Continuity and singularity of measures under action groups

Hitoshi MIZUMACHI (Received August 6, 1993)

§ 0. Introduction

A locally compact group G acting on a measurable space (X, \mathcal{B}) is called a *measurable action group* if:

(I) G is metrizable and the left Haar measure $dg = dm_G$ is σ -finite;

(II) the action $(g, x) \mapsto gx : (G \times X, \mathscr{B}(G) \times \mathscr{B}) \to (X, \mathscr{B})$ is measurable, where $\mathscr{B}(G)$ is the Borel field of G.

For a measure μ on X and $g \in G$, define the transformed measure μ_g on X by

$$\mu_g(A) = \mu(g^{-1}A), \qquad A \in \mathscr{B},$$

and for a Borel measure ρ on G and a measure μ on X, define the measure $\rho * \mu$ on X by

$$(\rho*\mu)(A) = \int_{G} d\rho(g) \int_{X} I_A(gx) d\mu(x), \qquad A \in \mathscr{B}.$$

Note that $\delta_{g}*\mu = \mu_{g}$, where δ_{g} stands for the unit mass at $g \in G$. For two measures μ and ν on X, $\mu \ll \nu$ means that μ is absolutely continuous with respect to ν , $\mu \perp \nu$ means that μ and ν are singular, and $\mu \sim \nu$ means $\mu \ll \nu$ and $\nu \ll \mu$. For a measure μ on X and $B \in \mathscr{B}$, denote by $\mu|_{B}$ the restricted measure defined by

$$\mu|_{B}(A) = \mu(A \cap B), \qquad A \in \mathscr{B}.$$

A measure μ on X is said to be *G*-invariant if $\mu_g = \mu$ for all $g \in G$, and *G*-quasi-invariant if $\mu_g \sim \mu$ for all $g \in G$. Denote by $\mathscr{M}(X)$ and $\mathscr{M}(G)$, the space of finite measures on (X, \mathscr{B}) and $(G, \mathscr{B}(G))$, respectively. A set $A \in \mathscr{B}$ is called a *negligible set* if $m_G(\{g \in G | gx \in A\}) = 0$ for all $x \in X$.

The first purpose of this paper is to prove the following theorem.

THEOREM 1. Let (X, \mathscr{B}) be a measurable space and G a measurable action group on X. For $\mu \in \mathscr{M}(X)$, the following are equivalent: (1) $\mu \ll m_G * \mu$;

(2) $\mu \ll \rho * \mu$ for some $\rho \in \mathcal{M}(G)$ with $\rho \ll m_G$;

(3) $\mu \ll \rho * \mu$ for all $\rho \in \mathcal{M}(G)$ with $\rho \sim m_G$;

(4) $\lim_{g \to e} \mu(g^{-1}A) = \mu(A)$ for every $A \in \mathscr{B}$;

(5) $\lim_{g \to e} \mu(A \Delta g^{-1} A) = 0$ for every $A \in \mathscr{B}$, where $A \Delta B = (A \cup B) \setminus (A \cap B)$;

(6) $\lim_{g \to e} \|\mu_g - \mu\|_{tot} = 0$, where $\|\cdot\|_{tot}$ is the total variation norm;

(7) μ is expressed as $\mu = \rho * \nu^+ - \rho * \nu^-$, where $\rho \in \mathscr{M}(G)$, $\rho \ll m_G$ and ν^+ , $\nu^- \in \mathscr{M}(X)$;

(8) μ is expressed as $d\mu = fd(\rho * \nu')$, where $0 \le f \le 1$, $\rho \in \mathcal{M}(G)$, $\rho \ll m_G$ and $\nu' \in \mathcal{M}(X)$;

(9) $\mu \ll \nu$ for some G-quasi-invariant $\nu \in \mathscr{M}(X)$;

(10) $\mu \ll \nu$ for some G-invariant (not necessarily σ -finite) measure ν on X;

(11) there exist $B \in \mathscr{F}(G)$ with $m_G(B) > 0$ and a measure ν on X (not necessarily σ -finite) such that $\mu_g \ll \nu$ for all $g \in B$; (12) $\mu(A) = 0$ for every negligible set A.

Equivalence among $(1)\sim(6)$ was proved in Mizumachi and Sato [7], and in this paper we extend them to $(7)\sim(12)$. Then the second purpose is to give equivalent conditions for $\mu\perp m_G*\mu$, and we prove the following theorem.

THEOREM 2. Let (X, \mathscr{B}) be a measurable space and G a measurable action group on X. For $\mu \in \mathscr{M}(X)$, the following are equivalent:

(1) $\mu \perp m_G * \mu$;

(2) $\mu \perp \mu_g$ for m_G -a. e. $g \in G$;

(3) $\mu \perp \nu$ for all $\nu \in \mathscr{M}(X)$ with $\nu \ll m_G * \nu$;

- (4) $\mu \perp \nu$ for all G-quasi-invariant $\nu \in \mathscr{M}(X)$;
- (5) for every $\nu \in \mathcal{M}(X)$, $\mu \perp \nu_g$ holds for m_G -a.e. $g \in G$;
- (6) $\mu(A^c)=0$ for some negligible set A.

Several conditions in Theorems 1 and 2 were proved under topological assumptions on X by Gulick, Liu and van Rooij [2], Liu and van Rooij [4], and Liu, van Rooij and Wang [5]. Zabell [8] proved that (4) and (9) in Theorem 1 are equivalent in the case where (X, \mathscr{B}) is a standard Borel space. In this paper we prove those equivalent conditions by only assuming that (X, \mathscr{B}) is a measurable space.

In general, "for all" in Theorem 2 (4) can not be replaced with "for some": see Remark 7 for a counterexample. However, it is possible in the following case.

COROLLARY 1. Let (X, \mathscr{B}) be a standard Borel space, G a measurable action group on X, and $\mu \in \mathscr{M}(X)$. Assume that G is separable and the action is transitive, that is, for every x, $y \in X$ there exists $g \in G$ such that y=gx. Then we have $\mu \perp m_G * \mu$ if and only if $\mu \perp \nu$ for some G-quasi -invariant $\nu \in \mathscr{M}(X)$.

In particular, when G is separable, G is a measurable action group on itself by the left multiplication, and we have the following corollary.

COROLLARY 2. Let G be a locally compact metrizable and separable topological group, m_G the left Haar measure on G, and $\mu \in \mathscr{M}(G)$.

(1) We have $\mu \ll m_G * \mu$ if and only if $\mu \ll m_G$.

(2) We have $\mu \perp m_{G} * \mu$ if and only if $\mu \perp m_{G}$.

Define subsets $\mathscr{M}_{c}(X)$ and $\mathscr{M}_{c}^{\perp}(X)$ of $\mathscr{M}(X)$ by $\mathscr{M}_{c}(X) = \{\mu \in \mathscr{M}(X) | \mu \ll m_{c} * \mu\},\$ $\mathscr{M}_{c}^{\perp}(X) = \{\mu \in \mathscr{M}(X) | \mu \perp m_{c} * \mu\}.$

Then $\mathscr{M}_{c}(X)$ is never empty, but $\mathscr{M}_{c}(X)$ may be (see Remarks 2 and 3), and they have the following properties.

COROLLARY 3. Let $\mu_1, \ \mu_2 \in \mathscr{M}(X)$. (1) If $\mu_1 \in \mathscr{M}_c(X)$ and $\mu_2 \in \mathscr{M}_c^{\perp}(X)$, then we have $\mu_1 \perp \mu_2$. (2) If $\mu \ll \mathbb{C}$ and $\mu \in \mathscr{M}(X)$ then we have $\mu_1 \perp \mu_2$.

(2) If $\mu_1 \ll \mu_2$ and $\mu_2 \in \mathscr{M}_G(X)$, then we have $\mu_1 \in \mathscr{M}_G(X)$.

(3) If $\mu_1 \ll \mu_2$ and $\mu_2 \in \mathscr{M}_c^{\perp}(X)$, then we have $\mu_1 \in \mathscr{M}_c^{\perp}(X)$.

Let $\lambda \in \mathscr{M}(X)$ be a *G*-quasi-invariant measure. The third purpose is to characterize $m_G * \mu \ll \lambda$ and $m_G * \mu \perp \lambda$. Note that there always exist finite *G*-quasi-invariant measures; see Remark 2.

A subset B of X is called a G-invariant set if gB=B for all $g \in G$, and the sub σ -field \mathscr{I} of \mathscr{B} is defined by

 $\mathscr{I} = \{B \in \mathscr{B} | B \text{ is } G \text{-invariant}\}.$

For two measures μ and ν on X, we write $\mu \ll \nu$ if $\mu \ll \nu$ on (X, \mathscr{I}) , and $\mu \perp \nu$ if $\mu \perp \nu$ on (X, \mathscr{I}) .

THEOREM 3. Let (X, \mathscr{B}) be a measurable space, G a measurable action group on X, $\lambda \in \mathscr{M}(X)$ a G-quasi-invariant measure, and $\mu \in \mathscr{M}(X)$.

(1) We have $m_G * \mu \ll \lambda$ if and only if $\mu \ll \lambda$.

(2) We have $m_{G}*\mu\perp\lambda$ if and only if $\mu\perp\lambda$.

Define subsets
$$\mathscr{N}(\lambda)$$
 and $\mathscr{N}^{\perp}(\lambda)$ of $\mathscr{M}(X)$ by
 $\mathscr{N}(\lambda) = \{ \mu \in \mathscr{M}(X) | m_{G} * \mu \ll \lambda \}, \qquad \mathscr{N}^{\perp}(\lambda) = \{ \mu \in \mathscr{M}(X) | m_{G} * \mu \perp \lambda \}.$

Under the assumption of Corollary 1, $\mathscr{N}^{\perp}(\lambda)$ is empty because we have $m_{G} * \mu \sim \lambda$ for all $\mu \in \mathscr{M}(X)$; see the proof of Corollary 1. These subsets have the same properties as Corollary 3.

COROLLARY 4. Let μ_1 , $\mu_2 \in \mathscr{M}(X)$, and $\lambda \in \mathscr{M}(X)$ be G-quasi-invariant.

(1) If $\mu_1 \in \mathcal{N}(\lambda)$ and $\mu_2 \in \mathcal{N}^{\perp}(\lambda)$, then we have $\mu_1 \perp \mu_2$.

(2) If $\mu_1 \ll \mu_2$ and $\mu_2 \in \mathcal{N}(\lambda)$, then we have $\mu_1 \in \mathcal{N}(\lambda)$.

(3) If $\mu_1 \ll \mu_2$ and $\mu_2 \in \mathcal{N}^{\perp}(\lambda)$, then we have $\mu_1 \in \mathcal{N}^{\perp}(\lambda)$.

(4) If $\mu_1 \in \mathcal{N}^{\perp}(\lambda)$, then we have $\rho * \mu_1 \in \mathcal{N}^{\perp}(\lambda)$ for all $\rho \in \mathscr{M}(G)$.

Finally, we prove that every $\mu \in \mathscr{M}(X)$ is decomposed into some measures as follows. Our proof shows that Liu and van Rooij [4, Theorem 6] and Liu, van Rooij and Wang [5, Corollary 6] are proved simply by the Lebesgue decomposition.

COROLLARY 5. (1) Every $\mu \in \mathscr{M}(X)$ has unique decomposition $\mu = \mu' + \mu'', \quad \text{where } \mu' \in \mathscr{M}_{G}(X) \text{ and } \mu'' \in \mathscr{M}_{c}^{\pm}(X).$ (2) Every $\mu \in \mathscr{M}(X)$ has a decomposition

$$\mu = \mu_1 + \mu_2$$
, where $\mu_1 \in \mathcal{N}(\lambda)$ and $\mu_2 \in \mathcal{N}^{\perp}(\lambda)$.

(3) Every $\mu \in \mathscr{M}(X)$ has a decomposition $\mu = \mu'_1 + \mu'_2 + \mu''_1 + \mu''_2$,

where $\mu'_1 \in \mathscr{M}_c(X) \cap \mathscr{N}(\lambda)$, $\mu'_2 \in \mathscr{M}_c(X) \cap \mathscr{N}^{\perp}(\lambda)$, $\mu''_1 \in \mathscr{M}_c^{\perp}(X) \cap \mathscr{N}(\lambda)$, and $\mu''_2 \in \mathscr{M}_c^{\perp}(X) \cap \mathscr{N}^{\perp}(\lambda)$.

§ 1. Proof of Theorem 1

We begin with remarks on measures appearing in Theorems 1 and 2.

REMARK 1. The measure $m_G * \mu$, where $\mu \in \mathscr{M}(X)$, is not necessarily σ -finite. For example, when $X = \mathbf{R}/\mathbf{Z}$, $G = \mathbf{R}$, and μ is the Lebesgue measure on \mathbf{R}/\mathbf{Z} , G is a measurable action group on X by

 $(g, x) \mapsto g + x \pmod{1}$: $G \times X \rightarrow X$,

 $m_G(G) = +\infty$, and μ is G-invariant. Therefore we have

$$(m_{G}*\mu)(A) = \int_{G} \mu_{g}(A) dg = \mu(A) \cdot m_{G}(G)$$
$$= \begin{cases} 0 & \text{if } \mu(A) = 0, \\ +\infty & \text{if } \mu(A) > 0, \end{cases}$$

and thus $m_G * \mu$ is not σ -finite.

REMARK 2. There always exist *G*-invariant measures and finite *G*-quasi-invariant measures. Let $\mu \in \mathcal{M}(X)$ and $m_G \sim \rho \in \mathcal{M}(G)$. Then $m_G * \mu$ is *G*-invariant and $\rho * \mu \in \mathcal{M}(X)$ is *G*-quasi-invariant. Furthermore, for a *G*-quasi-invariant measure $\lambda \in \mathcal{M}(X)$, we have $\lambda \sim m_G * \lambda$. We have hence $\mathcal{M}_G(X) \neq \emptyset$.

REMARK 3. We have $\mathscr{M}_{c}^{+}(X) = \emptyset$ in the following case. Let gx = x for all $g \in G$ and $x \in X$, and $\mu \in \mathscr{M}(X)$. Then we have

$$(m_G * \mu)(A) = \int_G dg \int_X I_A(x) d\mu(x)$$

= $\mu(A) \cdot m_G(G)$, for every $A \in \mathscr{B}$.

We have hence $m_G * \mu \sim \mu$ for all $\mu \in \mathcal{M}(X)$, and thus $\mathcal{M}_C^{\perp}(X) = \emptyset$.

REMARK 4. Denote by m'_{G} the right Haar measure. Then we have $m'_{G} \sim m_{G}$; see Gaal [1, page 249, Proposition 3].

PROOF OF THEOREM 1. In Mizumachi and Sato [7, Theorem 1], they proved that $(1)\sim(6)$ are equivalent, so that we prove $(6) \Rightarrow (7) \Rightarrow (8) \Rightarrow (9) \Rightarrow (10) \Rightarrow (11) \Rightarrow (12) \Rightarrow (1)$.

PROOF OF $(6) \Rightarrow (7)$. The Banach algebra $L^1(G, m_G)$ has an approximate identity (e_U) , where U's are neighborhoods of e with $0 < m_G(U) < +\infty$, and $e_U(g) = \frac{1}{m_G(U)} I_U(g) \ge 0$. Hence by Gulick, Liu and van Rooij [2, Theorem 2.2, Corollary 2.3, and Theorem 3.2], there exist $\rho \in \mathscr{M}(G)$ with $\rho \ll m_G$ and $\nu^+, \nu^- \in \mathscr{M}(X)$ such that $\mu = \rho * \nu^+ - \rho * \nu^-$.

PROOF OF (7) \Rightarrow (8). Let $\mu = \rho * \nu^+ - \rho * \nu^-$, where $\rho \in \mathscr{M}(G)$ with $\rho \ll m_G$ and ν^+ , $\nu^- \in \mathscr{M}(X)$. Since $\mu(A) \leq (\rho * \nu^+)(A)$ for all $A \in \mathscr{B}$, there exists a measurable function f such that $0 \leq f \leq 1$ and $d\mu = fd(\rho * \nu^+)$.

PROOF OF (8) \Rightarrow (9). Assume (8) and let $m_G \sim \rho' \in \mathscr{M}(G)$. Then $\rho' * \nu' \in \mathscr{M}(X)$ is *G*-quasi-invariant, and we have $\mu \ll \rho' * \nu'$ because $\rho \ll \rho'$. Therefore (9) holds with $\nu = \rho' * \nu'$.

PROOF OF (9) \Rightarrow (10). Assume (9). Then we have $\mu \ll \nu \sim m_G * \nu$, and $m_G * \nu$ is a *G*-invariant measure.

PROOF OF (10) \Rightarrow (11). Assume (10). Then (11) holds with B = G.

PROOF OF (11) \Rightarrow (12). First, we prove $\mu \ll m_G * \nu$. Since $\mu = \delta_{g^{-1}} * \mu_g \ll \delta_{g^{-1}} * \nu$ for $g \in B$, we have $\mu \ll \nu_g$ for $g \in B^{-1}$. If $C \in \mathscr{B}$ and $(m_G * \nu)(C) = 0$, then $\nu_g(C) = 0$ for m_G -a. e. $g \in G$, and thus we have $\nu_g(C) = 0$ for some $g \in B^{-1}$ because $m_G(B^{-1}) > 0$.

We have therefore $\mu(C)=0$, so that $\mu \ll m_G * \nu$.

Next, let $A \in \mathscr{B}$ be a negligible set. Then we have

$$(m_G * \nu)(A) = \int_G dg \int_X I_A(gx) d\nu(x) = \int_X d\nu(x) \int_G I_A(gx) dg = 0,$$

so that $\mu(A)=0$.

PROOF OF
$$(12) \Rightarrow (1)$$
. Assume $A \in \mathscr{B}$ and $(m_c * \mu)(A) = 0$. Then since
 $\int_X d\mu(x) \int_G I_A(gx) dg = \int_G dg \int_X I_A(gx) d\mu(x) = 0$,
we have $\int_G I_A(gx) dg = 0$ for μ -a. e. $x \in X$. Define
 $A_1 = \left\{ x \in A \mid \int_G I_A(gx) dg = 0 \right\}, \qquad A_2 = \left\{ x \in A \mid \int_G I_A(gx) dg > 0 \right\}.$
Then we have $A = A \sqcup \sqcup A$, $A \cap A = \emptyset$ and $\mu(A) = 0$. Let $n \in Y$ be for

Then we have $A=A_1\cup A_2$, $A_1\cap A_2=\emptyset$, and $\mu(A_2)=0$. Let $x\in X$ be fixed and we prove $m_c(\{g\in G|gx\in A_1\})=0$. If $hx\in A_1$ for some $h\in G$, then, since $m_c\sim m'_c$, we have $\int_c I_A(gx)dm'_c(g)=\int_c I_A(ghx)dm'_c(g)=0$, so that $\int_c I_A(gx)dg=0$, and thus $m_c(\{g\in G|gx\in A_1\})\leq m_c(\{g\in G|gx\in A\})=0$. Therefore we have $m_c(\{g\in G|gx\in A_1\})=0$ for all $x\in X$, that is, A_1 is negligible. We have hence $\mu(A_1)=0$, and thus $\mu(A)=\mu(A_1)+\mu(A_2)=0$. \Box

REMARK 5. If $\mu \ll m_G * \mu$, then μ has the separable orbit, that is, there exists a countable subset C of G such that for each $\varepsilon > 0$ and $g \in G$ there exists $c \in C$ for which $\|\mu_g - \mu_c\|_{tot} < \varepsilon$. The converse is true if G is σ -compact. See Larsen [3] for the proofs.

REMARK 6. Even in the case $\mu \ll m_G * \mu$, the original topology on G and the topology induced by the metric

$$d_{\mu}(g, h) = \|\mu_g - \mu_h\|_{\text{tot}}, \qquad g, h \in G$$

do not coincides. Let $X = G = \mathbf{R}/\mathbf{Z}$. Then G is a measurable action group on X by

$$(g, x) \mapsto g + x \pmod{1} : G \times X \rightarrow X.$$

Define $\mu \in \mathscr{M}(X)$ by $d\mu = f dx$, where $0 \le f \in L^1(X, dx)$ is periodic with period $\frac{1}{2}$ and dx is the Lebesgue measure. Then the sequence $\{g_j\}$, where $g_j = \frac{1}{2}$ for all $j \ge 0$, satisfies $d_{\mu}(g_j, 0) = 0$, but dose not converges to 0 in the original topology.

§ 2. Proof of Theorem 2

PROOF OF THEOREM 2. We prove $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1)$ and $(3) \Rightarrow (6)$. Since $(2) \Rightarrow (3)$ and $(3) \Rightarrow (6)$ are proved in the same way as Liu

and van Rooij [4, Theorem 4. (i) \Rightarrow (iii)] and Liu, van Rooij and Wang [5, Corollary 3 (iii) \Rightarrow (iv)], respectively, we prove (1) \Rightarrow (2), (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1), and (6) \Rightarrow (3).

PROOF OF (1) \Rightarrow (2). There exists $N \in \mathscr{B}$ such that $\mu(N^c) = 0$ and $(m_G * \mu)(N) = 0$. Then $\mu_g(N) = 0$ for m_G -a.e. $g \in G$, and thus $\mu \perp \mu_g$ for m_G -a.e. $g \in G$.

PROOF OF (3) \Rightarrow (4). Let $\nu \in \mathscr{M}(X)$ be *G*-quasi-invariant. Since $\nu \sim m_G * \nu$, we have $\mu \perp \nu$.

PROOF OF (4) \Rightarrow (5). Let $\nu \in \mathscr{M}(X)$ and $m_G \sim \rho \in \mathscr{M}(G)$. Since $\rho * \nu \in \mathscr{M}(X)$ is *G*-quasi-invariant, we have $\mu \perp \rho * \nu$. Hence there exists $N \in \mathscr{B}$ such that $\mu(N^c)=0$ and $(\rho * \nu)(N)=0$. Then $\nu_g(N)=0$ for ρ -a.e. $g \in G$, and thus $\mu \perp \nu_g$ for m_G -a.e. $g \in G$.

PROOF OF $(5) \Rightarrow (1)$. Let $m_G \sim \rho \in \mathscr{M}(G)$. Then by (5), we have $\mu \perp (\rho \ast \mu)_g$ for m_G -a. e. $g \in G$, and by the *G*-quasi-invariance of $\rho \ast \mu \in \mathscr{M}(X)$, we have $(\rho \ast \mu)_g \sim \rho \ast \mu \sim m_G \ast \mu$ for all $g \in G$. We have therefore $\mu \perp (\rho \ast \mu)_g \sim m_G \ast \mu$ for some $g \in G$.

PROOF OF (6) \Rightarrow (3). Let $m_G \sim \rho \in \mathscr{M}(G)$. Then $\rho * \mu \in \mathscr{M}(X)$ is *G*-quasi-invariant, so that $\rho * \mu \sim m_G * (\rho * \mu)$, and then by (12) in Theorem 1, we have $(\rho * \mu)(A) = 0$ for every negligible set *A*. Hence by (6), we have $\mu \perp \rho * \mu$, and then $\mu \perp m_G * \mu$ because $\rho * \mu \sim m_G * \mu$. \Box

PROOF OF COROLLARY 1. Assume $\mu \perp \nu$ for some *G*-quasi-invariant $\nu \in \mathscr{M}(X)$. Since the action is transitive, all finite *G*-quasi-invariant measures are mutually absolutely continuous; see [6, pages 68-69] and [8, page 412]. We have therefore $\nu \sim m_G * \mu$, so that $\mu \perp m_G * \mu$ holds. The converse is derived from Theorem 2. \Box

PROOF OF COROLLARY 2. (1) Equivalence between $\mu \ll m_G * \mu$ and $\mu \ll m_G$ is derived from (1) and (10) in Theorem 1.

(2) By Corollary 1, we have $\mu \perp m_G * \mu$ if and only if $\mu \perp m_G$.

PROOF OF COROLLARY 3. (1) in derived from (12) in Theorem 1 and (6) in Theorem 2. We have (2) by (12) in Theorem 1, and (3) is proved by (6) in Theorem 2. \Box

REMARK 7. Corollary 1 dose not hold without the assumption of transitivity. We give a counterexample.

Let \mathbf{R}^{∞} be the space of real sequences. Then $G = \mathbf{R}$ is a measurable action group on \mathbf{R}^{∞} by

$$(t, (x_n)_{n=1}^{\infty}) \mapsto (x_1 - t, x_2, x_3, \ldots) : \mathbf{R} \times \mathbf{R}^{\infty} \longrightarrow \mathbf{R}^{\infty}.$$

Define the probability measures μ and ν on \mathbf{R}^{∞} by

$$\mu = \prod_{n=1}^{\infty} \mu_n, \quad \text{where } d\mu_n \sim dx \text{ for all } n \ge 1,$$

$$\nu = \prod_{n=1}^{\infty} \nu_n, \quad \text{where } d\nu_1 \sim dx \text{ and } \nu_n = \delta_0 \text{ for } n \ge 2$$

Then ν is *G*-quasi-invariant and $\mu \perp \nu$. However, we have $\mu \sim m_G * \mu$ because μ is *G*-quasi-invariant.

§ 3. Proof of Theorem 3

LEMMA 1. For every $A \in \mathcal{B}$, $\{x \in X \mid m_G(\{g \in G \mid gx \in A\})=0\}$ is G-invariant.

PROOF. Let $B = \{x \in X | m_G(\{g \in G | gx \in A\}) = 0\}$. Since $m_G \sim m'_G$, we have $B = \{x \in X | m'_G(\{g \in G | gx \in A\}) = 0\}$. Let $h \in G$ be fixed. If $x \in hB$, then we have $h^{-1}x \in B$, so that

$$m'_{G}(\{g \in G | gx \in A\}) = \int_{G} I_{A}(gx) dm'_{G}(g) = \int_{G} I_{A}(gh^{-1}x) dm'_{G}(g)$$
$$= m'_{G}(\{g \in G | gh^{-1}x \in A\}) = 0.$$

We have hence $m_G(\{g \in G | gx \in A\}) = 0$, that is, $x \in B$. Therefore $hB \subset B$ for all $h \in G$, so that hB = B for all $h \in G$. \Box

PROOF OF THEOREM 3. (1) Assume $m_G * \mu \ll \lambda$, and let $B \in \mathscr{I}$ and $\lambda(B)=0$. For any probability measure $\rho \in \mathscr{M}(G)$ with $\rho \sim m_G$, we have $\rho * \mu \sim m_G * \mu \ll \lambda$, and thus

$$\mu(B) = \int_G d\rho(g) \int_X I_B(x) d\mu(x) = \int_G d\rho(g) \int_X I_B(gx) d\mu(x) = (\rho * \mu)(B) = 0$$

We have hence $\mu \ll \lambda$.

Next, assume $\mu \ll \lambda$, and let $A \in \mathscr{B}$ and $\lambda(A) = 0$. Then, since λ is *G*-quasi-invariant, $\lambda_g(A) = 0$ for all $g \in G$, so that

$$\int_{X} d\lambda(x) \int_{G} I_{A}(gx) dg = \int_{G} dg \int_{X} I_{A}(gx) d\lambda(x) = \int_{G} \lambda_{g}(A) dg = 0.$$

Hence $m_G(\{g \in G | gx \in A\}) = 0$ for λ -a.e. $x \in X$, and thus by Lemma 1,

$$B = \{x \in X | m_G(\{g \in G | gx \in A\}) = 0\}$$

is a *G*-invariant set with $\lambda(B^c)=0$. We have therefore $(m_G*\mu)(B^c)=0$. Hence for a probability measure $\rho \in \mathscr{M}(G)$ with $\rho \sim m_G$, we have $(\rho * \mu)(B^c) = 0$, and thus

$$\mu(B^{c}) = \int_{G} d\rho(g) \int_{X} I_{B^{c}}(x) d\mu(x) = \int_{G} d\rho(g) \int_{X} I_{B^{c}}(gx) d\mu(x)$$

= $(\rho * \mu)(B^{c}) = 0$.

Therefore $m_G(\{g \in G | gx \in A\}) = 0$ for μ -a.e. $x \in X$, and we have

$$(m_G*\mu)(A) = \int_G dg \int_X I_A(gx) d\mu(x) = \int_X d\mu(x) \int_G I_A(gx) dg = 0.$$

Therefore we have $m_G * \mu \ll \lambda$.

(2) Assume $m_G * \mu \perp \lambda$. Since λ is *G*-quasi-invariant, we have $\lambda \sim m_G * \lambda$ and thus $m_G * \mu \perp m_G * \lambda$. Hence there exists $N \in \mathscr{B}$ such that

$$\int_{X} d\mu(x) \int_{G} I_{N}(gx) dg = 0 \text{ and } \int_{X} d\lambda(x) \int_{G} I_{N}(gx) dg = 0.$$

Then by Lemma 1, we have $B_1 = \{x \in X | m_G(\{g \in G | gx \in N\}) > 0\} \in \mathscr{I}, B_2 = \{x \in X | m_G(\{g \in G | gx \in N^c\}) > 0\} \in \mathscr{I}, \text{ and } \mu(B_1) = \lambda(B_2) = 0.$ Since

$$B_1^c = \{x \in X | m_c(\{g \in G | gx \in N\}) = 0\} \subset B_2,$$

we have $\mu(B_1) = \lambda(B_1^c) = 0$, and hence $\mu \perp \lambda$.

Next, assume $\mu \perp \lambda$. Then $\mu(N) = \lambda(N^c) = 0$ for some $N \in \mathscr{I}$, and we have

$$(m_G*\mu)(N) = \int_G dg \int_X I_N(gx) d\mu(x) = \int_G dg \int_X I_N(x) d\mu(x) = 0.$$

We have therefore $m_G * \mu \perp \lambda$. \Box

PROOF OF COROLLARY 4. (2) and (3) are trivial, so that we prove (1) and (4).

(1) By Theorem 3, we have $\mu_1 \ll \lambda \perp \mu_2$, so that $\mu_1 \perp \mu_2$. We have therefore $\mu_1 \perp \mu_2$.

(4) Let $\mu_1 \in \mathscr{N}^{\perp}(\lambda)$. Then $\lambda(B) = \mu_1(B^c) = 0$ for some $B \in \mathscr{I}$. Since $B^c \in \mathscr{I}$, we have for all $\rho \in \mathscr{M}(G)$,

$$(\rho * \mu_1)(B^c) = \int_G d\rho(g) \int_X I_{B^c}(gx) d\mu_1(x) = \int_G d\rho(g) \int_X I_{B^c}(x) d\mu_1(x) = 0,$$

so that $\rho * \mu_1 \stackrel{\mathscr{I}}{\perp} \lambda$. Hence by (2) in Theorem 3, we have $\rho * \mu_1 \in \mathscr{N}^{\perp}(\lambda)$.

PROOF OF COROLLARY 5. (1) Let $m_G \sim \rho \in \mathscr{M}(G)$, and $\mu = \mu' + \mu''$ be the Lebesgue decomposition of μ with respect to $\rho * \mu$, where $\mu' \ll \rho * \mu$ and

 $\mu'' \perp \rho * \mu$. Since $\rho * \mu$ is *G*-quasi-invariant, we have $\mu' \ll \rho * \mu'$ by (1) and (9) in Theorem 1. On the other hand, there exists $N \in \mathscr{B}$ such that $\mu''(N) = 0$ and $(\rho * \mu)(N^c) = 0$. Then we have $\mu'' \perp \rho * \mu''$ because $(\rho * \mu'')(N^c) \leq (\rho * \mu)(N^c) = 0$.

Next, we prove the uniqueness. Let

$$\mu = \mu' + \mu'' = \nu' + \nu'',$$
 where $\mu', \nu' \in \mathcal{M}_{\mathcal{G}}(X)$ and $\mu'', \nu'' \in \mathcal{M}_{\mathcal{G}}^{\perp}(X).$

By (6) in Theorem 2, there exist negligible sets A_1 and A_2 such that $\mu''(A_1^c) = \nu''(A_2^c) = 0$. Then we have $\mu''(A^c) = \nu''(A^c) = 0$, where $A = A_1 \cup A_2$. On the other hand, since A is negligible, we have $\mu'(A) = \nu'(A) = 0$ by (12) in Theorem 1. Therefore we have

$$(\mu' - \nu')(B) = (\mu' - \nu')(B \cap A) + (\mu' - \nu')(B \cap A^c) = (\mu' - \nu')(B \cap A) + (\nu'' - \mu'')(B \cap A^c) = 0,$$

for every $B \in \mathscr{B}$, so that $\mu' = \nu'$ and $\mu'' = \nu''$.

(2) Regarding μ and λ as measures on (X, \mathscr{I}) , the Lebesgue decomposition of μ with respect to λ is given by

$$\mu = \mu|_{B^c} + \mu|_B$$
, where $B \in \mathscr{I}, \lambda(B) = 0$, and $\mu|_{B^c} \ll \lambda$.

Then we have $\mu|_{B} \in \mathscr{N}^{\perp}(\lambda)$ and $\mu|_{B^{c}} \in \mathscr{N}(\lambda)$.

(3) By (1), μ has unique decomposition

 $\mu = \mu' + \mu''$, where $\mu' \in \mathscr{M}_{c}(X)$ and $\mu'' \in \mathscr{M}_{c}(X)$,

and by (2), μ' and μ'' are decomposed as

$$\mu' = \mu'_1 + \mu'_2, \qquad \mu'' = \mu''_1 + \mu''_2, \qquad \text{where } \mu'_1, \, \mu''_1 \in \mathscr{N}(\lambda) \text{ and } \mu'_2, \, \mu''_2 \in \mathscr{N}^{\perp}(\lambda).$$

For i=1, 2, since $\mu'_i \ll \mu'$, we have $\mu'_i \in \mathscr{M}_c(X)$ by (2) in Corollary 3, and since $\mu''_i \ll \mu''$, we have $\mu''_i \in \mathscr{M}_c(X)$ by (3) in Corollary 3. We have therefore $\mu'_1 \in \mathscr{M}_c(X) \cap \mathscr{N}(\lambda), \ \mu'_2 \in \mathscr{M}_c(X) \cap \mathscr{N}^{\perp}(\lambda), \ \mu''_1 \in \mathscr{M}_c(X) \cap \mathscr{N}(\lambda)$, and $\mu''_2 \in \mathscr{M}_c(X) \cap \mathscr{N}^{\perp}(\lambda)$. \Box

ACKNOWLEDGMENT. The author is extremely thankful to Professor H. Sato for his valuable advice and encouragement. He also would like to thank Professor Y. Okazaki who suggested (11) in Theorem 1.

References

- [1] S. A. GAAL, Linear analysis and representation theory. Springer, 1973.
- [2] S. L. GULICK, T.-S. LIU, and A. van ROOIJ, Group algebra modules II. Can. J. Math., 19 (1967), 151-173.
- [3] R. LARSEN, Transformation groups and measures with separable orbits. Monatsh.

Math., 73 (1969), 222-225.

- [4] T.-S. LIU and A. van ROOIJ, Transformation groups and absolutely continuous measures. Indag. Math., 30 (1969), 225-231.
- [5] T.-S. LIU, A. van ROOIJ, and J.-K. WANG, Transformation groups and absolutely continuous measures II. Indag. Math., 32 (1970), 57-61.
- [6] G. MACKEY, Unitary Group Representations in Physics, Probability, and Number Theory. Addison-Wesley, 1978.
- [7] H. MIZUMACHI and H. SATO, Continuity of quasi-invariant measures and zero-one laws on groups. J. Funct. Anal., 120 (1) (1994), 188-200.
- [8] S. L. ZABELL, A note on translation continuity of probability measures. Ann. Probab., 20 (1) (1992), 410-420.

Department of Mathematics Kyushu University-33 Hakozaki, Fukuoka, 812, Japan

Current Address: Kumamoto University College of Medical Science Kuhonji, Kumamoto, 862, Japan