3-cycle \overline{v_{i}v_{i+1}v_{i+2}v_{i}}(i=1,2,3, 4) can
not bound a disk in R^{3} . This implies that the remaining all 3 -cycles in \overline{K_{5}}

must bound internally disjoint disks. Suppose that there exist internally

disjoint disks D_{1} , D_{2} , D_{3} , D_{4} in R^{3} such that D_{i}\cap\overline{K_{5}}=\partial D_{i}=\overline{v_{5}v_{i}v_{i+1}v_{5}}(i=1 ,

2, 3, 4). Then \overline{C} bounds the disk D_{1}\cup D_{2}\cup D_{3}\cup D_{4} in R^{3} . that is a contra-
diction.

Suppose finally that C=v_{1}v_{2}v_{3}v_{1} is a 3-cycle. Thus \overline{v_{1}v_{2}v_{3}v_{1}} cannot
bound a disk in R^{3} . and all V1V1V2V1 , ViV2V3Vi \overline{v_{i}v_{3}v_{1}v_{i}} cannot bound disks
in R^{3} for i=4,5 . Since the number of 3-cycles that are needed to bound
disks in R^{3} is 6, we can assume that \overline{v_{4}v_{2}v_{3}v_{4}} and \overline{v_{4}v_{3}v_{1}v_{4}} bound disks D_{1}

and D_{2} , respectively, and hence \overline{v_{4}v_{1}v_{2}v_{4}} can not bound a disk in R^{3}

Then the cycle \overline{v_{5}v_{1}v_{2}v_{5}} must bound a disk D_{3} in R^{3} . since it is the only

3-cycle containing \overline{v_{1}v_{2}} . Then both \overline{v_{1}v_{3}v_{5}v_{1}} and \overline{v_{2}v_{3}v_{5}v_{2}} cannot bound
disks in R^{3} because \overline{C} is knotted. Suppose that neither \overline{v_{1}v_{3}v_{5}v_{1}} nor
\overline{v_{2}v_{3}v_{5}v_{2}} bound a disk in R^{3} . Then the remaining 3-cycles must bound
disks in R^{3} In this case, \overline{v_{1}v_{2}v_{4}v_{1}} can bound a disk in R^{3} since there
exist D_{3} and disks bounded by \overline{v_{1}v_{4}v_{5}v_{1}} and \overline{v_{2}v_{4}v_{5}v_{2}} , that is a contradic-
tion. Hence, from the symmetry of K_{5} , we may assume that only \overline{v_{2}v_{3}v_{5}v_{2}}

bounds a disk D_{4} in R^{3} . Suppose that both \overline{v_{2}v_{4}v_{5}v_{2}} and \overline{v_{3}v_{4}v_{5}v_{3}} bound
disks in R^{3}- Then the union of these disks and D_{2} and D_{4} forms a
2-sphere, so at least one of \overline{v_{2}v_{4}v_{5}v_{2}} and \overline{v_{3}v_{4}v_{5}v_{3}} can not bound a disk in
R^{3} . Suppose that \overline{v_{2}v_{4}v_{5}v_{2}} bounds a disk in R^{3} . then \overline{v_{1}v_{4}v_{5}v_{1}} cannot bound
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a disk in R^{3} . since the 4-cycle \overline{v_{1}v_{5}v_{2}v_{4}v_{1}} is ambient isotopic to \overline{C} by the
existence of D_{1} , D_{2} , and D_{3} . Suppose that \overline{v_{3}v_{4}v_{5}v_{3}} bounds a disk in R^{3} ,
then \overline{v_{1}v_{4}v_{5}v_{1}} cannot bound a disk in R^{3} , since the 4-cycle \overline{v_{1}v_{5}v_{3}v_{4}v_{1}} is
ambient isotopic to \overline{C} by the existence of D_{1} , D_{3} , and D_{4} . Anyway at
least two of \overline{v_{2}v_{4}v_{5}v_{2}}, \overline{v_{3}v_{4}v_{5}v_{3}} and \overline{v_{1}v_{4}v_{5}v_{1}} cannot bound disks in R^{3}-

Eventually \overline{K_{5}} has 5 or more 3-cycles that can not bound disks in R^{3} .
This is a contradiction. \square

PROOF OF PROPOSITION 2. The spatial representation \overline{K_{6}} illustrated
in Fig. 5 satisfies the condition of the proposition. Let \mathscr{C}=\{v_{1}v_{2}v_{3}v_{1} ,

v_{1}v_{3}v_{5}v_{1}\}v_{2}v_{3}v_{4}v_{2},

.
v_{3}v_{4}v_{5}v_{4}v_{5}v_{6}v_{4},v_{5}v_{6}v_{l}v_{5},v_{6}v_{1}v_{2}v_{6},v_{2}v_{3}v_{6}v_{2}Then^{\frac{3,v}{K_{6}}}is1oca11yunknottedwithrespectto

’
v_{4}v_{5}v_{2}v_{4},v_{6}v_{1}v_{4}v_{6}\mathscr{C}andcontainsa

’

trefoil knot \overline{v_{1}v_{2}v_{5}v_{6}v_{3}v_{4}v_{1}} . \square

\overline{v_{1}}

Fig. 5

\S 4. The book presentation of the complete graph.

In this section, we shall characterize the minimal book presentation of
the complete graph and prove the following.

THEOREM 3. Any two minimal book presentations of the complete
graph K_{n} are ambient isotopic in R^{3} up to sheet translations.

If n=1,2 , or 3, then the theorem is trivial, since the number of sheets
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is at most one. Thus we assume from now on that n\geq 4 . We begin with
one familiar result about the book presentation of K_{n} (see [1] [5], for
example).

THEOREM 4. The sheetnumber of K_{n}(n\geq 4) is equal to [ \frac{n}{2}] .

For the discussion of the book presentation, it is more helpful to con-
sider an equivalent formulation. Let \overline{K_{n}} be a book presentation of K_{n} ,

and let v_{1} , v_{2} , \cdots , vn be the ordering of vertices along the binder. Let C

be the Hamilton cycle v_{1}v_{2}\cdots v_{n}v_{1} . Consider a projection of \overline{K_{n}} onto a
plane \alpha in R^{3} satisfying that C is represented as a circle in \alpha and the
edges of E(K_{n})-E(C) as chords of the circle. Then the edges in each
sheet are regarded as collections of noncrossing chords. After ambient
isotopic modification, we can assume that crossings of chords are transver-
sal double points only. The image of such a projection together with an
over/under information at every double point is called a circular diagram

of \overline{K_{n}} by C. As an example, Fig. 6 illustrates a circular diagram of the
book presentation of K_{7} in Fig. 1. In the circular diagram, the binder and
sheets are considered by C and internally disjoint disks bounded by C,

respectively. In what follows, for a cycle C=v_{1}v_{2}\cdots v_{n}v_{1} , we shall read
subscripts dulo n, and denote the section of C from v_{i} to v_{j} by
C[v_{i}, v_{j}] .

Fig. 6
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For convenience, we focus first on the case when the number of the
vertices is even. Consider any minimal book presentation of K_{2m} . From
Theorem 4, the number of sheets is m. Let v_{1} , v_{2} , \cdots , v_{2m} be the ordering
of the vertices of K_{2m} along the binder and let C be the Hamilton cycle
v_{1}v_{2}\cdots v_{2m}v_{1} . We consider this book presentation with the circular diagram
by C. We say that a chord is i- chord if the distance between its endver-
tices in C is i . Clearly it holds that 2\leq i\leq m and that the number of
i-chords is equal to m if i=m, or 2m if 2\leq i\leq m-1 . The following is a
simple observation.

LEMMA 3. For a circular diagram of a minimal book presentation
of K_{2m} , there are exactly one m- chord and exactly two i- chords (i=2,3 ,
\ldots , m-1 ) in every sheet.

PROOF. Since each m-chord is a diagonal of C , no two such chords
can be embedded in the same sheet (this is the reason why m sheets are
neccessary for a book presentation of K_{2m} ). Thus there is exactly one
m-chord in every sheet. For the second claim, notice that the number of
chords is m(2m-3) . On the other hand, the number of sheets that we are
allowed to use is m and the number of chords that we can accomodate in
one sheet is at most 2m-3 . Hence the number of chords embedded in
each sheet is exactly 2 m-3 . Since each sheet contains one m-chord the
lemma follows. \square

Let S_{1} , S_{2} , \cdots , S_{n} be the sheets of the book in which K_{2m} is embedded,
and suppose that the m-chord v_{i}v_{i+m} is embedded in S_{i} for i=1,2 , \cdots , m
(this is always possible because we are allowed to use a sheet transration).
We shall call such a book presentation canonical. We turn attention to
(m-1)-chords, if any. From Lemma 3, either v_{2}v_{m+1} or v_{1}v_{m} must be em-
bedded in S_{1} . Suppose that v_{2}v_{m+1} is embedded in S_{1} . Then, from
Lemma 3, either v_{2}v_{m+1} or v_{3}v_{m+2} must be embedded in S_{2} . Since v_{2}v_{m+1} is
embedded in S_{1} , v_{3}v_{m+2} must be embedded in S_{2} . By proceeding this argu-
ment repeatedly, we can conclude that both v_{i+1}v_{i+m} and v_{i+m+1}v_{i+2m-1} are
embedded in S_{i} for i=1,2 , \cdots , m . If we had chosen first VlVm as the
(m-1)- chord in S_{1} , then it would be hold that both v_{i}v_{i+m-1} and
v_{i+m}v_{i-1+2m} are embedded in S_{i} for i=1,2 , \cdots , m .
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Fig. 7

Next turn attention to (m-2)-chords, if any. From Lemma 3, either
v_{3}v_{m+1} or v_{2}v_{m} must be embedded in S_{1} . Suppose that v_{3}v_{m+1} is embedded
in S_{1} , then v_{4}v_{m+2} must be embedded in S_{2} , since either v_{4}v_{m+2} or v_{3}v_{m+1}

must be embedded in S_{2} . By proceeding this argument repeatedly, we can
conclude that both v_{i+2}v_{i+m} and v_{i+m+2}v_{i+2+m} are embedded in S_{i} for
i=1,2 , \cdots , m . If we had chosen first v_{2}v_{m} as a (m-2)-chord in S_{1} , then it
would be hold that both v_{i}v_{i+m-1} and v_{i+m+1}v_{i\dagger 2m-1} are embedded in S_{i} for
i=1,2 , \cdots , m . Hence, by repeating this argument, we can deduce the fol-
lowing.

PROPOSITION 3. Let \overline{K_{2m}} be a canonical book presentation of K_{2m}

and let v_{1} , v_{2} , \cdots , v_{2m} be the ordering of the vertices of K_{2m} along the
binder and let C be the Hamilton cycle v_{1}v_{2}\cdots v_{2m}v_{1} . Then each sheet of
the circular diagram of \overline{K_{2m}} by C has a symmetry under the rotation by

anglc \frac{2\pi}{m} around the center of C. \square

As an example, Fig. 8 illustrates four sheets of a canonical book pre-
rotation of K_{8} .
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S_{1} S_{3}

Fig. 8

From Proposition 3, a canonical book presentation \overline{K_{2m}} can be de-
scribed by the condition of the chords embedded in S_{1} , more precisely by
the condition of the chords embedded in the region, say the right-side of
S_{1} , bounded by v_{1}v_{m+1} and C[v_{1}, v_{m+1}] in S_{1} . We shall express \overline{K_{2m}} with a
word consisting of two letters a and b as follows: We start initially with
the (m-1)-chord in the right-side of S_{1} . If v_{2}v_{m+1} is embedded in it, then
associate with a letter a , and if v_{1}v_{m} is embedded in it, then associate with
a letter b . In general, for the (i+1)-chord v_{j}v_{k} in the right-side of S_{1} , if
the i-chord v_{j+1}v_{k} is embedded in it, then associate with a letter a , and if
v_{j}v_{k-1} is embedded in it, then associate with a letter b . As a result we
obtain m-2 letters. Finally list up these letters from left to righ\underline{t}in
order. The resulting sequence of letters is the word corresponding to K_{2m} .
As an example, the word corresponding to the book presentation in Fig. 8
is bb .

LEMMA 4. Any two canonical book presentations of K_{2m} are
ambient isotopic in R^{3}-

PROOF. Let \overline{K_{2m}} be a canonical book\underline{pr}esentation of K_{2m} , and let
w_{1}w_{2}\cdots Wn-2 be the word corresponding to K_{2m} . Let \overline{K} be the canonical
book presentation such that the word corresponding to \overline{K} is aa\cdots a . We

\overline{m-2}

shall show that \overline{K_{2m}} can be transformed into \overline{K} by an ambient isotopy of
R^{3} (this ambient isotopy fixes the binder of the book).

Assume first that Wm- 2=b . Let v_{k}v_{k+2} be the 2-chord embedded in the
right-side of S_{1} . Then it holds from Proposition 3 that 2 -chords
v_{i+k-1}v_{i+k+1} and v_{i+k-1+m}v_{i+k+1+m} are both embedded in S_{i} for i=1,2 , \cdots , m .
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Moreover it follows from the difinition of word that 3-chords v_{i+k-1}v_{i+k+2}

and v_{i+k-1+m}v_{i+k+2+m} are both embedded in S_{i} for i=1,2 , \cdots , m . Now we
move v_{k+1}v_{k+3} from S_{2} into S_{1} . Then v_{k}v_{k+2} cannot be embedded in S_{1} , so
we move it from S_{1} into S_{m} . By repeating this move, we obtain the book
presentation with w_{m-2}=a , after moving v_{k+2}v_{k+4} from S_{3} into S_{2} .

Assume next that Wm- l=b and w_{m-l+1}=w_{m-l+2}=\cdots=w_{m-2}=a for some
l(3\leq l\leq m-1) . Let v_{k}v_{k+l} be the /-chord embedded in the right-side of
S_{1} . Then it holds from Proposition 3 that /-chords v_{i+k-1}v_{i\dagger k+l-1} and
v_{i+k-1+m}v_{i+k+\iota-1+m} are both embedded in S_{i} for i=1,2 , \cdots , m . Moreover it
follows from the definition of word that ( l+1)-chords v_{i+k-1}v_{i+k+l} and
v_{i+k-1+m}v_{i+k+l+m} are both embedded in S_{i} for i=1,2 , \cdots , m . Now we
move v_{k+1}v_{k+l\dagger 1} , v_{k+2}v_{k+l+l} , \cdots , v_{k+l-1}v_{k+l+l} from S_{2} into S_{1} . Next, by the
similar way as above, we move v_{k}v_{k+l} , v_{k+1}v_{k+l} , \cdots , v_{k+l-2}v_{k+l} from S_{1} into
S_{m} . By repeating this move, we finally obtain the book presentation with
Wm- l=w_{m-l+1}=\cdots=w_{m-2}=a . Hence the result follows. \square

Next we shall handle the case when the number of vertices is odd.
The situation is seriously different from the previous case. Note that,

from Theorem 4, the sheetnumber of K_{2m+1} is equal to m+1 . In this case
there might exists a sheet containing a space to accomodate edges. As an
example, recall the book presentation of K_{7} with 4 sheets (see Fig. 1).

This book presentation is a canonical book presentation of K_{7} . Notice
that there is a sheet containing two edges only.

Consider any minimal book presentation of K_{2m+1} . Let v_{1} , v_{2} , \cdots ,

v_{2m+1} be the ordering of the vertices along the binder and let C be the
Hamilton cycle v_{1}v_{2}\cdots v_{2m+1}v_{1} . Again we consider this book presentation
with the circular diagram by C. We partition the chords into m-1
groups consisting of 2m+1 chords. We say that a chord is i-chord if the
distance between its endvertices in C is i . Clearly it holds that 2\leq i\leq m

and that the number of i-chords is 2m+1 for i=2,3 , \cdots , m .
First we consider m-chords. It is easy to see that no three such

chords can be embedded in the same sheet (this is the reason why m+1

sheets are needed for a book presentation of K_{2m+1} ). Thus exactly m

sheets contain two adjacent m^{-}chords and the remaining sheet contains
only one m-chord. Let S_{1} , S_{2} , \cdots , S_{m+1} be the sheets of the book in which
K_{2m+1} is embedded, and assume that both v_{i}v_{i+m} and v_{i}v_{i+m+1} are embedded
in S_{i} for i=1,2 , \cdots , m and that v_{m+1}v_{2m+1} is embedded in S_{m+1} . Let H_{i} be
the region in S_{i} bounded by C[v_{i}, v_{i+m}] and the chord v_{i}v_{i+m} for i=1,2 ,

\ldots , 2m+1 , where the arithmetric on the indices of sheets is done by

modulo m+1 . We shall call H_{1} , H_{2} , \cdots , H_{2m+1} half-shcets. Notice that
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there exist exactly two half-sheets H_{i} and H_{i+m+1} in S_{i} for i=1,2 , \cdots , m
and that there exists only one half-sheet H_{m+1} in S_{m+1} . We shall call the
region in S_{m+1} bounded by the chord v_{m+1}v_{2m+1} and C[v_{2m+1}, v_{m+1}] the
extra-space. Now suppose that each half-sheet has exactly one i chord
for i=2,3 , \cdots , m (hence the extra-space has no chord). We shall call
such a book presentation canonical. The followings can be shown by the
similar way as the proofs of Proposition 3 and Lemma 4, respectively.

PROPOSITION 4. Let \overline{K_{2m+1}} be a canonical book presentation of
K_{2m+1} . Let v_{1} , v_{2} , \cdots , v_{2m+1} be the ordering of the vertices of K_{2m+1}

along the binder and let C be the Hamilton cycle v_{1}v_{2}\cdots v_{2m+1}v_{1} . Then
each half-sheet of the circular diagram of \overline{K_{2m+1}} by C has a symmetry

under the rotation by angle \frac{2_{\Gamma\iota}}{2m+1} around the center of C. \square

LEMMA 5. Any two canonical book presentations of K_{2m+1} are
ambient isotopic in R^{3} . \square

In order to complete the proof of Theorem 3, we need the following
lemma.

LEMMA 6. Any minimal book presentation of K_{2m+1} can be
transformed into some canonical book presentation by ambient isotopies
of R^{3} and sheet translations.

PROOF. Let \overline{K_{2m+1}} be a minimal book presentation of K_{2m+1} and let
v_{1} , v_{2} , \cdots , v_{2m+1} be the ordering of the vertices of K_{2m+1}along\underline{the}binder
and let C be the Hamilton cycle VlV2 \cdots v_{2m+1}v_{1} . We consider K_{2m+1} with
the circular diagram by C . By using m-chords, we can define 2m+1
half-sheets and the extra-space in m+1 sheets of the book. We assume
that the extra-space contains at least one chord, and show that \overline{K_{2m+1}} can
be transformed into the book presentation such that the extra-space con-
tains no chord by sheet translations and ambient isotopies of R^{3} (each
ambient isotopy fixes the binder of the book). In the following argument,
for convinience, the term half-sheet means half-sheet or extra-space.

We first examine 3-chords. If the half-sheet containing the 3-chord
v_{i}v_{i+3} contains either v_{i}v_{i+2} or v_{i+1}v_{i+3} for i=1,2 , \cdots , 2m+1 , then examine
4-chords . Otherwise, there exists a half-sheet, say H_{1} , that contains a 3-
chord, say v_{1}v_{4} , but contains neither v_{1}v_{3} nor v_{2}v_{4} . Then, after a sheet
translation if necessary, take v_{2}v_{4} from other half-sheet into H_{1} . Let H_{2}

be the half-sheet that contained v_{2}v_{4} before. If H_{2} contains the 3-chord
v_{2}v_{5} , then take v_{3}v_{5} from other half-sheet into H_{2} after a sheet translation
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if necessary, and apply this argument to the half-sheet that contained v_{3}v_{5}

before. If H_{2} does not contain v_{2}v_{5} , then consider the half-sheet, say H_{3} ,

that contains v_{2}v_{5} . If H_{3} contains v_{3}v_{5} . we are done. Otherwise take v_{3}v_{5}

from other half-sheet into H_{3} , and repeat this argument. Consequently,
we obtain the book presentation of K_{2m+1} such that every half-sheet
containing v_{i}v_{i+3} contains v_{i+1}v_{i+3} for i=1,2 , \cdots , 2m+1 . If we had ch0-
sen first v_{1}v_{3} as the 2-chord in H_{1} , then we could conclude that every half-
sheet containing v_{i}v_{i+3} contains v_{i}v_{i+2} for i=1,2 , \cdots , 2m+1 .

Now we assume that every half-sheet containing v_{i}v_{i+3} also contains
v_{i+1}v_{i+3} for i=1,2 , \cdots , 2m+1 , and examine 4-chords. If the half-sheet
containing the 4-chord v_{i}v_{i+4} contains either v_{i}v_{i+3} or v_{i+1}v_{i+4} for i=1,2 ,

\ldots , 2m+1 , then examine 5-chords. Otherwise, there exists a half-sheet,

say H_{1} again, that contains a 4-chord, say v_{1}v_{5} , but contains neither v_{1}v_{4}

nor v_{2}v_{5} . Then, after sheet translation if necessary, take v_{2}v_{5} and v_{3}v_{5}

from other half-sheet into H_{1} . Let H_{2} be the half-sheet that contained
v_{2}v_{5} and v_{3}v_{5} before. If H_{2} contains the 4-chord v_{2}v_{6} , then take v_{3}v_{6} and
v_{4}v_{6} from other half-sheet into H_{2} after a sheet translation if necessary,

and apply this argument to the half-sheet that contained v_{3}v_{6} and v_{4}v_{6}

before. If H_{2} does not contain v_{2}v_{6} , then consider the half-sheet, say H_{3} ,

that contains v_{2}v_{6} . If H_{3} contains v_{3}v_{6} and v_{4}v_{6} , then we are done. Other-
wise take v_{3}v_{6} and v_{4}v_{6} from other half-sheet into H_{3} , and repeat this
argument. Consequently, we obtain the book presentation of K_{2m+1} such
that every half-sheet containing v_{i}v_{i+4} contains v_{i+1}v_{i+4} and v_{i+2}v_{i+4} for i=
1,2 , \cdots , 2m+1 . If we had chosen first VlV4 as the 3-chord in H_{1} , then we
could conclude that every half-sheet containing v_{i}v_{i+4} contains v_{i}v_{i+3} ,

v_{i+1}v_{i+3} for i=1,2 , \cdots , 2m+1 .
By repeating above construction, we finally obtain the book presenta-

tion of K_{2m+1} such that the extra-space contains no chord, since the extra-
space has no m-chord. Now it is easy to transform this book presenta-

tion into some canonical one. Let S_{1} , S_{2} , \cdots , S_{m+1} be the sheets of the
book in which K_{2m+1} is embedded. If both v_{i}v_{i+m} and v_{i}v_{i+m+1} are
contained in the same sheet for i=1,2 , \cdots , m and hence the remaining

sheet contains v_{m+1}v_{2m+1} , then we can obtain a canonical book presentation
of K_{2m+1} by using a sheet translation. Otherwise, there is a sheet, say
S_{m+1} , that contains v_{m+1}v_{2m+1} and contains either v_{m}v_{2m+1} or v_{1}v_{m+1} . If S_{m+1}

contains v_{m}v_{2m+1} , then move v_{m}v_{2m+1} together with all other chords in the
same half-sheet from S_{m+1} into the sheet, say S_{m} , that contains v_{m}v_{2m} . If
S_{m} does not contain v_{m-1}v_{2m} , then we are done because the resulting book
presentation can be transformed into some canonical one by the similar
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way as above. Otherwise, S_{m} contains v_{m-1}v_{2m} . Then move v_{m-1}v_{2m}

together with all other chords in the same half-sheet from S_{m} into the
sheet that contains v_{m-1}v_{2m-1} . By repeating this move, we obtain a canon-
ical book presentation similarly. In the case when S_{m+1} contains v_{1}v_{m} , we
can also obtain a canonical book presentation by the similar way as
above. \square

We are now ready to prove Theorem 3.

PROOF OF THEOREM 3. Let \overline{B_{1}} and \overline{B_{2}} be two minimal book presen-
tations of K_{n} . If n=1,2 , or 3, then the proof is clear, since each of them
has at most one sheet. Thus it suffices to prove the theorem for the case
when n\geq 4 . Suppose that n is even.By- virtue of a sheet translation, we
can assume that both \overline{B_{1}} and B_{2} are canonical. Therefore, from
Lemma 4, they are ambient isotopic in R^{3} S\underline{up}pose that n is odd. From
Lemma 6, we can transform each of \overline{B_{1}} and B_{2} into some canonical book
presentation by sheet translation and ambient isotopies of R^{3} . Hence,
from Lemma 5, they are ambient isotopic in R^{3} \square
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