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Continuity and singularity of measures
under action groups

Hitoshi MIZUMACHI
(Received August 6, 1993)

\S 0. Introduction

A locally compact group G acting on a measurable space (X, \mathscr{B}) is called
a measurable action group if:

(I) G is metrizable and the left Haar measure dg=dm_{G} is \sigma-finite;
(II) the action (g, x)->gx:(G\cross X, \mathscr{B}(G)\cross \mathscr{B})-arrow(X, \mathscr{B}) is measurable,

where \mathscr{B}(G) is the Borel field of G.
For a measure \mu on X and g\in G , define the transformed measure \mu_{g}

on X by

\mu_{g}(A)=\mu(g^{-1}A) , A\in \mathscr{B},

and for a Borel measure \rho on G and a measure \mu on X, define the mea-
sure \rho*\mu on X by

( \rho*\mu)(A)=\int_{G}d\rho(g)\int_{X}I_{A}(gx)d\mu(x) , A\in \mathscr{B}.

Note that \delta_{g}*\mu=\mu_{g} , where \delta_{g} stands for the unit mass at g\in G . For two
measures \mu and \nu on X, \mu\ll\iota/ means that \mu is absolutely continuous with
respect to \nu , \mu\perp 1/ means that \mu and 1/ are singular, and \mu-\nu means \mu\ll 1/

and \nu\ll\mu . For a measure \mu on X and B\in \mathscr{B}, denote by \mu|_{B} the restricted
measure defined by

\mu|_{B}(A)=\mu(A\cap B) , A\in \mathscr{B}.

A measure \mu on X is said to be G-invariant if \mu_{g}=\mu for all g\in G , and
G-quasi-invariant if \mu_{g}-\mu for all g\in G . Denote by \mathscr{M}(X) and \mathscr{M}(G) , the
space of finite measures on (X, \mathscr{B}) and (G, \mathscr{B}(G)) , respectively. A set A
\in \mathscr{B} is called a negligible set if m_{G}(\{g\in G|gx\in A\})=0 for all x\in X .

The first purpose of this paper is to prove the following theorem.

THEOREM 1. Let (X, \mathscr{B}) be a measurable space and G a measurable
action group on X. For \mu\in \mathscr{M}(X) , the following are equivalenl:
(1) \mu\ll m_{G}*\mu ;
(2) \mu\ll\rho*\mu for some \rho\in \mathscr{M}(G) with \rho\ll m_{G} :
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(3) \mu\ll\rho*\mu for all \rho\in \mathscr{M}(G) with \rho-m_{G} ;
(4) \lim_{garrow e}\mu(g^{-1}A)=\mu(A) for eve\eta A\in \mathscr{B} :
(5) \lim_{garrow e}\mu(A\Delta g^{-1}A)=0 for every A\in \mathscr{B}, where A\Delta B=(A\cup B)\backslash (A\cap B) ;
(6) \lim_{garrow e}||\mu_{g}-\mu||_{tot}=0 , where ||\cdot||_{tot} is the total variation norm;
(7) \mu is expressed as \mu=\rho*\nu^{+}-\rho*\iota/- , where \rho\in \mathscr{M}(G) , \rho\ll m_{G} and 1J^{+} . 1\nearrow-

\in \mathscr{M}(X) ;
(8) \mu is expressed as d\mu=fd(\rho*\nu’) , where 0\leq f\leq 1 , \rho\in \mathscr{M}(G) , \rho\ll m_{G} and
\nu’\in \mathscr{M}(X) ;
(9) \mu\ll\nu for some G-quasi-invariant \nu\in \mathscr{M}(X) ;
(10) \mu\ll\nu for some G- invariant {not necessarily a-finite) measure \nu on
X ;
(11) there exist B\in \mathscr{B}(G) with m_{G}(B)>0 and a measure \nu on X {not
necessarily a-finite) such that \mu_{g}\ll\downarrow/for all g\in B ;
(12) \mu(A)=0 for every negligible set A .

Equivalence among (1)\sim(6) was proved in Mizumachi and Sato [7],
and in this paper we extend them to (7)-(12) . Then the second purpose
is to give equivalent conditions for \mu\perp m_{G}*\mu , and we prove the following
theorem.

THEOREM 2. Let (X, \mathscr{B}) be a measurable space and G a measurable
action group on X. For \mu\in \mathscr{M}(X) , the following are equivalent:
(1) \mu\perp m_{G}*\mu ;
(2) \mu\perp\mu_{g} for m_{G}-a . e . g\in G :
(3) \mu\perp\nu for all 1/\in \mathscr{M}(X) with \nu\ll m_{G^{*}}\iota/ ;
(4) \mu\perp\nu for all G-quasi-invariant \nu\in \mathscr{M}(X) ;
(5) for every \nu\in \mathscr{M}(X) , \mu\perp\nu_{9} holds for m_{G}-a . e . g\in G ;
(6) \mu(A^{c})=0 for some negligible set A .

Several conditions in Theorems 1 and 2 were proved under topological
assumptions on X by Gulick, Liu and van Rooij [2], Liu and van Rooij
[4], and Liu, van Rooij and Wang [5]. Zabell [8] proved that (4) and (9)
in Theorem 1 are equivalent in the case where (X, \mathscr{B}) is a standard Borel
space. In this paper we prove those equivalent conditions by only assum-
ing that (X, \mathscr{B}) is a measurable space.

In general, “ for all ” in Theorem 2 (4) can not be replaced with “ for
some ” : see Remark 7 for a counterexample. However, it is possible in
the following case.

COROLLARY 1. Let (X, \mathscr{B}) be a standard Borel space, G a measur-
able action group on X , and \mu\in \mathscr{M}(X) . Assume that G is separable and
the action is transitive, that is, for every x , y\in X there exists g\in G such
that y=gx. Then we have \mu\perp m_{G}*\mu if and only if \mu\perp\nu for some G-qmsi
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-invariant \nu\in \mathscr{M}(X) .

In particular, when G is separable, G is a measurable action group on
itself by the left multiplication, and we have the following corollary.

COROLLARY 2. Let G be a locally compact metrizable and separable
topological group, m_{G} the left Haar measure on G, and \mu\in \mathscr{M}(G) .
(1) We have \mu\ll m_{G}*\mu if and only if \mu\ll m_{G} .
(2) We have \mu\perp m_{G}*\mu if and only if \mu\perp m_{G} .

Define subsets \mathscr{M}_{G}(X) and \mathscr{M}_{G}^{\perp}(X) of \mathscr{M}(X) by
\mathscr{M}_{G}(X)=\{\mu\in \mathscr{M}(X)|\mu\ll m_{G}*\mu\} ,
\mathscr{M}_{G}^{\perp}(X)=\{\mu\in \mathscr{M}(X)|\mu\perp m_{G}*\mu\} .

Then \mathscr{M}_{G}(X) is never empty, but \mathscr{M}_{G}^{\perp}(X) may be (see Remarks 2 and 3),
and they have the following properties.

COROLLARY3. Let \mu_{1} , \mu_{2}\in \mathscr{M}(X) .
(1) If \mu_{1}\in \mathscr{M}_{G}(X) and \mu_{2}\in \mathscr{M}_{G}^{\perp}(X) , then we have \mu_{1}\perp\mu_{2} .
(2) If \mu_{1}\ll\mu_{2} and \mu_{2}\in \mathscr{M}_{G}(X) , then we have \mu_{1}\in \mathscr{M}_{G}(X) .
(3) If \mu_{1}\ll\mu_{2} and \mu_{2}\in \mathscr{M}_{G}^{\perp}(X) , then we have \mu_{1}\in \mathscr{M}_{G}^{\perp}(X) .

Let \lambda\in \mathscr{M}(X) be a G-quasi-invariant measure. The third purpose is
to characterize m_{G}*\mu\ll\lambda and m_{G^{*\mu}}\perp\lambda . Note that there always exist finite
G-quasi-invariant measures; see Remark 2.

A subset B of X is called a G-invariant set if gB=B for all g\in G ,
and the sub \sigma-field \mathscr{I} of \mathscr{B} is defined by

\mathscr{I}= {B\in \mathscr{B}|B is G-invariant}.

For two measures \mu and \nu on X, we write \mu\ll J\nu if \mu\ll\nu on (X, \mathscr{I}) , and
\mu^{J}\perp\nu if \mu\perp\nu on (X, \mathscr{I}) .

THEOREM 3. Let (X, \mathscr{B}) be a measurable space, G a measurable action
group on X , \lambda\in \mathscr{M}(X) a G-quasi-invariant measure, and \mu\in \mathscr{M}(X) .
(1) We have m_{G}*\mu\ll\lambda if and only if \mu\ll\lambda J .
(2) We have m_{G}*\mu\perp\lambda if and only if \mu^{J}\perp\lambda .

Define subsets \mathcal{N}(\lambda) and \mathcal{N}^{\perp}(\lambda) of \mathscr{M}(X) by
\mathcal{N}(\lambda)=\{\mu\in \mathscr{M}(X)|m_{G}*\mu\ll\lambda\} , \mathcal{N}^{\perp}(\lambda)=\{\mu\in \mathscr{M}(X)|m_{G}*\mu\perp\lambda\} .

Under the assumption of Corollary 1, \mathcal{N}^{\perp}(\lambda) is empty because we have m_{G}

*\mu\sim\lambda for all \mu\in \mathscr{M}(X) ; see the proof of Corollary 1. These subsets have
the same properties as Corollary 3.
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COROLLARY 4. Let \mu_{1} , \mu_{2}\in \mathscr{M}(X) , and \lambda\in \mathscr{M}(X) be G-quasi-invar-
iant.
(1) If \mu_{1}\in \mathcal{N}(\lambda) and \mu_{2}\in \mathcal{N}^{\perp}(\lambda) , then we have \mu_{1}\perp\mu_{2} .
(2) If \mu_{1}\ll\mu_{2} and \mu_{2}\in \mathcal{N}(\lambda) , then we have \mu_{1}\in \mathcal{N}(\lambda) .
(3) If \mu_{1}\ll\mu_{2} and \mu_{2}\in \mathcal{N}^{\perp}(\lambda) , then we have \mu_{1}\in \mathcal{N}^{\perp}(\lambda) .
(4) If \mu_{1}\in \mathcal{N}^{\perp}(\lambda) , then we have \rho*\mu_{1}\in \mathscr{N}^{\perp}(\lambda) for all \rho\in \mathscr{M}(G) .

Finally, we prove that every \mu\in \mathscr{M}(X) is decomposed into some mea-
sures as follows. Our proof shows that Liu and van Rooij [4, Theorem 6]

and Liu, van Rooij and Wang [5, Corollary 6] are proved simply by the
Lebesgue decomposition.

COROLLARY 5. (1) Every \mu\in \mathscr{M}(X) has unique decomposition
\mu=\mu’+\mu’ , where \mu’\in \mathscr{M}_{G}(X) and \mu’\in \mathscr{M}_{G}^{\perp}(X) .

(2) Every \mu\in \mathscr{M}(X) has a decomposition
\mu=\mu_{1}+\mu_{2} , where \mu_{1}\in \mathcal{N}(\lambda) and \mu_{2}\in \mathcal{N}^{\perp}(\lambda) .

(3) Every \mu\in \mathscr{M}(X) has a decomposition
\mu=\mu_{1}’+\mu_{2}’+\mu_{1}’+\mu_{2}^{rr} ,

where \mu_{1}’\in \mathscr{M}_{G}(X)\cap \mathscr{N}(\lambda) , \mu_{2}’\in \mathscr{M}_{G}(X)\cap \mathcal{N}^{\perp}(\lambda) , \mu_{1}’\in \mathscr{M}_{G}^{\perp}(X)\cap \mathscr{N}(\lambda) , and \mu_{2}’

\in \mathscr{M}_{G}^{\perp}(X)\cap \mathcal{N}^{\perp}(\lambda) .

\S 1. Proof of Theorem 1

We begin with remarks on measures appearing in Theorems 1 and 2.

REMARK 1. The measure m_{G}*\mu , where \mu\in \mathscr{M}(X) , is not necessarily
\sigma-finite. For example, when X=R/Z, G=R, and \mu is the Lebesgue mea-
sure on R/Z, G is a measurable action group on X by

(g, x)\ulcornerarrow g+x (mod 1): G\cross X- X,

m_{G}(G)=+\infty , and \mu is G-invariant. Therefore we have

(m_{G}* \mu)(A)=\int_{G}\mu_{g}(A)dg=\mu(A)\cdot m_{G}(G)

=\{
0 if \mu(A)=0 ,

+\infty if \mu(A)>0 ,

and thus m_{G}*\mu is not \sigma-finite.

REMARK 2. There always exist G-invariant measures and finite
G-quasi-invariant measures. Let \mu\in \mathscr{M}(X) and m_{G}-\rho\in \mathscr{M}(G) . Then
m_{G}*\mu is G-invariant and \rho*\mu\in \mathscr{M}(X) is G-quasi-invariant. Furthermore,

for a G-quasi-invariant measure \lambda\in \mathscr{M}(X) , we have \lambda-m_{G}*\lambda . We have
hence \mathscr{M}_{G}(X)\neq\emptyset .
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REMARK 3. We have \mathscr{M}_{G}^{\perp}(X)=\emptyset in the following case. Let gx=x
for all g\in G and x\in X , and \mu\in \mathscr{M}(X) . Then we have

(m_{G}* \mu)(A)=\int_{G}dg\int_{X}I_{A}(x)d\mu(x)

=\mu(A)\cdot m_{G}(G) , for every A\in \mathscr{B}.

We have hence m_{G}*\mu-\mu for all \mu\in \mathscr{M}(X) , and thus \mathscr{M}_{G}^{\perp}(X)=\emptyset .

REMARK 4. Denote by m_{\acute{G}} the right Haar measure. Then we have
m_{\acute{G}}-m_{G} : see Gaal [1, page 249, Proposition 3].

PROOF OF THEOREM 1. In Mizumachi and Sato [7, Theorem 1], they
proved that (1)-(6) are equivalent, so that we prove (6)\Rightarrow(7)\Rightarrow(8)\Rightarrow(9)

\Rightarrow(10)\Rightarrow(11)\Rightarrow(12)\Rightarrow(1) .

PROOF OF (6)\Rightarrow(7) . The Banach algebra L^{1}(G, m_{G}) has an approxi-
mate identity (e_{U}) , where U’ s are neighborhoods of e with 0<m_{G}(U)<

+\infty , and e_{U}(g)= \frac{1}{m_{G}(U)}I_{U}(g)\geq 0 . Hence by Gulick, Liu and van Rooij [2,

Theorem 2. 2, Corollary 2. 3, and Theorem 3. 2], there exist \rho\in \mathscr{M}(G) with
\rho\ll m_{G} and \nu^{+} . l_{1}^{-\in \mathscr{M}(X)} such that \mu=\rho*1^{+}/-\rho*1/-

PROOF OF (7)\Rightarrow(8) . Let \mu=\rho*\nu^{+}-\rho*\nu^{-} where \rho\in \mathscr{M}(G) with \rho\ll m_{G}

and \nu^{+} , \nu^{-}\in \mathscr{M}(X) . Since \mu(A)\leq(\rho*\nu^{+})(A) for all A\in \mathscr{B}, there exists a
measurable function f such that 0\leq f\leq 1 and d\mu=fd(\rho*\nu^{+}) .

PROOF OF (8)\Rightarrow(9) . Assume (8) and let m_{G}-\rho’\in \mathscr{M}(G) . Then \rho’*\nu’

\in \mathscr{M}(X) is G-quasi-invariant, and we have \mu\ll\rho’*\nu’ because \rho\ll\rho_{t}’

Therefore (9) holds with \nu=\rho’*\nu’

PROOF OF (9)\Rightarrow(10) . Assume (9). Then we have \mu\ll 1\nearrow-m_{G}*\nu , and
m_{G}*\nu is a G-invariant measure.

PROOF OF (10)\Rightarrow (11). Assume (10). Then (11) holds with B=G.

PROOF OF (11)\Rightarrow (12). First, we prove \mu\ll m_{G}*\nu . Since \mu=\delta_{g-1}*\mu_{g}\ll

\delta_{g-1}*\nu for g\in B , we have \mu\ll\nu_{g} for g\in B^{-1} . If C\in \mathscr{B} and (m_{G}*\nu)(C)=0 ,
then 1\prime_{g}(C)=0 for m_{G}-a . e . g\in G , and thus we have \nu_{g}(C)=0 for some g\in

B^{-1} because m_{G}(B^{-1})>0 .
We have therefore \mu(C)=0 , so that \mu\ll m_{G}*\nu .

Next, let A\in \mathscr{B} be a negligible set. Then we have

(m_{G}* \nu)(A)=\int_{G}dg\int_{X}I_{A}(gx)d\nu(x)=\int_{X}d\nu(x)\int_{G}I_{A}(gx)dg=0 ,

so that \mu(A)=0 .
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PROOF OF (12)\Rightarrow (1). Assume A\in \mathscr{B} and (m_{G}*\mu)(A)=0 . Then since

\int_{X}d\mu(x)\int_{G}I_{A}(gx)dg=\int_{G}dg\int_{X}I_{A}(gx)d\mu(x)=0 ,

we have \int_{G}I_{A}(gx)dg=0 for \mu-a . e . x\in X . Define

A_{1}= \{x\in A|\int_{G}I_{A}(gx)dg=0\} , A_{2}= \{x\in A|\int_{G}I_{A}(gx)dg>0\} .

Then we have A=A_{1}\cup A_{2} , A_{1}\cap A_{2}=\emptyset , and \mu(A_{2})=0 . Let x\in X be fixed
and we prove m_{G}(\{g\in G|gx\in A_{1}\})=0 . If hx\in A_{1} for some h\in G , then,

since m_{G}-m_{\acute{G}} , we have \int_{G}I_{A}(gx)dm_{\acute{G}}(g)=\int_{G}I_{A}(ghx)dm_{\acute{G}}(g)=0 , so that

\int_{G}I_{A}(gx)dg=0 , and thus m_{G}(\{g\in G|gx\in A_{1}\})\leq m_{G}(\{g\in G|gx\in A\})=0 .
Therefore we have m_{G}(\{g\in G|gx\in A_{1}\})=0 for all x\in X, that is, A_{1} is neg-
1igible\square

. We have hence \mu(A_{1})=0 , and thus \mu(A)=\mu(A_{1})+\mu(A_{2})=0 .

REMARK 5. If \mu\ll m_{G}*\mu , then \mu has the separable orbit, that is,
there exists a countable subset C of G such that for each \epsilon>0 and g\in G

there exists c\in C for which ||\mu_{g}-\mu_{c}||_{tot}<\epsilon . The converse is true if G is
\sigma-compact. See Larsen [3] for the proofs.

REMARK 6. Even in the case \mu\ll m_{G}*\mu , the original topology on G
and the topology induced by the metric

d_{\mu}(g, h)=||\mu_{g}-\mu_{h}||_{tot} , g , h\in G

do not coincides. Let X=G=R/Z. Then G is a measurable action group
on X by

(g, x)\vdasharrow g+x (mod 1): G\cross X- X.

Define \mu\in \mathscr{M}(X) by d\mu=fdx , where 0\leq f\in L^{1}(X, dx) is periodic with

period \frac{1}{2} and & is the Lebesgue measure. Then\backslash the sequence \{g_{j}\} , where

g_{j}= \frac{1}{2} for all j\geq 0 , satisfies d_{\mu}(g_{j}, 0)=0 , but dose not converges to 0 in the
original topology.

\S 2. Proof of Theorem 2

PROOF OF THEOREM 2. We prove (1)\Rightarrow(2)\Rightarrow(3)\Rightarrow(4)\Rightarrow(5)\Rightarrow(1) and
(3)\Leftrightarrow(6) . Since (2)\Rightarrow(3) and (3)\Rightarrow(6) are proved in the same way as Liu
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and van Rooij [4, Theorem 4. ( i)\Rightarrow(iii) ] and Liu, van Rooij and Wang
[5, Corollary 3 (iii)\Rightarrow(iv) ], respectively, we prove (1)\Rightarrow(2) , (3)\Rightarrow(4)\Rightarrow(5)

\Rightarrow(1) , and (6)\Rightarrow(3) .

PROOF OF (1)\Rightarrow(2) . There exists N\in \mathscr{B} such that \mu(N^{c})=0 and (m_{G^{*}}

\mu)(N)=0 . Then \mu_{g}(N)=0 for m_{G}-a . e . g\in G , and thus \mu\perp\mu_{g} for m_{G}-a . e .
g\in G .

PROOF OF (3)\Rightarrow(4) . Let \nu\in \mathscr{M}(X) be G-quasi-invariant. Since
\nu-m_{G^{*}}l/ , we have \mu\perp\nu .

PROOF OF (4)\Rightarrow(5) . Let \nu\in \mathscr{M}(X) and m_{G}-\rho\in \mathscr{M}(G) . Since \rho*\nu\in

\mathscr{M}(X) is G-quasi-invariant, we have \mu\perp\rho*\nu . Hence there exists N\in \mathscr{B}

such that \mu(N^{c})=0 and (\rho*\nu)(N)=0 . Then \nu_{g}(N)=0 for \rho-a . e . g\in G ,
and thus \mu\perp\nu_{g} for m_{G}-a . e . g\in G .

PROOF OF (5)\Rightarrow(1) . Let m_{G}\sim\rho\in \mathscr{M}(G) . Then by (5), we have \mu\perp(\rho*

\mu)_{g} for m_{G}-a . e . g\in G , and by the G-quasi-invariance of \rho*\mu\in \mathscr{M}(X) , we
have (\rho*\mu)_{g}-\rho*\mu-m_{G}*\mu for all g\in G . We have therefore \mu\perp(\rho*\mu)_{g}-m_{G}

*\mu for some g\in G .

PROOF OF (6)\Rightarrow(3) . Let m_{G}-\rho\in \mathscr{M} (G) . Then \rho*\mu\in \mathscr{M}(X) is
G-quasi-invariant, so that \rho*\mu-m_{G}*(\rho*\mu) , and then by (12) in Theorem
1, we have (\rho*\mu)(A)=0 for every negligible set A. Hence by (6), we
have \mu\perp\rho*\mu , and then \mu\perp m_{G}*\mu because \rho*\mu\sim m_{G}*\mu . \square

PROOF OF COROLLARY 1. Assume \mu\perp\nu for some G-quasi-invariant
\nu\in \mathscr{M}(X) . Since the action is transitive, all finite G-quasi-invariant mea-
sures are mutually absolutely continuous; see [6, pages 68-69] and [8,
page 412]. We have therefore

1/-m_{G}*\mu,so\square
that \mu\perp m_{G}*\mu holds. The

converse is derived from Theorem 2.

PROOF OF COROLLARY 2. (1) Equivalence between \mu\ll m_{G}*\mu and \mu\ll

m_{G} is derived from (1) and (10) in Theorem 1.
(2) By Corollary 1, we have \mu\perp m_{G}*\mu if and only if \mu\perp m_{G} . \square

PROOF OF COROLLARY 3. (1) in derived from (12) in Theorem 1 and
(6) in Theorem 2. We have (2) by (12) in Theorem 1, and (3) is proved
by (6) in Theorem 2. \square

REMARK 7. Corollary 1 dose not hold without the assumption of
transitivity. We give a counterexample.

Let R^{\infty} be the space of real sequences. Then G=R is a measurable
action group on R^{\infty} by
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(l, (x_{n})_{n=1}^{\infty})-arrow(x_{1}-t, x_{2}, x_{3},\ldots):R\cross R^{\infty}arrow R^{\infty}

Define the probability measures \mu and \nu on R^{\infty} by

\mu=\prod_{n=1}^{\infty}\mu_{n} , where d\mu_{n}-dx for all n\geq 1 ,

\}/=\prod_{n=1}^{\infty}f\nearrow n , where d\nu_{1}-dx and }/_{n}=\delta_{0} for n\geq 2 .

Then \nu is G-quasi-invariant and \mu\perp l/ . However, we have \mu\sim m_{G}*\mu

because \mu is G-quasi-invariant.

\S 3. Proof of Theorem 3

LEMMA 1. For every A\in \mathscr{B} , \{x\in X|m_{G}(\{g\in G|gx\in A\})=0\} is
G-invariant.

PROOF. Let B=\{x\in X|m_{G}(\{g\in G|gx\in A\})=0\} . Since m_{G}-m_{\acute{G}} , we
have B=\{x\in X|m_{\acute{G}}(\{g\in G|gx\in A\})=0\} . Let h\in G be fixed. If x\in hB ,
then we have h^{-1}x\in B , so that

m_{\acute{G}}( \{g\in G|gx\in A\})=\int_{G}I_{A}(gx)dm_{\acute{G}}(g)=\int_{c_{\}}I_{A}(gh^{-1}x_{f})

,
dm_{\acute{G}}(g)

=m_{\acute{G}}(\{g\in G|gh^{-1}x\in A\})=0 .

We have hence m_{G}(\{g\in G|gx\in A\})=0 , that is, x\in B . Therefore hB\subset B

for all h\in G , so that hB=B for all h\in G . \square

PROOF OF THEOREM 3. (1) Assume m_{G}*\mu\ll\lambda , and let B\in \mathscr{I} and
\lambda(B)=0 . For any probability measure \rho\in \mathscr{M}(G) with \rho\sim m_{G} , we have \rho*

\mu-m_{G}*\mu\ll\lambda , and thus

\mu(B)=\int_{G}d\rho(g)\int_{X}I_{B}(x)d\mu(x)=\int_{G}d\rho(g)\int_{X}I_{B}(gx)d\mu(x)=(\rho*\mu)(B)=0 .

We have hence \mu\ll^{J}\lambda .

Next, assume \mu\ll\lambda J , and let A\in \mathscr{B} and \lambda(A)=0 . Then, since \lambda is
G-quasi-invariant, \lambda_{g}(A)=0 for all g\in G , so that

\int_{X}d\lambda(x)\int_{G}I_{A}(gx)dg=\int_{G}dg\int_{X}I_{A}(gx)d\lambda(x)=\int_{G}\lambda_{g}(A)dg=0 .

Hence m_{G}(\{g\in G|gx\in A\})=0 for \lambda-a . e . x\in X , and thus by Lemma 1,

B=\{x\in X|m_{G}(\{g\in G|gx\in A\})=0\}

is a G-invariant set with \lambda(B^{c})=0 . We have therefore (m_{G}*\mu)(B^{c})=0 .
Hence for a probability measure \rho\in \mathscr{M} ( G) with \rho-m_{G} , we have
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(\rho*\mu)(B^{c})=0 , and thus

\mu(B^{c})=\int_{G}d\rho(g)\int_{X}I_{B^{C}}(x)d\mu(x)=\int_{G}d\rho(g)\int_{X}I_{B^{C}}(gx)d\mu(x)

=(\rho*\mu)(B^{c})=0

Therefore m_{G}(\{g\in G|gx\in A\})=0 for \mu^{-}a . e . x\in X , and we have

(m_{G}* \mu)(A)=\int_{G}dg\int_{X}I_{A}(gx)d\mu(x)=\int_{X}d\mu(x)\int_{G}I_{A}(gx)dg=0 .

Therefore we have m_{G}*\mu\ll\lambda .
(2) Assume m_{G}*\mu\perp\lambda . Since \lambda is G-quasi-invariant, we have \lambda-m_{G}*\lambda

and thus m_{G}*\mu\perp m_{G}*\lambda . Hence there exists N\in \mathscr{B} such that

\int_{X}d\mu(x)\int_{G}I_{N}(gx)dg=0 and \int_{X}d\lambda(x)\int_{G}I_{N^{C}}(gx)dg=0 .

Then by Lemma 1, we have B_{1}=\{x\in X|m_{G}(\{g\in G|gx\in N\})>0\}\in \mathscr{I} , B_{2}=

\{x\in X|m_{G}(\{g\in G|gx\in N^{c}\})>0\}\in \mathscr{I} , and \mu(B_{1})=\lambda(B_{2})=0 . Since

B_{1}^{c}=\{x\in X|m_{G}(\{g\in G|gx\in N\})=0\}\subset B_{2} ,

we have \mu(B_{1})=\lambda(B_{1}^{c})=0 , and hence \mu\perp J\lambda .
J

Next, assume \mu\perp\lambda . Then \mu(N)=\lambda(N^{c})=0 for some N\in \mathscr{I} , and we
have

(m_{G}* \mu)(N)=\int_{G}dg\int_{X}I_{N}(gx)d\mu(x)=\int_{G}dg\int_{X}I_{N}(x)d\mu(x)=0 .

We have therefore m_{G}*\mu\perp\lambda . \square

Proof OF COROLLARY 4. (2) and (3) are trivial, so that we prove
(1) and (4).

(1) By Theorem 3, we have \mu_{1}\ll^{JJ}\lambda\perp\mu_{2}

, so that \mu_{1}\perp J\mu_{2} . We have there-
fore \mu_{1}\perp\mu_{2} .
(4) Let \mu_{1}\in \mathcal{N}^{\perp}(\lambda) . Then \lambda(B)=\mu_{1}(B^{c})=0 for some B\in \mathscr{I} . Since B^{c}\in

\mathscr{I}, we have for all \rho\in \mathscr{M}(G) ,

( \rho*\mu_{1})(B^{c})=\int_{G}d\rho(g)\int_{X}I_{B^{C}}(gx)d\mu_{1}(x)=\int_{G}d\rho(g)\int_{X}I_{B^{C}}(x)d\mu_{1}(x)=0 ,

so that \rho*\mu_{1}\perp J\lambda . Hence by (2) in Theorem 3, we have \rho*\mu_{1}\in \mathcal{N}\perp(\lambda) .
\square

Proof OF COROLLARY 5. (1) Let m_{G}-\rho\in \mathscr{M}(G) , and \mu=\mu’+\mu’ be
the Lebesgue decomposition of \mu with respect to \rho*\mu , where \mu’\ll\rho*\mu and
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\mu^{\prime\prime\perp}\rho*\mu . Since \rho*\mu is G-quasi-invariant, we have \mu’\ll\rho*\mu’ by (1) and
(9) in Theorem 1. On the other hand, there exists N\in \mathscr{B} such that \mu^{rr}(N)

=0 and (\rho*\mu)(N^{c})=0 . Then we have \mu^{\prime\prime\perp}\rho*\mu^{rr} because (\rho*\mu’)(N^{c})\leq

(\rho*\mu)(N^{c})=0 .
Next, we prove the uniqueness. Let

\mu=\mu’+\mu^{rr}=\nu’+\nu^{rr} . where \mu’ . lJ^{r}g\mathscr{M}_{G}(X) and \mu^{rr}-\nu’\in \mathscr{M}_{G}^{\perp}(X) .

By (6) in Theorem 2, there exist negligible sets A_{1} and A2 such that
\mu’(A_{1}^{c})=\nu^{rr}(A_{2}^{c})=0 . Then we have \mu’(A^{c})=\nu’(A^{c})=0 , where A=A_{1}\cup A_{2} .
On the other hand, since A is negligible, we have \mu’(A)=\nu’(A)=0 by (12)
in Theorem 1. Therefore we have

(\mu’-\nu’)(B)=(\mu’-\nu’)(B\cap A)+(\mu’-\nu’)(B\cap A^{c})

=(\mu’-\nu’)(B\cap A)+(\nu’-\mu’)(B\cap A^{c})=0 ,
for every B\in \mathscr{B} , so that \mu’=\nu’ and \mu’=\nu^{rr}

(2) Regarding \mu and \lambda as measures on (X, \mathscr{I}) , the Lebesgue decomposi-
tion of \mu with respect to \lambda is given by

\mu=\mu|_{B^{C}}+\mu|_{B} , where B\in \mathscr{I}, \lambda(B)=0 , and \mu|_{B^{C}}\ll^{J}\lambda .

Then we have \mu|_{B}\in \mathcal{N}^{\perp}(\lambda) and \mu|_{B^{C}}\in \mathscr{N}(\lambda) .

(3) By (1), \mu has unique decomposition

\mu=\mu’+\mu^{rr}- where \mu’\in \mathscr{M}_{G}(X) and \mu^{rr}\in \mathscr{M}_{G}^{\perp}(X) ,

and by (2), \mu’ and \mu’ are decomposed as

\in \mathscr{N}^{\perp}(\lambda) .
\mu’=\mu_{\acute{1}}+\mu_{\acute{2}} , \mu^{rr}=\mu_{1}’+\mu_{\acute{\acute{2}}} , where \mu_{\acute{1}} , \mu_{1}’\in \mathcal{N}(\lambda-) and \mu_{\acute{2}} , \mu_{\acute{\acute{2}}}

For i=1,2 , since \mu_{i}’\ll\mu’ , we have \mu_{\acute{i}}\in \mathscr{M}_{G}(X) by (2) in Corollary 3, and
since \mu_{i}^{rr}\ll\mu^{rr}- we have \mu_{i}^{rr}\in \mathscr{M}_{G}^{\perp}(X) by (3) in Corollary a. We have there-
fore \mu_{1}’\in \mathscr{M}_{G}(X)\cap \mathcal{N}(\lambda) ,

\mu_{\acute{2}}\in\square \mathscr{M}_{G}(X)\cap \mathcal{N}^{\perp}(\lambda)
, \mu_{1}^{rr}\in \mathscr{M}_{G}^{\perp}(X)\cap \mathcal{N}(\lambda) , and

\mu_{2}’\in \mathscr{M}_{G}^{\perp}(X)\cap \mathcal{N}^{\perp}(\lambda) .
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