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Substitution of open subhypergroups

Michael VOIT
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Summary: We generalize the join of hypergroups as follows: If H is
an open subhypergroup of a hypergroup K and W a compact subhyper-
group of a hypergroup L such that L/W=H, then there is a natural
hypergroup structure on the disjoint union M:=(K-H)\cup L . Properties
of this hypergroup M are discussed, and its Haar measure and its dual
space are determined. As an application we determine the conjugacy
class hypergroups G^{G} as well as the dual hypergroups \overline{G} of some compact
groups G which are close to the commutative case.
1. Introduction

Hypergroups generalize locally compact groups. They appear when
the Banach space of all bounded Radon measures on a locally compact
space carries a convolution having all properties of a group convolution
apart from the fact that the convolution of two point measures is a proba-
bility measure with compact support and not necessarily a point measure.
Hypergroups were introduced by Dunkl [4, 5] , Jewett [14], and Spector
[23] to unify harmonic analysis on duals of compact groups, double coset
spaces G//H (H a compact subgroup of a locally compact group G), and
commutative convolution algebras associated with linearization formulas
of special functions.

There exist several methods to construct hypergroups from given ones
which are unknown for groups. These methods lead sometimes to hyper-
groups with particular strange properties. One method is the join as
introduced by Jewett [14] and studied in [6, 7, 25, 30, 32]. The join L\vee K

of a compact hypergroup L and a discrete hypergroup K is formed by
replacing the neutral element in K by the hypergroup L. The purpose of
this paper is to generalize this method as follows: If H is an open sub-
hypergroup of a hypergroup K, and if \pi is an open and proper hypergroup
homomorphism from a further hypergroup L onto H, then the disjoint
union of K-H and L carries a natural hypergroup structure. We shall
denote this hypergroup by S(K, Harrow L)\pi , and we shall say that this hyper-
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group is formed by substituting H by L in K. It will turn out that hyper-
groups formed by substitution can be characterized by a universal prop-
erty and that many properties of hypergroups are preserved under substi-
tution. In particular, duals of hypergroups formed by substitution can be
described in a satisfying way.

We give some motivation for introducting a construction like substitu-
tion. First of all, there exist some compact groups G whose conjugacy
class hypergroups G^{G} and whose dual hypergroups \hat{G} may be described by
substitution,\cdot see Vrem [30] for applications of the join in this field, and
Ch. VII in [11] as well as [9, 13, 16] for a general account of dual hype-
groups of compact groups. A second motivation comes from the study of
hypergroup structures on the one point compactification N\cup\{\infty\} of N.
Examples are given by orbit hypergroups which occur when the compact
groups of p-adic units act on the compact groups of p-adic integers; see
Dunkl and Ramirez [6]. Vrem noticed in Section 4. 5 of [30] that repeated
joins of finite hypergroups and then taking a projective limit lead to hyper-
groups on N\cup\{\infty\} . We shall prove in a forthcoming paper that repeated
substitutions of finite hypergroups and then taking a projective limit also
lead to hypergroup structures on N\cup\{\infty\} , and that in fact all hypergroup
structures on N\cup\{\infty\} can be obtained in this way. Finally, substitution
also appears as a natural tool when describing all hypergroups that con-
tain a given subgroup of index 2. These remarks indicate that substitu-
tion is a suitable frame for some structural results for hypergroups.

This paper is organized as follows: In the end of Section 1 we re-
capitulate some basic facts about hypergroups. Section 2 then contains
the construction of hypergroups formed by substitution. We also collect
some basic properties preserved by substitution there. In Section 3 we
shall determine the set of all irreducible representations and study positive
definite functions on hypergroups formed by substitution. In particular, if
the hypergroups K and L are commutative and admit dual hypergroups, it

will turn out that S(K, Harrow L)\pi also admits a dual hypergroup which may

be described by substitution. In Section 4 we shall study some connections
between substitution and commutative diagrams formed by hypergroups
and their homomorphisms. In Section 5 we shall describe the dual hyper-
groups \hat{G} and conjugacy class hypergroups G^{G} of some compact groups
via substitution. In Section 6, substitution is used to determine all hyper-
groups having a given subgroup of index 2. As an application, we deter-
mine all hypergroup structures on R\cross\{0,1\} and T\cross\{0,1\} . This
classification is based on the fact that R and the complex torus T admit
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only the usual group structures by Zeuner [32]. Further classification
results for hypergroups can be found in [3, 20, 31, 32].

We next recapitulate some basic facts; for details see Jewett [14].

1. 1. Some notation. Let K be a locally compact (Hausdorff) space.
By M(K) , M_{b}(K) , M_{b}^{+}(K) , and M^{1}(K) we denote all Radon measures, the
bounded ones, those that are bounded and nonnegative, and the probabil-
ity measures on K respectively. The spaces C_{b}(K) , C_{0}(K) and C_{c}(K) con-
sist of the C-valued continuous bounded functions on K, those that are
continuous and zero at infinity, and those that are continuous and com-
pactly supported respectively. \delta_{x}\in M^{1}(K) is the point measure at x\in K .
We consider two topologies on subspaces of M(K) , namely the vague
topology \sigma(M(K), C_{c}(K)) as well as the weak topology \sigma(M_{b}(K), C_{b}(K)) .
Both topologies agree on M^{1}(K) .

We also mention the Michael topology on the space \mathscr{C}(K) of all
nonvoid compact subsets of K. This topology is generated by the sub-
basis of sets U_{V,W}:=\{L\in \mathscr{C}(K):L\cap V\neq\emptyset, L\subset W\} where V and W run
through the open subsets of K ; see Michael [17] and Jewett [14]. We
always assume that \mathscr{C}(K) carries this topology.

Let K and L be locally compact spaces and p:Karrow L a continuous
mapping. The associated mapping from M_{b}(K) to M_{b}(L) is denoted by p
again. If we take \mu\in M_{b}(L) and a weakly continuous mapping
Larrow M_{b}^{+}(K) , x->q_{x} , then \int_{L}q_{x}d\mu(x) stands for the unique \rho\in M_{b}(K) such

that \int_{K}fd\rho=\int_{L}\int_{K}f(y)dq_{x}(y)d\mu(x) for all f\in C_{b}(K) .

1.2. Hypergroups. Let K be a locally compact Hausdorff space
and * a bilinear, associative mapping on M_{b}(K) . (K,*) (or, for short, K)
is called a hypergroup, if the following conditions are satisfied:
(1) \delta_{x}*\delta_{y} is a probability measure with compact support for all x, y\in K .
(2) The mapping K\cross K -arrow M^{1}(K) , (x,y)\}arrow\delta_{x}*\delta_{y} , is (weakly) continu-

ous.
(3) The mapping K\cross K -arrow \mathscr{C} (K), (x,y)-arrow supp(\delta_{x}*\delta_{\mathcal{Y}}) , is continuous.
(4) There exists an identity element e\in K satisfying \delta_{x}*\delta_{e}=\delta_{e}*\delta_{x}=\delta_{x} for

all x\in K , and there is a continuous involution x \mapsto\overline{x} on K such that
(\delta_{x}*\delta_{\mathcal{Y}})^{-}=\delta_{\overline{y}}*\delta

- and that e\in supp(\delta_{x}*\delta_{\mathcal{Y}}) is equivalent to x=\overline{y} for all
x, y\in K .

K is called commutative if the convolution * is commutative and symmet-
ric if the hypergroup involution is the identity mapping.

Obviously, each symmetric hypergroup is commutative.
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Assume from now on that K is a hypergroup.

1.3. Subhypergroups and convolution of subsets. For A, B\in K we
define A*B:= \bigcup_{x\in A,y\in B}supp(\delta_{x}*\delta_{y}) . If x\in K , then we write x*A or A*x
instead of \{x\}*A or A*\{x\} respectively. A closed nonvoid subset H of K
is called a subhypergroup if H*H=H=\overline{H} where \overline{H}:=\{x\in K:\overline{x}\in H\} . A
subhypergroup is said to be normal if x*H=H*x for all x\in K .

1.4. The Haar measure. For f\in C(K) and x\in K we use the nota-

tion f(x*y) :=_{x}f(y):= \int_{K}f(z)d(\delta_{x}*\delta_{\mathcal{Y}})(z) . In this case, xf\in C(K) holds.

A nontrivial positive Radon measure \omega on K is said to be a left Haar
measure if \omega(f)=\omega(_{x}f) for all x\in K and f\in C_{c}(K) . A left Haar measure
is essentially unique (Jewett [14]), but it is unknown whether each hyper-
group admits a left Haar measure. The existence of a left Haar measure
is proved only for the cases of commutative, compact, and discrete hyper-
groups (Spector [23] and Jewett [14]). Analogous results hold for right
Haar measures. If K is commutative, compact or discrete, then a left
Haar measure is also a right Haar measure. In the latter case, \omega is
called a Haar measure and K unimodular. If K is compact, then \omega is
assumed to be normalized by \omega(K)=1 .

1.5. Hypergroup homomorphisms. Let (K,*) and (/, .) be hyper-
groups. A continuous mapping p:K arrow J is said to be a hypergroup
homomorphism if

p(e_{K})=e_{J} and \delta_{p(x\rangle}\cdot\delta_{p(y)}=p(\delta_{x}*\delta_{y}) for all x , y\in K (1.1)

( e_{J} and e_{K} being the identity elements of J and K). For each x\in K , we
then have e_{J}\in\{p(x)\}\cdot\{p(\overline{x})\} and thus p(\overline{x})=\overline{p(x)} . p is said to be hyper-
group isomorphism if it is also a homeomorphism. We next recall the
obvious relation between homomorphisms and quotients; cf. Theorem 1. 6
in [26].

1.6. THEOREM. Let p:Karrow J be an open and surjective hypergroup
homomorphism. Then H :=p^{-1}(e) is a normal subhypergroup in K,

K/H:=\{x*H:x\in K\} is a locally compact space with respect to the qu0-

tient topology, and

\delta_{x\cdot H}*\delta_{y\cdot H} := \int_{K}\delta_{z\cdot H}d(\delta_{x}*\delta_{y})(z) (x, y\in K) (1.2)

defifines a hypergroup on K/H being isomorphic with J. Conversely, if H is
a normal subhypergroup of K such that Eq. (1.2) defifines a hypergroup on
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K/H, then \pi:Karrow K/H, x->x*H, is an open hypergroup homomorphism.
This is, in particular, true if H is a compact normal subhypergroup.

There exist subhypergroups H of (commutative) hypergroups K such
that K/H fails to bear a well-defined quotient convolution (1. 2) j see [26,
33]. The following fact will be needed below (see Section 14.2 in [14]
and Lemma 1.7 in [28] ) :

1.7 Let H be a compact normal subhypergroup of K with normal-
ized Haar measure \omega_{H} . If \pi:Karrow K/H is the natural homomorphism,
then

\pi:M_{b}(K|H) :=\{\mu\in M_{b}(K):\omega_{H}*\mu=\mu\}arrow M_{b}(K/H) , \mu->\pi(\mu)

is an isometric isomorphism of Banach algebras, and the mapping
\tilde{\pi} : M_{b}(K|H)\cap M_{b}^{+}(K) - M_{b}^{+}(K/H) is a homeomorphism with respect to
the weak topology.

1.8. Orbital morphisms (see Jewett [14] and Voit [27]). Let J and K
be hypergroups with identities e_{J} and e_{K} . A continuous, proper, sur-
jective, and open mapping \Phi: J arrow K is called an orbital mapping. \Phi is
said to be unary if \Phi^{-1}(e_{K})=\{e_{J}\} .

A recomposition of \Phi is a weakly continuous mapping x ->q_{x} from K
to M^{1}(J) with supp q_{x}=\Phi^{-1}(x) for all x\in K . \Phi is a generalized orbital
morphism associated with the recomposition (q_{x})_{x\in K} if q_{\overline{x}}=q_{\overline{x}} and
\Phi(q_{x}*q_{y})=\delta_{x}*\delta_{\mathcal{Y}} for all x, y\in K .

If there exists a measure l\in M^{+}(J) such that l= \int_{J}q_{\Phi(y)}dl(y) , then this

recomposition is said to be consistent with l. If (q_{x})_{x\in K} is consistent with
the Haar measure \omega on J, then the generalized orbital morphism \Phi is
called an orbital morphism.

Let \Phi be a generalized orbital morphism associated with the

recomposition (q_{x})_{x\in K} . If M := \{\mu\in M_{b}(J): \mu=\int_{K}q_{y}d\nu(y), 1\nearrow\in M_{b}(K)\} is

closed under convolution (i.e., M is a Banach-*-subalgebra of M_{b}(J) ),
then \Phi is called consistent. Obviously, each injective consistent general-
ized orbital morphism is a hypergroup isomorphism.

2. Substitution of open subhypergroups.

We here generalize the join of hypergroups (Section 10.5 of Jewett
[14] ) as follows: We replace an open subhypergroup H of a hypergroup
K by a hypergroup L which is related to H via a proper surjective hyper-
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group homomorphism \pi:Larrow H . We show that the resulting space
becomes a hypergroup in a natural way, and we characterize this hyper-
group by a universal property.

2.1. THEOREM AND DEFINITION. Let (K^{ },*) and (L^{ }, \cdot ) be hyper-
group Let \pi:Larrow K be a proper and open hypergroup homomo\uparrow phism

{which is not necessarily surjective) and W:=kern\pi the associated com-
pact normal subhypergroup of L. Then there exists a hypergroup (M^{ },\circ)

having following properties :
(i) There exists an injective and open hypergroup homomorphism \tau:Larrow

M and a proper, surjective, and open hypergroup homomorphism
p:Marrow K such that p\circ\tau=\pi and kern p=\tau(W) .

(ii) If there exists a further hypergroup \overline{M}, an injective and open hyper-
group homomorphism \overline{\tau} : L -

arrow\overline{M}, and a proper, surjective hypergroup
homomo7phism\overline{p} : \tilde{M}arrow K such that \tilde{p}\circ\tilde{\tau}=\pi and kern \tilde{p}=\tilde{\tau}(W) ,

then there exists a unary consistent generalized orbital morphism
\varphi:\tilde{M}arrow M with \tilde{p}=p\circ\varphi .

M is determined uniquely by ( i) and ( ii) up to isomorphism. We say
that M is obtained from K by substituting the open subhypergroup H:=
\pi(L) of K by L via \pi. M will be denoted by S(K, Harrow L)\pi where the \pi

is omitted if there is no possible confusion. (M^{ },\circ) can be realized as fol-

lows: Take M:=(K-H)\cup L as the disjoint union of K-H and L such
that both sets are embedded into M as open sets. Then, \circ is given by

\delta_{x}\circ\delta_{y}:=

-\delta_{x}\circ\delta_{y} for x,y\in L\subset M

\delta_{\pi(\chi)}*\delta_{\mathcal{Y}} for x\in L and y\in M-L=K-H (2.1)
\delta_{x}*\delta_{\pi(y)} for y\in L and x\in M-L=K-H

-(\delta_{x}*\delta_{\mathcal{Y}})|_{M-L}+\tilde{\pi}^{-1}((\delta_{x}*\delta_{\mathcal{Y}})|_{H}) for x,y\in M-L

where \tilde{\pi} : M_{b}(L|W) -arrow M_{b}(L) is the isometric Banach-*-algebra isomorphism
associated with \pi as in Section 1.7. The identity of M agrees with the iden-
tity of L, and the involution – on M is inherited from the involutions on
M-L=K-H and L.

PROOF. The proof of the theorem will be divided into two major
parts.

STEP 1: (M^{ },\circ) as given above is a hypergroup. For this, we first
note that the hypergroup axiom concerning the identity element and the
involution is obviously true for \circ . Moreover, \delta_{x}\circ\delta_{y} is a probability mea-
sure with compact support for all x , y\in M .
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We next check that
\sigma:M_{b}^{+}(M)\cross M_{b}^{+}(M) – M_{b}^{+}(M) , (\mu, \iota\nearrow) –

\mu^{\circ}J/

is weakly continuous. As L and M-L are open in M, the mappings \mu->

\mu|_{L} and \mu->\mu|_{M-L} from M_{b}^{+}(M) onto M_{b}^{+}(L) and M_{b}^{+}(M-L) respectively
are weakly continuous. Consequently, using this decomposition of posi-
tive measures and the weak continuity of the addition of measures in
M_{b}^{+}(M) , we can restrict our attention to the 4 possible Cartesian products
of the spaces M_{b}^{+}(L) and M_{b}^{+}(M-L) . As the canonical projection
\pi:M_{b}^{+}(L) -arrow M_{b}^{+}(L/W)=M_{b}^{+}(H) is weakly continuous, the continuity of \sigma

restricted to M_{b}^{+}(L)\cross M_{b}^{+}(L) , M_{b}^{+}(L)\cross M_{b}^{+}(M-L) and M_{b}^{+}(M-L)\cross M_{b}^{+}(L)

is a consequence of the continuity properties of * and .. It remains to
consider \sigma on M_{b}^{+}(M-L)\cross M_{b}^{+}(M-L) . As M-L is open and closed in M
and as H is open and closed in K, the mappings M_{b}^{+}(M-L)\cross M_{b}^{+}(M-L)

arrow M_{b}^{+}(M) , (\mu, \nu)-\nu’ (\mu*\iota\nearrow)|_{M-L} and M_{b}^{+}(M-L)\cross M_{b}^{+}(M-L)arrow M_{b}^{+}(H) , (\mu_{ fJ},)

-, (\mu*1/)|_{H} are weakly continuous. Hence, by Lemma 1.7 of Voit [28],

M_{b}^{+}(M-L)\cross M_{b}^{+}(M-L) -arrow

M_{b}^{+}(L)\subset M_{b}^{+}(M) , (\mu_{ J/},)-arrow\omega_{W}\cdot\pi^{-1}((\mu*_{1/})|_{H})

is weakly continuous which completes the proof of the continuity of \sigma .
We next prove the continuity of

\tau:M\cross Marrow \mathscr{C}(M) , (x, y)-*supp(\delta_{x}\circ\delta_{y}) .

It suffices to check this on the sets L\cross L , (M-L)\cross L , L\cross(M-L) and
(M-L)\cross(M-L) separately. This check is trivial for the first 3 cases.
Moreover, as the cosets x*H(x\in K-H) are open ([14], Lemma 4. ID)
and cover M-L=K-H, we restrict our attention to subsets of the form
(x*H)\cross(y*H)(x, y\in K-H) . If x*H\neq\overline{y}*H , then (x*H)\cap(\overline{y}*H)=\emptyset

([14], Lemma 10.3A) and (\{y\}*\{x\})\cap H=\emptyset ([14], Lemma 4.1B). Thus, for
u\in x*H , v\in\overline{y}*H , and x*H\neq y*H , we have \delta_{u}\circ\delta_{v}=\delta_{u}*\delta_{v} which yields
that \tau is continuous on (x*H)\cross(y*H) for x*H\neq\overline{y}*H . We have still to
study \tau on P_{X}:=(x*H)\cross(\overline{x}*H) for an arbitrary x\in K-H . To do this,
fix x\in K-H . As H is open and closed in K, the sets W_{1}:=\{(u, v)\in P_{x} :
\{u\}*\{v\}\subset H\} and W_{2}:=\{(u, v)\in P_{x} : (\{u\}*\{v\})\cap(K-H)\neq\emptyset\} are open, dis-
joint and satisfy W_{1}\cup W_{2}=P_{\chi} . Thus it suffices to prove the continuity on

W_{1} and W_{2} separately. As \tau is defined on W_{1} by \tau(u, v)=\pi^{-1}(\{u\}*\{v\})\in

\mathscr{C}(L) and as \pi^{-1} : \mathscr{C}(H)arrow \mathscr{C}(L) is continuous (Michael [17], 5. 10. 2 and
5. 10. 3; note that \pi is open and closed), \tau is continuous on W_{1} . More-
over, as the operations \cup:\mathscr{C}(M)\cross \mathscr{C}(M)arrow \mathscr{C}’(M) , (R, S)-arrow R\cup S and
intersection of a compact set with a fixed closed set are continuous, the
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methods used for W_{1} above ensure that \tau is continuous on W_{2} . This com-
pletes the proof of \tau being continuous.

To complete the proof of (M^{ },\circ) being a hypergroup, we still have to
check that \circ is associative. Restricted to L, \circ is obviously associative.
We next take x,y,z\in M-L . As supp(\delta_{u}*\delta_{v})\cap H=\emptyset for all u\in K-H=

M-L and v\in H , we see that
\delta_{x}\circ(\delta_{y}\circ\delta_{z})=\delta_{x}\circ((\delta_{y}*\delta_{z})|_{M-L})+\delta_{x}\circ(\omega_{W}\cdot\pi^{-1}((\delta_{y}*\delta_{z})|_{H}))

= \int[(\delta_{x}*\delta_{u})|_{M-L}+\omega_{W}\cdot\pi^{-1}((\delta_{x}*\delta_{u})|_{H})]d((\delta_{y}*\delta_{z})|_{M-L})(u)+\delta_{x}*((\delta_{y}*\delta_{z})|_{H})

=(\delta_{x}*((\delta_{y}*\delta_{z})|_{M-L}))|_{M-1}+\omega_{W}\cdot\pi^{-1}((\delta_{x}*((\delta_{y}*\delta_{z})|_{M-L}))|_{H})

+(\delta_{x}*((\delta_{y}*\delta_{z})|_{H}))|_{M-L}

=(\delta_{x}*\delta_{y}*\delta_{z})|_{M-L}+\omega_{W}\cdot\pi^{-1}((\delta_{x}*\delta_{y}*\delta_{z})|_{H})=\ldots=(\delta_{x}\circ\delta_{y})\circ\delta_{z} . (2. 2)

Taking x , y\in L and z\in M-L , we have
\delta_{\chi}\circ(\delta_{y}\circ\delta_{z})=\delta_{\pi(X)}*\delta_{\pi(\mathcal{Y})}*\delta_{z}=\pi(\delta_{\chi}\cdot\delta_{y})*\delta_{z}=(\delta_{X}\cdot\delta_{y})\circ\delta_{z}=(\delta_{x}\circ\delta_{y})\circ\delta z . (2. 3)

Next, if x , z\in L and y\in M-L , then we obtain
\delta_{x}\circ(\delta_{y}\circ\delta_{z})=\delta_{x}\circ(\delta_{y}*\delta_{\pi(z)})=\delta_{\pi(x)}*\delta_{y}*\delta_{\pi(z)}=\ldots=(\delta_{x}\circ\delta_{y})\circ\delta_{z} . (2. 4)

Taking x , y\in M-L and z\in L , we observe that
\delta_{x}\circ(\delta_{y}\circ\delta_{z})=\delta_{x}\circ(\delta_{y}*\delta_{\pi(z)})

= \int[(\delta_{x}*\delta_{u})|_{M-L}+\omega_{W}\cdot\pi^{-1}((\delta_{x^{*}}\delta_{u})|_{H})]d((\delta_{y}*\delta_{\pi(z)})(u)

=(\delta_{x}*\delta_{y}*\delta_{\pi tz)})|_{M-L}+\omega_{W}\cdot\pi^{-1}((\delta_{x}*\delta_{y}*\delta_{\pi(z)})|_{H})

=((\delta_{x}*\delta_{y})|_{M-L})*\delta_{\pi(z)}+\omega_{W}*\pi^{-1}((\delta_{x}*\delta_{y})|_{H}*\delta_{\pi(z)})

= \int\delta_{u}*\delta_{\pi(z)}d((\delta_{x}*\delta_{y})|_{M-L})(u)+\omega_{W}\cdot\pi^{-1}((\delta_{x}*\delta_{y})|_{H})\cdot\delta_{z})

=((\delta_{\chi}*\delta_{\mathcal{Y}})|_{M-L})\circ\delta_{z}+(\omega_{W}\cdot\pi^{-1}((\delta_{\chi}*\delta_{y})|_{H}))0\delta_{z})=(\delta_{x}\circ\delta_{y})\circ\delta z . (2. 5)

Finally, taking x , z\in M-L and y\in L , we see that
\delta_{x}\circ(\delta_{\mathcal{Y}}\circ\delta_{z})=\delta_{x}\circ(\delta_{\pi t\mathcal{Y})}*\delta_{z})

= \int[(\delta_{x}*\delta_{u})|_{M-L}+\omega_{W}\cdot\pi^{-1}((\delta_{x}*\delta_{u})|_{H}]d((\delta_{\pi(y)}*\delta_{z})(u)

=(\delta_{x}*\delta_{\pi(y)}*\delta_{z})|_{M-L}+\omega_{W}\cdot\pi^{-1}((\delta_{x}*\delta_{\pi(\mathcal{Y})}*\delta_{z})|_{H})=\ldots=(\delta_{x}\circ\delta_{\mathcal{Y}})\circ\delta_{z} . (2. 6)

The remaining two cases are symmetric to the cases (2. 3) and (2. 5) and
will be omitted. Therefore the proof of \circ being associative is finished.

STEP 2: (M^{ },\circ) has the properties (i) and (ii). To check (i) we
take \tau:Larrow M as the identity mapping. W\subset L\subset M is a compact normal
subhypergroup of M by the construction of M, and M/W can be identified
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with K. We define p:M -arrow M/W=K as the canonical homomorphism,
i.e.

p(x) :=\{
\pi(x) if x\in L

(2. 7)
x if x\in M-L .

p is proper, surjective, and open by Theorem 1. 6.
To check (ii), we take \overline{M},\tilde{p} and \overline{\tau} an assumed in (ii). We define

\varphi:\tilde{M}arrow M by

\varphi(x)=\{

\tilde{\tau}^{-1}(x)\in L\subset M if x\in\tilde{\tau}(L)

(2. 8)
\tilde{p}(x)\in K-H\subset M if x\in\tilde{M}-\tilde{\tau}(L)

where we have used in the second case that \tilde{p}^{-1}(H)=\overline{\tau}(L) and thus
\overline{p}(\overline{M}-\tilde{\tau}(L))\subset K-H\subset M . \overline{p} is a proper surjective homomorphism and
hence open (Proposition 1. 7 of [26]). Moreover, \overline{\tau}(L) is an open (and
closed) subhypergroup of \tilde{M} . These facts and the assumptions imply that
\varphi is continuous and open. Obviously, \varphi is unary, surjective, and proper.
To verify that \varphi is a consistent generalized orbital morphism, we define
an associated recomposition (q_{z})_{z\in M}\subset M^{1}(\tilde{M}) . If \omega_{kern\overline{p}} is the normalized
Haar measure of kern \Phi\subset\overline{M} , and if \star is the convolution on \tilde{M} , then we
define

q_{z} :=\{
\delta_{\overline{\tau}^{-1}(z)} if z\in L\subset M

(2. 9)
\delta_{\overline{z}}\star\omega_{kern\overline{p}} if z\in M-L and \varphi(\overline{z})=z

where in the second case the definition is independent of the choice of
\tilde{z} (cf. Section 1. 7). Taking z_{1} , z_{2}\in M-L and \tilde{z}_{1},\tilde{z}_{2}\in\tilde{M}-\tilde{\tau}^{-1}(L) such
that \varphi(\overline{z}_{i})=z_{i} , we have

\varphi(q_{z_{1}}\star q_{Z_{2}})=\varphi(\delta_{\overline{z}_{1}}\star\omega_{kern\Phi}\star\delta_{z_{2}}\star\omega_{ker11\overline{p}})

=\varphi((\delta_{\overline{z}}\star\delta_{z_{2}}\star\omega_{kern\overline{p}})|_{\overline{\tau}(L)})+\varphi((\delta_{\overline{z}_{1}}\star\delta_{\overline{z}_{2}}\star\omega_{kern\beta})|_{\overline{M}_{-}\overline{\tau}(L)})=\delta_{z_{1}}\circ\delta_{z_{2}} . (2. 10)

The same methods yield \varphi(q_{z_{1}}\star q_{z_{2}})=\delta_{z_{1}}\circ\delta_{z_{2}} for z_{1} , z_{2}\in M As
\{\mu\in M_{b}(M):\mu=\int_{-} q_{z}d\nu(z), \nu\in M_{b}(\tilde{M})\} is closed under convolution by (2.

9), (q_{z})_{z\in M} is a recomposition of the consistent generalized orbital mor-
phism \varphi . This completes the proof of (ii)

To show that M is determined uniquely by (i) and (ii), we assume
that \tilde{M},\overline{\tau} and \Phi satisfy (i) and (ii). By (\overline{1}i) , we find a generalized
orbital morphism \tilde{\varphi}:M -arrow\overline{M} with p=\Phi^{\circ\varphi} . As p|_{M-L} is inj ective, the
commutative diagram



152 M. Voit

\overline{\varphi}

(2. 11)

shows that \overline{\varphi}|_{L} and \tilde{\varphi}|_{M-L} are injective. As \overline{\varphi}(L)\cap\tilde{\varphi}(M-L)=\emptyset , and as an
injective generalized orbital morphism is an isomorphism, the proof of
Theorem 2. 1 is complete.

2.2. The hypergroup join. The join L\vee K of a compact hypergroup
L and a discrete hypergroup K appears when the identity element of K is
replaced by L. Hence, if \pi: L arrow\{e\} is the trivial homomorphism, then

we have L\vee K=S(K, \{e\}arrow L)\pi .

We next present a typical example of a hypergroup constructed by
substitution.

2. 3. EXAMPLE. For n\in N let Z_{n} be the cyclic group of order n .
The commutative hypergroup K=S(Z_{4}, Z_{2}arrow Z_{2}\cross Z_{2}) consists of six ele-
ments which we name e , x , y , z , a , b where e is the neutral element and \{e ,
x , y , z\} is the subgroup isomorphic to Z_{2}\cross Z_{2} . In this case, the convolu-
tion on K is given by

It is natural to ask whether a given hypergroup is isomorphic to a
hypergroup constructed via a non-trivial substitution. We here give the
following criterion:

2. 4. PROPOSITION. Let W\neq\{e\} be a compact normal subhypergroup

of a hypergroup M. Then T:=\{x\in M:x*W\neq(x\}\} is open in M. More-
over, if L is a subhypergroup of K satisfying L\supset T, then L is open in M,

and M is isomorphic to S(M/W, L/Warrow L) . In particular, if L can be
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chosen to be equal to W, then M is isomorphic to W\vee(M/W) .

PROOF. Let (y_{a})_{a\in A}\subset M-T be a net converging to y\in M . Then the
net of compact subsets (y_{a}*W)_{a\in A}=(\{y_{a}\})_{a\in A} tends in \mathscr{C}(K) to y*W and
\{y\} at the same time. Hence, y*W=\{y\} and y\in M-T This proves that
T is open in M.

It follows from L\supset T that L is open in M. Hence, \tilde{M}:=S(M/W ,

L/Warrow L) is a well-defined hypergroup. Applying part (ii) of Theorem
2. 1 and Eq. (2. 8), we find a consistent generalized orbital morphism
\varphi:Marrow\tilde{M} which is given by

\varphi(x)=\{
x*W=\{x\} for x\in M-L

x for x\in L

As \varphi is injective, \varphi is a hypergroup isomorphism. This completes the
proof.

2. 5. REMARKS. All assumptions of Theorem 2. 1 are in fact neces-
sary in order to construct (M^{ },\circ) . For instance, the continuity properties
of \circ follow from H being open in K. Furthermore, the construction of \circ

depends on the fact that \pi is open and proper. In particular, the assump-
tion of kern \pi being compact is necessary since otherwise each coset
x*kern\pi would be non-compact in M. Finally, the assumption of \pi being
a hypergroup homomorphism was needed to ensure that \circ is associative.

On the other hand, the property of \pi being a homomorphism has been
used mainly to verify Eq. (2. 3) and its symmetric counterpart. This
observation has the following consequence: Let \pi:Larrow H be an orbital
mapping and T a closed *-subalgebra of M_{b}(L) such that \pi:Tarrow M_{b}(H)

is a Banach-*-algebra isomorphism. If

\delta_{\pi(X)}*\delta_{\pi(\mathcal{Y})}*\delta_{z}=\pi(\delta_{x}\cdot\delta_{\mathcal{Y}})*\delta_{z} and \delta_{z}*\delta_{\pi(X)}*\delta_{\pi(\mathcal{Y})}=\delta_{z}*\pi(\delta_{x}\cdot\delta_{y}) (2. 12)

for all x , y\in L and z\in M-L , then we can construct a hypergroup (M^{ },\circ)

as in Theorem 2. 1 by using the isomorphism between M_{b}(H) and T
(instead of M_{b}(L|kern\pi) ).

Using double coset hypergroups, we give a simple example for this
setting: Let J and L be hypergroups. Let R and W be compact sub-
hypergroups of L such that R is normal in L, that W is non-normal in L,

and that W\subset R holds. Then R// W is a normal subhypergroup of L//W,

and L/R\simeq(LJ/W)/(R//W) holds (Theorem 14. 3A of Jewett [14]).

Assume that L/R is an open subhypergroup of J. Then, by Theorem 2. 1,

the hypergroups K:=S(J, L/Rarrow L//W) and M:=S(J, L/Rarrow L) exist.
M can be regarded as the hypergroup that appears if L// W is replaced by
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L in K.
We do not know whether every substitution not being associated with

a hypergroup homomorphism can be reduced to the usual substitution in
this obvious way. However, if L is a group, then we have the following
result.

2.6. LEMMA. Let W be a compact subgroup of a locally compact
group L such that the hypergroup L// W is an open subhypergroup of a

further hypergroup K. If the hypergroup M:=S(K, L// Warrow L) exists in
the above way, then there exists a compact normal subgroup R of L with R
\supset W such that the hypergroup J:=K/(R//W) contains L/R as an open
subgroup in the obvious way, and such that we have K=S(J, L/Rarrow L//

W) and M=S(J, L/Rarrow L) .

PROOF. Let R be the smallest closed normal subgroup of L contain-
ing W. The convolution on S(K, L// Warrow L) yields that for c\in K-(L//

W)\subset M and x\in L\subset M the relation \{c\}=(x*x^{-1})*c=(WxW)*(Wx^{-1})*c

holds. As the subhypergroup generated by the elements ( WxW)*(Wx^{-1}W)

(x\in L) of L// W is equal to R//W, we conclude that R*\{c\}=\{c\} for all c
\in K-(L//W)\subset M , and that, in particular, R is compact. As L/R is
isomorphic to the subgroup (L// W)/(R//W) of K/(R//W), the remaining
assertions of the lemma follow from Proposition 2. 4.

We next collect some properties which are preserved under substitu-
tion.

2. 7. PROPOSITION. In the setting of Section 2. 1 the following state-

ments hold for M=S(K, H^{\pi}arrow L) :
(1) M admits a left Haar measure if and only if K does. In particular,

for every left Haar measure \omega_{K} on K there exists a left Haar measure
\omega_{L} on L such that \pi(\omega_{L})=\omega_{K}|_{H} . Then \omega_{M}:=\omega_{K}|_{K-H}+\omega_{L} is a left
Haar measure on M. The corresponding results are true for right
Haar measures.

(2) M is unimodular or compact if and only if so is K.
(3) M is commutative, symmetric, discrete or totally disconnected if and

only if K and L have the same property.
(4) M is amenable ( i.e. , M admits an invariant mean; see Skantharajah

[22] ) if and only if K is amenable.
(5) If K admits a left Haar measure \omega_{K}, then M as well as the hyper-

group \tilde{M} of part ( ii) of Theorem 2. 1 have Haar measures, and the
mapping \varphi:\tilde{M}arrow M is a consistent orbital morphism.
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PROOF. Theorem 1. 8 of Voit [26] states that if N is a normal com-
pact subhypergroup of a hypergroup R, then R admits a (left or right)
Haar measure if and only if the hypergroup R/N does. This theorem
also gives a natural relation beetween both Haar measures. Therefore,
the first statement of part (1) is obvious. Moreover, if \omega_{K} is a left Haar
measure on K and \omega_{M} is the associated Haar measure on M according to
Theorem 1. 8 of [26], then \omega_{L}:=\omega_{M}|_{L} is a left Haar measure on the open
subhypergroup L of M and satisfies \pi(\omega_{L})=\omega_{K}|_{H} . The equation \omega_{M}:=

\omega_{K}|_{K-H}+\omega_{L} now follows from the structure of M and the properties of \omega_{M} .
The remaining assertions of part (1) as well as parts (2) and (3) are

obvious.
As kern \pi\subset L\subset M is compact and M/kern\pi\simeq K , part (4) follows

from Proposition 3. 6 of Skantharajah [22].
To verify part (5), we first notice that \overline{M} as well as M admit Haar

measures \omega_{\overline{M}} and \omega_{M} by Theorem 1. 8 of Voit [26]. We have to check
that the recomposition (q_{z})_{z\in M}\subset M^{1}(\overline{M}) (see Eq. (2. 9)) of the generalized
orbital morphism \varphi:\tilde{M}arrow M is consistent with \omega_{\overline{M}} , i.e. that we have
\omega_{\overline{M}}=\int_{-}q_{\varphi(\chi)}d\omega_{\overline{M}}(x) . By the definition of q_{z} , this equation is obviously

true on the set \overline{\tau}(L)\subset\tilde{M} . Moreover, it follows from (2. 8), (2. 9), and
Theorem 1. 8 of Voit [26] that

( \int_{\overline{M}}q_{\varphi(\chi)}d\omega_{\overline{M}}(x))|_{M-\overline{\tau}(L)}=\int_{\overline{M}-\overline{\tau}(L)}q_{\varphi(\chi)}d\omega_{\overline{M}}(x)

= \int_{\overline{M}-\overline{\tau}(L)}\delta_{x}*\omega_{kern\overline{p}}d\omega_{\overline{M}}(x)=\omega_{\overline{M}}|_{\overline{M}-\overline{\tau}(L)} (2. 13)

where \tilde{p} : \tilde{M}arrow K is given as in part (ii) of Theorem 2. 1. Thus the proof
is complete.

2. 8. Next we list some obvious isomorphisms for hypergroups con-
structed by substitution. The proofs are straightforward and will be omit-
ted.
(1) S(K , H\cross Jarrow L\cross J)\simeq S(K, Harrow L)\pi\pi\cross J , if H is an open subhyper-

group of K, J is compact, and the proper homorphisms \pi:Larrow H

and \overline{\pi} : L\cross J -arrow H\cross J are connected by \tilde{\pi}(x, y):=(\pi(x), y)(x\in L ,
y\in J) .

(2) S(K, Harrow H\vee W)\simeq W\vee K , if K is discrete and W compact.
(3) S(K, Harrow S(H, Warrow L))\simeq S(K, Warrow L) , if W (and thus H) is open

in K.
(4) S(HVK, Harrow L)\simeq L\vee K , if K is discrete and H and L are compact.



156 M. Voit

3. Duals of hypergroups constructed by substitution

The purpose of this section is to discuss dual spaces of hypergroups
constructed via substitution. For this we first recapitulate some basic
facts about irreducible representations of hypergroups and in particular
duals of commutative hypergroups. For details we refer to Bloom and
Heyer [1, 2] , Jewett [14] and Vrem [29].

3. 1. Duals of hypergroups. Let K be a hypergroup. Let H be a
Hilbert space, B(H) the algebra of all bounded linear operators on H,

and T:M_{b}(K) -arrow B(H) a *-representation of the Banach-*-algebra M_{b}(K)

such that
(i) T(\delta_{e}) is equal to the identity operator I,
(ii) ||T(\mu)||\leq||\mu|| for all \mu\in M_{b}(K) , and
(iii) the mapping \mu-\nu \langle T(\mu)u, v\rangle is weakly continuous on M_{b}^{+}(K) for all
u , v\in H . Then the mapping

Karrow B(H) , x-*T(\delta_{x})

is denoted by T again. T is said to be a representation of K. A repre-
sentation of K is called irreducible if the associated representation of
M_{b}(K) is irreducible. Using the usual concept of unitary equivalence, we
denote the set of all equivalence classes of irreducible representations of K
by \overline{K} .

The annihilator A(\hat{K}, L) of a subset L of K is given by
A(\overline{K}, L):= { T\in\overline{K} : T(x)=I for all x\in L}, I being the identity oper-

ator.

3. 1. 1. The following facts about annihilators are needed below (see
Lemma 1. 9 in Voit [28] ) : Let L be a compact normal subhypergroup of a
hypergroup K. If \omega_{L} is the normalized Haar measure of L, then T(\omega_{L})=

0 for all T\in\hat{K}-A(\hat{K}, L) . Moreover, if p:Karrow K/L is the natural pr0-

jection, then T-arrow T\circ p is a bijective mapping from (K/L)^{\wedge} onto A(\overline{K}, L) .

3. 2. Duals of commutative hypergroups. Let K be a commutative
hypergroup. Then all irreducible representations are one-dimensional,
and it is convenient to consider characters instead of such representations.
As usual, the dual \overline{K} is given by

\overline{K}:= { \alpha\in C_{b}(K):\alpha(x*\overline{y})=\alpha(x)\cdot\overline{\alpha(y)} for all x , y\in K , \alpha\not\equiv 0 }.

Equipped with the topology of uniform convergence on compacta, \overline{K} is a
locally compact space. If \omega_{K} is a Haar measure on K, then there is a
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corresponding Plancherel measure \pi\in M^{+}(\overline{K}) such that the Fourier trans-
formation is an L^{2}- isometry (Jewett [14]). We say \overline{K} has a dual hyper-
group structure whenever \overline{K} carries a hypergroup structure such that the
mappings \overline{K}\vdasharrow C , \alphaarrow\alpha(x) , are characters for all x\in K . The dual of the
dual hypergroup \hat{K} is written as K^{\wedge\wedge} . K is called a Pontryagin hyper-
group if \overline{K} is a dual hypergroup and K^{\wedge\wedge} agrees with K in the obvious
way. In particular, every locally compact abelian group is a Pontryagin
hypergroup. There exist, however, commutative hypergroups having dual
hypergroups and not being Pontryagin; see Zeuner [33, 34] .

For L\subset K and W\subset\overline{K} we define the annihilators A(\hat{K}, L):=\{\alpha\in\hat{K} :
a|_{L}=1\} and A(K, W):= {x\in K:\alpha(x)=1 for all \alpha\in W}.

For further details on duals of commutative hypergroups we refer to
Bloom and Heyer [1, 2] , Dunkl [4, 5] , Jewett [14], Voit [24, 26] , and
Zeuner [33].

We next determine duals of hypergroups constructed by substitution.

3. 3. THEOREM. Let M=S(K, H^{\pi}arrow L) , W=kern\pi\subset L\subset M and
p:Marrow M/W=K be given as in Section 2. 1.
(1) If T\in\hat{L}-A(\overline{L}, W) , then T.(\mu) :=T(\mu|_{L})(\mu\in M_{b}(M)) yields an ir-

reducible representation T.\in\hat{M}.
(2) If T\in\hat{K}, then T^{*}:=T\circ p\in\hat{M}.
(3) \overline{M}=\{T^{*} : T\in\hat{K}\}\cup\{T. : T\in\overline{L}-A(\overline{L}, W)\} .
(4) Every irreducible representation of M has fifinite dimension if and only

if K and L have the same property.

PROOF.
(1) As L and M-L are open in M , the continuity of the mapping

\mu-arrow T^{\cdot}(\mu) from M_{b}^{+}(M) into B(H) is obvious. It is also clear that
T.(\mu*)=T^{\cdot}(\mu)^{*} . To show that T^{\cdot} is a *-representation, it suffices
to check that

T.(\delta_{x}\circ\delta_{y})=T^{\cdot}(\delta_{x})T.(\delta_{y}) for all x , y\in M . (3. 1)
If x,y\in L , then (3. 1) is trivial. Moreover, if x\in L and y\in M-L ,
then

T^{\cdot}(\delta_{x}\circ\delta_{y})=T.(\delta_{\pi(x)}*\delta_{y})=T((\delta_{x}\circ\delta_{\mathcal{Y}})|_{M-L})=

T(0)=0=T.(\delta_{x})*T.(\delta_{y}) .

For x\in M-L and y\in L , Eq. (3. 1) can be verified in the same way.
Finally, if x , y\in M-L , then T(\omega_{W})=0 yields
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T.(\delta_{x}\circ\delta_{y})=T((\delta_{x}\circ\delta_{\mathcal{Y}})|_{L})=T(\omega_{W}\cdot\pi^{-1}((\delta_{x}*\delta_{y})|_{H}))

=T(\omega_{W})T(\pi^{-1}((\delta_{x}*\delta_{y})|_{H}))=0=T.(\delta_{x})*T^{\cdot}(\delta_{y}) .

This completes the proof of T^{\cdot} being a *-representation. It is clear
that this representation is irreducible and that the operation. trans-
forms equivalent representations into equivalent representations.

(2) This is a consequence of M/W=K and the statement 3.1.1 above.
(3) \{ T^{* }: T\in\overline{K}\}=A(\hat{M}, W) follows from 3. 1. 1. Moreover, if \tilde{T}\in\overline{M}

-A(\overline{M}, W) , then T^{*}(\omega_{W})=0 by 3.1.1. Hence, for all y\in M-L ,

\overline{T}(\delta_{y})=\overline{T}(\delta_{e}*\delta_{y})=\tilde{T}(\pi(\omega_{W})*\delta_{y})=\tilde{T}(\omega_{W}\circ\delta_{y})=\overline{T}(\omega_{W})\overline{T}(\delta_{y})=0 .

This proves that \tilde{T}=(\overline{T}|_{L}) . which completes the proof.
(4) This is a consequence of (3).

We next study commutative hypergroups, in which case all irreducible
representations are one-dimensional. Thus, it is convenient here to con-
sider characters instead of one-dimensional irreducible representations.
To translate the operations . and * of Theorem 3. 1 into mappings on
duals of commutative hypergroups, we use the following conventions.

3. 4. DEFINITION. Retaining the setting of Section 2. 1, we define
the mappings

. : C(L)arrow C(M) , f-arrow f\cdot , where f\cdot(x) :=\{
f(x) if x\in L

0 if x\in M-L ,

and *:C(K)arrow C(M) , f\ulcornerarrow f^{*}: =f\circ p .

Both mappings are obviously open and continuous when the space C(L) ,

C(K) and C(M) are equipped with the topology of uniform convergence
on compact subsets.

3. 5. THEOREM. If K, L and M=S(K,H arrow L)\pi are commutative,

then the following statements hold:
(1) (\overline{L}-A(\overline{L}, W)) . and (\hat{K})^{*} are disjoint and open subsets of \overline{M}, and

(\overline{L}-A(\overline{L}, W)).\cup(\overline{K})^{*}=\overline{M}.

(2) A(\hat{M}, W)=\overline{K}^{*}

(3) Let \omega_{K}, \omega_{L} and \omega_{M} be the Haar measures of K, L and M respectively
such that these measures are related as in part (1) of Proposition 2. 7.
Let \pi_{K}, \pi_{L} and \pi_{M} be the associated Plancherel measures on \hat{K},\hat{L} and
\overline{M} respectively. Then
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\pi_{M}=(\pi_{K})^{*}+(\pi_{L}|_{\hat{L}-A(\overline{L},W)})
. (3, 2)

where the symbols * and. stand for taking the image of a measure
with respect to the mappings defifined in Section 3.4.

PROOF.
(1) (\overline{L}-A(\overline{L}, W)) . \cup(\hat{K})^{*}=\overline{M} is an immediate consequence of Theorem

3. 3. It is also clear that the sets (\overline{L}-A(\overline{L}, W)) . and (\overline{K})^{*} are dis-
joint.
In order to prove that both sets are open in \overline{M} , we take \alpha\in\hat{L}-A(\overline{L} ,
W) and \beta\subset\hat{K} . Then \alpha

. |_{W}\in\overline{W} , \alpha
. |_{W}\not\equiv 1 and \beta^{*}|_{W}\equiv 1 . Therefore,

\int_{W}\alpha.\beta^{*}d\omega_{W}=0 and thus \sup_{x\in W}|\alpha.(x)-\beta^{*}(x)|>1 . Since W is com-
pact, it follows that (\overline{L}-A(\overline{L}, W)) . and (\overline{K})^{*} are open in \overline{M} which
finishes the proof.

(2) This is obvious.
(3) As K=M/W, we obtain \pi_{M}|_{(} -)^{*}=\pi_{M}|_{A(\overline{M},W)}=(\pi -)^{*} from Theorem 2.

5(3) of [26]. To check that

\pi_{M}|_{\hat{M}-A(\overline{M},W)}=(\pi_{L}|_{\overline{L}-A(\overline{L},W)}). . (3. 3)

we observe that L is an open subhypergroup of M. Thus, the map-
ping r:\hat{M}arrow\hat{L} , \alpha->\alpha|_{L} satisfies r(\pi_{M})=\pi_{L} (see Theorem 2. 7 of Voit
[26] ) . Using parts (1) and (2), we conclude that the restriction map-
ping r:\hat{M}-A(\hat{M}, W)arrow\overline{L}-A(\overline{L}, W) is the inverse mapping of. and
a homeomorphism. This proves Eq. (3. 3).

3. 6. THEOREM. Assume that K and L and hence M=S(K, H^{\pi}arrow L)

are commutative. Again, we put W:=kern\pi . If \hat{K} and \hat{L} are hyper-
groups, then \hat{M} is a hypergroup isomorphic to S(\overline{L}, A(\overline{L}, W)arrow\overline{K}) . This
substitution is admissible as A(\hat{L}, W) is an open subhypergroup of \overline{L}

isomorphic to \overline{K}/A(\hat{K}, H) , A(\hat{K}, H) being a compact subhypergroup of \overline{K}.
Conversely, if \overline{M} is a hypergroup, then \overline{K} is a hypergroup, and \overline{L} is a

hypergroup if and only if supp \pi_{L}=\hat{L} ( \pi_{L} is the Plancherel measure on \hat{L}).

PROOF. Assume first that \hat{M} is a hypergroup. Then A(\overline{M}, W) is a
subhypergroup of \overline{M} isomorphic to (M/W)^{\wedge}=\hat{K} (Theorem 2. 5 of Voit
[26] ) . Moreover, if supp \pi_{L}=\hat{L} , then \overline{L} is a commutative hypergroup by
Theorem 3. 5. The converse conclusion is clear.

Now assume that \overline{L} and \overline{K} are hypergroups. Then, using L/W=H,
we observe that \hat{H} is a hypergroup isomorphic to A(\overline{L}, W) (Theorem 2. 5
of Voit [26] ) where A(\hat{L}, W) is an open subhypergroup of \hat{L} (Proposition
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3. 1 of Bloom and Heyer [2] ) . Moreover, since H is open in K, A(\overline{K}, H)

is a compact subhypergroup of \overline{K} (Proposition 3. 1 of [2]) and \hat{K}/A(\hat{K}, H)

is isomorphic to \hat{H} (Theorem 2. 7 of Voit [26] and use that \hat{H} is a hyper-

group). If we identify the isomorphic hypergroups \hat{K}/A(\hat{K}, H),\overline{H} and
A(\overline{L}, W) in the obv\overline{l}ous way, then we may form the hypergroup
S(\overline{L}, A(\overline{L}, W)arrow\overline{K}) according to Theorem 2. 1 on the locally compact

space (\overline{L}-A(\hat{L}, W))\cup\overline{K} . If we identify this space with \hat{M}=(\overline{L}-A(\overline{L} ,
W)).\cup(\overline{K})^{*} by using the mappings. and * , then we still have to check
that the resulting hypergroup structure is consistent with the multiplica-

tion of characters on M. To do this, we have to consider three cases:
If \alpha , \beta\in\overline{K} , then our assumptions imply that there exists a unique

probability measure \delta_{a}*\delta_{\beta} on \overline{K} satisfying \alpha(x)\beta(x)=\int_{\hat{K}}\gamma(x)d(\delta_{a}*\delta_{\beta})(\gamma)

for all x\in K . Then, for \alpha^{*} , \beta^{*}\in(\hat{K})^{*}\subset\hat{M} , we obtain that

\alpha^{*}(x)\beta^{*}(x)=\int_{(\overline{K})^{*}}\gamma^{*}(x)d(\delta_{a}*\delta_{\beta})^{*}(\gamma^{*}) for all x\in M , (3. 4)

\mu^{*} being the image of a measure \mu with respect to the mapping * .

Now take \alpha\in\overline{K} and \beta\in\overline{L}-A(\overline{L}, W) . Denote the canonical projec-

f or from \overline{K} onto \hat{K}/A(\overline{K}, H)\simeq A(\hat{L}, W) by \rho . Using the construction of
S(\hat{L}, A(\overline{L}, W)arrow\overline{K}) , we conclude that there is a unique probability mea-
sure \delta_{\rho(a)}\cdot \delta_{\beta} on \overline{L}-A(\hat{L}, W) such that

\alpha(x)\beta(x)=\int_{\overline{L}}\gamma(x)d(\delta_{\rho(a)}\cdot\delta_{\beta})(\gamma) for all x\in L . (3. 5)

Since \gamma.(x)=0 for all x\in M-L=K-H and \gamma\in\hat{L}-A(\overline{L}, W) , we obtain

\alpha^{*}(x)\beta.(x)=0=\int_{\overline{L}-A(\overline{L},W)}\gamma.(x)d(\delta_{\rho(a)}\cdot\delta_{\beta})(\gamma) for all x\in M-L , (3. 6)

where \mu
. denotes the image of the measure \mu\in M^{1}(\overline{L}-A(\hat{L}, W)) with

respect to the mapping .: \overline{L}-A(\hat{L}, W)arrow(\hat{L}-A(\hat{L}, W)).\subset\overline{M} . (3. 5) and
(3. 6) together ensure the consistency of the dual convolution in the second
case.

Now take \alpha , \beta\in\overline{L}-A(\hat{L}, W) and let \rho be given as before. We have

to prove that

\alpha.(x)\beta.(x)=\int_{(\overline{L}-A(\overline{L},W))}.\gamma.(x)d(\delta_{a}\cdot\delta_{\beta}).(\gamma.)

+ \int_{(\overline{K})^{*}}\gamma^{*}(x)d(\omega A(\overline{K},H)^{*}\rho^{-1}((\delta_{a}*\delta_{\beta})|_{A(\hat{L},W)}))^{*}(\gamma^{*}) (3. 7)

for all x\in M . First take x\in M-L=K-H . Then \alpha.(x)\beta.(x)=0 and
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\int_{(\hat{L}-A(\overline{L},W))}.\gamma.(x)d(\delta_{a}\cdot\delta_{\beta}).(\gamma.)=0 .

Furthermore, Lemma 2. 10 of Voit [26] shows that A(\hat{K}, H) - C , \gamma\vdasharrow

\gamma(x) is a nontrivial character on the compact hypergroup A(\hat{K}, H) . Thus

\int_{A(\overline{K},H)}\gamma(x)d\omega_{A(\hat{K},H)}(\gamma)=0 .

As \hat{K}arrow C , \gamma->\gamma(x) is a character on \hat{K} , and as \gamma=\gamma^{*} on K-H, we get

\int_{\overline{K}}\gamma^{*}(x)d(\omega_{A(\overline{K},H)^{*}}\rho^{-1}((\delta_{a}\cdot\delta_{\beta})|_{A(\overline{L},W)}))(\gamma)

= \int_{A(\overline{K},H)}\gamma(x)d\omega_{A(\overline{K},H)} \int_{\overline{K}}\gamma(x)d^{-1}\rho((\delta_{a}\cdot\delta_{\beta})|_{A(\overline{L},W)})(\gamma)=0

which establishes Eq. (3. 7) for x\in M-L .
Now take x\in L . Then the definition of the convolution on \overline{L} yields

that \alpha.(x)\beta.(x)=\int_{\overline{L}}\gamma.(x)d(\delta_{a}\cdot\delta_{\beta})(\gamma) . Thus, Eq. (3. 7) follows from

\int_{\overline{K}}\gamma^{*}(x)d(\omega_{A}(\overline{K},H)^{*}\rho^{-1}((\delta_{a}\cdot\delta_{\mathcal{B}})|_{A(\overline{L},W)}))(\gamma)=\int_{A(\overline{L},H)}\gamma(x)d(\delta_{a}\cdot\delta_{\beta})(\gamma) . (3. 8)

Let \rho:\overline{K} - A(\overline{L}, W) be the canonical projection. Then \gamma^{*}(x)=\gamma(\pi(x))=

\rho(\gamma)(x) for all x\in L and \gamma\in\overline{K} . Consequently, Eq. (3. 8) follows from

\rho(\omega_{A(\overline{K},H)^{*\rho^{-1}((\delta_{a}\cdot\delta_{\beta})|_{A(\overline{L},W)}))=(\delta_{a}\cdot\delta_{\beta})|_{A(\hat{L},W)}}}

and the definition of the image of a measure. Thus the proof of the the0-
rem \overline{1}S complete.

3. 7. COROLLARY. If K and L are Pontryagin hypergroups, then
S(K, Harrow L) is a Pontryagin hypergroup.

PROOF. Apply Theorem 3. 6 two times and use the fact that the
bidual of a commutative hypergroup R is a hypergroup if and only if this
bidual is isomorphic with R (Jewett [14], Theorem 12. 4).

We next investigate positive definite functions on arbitrary hyper-
groups constructed by substitution. We recapitulate that a function
f\in C(K) on a hypergroup K is called positive definite if \int_{K}f(\mu*\mu^{*})\geq 0 for
all \mu\in M_{b}(H) with compact support. It is well-known that products of
bounded positive defifin\dot{l}te functions can fail to be positive definite (see
Example 9.1C in Jewett [14] ) . We say that K has property (P) if fg is
positive definite for all bounded positive definite functions f,g\in C_{b}(K) .
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3. 8. THEOREM. Let K and L be hypergroups having property (P).

If H is an open subhypergroup of K such that each bounded positive

defifinite function on H can be extended to such a function on K, then the

hypergroup M :=S(K, H^{\pi}arrow L) has property (P), and each bounded pos itive

defifinite function on L can be extended to a positive defifinite function on M.

For the proof of Theorem 3. 8 we copy the linearization results for
characters in Theorem 3. 6 and decompose positive definite functions into
two parts as follows:

3. 9. LEMMA. Let W be a compact normal subhypergroup of a

hypergroup K. If f\in C(K) is positive definite, then f-\omega_{W}*f and \omega_{W}*f

are positive defifinite.
PROOF. Fix \mu\in M_{b}(K) with compact support. As \omega_{W}=\omega_{W}^{*} and

\omega_{W}*f=\omega_{W}*f*\omega_{W}=f*\omega_{W} (Lemma 1. 5 in Voit [26]), Lemma 4.2H of
Jewett [14] yields

\int_{K}(f-\omega_{W}*f)d(\mu*\mu^{*})=\int_{K}(\delta_{e}-\omega_{W})*f*(\delta_{e}-\omega_{W})^{*}d(\mu*\mu^{*})

= \int_{K}fd((\delta_{e}-\omega_{W})*\mu*\mu^{*}*(\delta_{e}-\omega_{W})^{*})\geq 0 .

In a similar way we obtain \int_{K}f*\omega_{W}d(\mu*\mu^{*})\geq 0 .

3. 10. LEMMA. Let K, L, M and W=kern\pi\subset L be given as in Sec-
tion 2. 1. Then f\in C(M) is positive defifinite on M if and only if f*\omega_{W}\in

C(M)\dot{\iota s} positive defifinite on M and (f-\omega_{W}*f)|_{L}\in C(L) is positive defifinite
on L.

PROOF. The only-if-part follows from 3. 9. To check the if-part, it
suffices to show that h_{-}.=f-\omega_{W}*f is pos\overline{l}tive definite on M. For this we
decompose a given \rho\in M_{b}(M) having compact support into \rho=\rho_{1}+\rho_{2} with
supp \rho_{1}\subset M-L and supp \rho_{2}\subset L . As supp (\rho_{1}*\rho_{2}^{*}+\rho_{2}*\rho_{1}^{*})\subset M-L and h|_{M-L}

=0, we have \int_{M}hd(\rho_{1^{*}}\rho_{2}^{*}+\rho_{2^{*}}\rho_{1}^{*})=0 . Moreover, 4.2H of Jewett [14] and

the definition of the convolution on M lead to

\int_{M}hd(\rho_{1}*\rho_{1}^{*})=\int_{M}hd((\rho_{1}*\rho_{1}^{*})|_{L})=\int_{L}(\omega_{W}*h)d((\rho_{1}*\rho_{1}^{*})|_{L})=0 .

Thus, \int_{M}hd(\rho*\rho^{*})=\int_{M}hd(\rho_{2}*\rho_{2}^{*})\geq 0 which completes the proof.
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PROOF OF THEOREM 3. 8. Let f, g\in C_{b}(M) be positive definite. We
prove that (f*\omega_{W})\cdot g and (f-f*\omega_{W})\cdot g are positive definite on M. We
first observe that f*\omega_{W} and g*\omega_{W} may be regarded as positive definite
functions on M/W=K by 1. 7. Hence, (f*\omega_{W})\cdot (g*\omega_{W}) is positive definite
on M. As f*\omega_{W} is constant on W-cosets,

(((f* \omega_{W})\cdot g)*\omega_{W})(x)=\int_{K}((f*\omega_{W})\cdot g)(x*\overline{y})d\omega_{W}(y)=f*\omega_{W}(x)\cdot g*\omega_{W}(x)

for all x\in K .
As (f*\omega_{W})|_{L} and (g-g*\omega_{W})|_{L} are positive definite by Lemma 3. 9, we
obtain that ((f*\omega_{W})(g-g*\omega_{W}))|_{L}=((f*\omega_{W})g-((f*\omega_{W})g)*\omega_{W})|_{L} is positive
definite on L. As ((f*\omega_{W})g)*\omega_{W}=(f*\omega_{W})(g*\omega_{W}) is positive definite on M,
it follows from Lemma 3. 10 that (f*\omega_{W})g is positive definite on M. As
the function f-f*\omega_{W} is positive definite on M by Lemma 3. 9, the func-
tion h:=((f-f*\omega_{W})g)|_{L}\in C(L) is positive definite on L. Hence, by
Lemma 3. 9, (h-h*\omega_{W})|_{L} is positive definite. Thus, in order to check that
(f-f*\omega_{W})g is positive definite on M, it suffices to prove by Lemma 3. 10
that r:=((f-f*\omega_{W})g)*\omega_{W} is positive definite on M. However, r|_{L} is
obviously positive definite on L and can be regarded as a bounded positive
definite function on H. This funct\overline{l}on can be extended to a posit\overline{l}ve

definite function \tilde{r} on M such that \overline{r}*\omega_{W}=\tilde{r} . Thus, \tilde{r}|_{M-L}=0=r|_{M-L}

and \tilde{r}=r . This completes the proof.

3. 11. REMARK. We do not know whether we can omit the condition
in Theorem 3. 8 that each bounded positive definite function on H can be
extended to a bounded positive definite function on K. This extension
problem did not appear in Theorem 3. 6 as it was ensured implicitely there
by the assumptions. Applications of induced representations on hyper-
groups to the extension problem can be found in Hermann [10].

4. Substitution and commutative diagrams

In this section we establish some relations between substitution and
drawing commutative diagrams of hypergroups. These results will be
useful when applying substitution repeatedly; see, for instancen, Section 5
below.

4. 1. LEMMA. Let K_{1} , K_{2} , L_{1} , L_{2} be hypergroups. Let p_{i} : L_{i}arrow K_{i} be
open and proper homomorphisms. Consider the open subhypergroups H_{i}:=

p_{i}(L_{i}) of K_{i} for i\in\{1,2\} . Assume that \varphi_{K} and \varphi_{L} are hypergroup
homomo2phisms such that
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L_{1}
arrow\varphi_{L}

L_{2}

\downarrow p_{1} \downarrow p_{2} (4. 1)
arrow\varphi_{K}

K_{1} K_{2}

commutes. Then the hypergroups M_{i}
:=S(K_{i}, H_{i}arrow L_{i})\underline{p}_{i} exist, and the

mapping

\varphi:M_{1}arrow M_{2} , x->\{
\varphi_{L}(x) if x\in L_{1}

\varphi_{K}(x) if x\in M_{1}-L_{1}

is a hypergroup homomorphism. Moreover, if \varphi_{K} and \varphi_{L} are open, proper,
or surjective, then \varphi has the same property.

Finally, (4. 1) leads to the following extended commutative diagram

L_{1} Larrow M_{1} arrow K_{1}

\downarrow\varphi_{L}

\downarrow\varphi \downarrow\varphi_{K} (4. 2)

L_{2}
c_{-arrow} M_{2} arrow K_{2}

PROOF. It suffices to check that \varphi(\delta_{x}\circ\delta_{\mathcal{Y}})=\varphi(\delta_{x})\circ\psi(\delta_{\mathcal{Y}}) for all x , y\in

M_{1} such that x\in M_{1}-L_{1} or y\in M_{1}-L_{1} holds. If x\in M_{1}-L_{1} and y\in L_{1} ,

then
\varphi(\delta_{x}\circ\delta_{\mathcal{Y}})=\varphi_{K}(\delta_{x}*\delta_{p_{1}(y)})=\varphi_{K}(\delta_{x})*\delta_{\varphi\kappa(p_{1}(y))}=\varphi(\delta_{x})\circ\varphi(\delta_{\mathcal{Y}})

and, in a similar way, \varphi(\delta_{\mathcal{Y}}\circ\delta_{x})=\varphi(\delta_{\mathcal{Y}})\circ\varphi(\delta_{x}) .
It remains to study the case x , y\in M_{1}-L_{1} . Let \omega_{1} and \omega_{2} be the nor-

malized Haar measures of kern p_{1} and kern p_{2} . As \varphi_{L}(kernp_{1})\supset kernp_{2} ,

for each \rho\in M_{b}(L_{1}) satisfying \rho*\omega_{1}=\rho we have \varphi_{L}(\rho)*\omega_{2}=\varphi_{L}(\rho*\omega_{1})*\omega_{2}=

\varphi_{L}(\rho)*\varphi_{L}(\omega_{1})*\omega_{2}=\varphi_{L}(\rho)*\varphi_{L}(\omega_{1})=\varphi_{L}(\rho) . If \tilde{p}_{i}^{-1} : M_{b}(H_{i}) -arrow M_{b}(L_{i}) is defined
as in Theorem 2. 1 (i\in\{1,2\}) , it follows that \varphi_{L}(\overline{p}_{1}^{-1}(\mu))=\overline{p}_{2}^{-1}(\varphi_{K}(\mu)) for
each \mu\in M_{b}(H_{1}) . Using this fact, p(H_{1})=H_{2}\cap\varphi_{K}(K_{1}) , as well as \varphi_{K}(K_{1}

-H_{1})=\varphi_{K}(K_{1})-H_{2} , we conclude that
\varphi(\delta_{x}\circ\delta_{y})=\varphi_{K}((\delta_{x}*\delta_{y})|_{\kappa_{1}-H_{1}})+\varphi_{L}(\tilde{p}_{1}^{-1}((\delta_{x}*\delta_{y})|_{H_{1}}))

=(\varphi_{K}(\delta_{x}*\delta_{\mathcal{Y}}))|_{\kappa_{2}-H_{2}}+\tilde{p}_{1}^{-1}(\varphi_{K}((\delta_{x}*\delta_{\mathcal{Y}})|_{H_{1}}))

=(\varphi_{K}(\delta_{x})*\varphi_{K}(\delta_{y}))|_{Kz-Hz}+\overline{p}_{1}^{-1}((\varphi_{K}(\delta_{x})*\varphi_{K}(\delta_{\mathcal{Y}}))|_{H_{2}})

=\varphi(\delta_{x})\circ\varphi(\delta_{y}) for x , y\in M_{1}-L_{1}

This completes the proof.

4. 2. Let K and L be commutative hypergroups having dual hyper-
groups. If p:Karrow L is an open and proper hypergroup homomorphism,
then we may introduce the dual homomorphism \hat{p} : \hat{L}arrow\hat{K}W\overline{l}th\hat{p}(\alpha)(x)=
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\alpha(p(x)) for \alpha\in\hat{L} , x\in K . \hat{p} is again open and proper by Theorems 2. 5
and 2. 7 in Voit [26].

Assume now that the hypergroups K_{1} , K_{2} , L_{1} , L_{2} of Lemma 4. 1 are
commutative and have dual hypergroups. Then we may draw the as-
sociated dual commutative diagram

\hat{\varphi}_{L}

\hat{L}_{1} – \overline{L}_{2}

\uparrow\overline{p}_{1} \uparrow\hat{p}_{2} (4. 3)
\overline{\varphi}_{K}

\overline{K}_{1} – \hat{K}_{2}

Moreover, we have \hat{M}_{i}=S(\hat{L}_{i},\hat{H}_{i}arrow\hat{K}_{i})\underline{\hat{p}_{i}} for i=1,2 by Theorem 3. 6.
Therefore, we have a natural dual homomorphism \hat{\varphi} : \hat{M}_{2}arrow\overline{M}_{1} such that
the diagram

\overline{L}_{1}

arrow \hat{M}_{1}
arrow\supset

\hat{K}_{1}

\uparrow\hat{\varphi}_{L} \uparrow\hat{\varphi} \uparrow\hat{\varphi}_{K} (4. 4)
\hat{L}_{2} arrow \hat{M}_{2}

arrow\supset \hat{K}_{2}

commutes. This diagram is dual to the diagram (4. 2).

4. 3. Chains of hypergroups and substitution. Let (H_{i})_{1\leq i\leq n} be a
chain of hypergroups together with open and proper hypergroup homomor-
phisms p_{i} : H_{i}arrow H_{i+1}(1\leq i\leq n-1) . We inductively construct new hyper-
groups (K_{i})_{1\leq i\leq n} together with open and injective homomorphisms \pi_{i} : K_{i}arrow

K_{i+1}(1\leq i\leq n-1) and surjective, open and proper homomorphisms q_{i} : K_{i}

arrow H_{i}(1\leq i\leq n) as follows:
(1) Put K_{1}:=H_{1} and q_{1}:=id .
(2) If K_{i} and q_{i} are constructed, then we define

K_{i+1} :=S(H_{i+1}, p_{i}\circ q_{i}(K_{i})^{p_{i}\circ q_{i}}arrow K_{i})

and take \pi_{i} as the canonical embedding and q_{i+1} as the canonical
projection associated with this substitution.

H_{1}

arrow p_{1}
H_{2}

arrow p_{2}
H_{3}

arrow p_{n-1}
H_{n}

\uparrow q_{1}
\uparrow q_{2}

\uparrow q_{3}
\uparrow q_{n} (4. 5)

\pi_{1}

c_{arrow} K_{n}
\pi_{2}

\pi_{n-1}

K_{1} c_{->} K_{2} c_{arrow} K_{3}

Using the definition of substitution as well as induction, we may realize
the largest hypergroup K:=K_{n} of this diagram as follows: If W_{1}:=H_{1}
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and W_{k} :=H_{k}-p_{k-1}(H_{k-1})(k=2, \ldots.n) , then K := \bigcup_{k=1}^{n}W_{k} is the dis\overline{]} oint

union of the sets W_{k} which are embedded into K as open subsets.
Let e_{k} and *_{k} be the identity element and the convolution on H_{k}

respectively. Then the convolution * on K is given by

\delta_{x}*\delta_{\mathcal{Y}}=

-\delta_{x}*_{k}\delta_{p_{k-1}}\circ\ldots\circ_{p_{\iota}(\mathcal{Y})} if x\in W_{k} , y\in W_{l} , l<k
\delta_{p_{l-1}}\circ\ldots 0_{p_{k}(\chi)}*_{l}\delta_{y} if x\in W_{k} , y\in W_{l} , l>k
(\delta_{x^{*}k}\delta_{y}

\sum_{j=1}^{k-1}\tilde{p}_{j}^{-1}(

)|_{W_{k}}+ (4. 6)

... (\overline{p}_{k-1}^{-1}((\delta x*\delta_{\mathcal{Y}}k)|_{p_{k}-1(W_{k}-1)})|_{p_{k-2}(W_{k-2})}\ldots)|_{pj(Wj))}

if x , y\in W_{k}

where \overline{p}_{j}^{-1} is the inverse mapping of \tilde{p}_{j} : M_{b}(H_{j}|kernp_{j})arrow M_{b}(p_{1}(H_{j})) :cf.
Section 1. 7.

4. 4. Dual chains and substitution. Let (H^{i})_{1\leq i\leq n} be a chain of
hypergroups together with open and proper hypergroup homomorphisms
p^{i} : H^{i+1}arrow H^{i}(1\leq i\leq n-1) . We inductively construct new hypergroups
V(K^{i})_{1\leq i\leq n} together with open and injective homomorphisms q^{i} : H^{i}arrow K^{i}

(1\leq i\leq n) and surjective, open and proper homomorphisms \pi^{i} : K^{i+1}arrow K^{i}

(1\leq i\leq n-1) as follows:
(1) Put K^{1} :=H^{1} and q^{1} :=id .
(2) If K^{i} and q^{i} are constructed, we set

K^{i+1}
:=S(K^{i}, q^{i}\circ p^{i}(H^{i+1})q^{i}[mathring]_{arrow}H^{i+1})p^{i}

and take \pi^{i} as the canonical projection and q_{i+1} as the canonical
embedding associated with this substitution.

p^{1} p^{2} p^{n-1}

H^{1} – H^{2} – H^{3} – H^{n}

\downarrow^{\backslash }q^{1} fq^{2} fq^{3} fq^{n} (4. 7)
\pi^{1} \pi^{2} \pi^{n-1}

K^{1} – K^{2} – K^{3} – K^{n}

Using the defifin\overline{l}tion of substitution as well as induction, we may realize
the largest hypergroup K^{n} of this diagram as follows: If W^{n}:=H^{n} and

W^{k} :=H^{k}-p^{k}(H^{k-1})(k=1, \ldots, n-1) , then K^{n} := \bigcup_{k=1}^{n}W^{k} is the disjoint

union of the sets W^{k} which are embedded into K^{n} as open subsets. The
convolution on K^{n} can be computed explicitly as in Eq. (4. 6). It turns out
that the hypergroup K^{n} is isomorphic to the hypergroup K_{n} of Section 4. 3
if we set H_{i}\cdot.=H^{n-i} and p^{i}:=p_{n-i} . We therefore do not write down the
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convolution on K^{n} explicitly.
The constructions 4. 3 and 4. 4 are dual in the following way: If the

hypergroups H_{i} of Section 4. 3 are commutative and admit dual hyper-
groups H^{i}:=\overline{H}_{i} , then the associated dual homomorphisms p^{i}:=\hat{p}_{i} : \overline{H}_{i+1} -arrow

\hat{H}_{i} (i=1, ... , n-1) are again open and proper (cf. Theorems 2. 5 and 2. 7
in Voit [26] ) . Moreover, the hypergroups K_{i} are also commutative and
they admit dual hypergroups K^{i}:=\hat{K}_{i} . Then the hypergroups K^{i} are con-
structed (up to isomorphism) as described in Section 4. 4. This follows
inductively from Theorem 3. 6.

It is clear that a corresponding result holds if we consider the hyper-
groups H^{i} of Section 4. 4, and if these hypergroups are commutative and
admit dual hypergroups.

5. Conjugacy class hypergroups and duals of some compact groups

Let G be a compact group. If G acts on itself by conjugation, then
the space G^{G} of all orbits becomes a commutative hypergroup in a canon\overline{l}-

cal way (see Jewett [14], Section 8) which admits a discrete dual hyper-
group. This dual may be identified with the set \overline{G} of all equivalence clas-
ses of \overline{1}rreducible representations of G with the convolution

\delta_{\pi}*\delta_{\rho}=\sum_{\tau\in\pi\otimes\rho}\frac{\dim\tau}{\dim\pi\cdot\dim\rho}m_{\tau,\pi,\rho}\cdot\delta_{\tau} (\pi, \rho\in\hat{G})

where m_{\tau,\pi,\rho}\in N is the multiplicity of \tau in \pi\otimes\rho (see, for instance, [8, 9,
14]).

The purpose of this section is to show how substitution of open sub-
hypergroups can be used to describe the structure of the hypergroups G^{G}

and \overline{G} for compact groups which are sufficiently close to the abelian case.
It is clear that our method works for a very particular kind of compact
groups only. Moreover, it does not lead to any explicit irreducible repre-
sentation as mothods like induced representations do.

Assume from now on that G is a compact group having a com-
mutative normal subgroup L such that G/L is a finite cyclic group of
order n\subset N . For sake of convenience we identify G/L with Z(n)=
\{0,1, \ldots- n-1\} . For a\in G we consider the automorphism t_{a} : x-, axa^{-1} on
L. Let S_{a} be the subgroup of G/L generated by aL. Moreover, we
introduce the closed subgroup J(a):=\{t_{a}(x)\cdot x^{-1} : x\in L\} of L. We next
determine the structure of G^{G} :

5. 1. LEMMA. The following statements hold for a, b, c\in G :
(1) If S_{b}\subset S_{a}, then J(b)\subset J(a) .
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(2) t_{b}(J(a))=J(a) .
(3) If cL generates the cyclic group S_{a}S_{b}, then J(a)J(b)=J(c) .
(4) If cL generates G/L, then all conjugacy classes of G are given by the

sets R(x, k) :=\{t_{d}(x)\cdot J(c^{k})\cdot c^{k} : d\in G\} where x\in L and k=0,1, \ldots

n-1 .
(5) The convolution on the conjugacy class hypergroup G^{G} :=\{R(x, k) :

x\in L , k=0, .. n-1 } is defifined by

\delta_{R(x,k)^{*\delta_{R(y,l)}=\frac{1}{n}\sum_{u=0}^{n-1}\int_{f(c^{l})}\delta_{R(x\cdot tcu(y)\cdot w,k+l)}d\omega_{f(c^{l})}(w)}}

where \omega_{f(C^{l})} is the normalized Haar measure on J(c^{l}) .

PROOF.
(1) If i\in N and x\in L , then xJ(a)=t_{a}(x)J(a)=\ldots=t_{a^{i}}(x)J(a) . As S_{b}\subset S_{a}

yields some i\in N with t_{b}=t_{a^{i}} , it follows that t_{b}(x)x^{-1}\in J(a) . Hence,
J(b)\subset I(a) .

(2) Take x\in L . then t_{b}(t_{a}(x)x^{-1})=t_{b}(t_{a}(x))t_{b}(x^{-1})=t_{a}(t_{b}(x))t_{b}(x)^{-1}\in

J(a) , and thus t_{b}(J(a))\in J(a) . Taking b^{-1} instead of b , we obtain
the converse inclusion.

(3) Part (1) yields J(a)J(b)\subset J(c) . As S_{c}\subset S_{a}S_{b} , we find p, q\in N such
that a^{p}b^{q}L=cL . Thus, t_{c}(x)x^{-1}=t_{a^{p}}(t_{b^{p}}(x)) . ( t_{b^{p}}(x))^{-1}\cdot t_{b^{p}}(x)x^{-1}\in

J(a)I(b) for all x\in L . Hence, J(c)\subset J(a)J(b) .
(4) By the assumption, each element of G can be written in a un\overline{l}que

way as xc^{k} where x\in L and k\in\{0,1, \ldots.n-1\} . As yc^{l}\cdot xc^{k}\cdot(yc^{l})^{-1}=

t_{c^{l}}(x)\cdot (yc^{k}y^{-1}c^{-k})\cdot c^{k} and \{yc^{k}y^{-1}c^{-k} : y\in L\}=J(c^{k}) , it follows that
\{t_{d}(x)\cdot J(c^{k})\cdot c^{k}\cdot. d\in G\} is the conjugacy class of xc^{k}

(5) The normalized Haar measure of any compact group W will be
denoted by \omega_{W} . Let p : Garrow G^{G} be the canonical projection. Take
representatives xc^{k} and yc^{l} of R(x, k) and R(y, l) repectively. For
each a\in L , the mapping \varphi_{a} : Larrow J(a) , w-*w^{-1}t_{a}(w) , is a homomor-
phism. Hence, by part (2), t_{c^{k}}\circ p_{c^{l}}(\omega_{L})=\omega_{f(c^{\iota})} . The definition of the
convolution on G^{G} (c.f. Section 8. 4 of Jewett [14]) now yields

\delta_{R(x,k)}*\delta_{R(y,l)}=\int_{G}p(\delta_{xc^{k}zyc^{l}z^{-1}})d\omega_{G}(z)=\frac{1}{n}\sum_{u=0}^{n-1}\int_{L}p(\delta_{xc^{k}vc^{u_{yc}l-u_{v}-1}})d\omega_{L}(v)

= \frac{1}{n}\sum_{u=0}^{n-1}\int_{L}\delta_{R(xt_{C}u+k(y\rangle t_{C}k(vt_{C}l(v^{-1})),k+l)}d\omega_{L}(v)

= \frac{1}{n}\sum_{u=0}^{n-1}\int_{f(c^{\iota})}\delta_{R(Xt_{C}u(y)w,k+l)}d\omega_{f(}c^{\ell})(w) .
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5. 2. Our next aim is to find another description of G^{G} in terms of
substitution of subhypergroups. For this, we need some notations and
facts:

(1) Fix a,b\in G . Assume that Sbd S\^a G/L. Then J(b)\subset J(a)\subset L by
5. 1(1) . The group G acts on J(b) , J(a) and L by conjugation (see
5. 1(2)) . Thus we may form the associated commutative orbit hyper-
group J(b)^{G}\subset J(a)^{G}\subset L^{G} . Moreover, we may form the coset hyper-
group LG/J(a)G , L^{G}/J(b)^{G} and J(a)^{G}/J(b)^{G} As (L^{G}/J(b)^{G})/(J(a)^{G}/

J(b)^{G})\simeq L^{G}/J(a)^{G} by Theorem 14. 3A in [14], we obtain a natural
surjective hypergroup horomorphism \pi(b, a) : L^{G}/J(b)^{G}arrow L^{G}/J(a)^{G}

We define the hypergroups K(a):=L^{G}/J(a)^{G}\cross S_{a} and K(b):=
L^{G}/J(b)^{G}\cross S_{b} . Then \varphi(b, a):K(b)arrow K(a) , (v, w)-\succ(\pi(b, a)(v), w) ,

is a hypergroup homomorphism from K(b) onto the open subhyper-
group L^{G}/J(a)^{G}\cross S_{b} of K(a) .

(2) Take c\in G such that cL generates G/L. Then L^{G}/J(c)^{G} is a group
isomorphic with L/J(c) . In fact, \tau:Larrow L^{G}/J(c)^{G}-x-arrow x^{G}*J(c)^{G} is
a consistent orbital morphism. Using the factorization theorem
14.3B of [14] and \tau^{-1}(e)=J(c) , we see that \pi:L/J(c) -arrow L^{G}/J(c)^{G} .
xJ(c)->x^{G}*J(c)^{G} is a unary consistent orbital morphism. As xj(c)
\{axa^{-1}\cdot byb^{-1} : a, b\in G, y\in J(c)\} for x\in L , \pi is also injective which
proves that \pi is a hypergroup isomorphism as claimed.

(3) If a\in L , then J(a) is trivial, and L^{G}/J(a)^{G} can be identified with L^{G} .

5. 3. Assume that |G/L|=n has the form
n=p_{1}^{k_{1}}\cdots p_{l}^{k\iota} with l , k_{1} , \ldots , k_{l}\in N , p_{1} , \ldots , p_{l} different primes.

The hypergroups K(a) of Section 5. 2(1) depend on the subgroups S_{a} of
G/L only and not on a itself by Lemma 5. 1(1) . As the subgroups of G/L
=Z(p) are generated by the elements p_{1^{1}}^{i}\cdots p_{l}^{i\iota}\in Z(p)(0\leq i_{j}\leq k_{j}) , we find a
unique associated hypergroup K(a) which we shall call K(i_{1}, \ldots.i_{l}) from
now on. Section 5. 2 shows that we have a natural homomorphism
\pi(j;i_{1}, \ldots, i_{l}) from K(i_{1}, i_{l}) onto an open subhypergroup of
K(i_{1}, \ldots.i_{j}-1, \ldots, i_{l}) for all j=1 , \ldots-l and i_{j}=1 , \ldots . k_{j} . It is clear from
5. 2 that the hypergroups K(i_{1}, \ldots, i_{l}) and the homomorphisms \pi(j;i_{1} , \ldots

i_{l}) form a commutat\overline{l}ve diagram which has the form of an /-dimensional

lattice.

K(k_{1},0) – K(k_{1},1) – K(k_{1}, k_{2})

K(1^{\cdot}.\cdot, 0)

–
K(1^{\cdot}.\cdot, 1)

–

.\cdot.
(5. 1)

K(1, k_{2})\downarrow
(l=2)

\downarrow \downarrow

K(0,0) – K(0,1) – K(0, k_{2})



170 M. Voit

The homomorphisms in this lattice have the following properties for h\neq j ,
1\leq i_{j}\leq k_{j} and 0\leq i_{h}\leq k_{h}-1 :

kern \pi(j : i_{1}, \ldots, i_{1})=\pi(h ; i_{1_{ }},\ldots , i_{h}+1, \ldots r. i_{l})(kern\pi(j ; i_{1_{ }},\ldots , i_{h}+1, \ldots-i_{l}))

(5. 2)

and

\pi(j;i_{1}\ldots i_{l})(K(i_{1}\ldots i_{l})-\pi(h:i_{1}\ldots.i_{h}+1, \ldots i_{l})(K(\dot{\iota}_{1}\ldots, i_{h}+1, \ldots i_{l})))=

K(i_{1}\ldots i_{j}-1\ldots i_{l})-\pi(h;i_{1}\ldots i_{j}-1\ldots i_{h}+1\ldots i_{l})(K(i_{i}\ldots i_{j}-1\ldots i_{h}+1\ldots i_{l}))

(5. 3)
We put K^{(1)}(i_{1}, \ldots, i_{l-1}, k_{l}):=K(i_{1}, \ldots i_{l-1}, k_{l}) and

K^{(1)}(i_{1,.-}. . i_{l-1}, k_{l}-1):=

S(K(i_{1}, \ldots i_{l-1}, k_{l}-1), \pi(l ; i_{1}\ldots i_{l-1}, k_{l})(K(i_{1}, \ldots i_{l})) -arrow K(i_{1}, \ldots, i_{1})) .

We then obtain a natural embedding \pi^{(1)}(l;i_{1}, \ldots i_{l-1}, k_{l}) from K^{(1)}(i_{1} , \ldots

i_{l-1} , k_{l}) into K^{(1)}(i_{1_{ }},\ldots.i_{l-1}, k_{l}-1) as well as a natural homomorphism
\tilde{\pi}(l : i_{1}, \ldots.i_{1-1}, k_{l}-1) from K^{(1)}(i_{1}, \ldots.i_{l-1}, k_{l}-1) into K(i_{1}, \ldots\Gamma,i_{l-1}, k_{l}-2) .
Moreover, (5. 2), (5. 3) and Lemma 4. 1 ensure that there exist un\overline{l}que

homomorphisms \pi^{(1)}(h;i_{1}, \ldots.i_{l-1}, k_{l}-1) from K^{(1)}(i_{1}, \ldots.i_{l-1}, k_{l}-1) into
K^{(1)}(i_{1}, \ldots, i_{h}-1, \ldots r.i_{l-1}, k_{l}-1) such that the complete diagram remains
commutative after replacing the hypergroups K(i_{1_{ }},\ldots.i_{l-1}, k_{l}-1) (and
their homomorphisms) by K^{(1)}(i_{1}, \ldots , i_{l-1}, k_{i}-1) . As the properties (5. 2)
and (5. 3) remain val\overline{l}d for the modified lattice diagram by Lemma 4. 1,
we may recapitulate the procedure above with k_{l}-2 instead of k_{l}-1 and
so on. This yields a new lattice consisting of hypergroups K^{(1)}(i_{1_{ }}, \ldots . i_{l})

and homomorphisms \pi^{(1)}(h:i_{1}, \ldots.i_{l}) where now the homomorphisms
\pi^{(1)}(l ; i_{1}, \ldots i_{l}) are inj ective.

We now recapitulate the complete procedure with the index l-1
instead of l and so on. After l steps we arrive at a lattice diagram con-
sisting of hypergroups K^{(l)}(i_{1}, \ldots.i_{l}) and homomorphisms \pi^{(l)}(h;i_{1}, \ldots , i_{l})

where now all homomorphisms are injective.
We claim that the hypergroup K^{(l)}(0, \ldots, 0) is isomorphic with the con-

jugacy class hypergroup G^{G} . In fact, the hypergroups K^{(1)}(i_{1}, \ldots, i_{l-1},0)

above are constructed just as the hypergroups resulting in Section 4. 3.
This also holds for K^{(2)}(i_{1}, \ldots.i_{l-2},0,0) and so on. Thus, applying the
results of Section 4. 3 l-times, we readily obtain that the hypergroup
K^{(l)} (0, \ldots , 0) consists of the sets R(x, k) of Lemma 5. 1(4) where the con-
volution is given as in Lemma 5. 1(5) .

G^{G} can easily be written down explicitely for special cases like |G/L|

being a prime power. For the case that |G/L| is a prime, we have the
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following result:

5. 4. PROPOSITION. Let G be a compact group having a commutative
normal subgroup L such that |G/L|=:p is a prime. If we fifix c\in G-L,

then J:=\{cxc^{-1}x^{-1} : x\in L\} is a subgroup of L, and the group Z(p) acts
continuously on L via (k, x)\}arrow c^{k}xc^{-k} The mapping \pi:L^{Z(p)} -arrow L/J,
\{c^{k}xc^{-k} : k\in Z(p)\} - xJ is a hypergroup homomorphism. The conjugacy
class hypergroup G^{G} is isomorphic to

S(Z(p)\cross L/J, \{0\}\cross L/Jarrow\pi\{0\}\cross L^{Z(P)}) . (5. 4)

Moreover, the dual hypergroup \overline{G} is given-up to isomorphism -by

S(\overline{L}^{Z(p)}, A(\overline{L}, J)arrow Z(p)\cross A(\overline{L}, J)) (5. 5)

where Z(p) acts on \hat{L} via (k, \alpha)\llcornerarrow\alpha^{k} . \alpha^{k}(x):=\alpha(c^{k}xc^{-k})_{-}

PROOF. (5. 4) follows from Lemma 5. 1 and Section 5. 2. To check
(5. 5), we first notice that the action of Z(p) on L leads to a dual action
on \overline{L} such that the hypergroups (L^{Z(p)})^{\wedge} and \overline{L}^{Z(p)} are isomorphic (see, for
instance, [9] ) . Moreover, as Z(p) acts trivially on the subgroup A(\hat{L}, J)

of \overline{L} , A(\overline{L}, J) is a subgroup of \hat{L}^{Z(p)} . Using (Z(p)\cross L/J)^{\wedge}\simeq Z\hat{(p})\cross(L/J)^{\wedge}

\simeq Z(p)\cross A(\overline{L}, J) (see (3. 3) and (5. 3) in Zeuner [33]), (5. 5) is an immed\overline{l}-

ate consequence of Eq. (5. 4) and Theorem 3. 6.

Let H be a finite group acting on the finite abel\overline{l}an group L. Let G
be the semidirect product of A and H. Then the method of Mackey and
Wigner leads to a description of \hat{G} in terms of induced representations
from the normal subgroup L of G (see Ch. 8 in Serre [21]). In the situa-
t\overline{l}on of Proposition 5. 4, this description and the description of \overline{G} in (5. 5)
are well matched.

We next return to the general case:

5. 5. The dual hypergroup \overline{G} . The method of the proof of Proposi-
tion 5. 4 can be used to constuct \overline{G} in the general case. For this we fix
c\in G such that cL generates G/L\simeq Z(n) . We form the dual lattice of the
hypergroups K(i_{1}, \ldots, \dot{\iota}_{1}) of Section 5. 3 which consists of the hypergroups

K(i_{1}, \ldots i_{l})^{\wedge}\simeq A((L^{G})^{\wedge}, J(\begin{array}{ll}p_{1} p_{l}c \end{array}) ^{i_{1}})\cross\hat{s}_{C}p_{1}^{i_{1}}p_{l}^{i_{l}} (0\leq i_{j}\leq k_{j}) .

If we regard the groups
\overline{S}cp_{1}^{i_{1}},

p_{l}^{i_{l}}\simeq Z(p_{1}^{k_{1}-i_{1}}\ldots p_{l}^{k\iota-i\iota}) as subgroups of Z(n) of

index p_{1^{1}}^{i}\ldots p_{l}^{i\iota} , the dual homomorphisms of the dual lattice are given by
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\hat{\pi}(j;i_{1}, \ldots i_{l}):K(i_{1}, \ldots, i_{j}-1, \ldots, i_{l})^{\wedge}arrow K(i_{1}, \ldots.i_{l})^{\wedge} . (w, s)-, (w, s^{p_{j}}) .

If we apply the construction of Section 5. 3 to this dual lattice, i.e., if we
apply the construction of Sect\overline{l}on4.3l-times, then we obta\overline{l}n the follows:
ing description of the resulting hypergroup \hat{G} (cf. Section 4. 4).

For any w\in(L^{G})^{\wedge} we choose i_{1}(w) , ... . i_{l}(w)\geq 0 as small as possible

such that w\in A((L^{G})^{\wedge}, J(\begin{array}{ll}p_{1} p_{l}c \end{array}) ^{i_{l}(w)}i,())

. We then define H(w) as the sub-
group of the cyclic group Z(n) generated by p_{1^{1}}^{i(w)}\cdots p_{l}^{i_{l}(w)}\in Z(n) . We then
have

\hat{G}\simeq\{(w, s):w\in(L^{G})^{\wedge} . s\in H(w)\} . (5. 6)

Using (L^{G})^{\wedge}\simeq\hat{L}^{G} . the description (5. 6) of \hat{G}\overline{1}S again well matched with
that of Section 8 of [21]. The convolution on \overline{G} is given as follows: Let
the convolution on (L^{G})^{\wedge} be given by

\delta_{u}*\delta_{v}=\sum_{w\in(L^{G})^{\wedge}}g(u, v, w)\delta_{w}
(u, v\in(L^{G})^{\wedge}) .

Then g(u, v, w)>0 yieds that H(u)\subset H(w) and H(v)\subset H(w) , and that
projections from H(w) onto H(u) and H(v) are given by x-, x\cdot r(u, w)

and x-arrow x\cdot r(v, w)respect\overline{l}vely with

r(u, w) :=p_{1^{1}}^{i(u)-i_{1}(w)}\cdots p_{l}^{i_{l}(u)-i\iota 1w)} , r(v, w) :=p_{1^{1}}^{i(v)-i_{1}(w)}\cdots p_{l}^{i_{1}(v)-i_{l}(w)} .

For u , v\in(L^{G})^{\wedge} . s\in H(u) and t\in H(v) we then have

\delta_{tu,s)}*\delta_{(v,t)}=\sum_{w\in(L^{G})^{\wedge}}\sum_{a=1}^{\gamma(u,w)}\sum_{b=1}^{r(v,w)}\frac{g(u,v,w)}{r(u,w)r(v,w)}\delta_{(w,s+t+a\cdot h(u,w)+b\cdot h(v,w))} (5. 7)

whel e

h(u, w) :=p_{1}^{k_{1}+i_{1}(w)-i_{1}(u)}\cdots p_{l}^{k_{l}+i_{l}(w)-i_{l}(u)} , h(v, w) :=p_{1}^{k_{1}+i_{1}(w)-i_{1}(v)}\cdots p_{l}^{k\iota+i\iota(w)-i_{l}(v)} .

5. 6. EXAMPLES FOR n=p=2 : Let L be a compact abelian group, a
an involutive automorphism on L, and r\in L such that a(r)=r . Then
there exists (up to isomorphism) a unique compact group G containing L
as normal subgroup of index 2 such that there exists b\in G-Lsat\overline{l}sfying

b^{2}=r and b^{-1}xb=a(x) for all x\in L (cf. Satz 1.14.2 In Huppert [12]). In
particular, if r=e is the neutral element, then G is the semidirect product
of L and Z(2):=\{id, a\} .

We here remark that, by Eq. (5. 5), the dual hypergroup \overline{G} does not
depend on r which means that there exist non-isomorphic compact groups
having isomorphic dual hypergroups. This reflects the fact that the
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groups under consideration are disconnected; in fact, it hat been shown in
McMullen [16] that connected compact groups having \overline{1}somorphic dual
hypergroups are isomorphic.

We next record some concrete examples:

5. 7. If L=Z(m) is the cyclic group of order m, if the automorphism
a is given by a(x)=x^{-1} , and if r=0 is the \overline{1}dentity element, then G is the
dihedral group D_{m} . The above results yield that

\hat{D}_{m}\simeq\{

S(Z(m)^{Z(2)}, \{0\}arrow Z(2)) if m is odd (5. 8)
S(Z(m)^{Z(2)}, \{0, m/2\}arrow\{0, m/2\}\cross Z(2)) if m is even

An explicit computation of all irreducible representations of D_{m} can be
found in Sect\overline{l}on27.62(d) of Hewitt and Ross [11].

5. 8. If L=Z(2l) is the cyclic group of order 2 l\geq 4 , if the automor-
phism a is given by a(x)=x^{-1}- and if r=l , then G is the generalized
quaternion group Q_{l} . By (5. 5), \overline{Q}_{l} is isomorphic to \hat{D}_{2l} although the
groups Q_{l} and D_{2l} fail to be isomorphic.

5. 9. Take l\in N , l\geq 3 , and fix m:=l^{2}-1 . Then a(k):=kl mod m
defines an involut\overline{l}ve automorphism on the cyclic group L=Z(m) .
Identifying the dual \overline{L} with Z(m) , we get \{\alpha\in Z(m)=\overline{L} : \alpha\circ a=\alpha\}=

\{j(l+1):\dot{J}=0,1, \ldots, l-2\}=:F\simeq Z(l-1) . Hence, regarding F as subgroup
of the orbit hypergroup \overline{L}^{\{id,a\}}=\{\{\alpha, \alpha^{\circ}\alpha\}:\alpha\in\hat{L}\} , the dual hypergroup \overline{G} of
the semidirect product G:Z(m)\ltimes\{id, a\} satisfies

\hat{G}\simeq S(Z(m)^{\{id,a\}}, Farrow F\cross Z(2)) . (5. 9)

5. 10. Let L:=\{z\in Z:|z|=1\} be the group of complex numbers of
modulus 1. Let a be the involutive automorphism on L given by a(z)=\overline{z} .
Taking r=+1 and r=-1 we obtain two (non-isomorphic) groups G_{1} and
G_{2} . In particular, G_{1}=L\ltimes Z(2)\overline{1}S the group generated by all rotations
and reflections of R^{2} which preserve the origin. Using (5. 5), we see that
\overline{G}_{1}\simeq\overline{G}_{2}\simeq S(Z^{Z(2)}, (2Z)^{Z(2)} -arrow(2Z)^{Z(2)}\cross Z(2)) . In other words, the duals \hat{G}_{1}

and \overline{G}_{2} are both isomorphic to the hypergroup that appears when the sub-
hypergroup 2N_{0} of the polynom\overline{l}al hypergroup (N_{0}, *) associated with the
Tchebichef polynomials of the first kind will be substituted by (2N_{0})\cross Z(2)

(for details on polynomial hypergroups see Lasser [15]).

6. Hypergroups having subgroups of index 2

In this section we shall use substitution to describe all hypergroups
having subgroups of index 2. It is clear that it is possible to generalize
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this classification to fixed finite indices n\geq 3 : these cases, however, split
into a great number of subcases and are difficult to handle explicitely.
Restricted to groups, this classification is well known by a theorem of
Schreier (cf. Huppert [12], Section I. 14).

Before we shall deal with subgroups of index 2 in Theorem 6. 4, we
first consider cosets of a closed subgroup G of a hypergroup K. In this
case, the sets \{x\}*\{y\} and \{y\}*\{x\} consist exactly of one element for all
x\in G and y\in K . We denote this element by xy and yx respectively. Sim-
ilarly, we write xW and Wx instead of \{x\}*W and W*\{x\} respectively for
x\in G and W\subset K .

6. 1. PROPOSITION. Let G be a closed normal subgroup of a hyper-
group K. For each coset xG\in K/G, the set H_{xG}:=\{y\in G:yx=x\} does not
depend on the representative x of the coset. H_{xG} is a compact normal sub-
group of G, and G/H_{xG} is homeomorphic to xG. The mapping \tau:K/Garrow

\mathscr{C}(G) , xG\}arrow H_{xG}, is continuous.

PROOF. Clearly H_{xG} is a subgroup of G independent of the represen-
tative x of the coset xG . As (u^{-1}yu)x=u^{-1}(y(ux))=u^{-1}(ux)=x for all
u\in G and y\in H_{xG} , we see that H_{xG} is normal in G. As Garrow xG , y-arrow xy ,
is continuous, H_{xG}\overline{1}S closed. As the natural projection p from G onto
G/H_{xG} is open and continuous, the mapping G/HxGarrow xG , yH_{xG}-xy , is
continuous and bijective. To prove that the inverse mapping is cont\overline{l}nu-

ous, we consider the following mappings:

xGxy-arrowarrow\{\overline{x}\}*\{xy\}\mathscr{C}(K)\mapstoarrow(\{\overline{x}\}*\{xy\})\cap G\mathscr{C}(G)\mapstoarrow p((\{\overline{x}\}*\{xy\})\cap G)\mathscr{C}(G/H_{xG})

The first mapping is continuous by our assumption; the continuity of the
second is clear while the third one is continuous by Theorem 5. 10. 1 of
[17]. Lemma 4. 1B of [14] shows that (\{\overline{x}\}*\{xy\})\cap G=yH_{xG} . Hence,
xGarrow G/H_{xG} , xy\}arrow yH_{xG} , is continuous. The continuity of K/Garrow \mathscr{C}(G) ,
xGarrow H_{xG} , is a consequence of H_{xG}=(\{\overline{x}\}*\{x\})\cap G and of the continuity of
the convolut\overline{l}on with respect to the Michael topology.

By Proposition 2. 2 Zeuner [32], any hypergroup on the torus T or on
the real line R is isomorphic to the usual group on ( T. \cdot ) or (R, +)
respectively. As each closed subgroup H of T is either finite (and thus
T/H\simeq T) or equal to T and as {0} is the only compact subgroup of R,
Proposition 6. 1 has the following consequences:

6. 2. COROLLARY. Let G be a normal subhypergroup of a hypergroup
K such that G is homeomorphic to the torus T. Then G\iota^{-}s a group
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isomorphic to the usual group on T. Each coset of G in K is either
homeomo\uparrow phic to T or it consists of exactly one point. Moreover, for each
n\in N, the set \{xG\in K/G:|H_{xG}|=n\} is open. In particular, the set of all
x\in K satisfying xG=\{x\} is a closed subset of K.

6. 3. COROLLARY. Let G be a normal subhypergroup of a hypergroup
K such that G is homeomo\uparrow phic to R. Then G is a group isomorphic to
the usual group on R, H_{xG}=\{e\} for each x\in K, and each coset of G in K
is homeomorphic to R.

6. 4. THEOREM. Let G be a locally compact group.
Take a compact normal subgroup H of G, and let \pi:Garrow G/H be the

natural projection. Fix an (cont\iota^{-}nuous) automorphism h on G/H and
r\in G such that

h(rH)=rH and h(h(xH))=r^{-1}xrH for all x\in G.

Moreover, take a measure \rho\in M_{b}^{+}(G/H) having compact support such that
||\rho||<1 ,

h(\rho)=\rho=\rho^{-}*\delta_{r^{-1}H} and \delta_{h(X)H}*\rho=\rho*\delta_{xH} for all x\in G. (6. 1)

Let K:=G\cup G/H be the disjoint union of G and G/H, both sets being
embedded as open subsets. We defifine a convolution. of Dirac measures on
K as follows by

\delta_{x}\cdot\delta_{y}=\delta_{xy}, \delta_{x}\cdot\delta_{yH}=\delta_{xyH}, \delta_{xH}\cdot\delta_{\mathcal{Y}}=\delta_{xHh(yH)} ,
\delta_{XH}\cdot\delta_{\mathcal{Y}H}=(1-||\rho||)\cdot\tilde{\pi}^{-1}(\delta_{xHh(yH)r^{-1}H})+\delta xHh(yH)^{*}\rho (6. 2)

where \tilde{\pi}^{-1} is the inverse of \overline{\pi} : M_{b}(G|H)arrow M_{b}(G/H) (cf. Section 1. 7). The
defifinition of. is independent of the representatives of H-cosets.
(K^{ }, \cdot ) :=K(G, H, h, r, \rho) is a hypergroup containing G as normal subgroup
of index 2. The hypergroup involution on K-G=G/H is given by
(xH)^{-} :=h(rx^{-1}H) .

Conversely, if \tilde{K} is a hypergroup containing G as subgroup of index 2,
then there exist H, h, r and \rho as described above such that K(G, H, h, r, \rho)

is isomorphic w\iota^{-}th\tilde{K}.

PROOF. Assume first that H, h , r and \rho are given as above. To
show that (K,\cdot) it a hypergroup, it suffices to consider the case H=\{e\} .
In fact, the general case then follows from Theorem 2. 1 and

K(G, H, h, r, \rho)\simeq S(K(G/H, \{e\}, h, r, \rho), G/Harrow G)\pi

by Eq. (6. 2). Suppose now that H=\{e\} . To avoid confusion of notation,
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we take x_{0}\in K-G=G/H , and use the homeomorphism p:Garrow K-G, x->
xxo . Then the convolution (6. 2) may be written as follows:

\delta_{x}\cdot\delta_{\mathcal{Y}}=\delta_{xy} , \delta_{x}\cdot\delta_{p(y)}=\delta_{p(xy)} , \delta_{p(x)}\cdot\delta_{\mathcal{Y}}=\delta_{p(xh(y))} ,
\delta_{p(x)}\cdot\delta_{p(y)}=(1-||\rho||)\delta_{xh(y)r^{-1}}+p(\delta_{xh(y)}*\rho) (x, y\in G) . (6. 3)

K\cross Karrow M^{1}(K) , (x, y)->\delta_{x}\cdot \delta_{\mathcal{Y}} , is weakly continuous and . can be
extended to a bilinear mapp_{\overline{1}}ng on M_{b}(K) which is weakly continuous
when restricted to M_{b}^{+}(K) .

To check that. is associative, we fix x , y , z\in G . By (6. 3), it is clear
that

(\delta_{x}\cdot\delta_{y})\cdot\delta_{p(z)}=\delta_{x}\cdot(\delta_{\mathcal{Y}}\cdot\delta_{p(z)}) , (\delta_{x}\cdot\delta_{p(y)})\cdot\delta_{z}=\delta_{x}\cdot(\delta_{p(y)}\cdot\delta_{z}) ,
(\delta_{p(X)}\cdot\delta_{\mathcal{Y}})\cdot\delta_{z}=\delta_{p(X)}\cdot(\delta_{y}\cdot\delta_{z}) , and (\delta_{x}\cdot\delta_{p(\mathcal{Y})})\cdot\delta_{p(z)}=\delta_{x}\cdot(\delta_{p(\mathcal{Y})}\cdot\delta_{p(z)}) .

Moreover, as h is a group homomorphism, we have
\delta_{p(\chi)}\cdot(\delta_{y}\cdot\delta_{p(z)})=(1-||\rho||)\delta_{xh(yz)r^{-1}}+p(\delta_{xh(yz)}*\rho)=(\delta_{p(\chi)}\cdot\delta_{y})\cdot\delta_{p(z)} .

Furthermore, using \rho*\delta_{u}=\delta_{h(u)}*\rho(u\in G) , we obtain that

(\delta_{p(\chi)}\cdot\delta_{p(y)})\cdot\delta_{z}=(1-||\rho||)\delta_{xh(y)r^{-1}z}+p(\delta_{xh(y)}*\rho*\delta_{h(z)})=\delta p(x).(\delta_{p(y)}\cdot\delta_{z}) .

Finally, as h(\rho)=\rho and \rho*\delta_{u}=\delta_{h(u)}*\rho for u\in G , we have

(\delta_{p(\chi)}\cdot\delta_{p(y)})\cdot\delta_{p(z)}=(1-||\rho||)p(\delta_{xh(y)r^{-1}z})+(1-||\rho||)\delta_{xh(y)}*\rho*\delta_{h(z)r- 1}+

+p(\delta_{xh(y)}*\rho*\delta_{h(z)}*\rho)

=\delta_{p(\chi)}\cdot(\delta_{p(y)}\cdot\delta_{p(z)}) .

Thus the proof of. being associative is complete. Obviously, the identity
of G is the identity of K and the involution is given by \overline{x}:=x^{-1} and \overline{p(x)}

..=p(rh(x^{-1})) for x\in G . It is easy to check that (xy)^{-}=\overline{y}\overline{x} , (p(x)y)^{-}=
\overline{y}\overline{p(x)} and (xp(y))^{-}=\overline{p(y)}\overline{x} for all x , y\in G . Finally, \delta_{r}*h(\rho^{-})*\delta_{r- 1}=\delta_{r}*\rho

=\rho*\delta_{r} yields

\delta_{\overline{p(y)}}\cdot\delta_{\overline{p(x)}}=(1-||\rho||\delta_{rh(y^{-1}h(rh(x^{-1}))r^{-1}}+p(\delta rh(\mathcal{Y}^{-1})h(rh(X^{-1}))^{*\rho)}

=(1-||\rho||)\delta_{rh(\mathcal{Y}^{-1})x- 1}+p(\delta_{r}*h(\rho^{-})*\delta_{h(h(y^{-1})x^{-1})})=(\delta_{p(x)}\cdot\delta_{p(y)})^{-}

for all x , y\in G . This completes the proof of K being a hypergroup.
Now let \overline{K} be a hypergroup containing G as normal subgroup of \overline{1}ndex

2 . Using Proposition 6. 1, we define H:=H_{xG} for x\in\tilde{K}-G . Since xH=
(\overline{H}\overline{x})^{-}=(H\overline{x})^{-}=\{x\}=Hx for x\in\overline{K}-G , and since H is normal in G, H is
normal in \tilde{K} . We may assume that H=\{e\} , since otherw\overline{l}se we could
investigate G/H and \overline{K}/H\overline{1}nstead of G and \tilde{K} , and since \tilde{K}\simeq S(\tilde{K}/H ,
G/Harrow G) holds (see Proposition 2. 4).
Suppose now that H=\{e\} . Fix x_{0}\in\overline{K}-G . Then y\vdasharrow\overline{y} :=yx_{0} and
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y-\nu\chi_{0}y are homeomorphism from G onto \tilde{K}-G by Proposition 6. 1.
Hence, there is a unique homeomorphisms h:Garrow G with h(y)x_{0}=x_{0}y for
all y\in G . As h(yz)x_{0}=x_{0}yz=h(y)x_{0}z=h(y)h(z)x_{0} for all y , z\in G , h is
automorphism of G . Moreover, there is a unique r\in G with rx_{0}=\overline{x}_{0} . As
h(r)x_{0}=rx_{0} , we get h(r)=r . Moreover, for y\in G we have h(h(y))x_{0}=

x_{0}h(y)=(h(y^{-1}\overline{x}_{0}))^{-}=(x_{0}y^{-1}r)^{-}=r^{-1}y\overline{x}_{0}=r^{-1}yrx_{0} and thus h(h(y))=r^{-1}yr .
We find a unique \rho\in M_{b}^{+}(G) with \rho*\delta_{xo}=(\delta_{xo}*\delta_{xo})|_{\overline{K}-G} . As \tilde{K}/G is a
hypergroup, ||\rho||<1 holds. Moreover rx_{0}=\overline{x}_{0} yields supp(\{x_{0}\}*\{x_{0}\})\cap G=

\{r^{-1}\} . In summary, the convolution on \tilde{K} is given by

\delta_{z}\cdot\delta_{y}=\delta_{zy} , \delta_{z}\cdot\delta_{yxo}=\delta_{zyx_{0}} ,
\delta_{zxo}\cdot\delta_{yxo}=(1-||\rho||)\delta_{zh(y)\gamma-1}+\delta_{zh(y)}*\rho*\delta_{xo}(y,z\in G)\delta_{zxo}\cdot\delta_{y}=\delta_{zh(y)xo},

. (6. 4)

Comparing (6. 4) and (6. 2), we see that \tilde{K} and K(G, \{e\}, h, r, \rho) are
isomorphic.

It remains to check that \rho satisfies (6. 1). For y\in G we have
\rho^{*\delta_{h(y)}*\rho_{x_{0}}=\rho*\delta_{xo}*\delta_{y}=(\delta_{xo}*\delta_{x_{0}})|_{\overline{K}-G}*\delta_{\mathcal{Y}}=\delta_{h(h(y))^{*(\delta_{xo}*\delta_{xo})|_{\overline{K}-G}=\delta_{h(h(y))}*\rho*\delta xo}}}

and thus \rho*\delta_{y}=\delta_{h(y)}*\rho . In a similar way,

\rho*\delta_{r- 1}=(\rho*\delta_{x_{0}}*\delta_{x_{0}})|_{G}=(\delta_{x_{0}}*(\delta_{x_{0}}*\delta_{x_{0}})|_{\overline{K}-G})|_{G}=h(\rho)*\delta_{r- 1}

and thus \rho=h(\rho) . Eq. (6. 4) shows that the hypergroup involut\overline{l}on on \tilde{K} is
given by \overline{y}=y^{-1} and (yx_{0})^{-}=rh(y^{-1})x_{0} . In particular, \delta_{r^{2}}*\rho*\delta_{xo}=

\delta_{r}*h(\rho^{-})*\delta_{xo} yields \delta_{r}*\rho=h(\rho^{-}) . As \delta_{r}*\rho=\rho*\delta_{r} and h(\rho)=\rho , it follows
that^{-}\rho^{-}=\rho*\delta_{r} . Thus, the proof is complete.

6. 5. REMARKS. We keep the notation of Theorem 6. 4.
(1) If \omega_{G} is a left Haar measure of G , then \pi(\omega_{G})\in M^{+}(G/H) is a left

Haar measure on G/H. Moreover, \omega_{G}+\frac{1}{1-||\rho||}\pi(\omega_{G})\in M^{+}(K) is a

left Haar measure on K. This follows from Eq. (6. 2) and the fact
that h(\pi(\omega_{G}))=\pi(\omega_{G}) as a consequence of h\circ hbe\overline{l}ng an inner
automorphism. A corresponding result holds for right Haar mea-
sures. Moreover, K is unimodular if and only if G is.

(2) K is commutative if and only if G is abel\overline{l}an and h is the identity.
To determine \hat{K} in the commutative case \overline{1}n terms of \hat{G} , we first
notice that then \rho\in M_{b}^{+}(G/H) and r\in G satisfy \rho^{-}*\delta_{rH}=\rho and
||\rho||<1 . For \alpha\in(G/H)^{\wedge} we define

u_{\pm}( \alpha):=u_{\pm}(\alpha;r, \rho):=\frac{1}{2}(\hat{\rho}(\alpha)\pm\sqrt{\alpha(r^{-1}H)}\cdot\sqrt{|\hat{\rho}(\alpha)|^{2}+4(1-||\rho||)})

(6. 5)
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for \alpha\in\hat{G} where the, possibly complex, roots are taken arbitrarily but
fixed and where \overline{\rho}\in C_{b}(\overline{G}) is the usual Fourier transform of \rho .
Let the mappings E:\hat{G}arrow C_{b}(K) and E_{+} , E_{-}: (G/H)^{\wedge}arrow C_{b}(K) be given
by

E(\beta)(x) :=\{
\beta(x) if x\in G

and0 if x\in K-G

E_{\pm}(\alpha)(x):=\{
\alpha(xH) if x\in G

\alpha(x)u_{\pm}(\alpha) if x\in K-G

Then the definition of the convolution on K and Theorem 3. 5 show
that

\hat{K}=E(\overline{G}-A(\hat{G}, H))\cup E_{+}((G/H)^{\wedge})\cup E_{-}((G/H)^{\wedge})

where E(\hat{G}-A(\overline{G}, H)) is an open subset of \hat{K} homeomorphic to
\overline{G}-A(\hat{G}, H) .

We next discuss when the hypergroups K of Theorem 6. 4 are isomor-
phic for different H, h , r and \rho . We may restrict our attention to the
case H=\{e\} .

6. 6. LEMMA. Let G be a locally compact group and H:=\{e\} . Let
h, r, \rho and \tilde{h},\tilde{r},\tilde{\rho} be sets of parameters each of them satisfying the
assumptions of Theorem 6. 1. Then there exists a hypergroup isomo\uparrow phism

\pi:K:=K(G, \{e\}, h, r, \rho) -arrow\tilde{K}:=K(G, \{e\},\tilde{h},\tilde{r}.\tilde{\rho}) satisfying \pi(G)=G

if and only if there exists an automorphism \theta on G and c\in G such that
\tilde{r}=\theta(r)c\tilde{h}(c),\tilde{\rho}=\delta_{\overline{h}(c^{-1})c^{-1}}*\theta(\rho)*\delta_{c}, and

\tilde{h}(\theta(x))=c^{-1}\theta(h(x))c for all x\in G.

PROOF. We identify K-G and \tilde{K}_{G} and reta\overline{l}n the homeomorph\overline{l}smp

between G and K-G=\tilde{K}-G as in the proof of Theorem 6. 4.
Assume first that \pi is an isomorphism as demanded in the lemma.

Then \theta:=\pi|_{G} is an automorphism of G . Take c\in G such that cp(e)=
p(c)=\pi(p(e)) . Then, for x\in G , \pi(p(x))=\theta(x)cp(e) , c\overline{h}(\theta(x))p(e)=

\theta(h(x))cp(e) , and thus \tilde{h}(\theta(x))=c^{-1}\theta(h(x))c . Moreover,

\delta_{\theta(r)}-1+\theta(\rho)*\delta_{c}*\delta_{p(e)}=\delta_{c\overline{h}(c)\overline{r}^{-1}}+\delta_{c\overline{h}(c)}*\tilde{\rho}*\delta_{p(e)}

proves that \overline{r}=\theta(r)c\overline{h}(c) and \tilde{\rho}=\delta_{\overline{h}(c^{-1})_{C}1}*\theta(\rho)*\delta_{c} as claimed.
Conversely, if \theta\in Aut(G) and c\in G have the properties mentioned

above, then \pi(x):=\theta(x) and \pi(p(x)):=\theta(x)cp(e)(x\in G) defines a
homeomorphism between K and \tilde{K} . When reading the equations of the
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first part of the proof backwards, it becomes clear that \pi is a hypergroup
homeomorphism. This completes the proof.

6. 7. COROLLARY. Consider the following hypergroup structures on
K:=T\cross\{0,1\} :
(1) For c\in[0,1[, n\in N and r\in\{1, -1\} , let the hypergroup convolution

on K=K_{1}(c, n, r) be generated by

\delta_{(X,0)}*\delta_{(y,0)}=\delta_{(\chi y,0)} , \delta_{(x,0)}*\delta_{(y,1)}=\delta_{(xy,1)} , \delta_{(X,1)}*\delta_{(y,0)}=\delta_{(xy^{-1},1)} ,

and \delta_{(x,1)}*\delta_{(y,1)}=\frac{1-c}{n}f\sum_{k=0}^{n-1}\delta_{(xy^{-1}r)^{1ln}\exp(2\pi ik/n)}+c1\int_{T}\delta_{(t,1)}d\omega(t)

for x, y\in T where \omega stands for the normalized Haar measure on T
and z^{1/n} for an arbitrary but fifixed n-th complex root of z\in T.

(2) Take n\in N and \rho\in M_{b}^{+}(T) such that \rho has compact support, \rho=\rho^{-}

and ||\rho||<1 . Let the commutative hypergroup K_{2}(n, \rho) be generated
by

\delta_{tx,0)}*\delta_{(y,0)}=\delta_{(xy,0)} , \delta_{(X,0)}*\delta_{(y,1)}=\delta_{(x,1)}*\delta_{(y,0)}=\delta_{(xy,1)} , and

\delta_{(x,1)}*\delta_{(y,1)}=\frac{1-||\rho||}{n}\cdot \sum_{k=0}^{n-1}\delta_{(xy)^{1ln}\exp(2\pi ik/n)}+\int_{T}\delta_{(xyt,1)}d\rho(t) for all x, y\in T.

Then K_{1}(c, n, r) is isomorphic to K_{1}(\overline{c},\overline{n},\tilde{r}) if and only if c=\tilde{c}, n=\tilde{n}

and r=\tilde{r} . Moreover, K_{2}(n, \rho) is isomorphic to K_{2}(\tilde{n},\tilde{\rho}) if and only if n
=\tilde{n} and \tilde{\rho}\in\{\rho, \rho*\delta_{-1}\} .

Furthermore, if K is any hypergroup structure on T\cross\{0,1\} , then K is
isomorphic to a hypergroup introduced either in part (1) or \iota^{-}n part (2).

PPOOF. Theorem 6. 4 ensures that the convolutions above generate
hypergroups. The statement regarding isomorphism is obvious in the first
case as the hypergroup \overline{1}nvolution is the \overline{1}dentity on \{(x, 1):x\in T\} if and
only if r=1 . The corresponding result in the second case follows from
Lemma 6. 6 and the facts that each automorphism on T is equal either to
the identity or to the complex conjugation.

Now let K be a hypergroup on T\cross\{0,1\} . We assume that C_{e} :=
\{(x, 0):x\in T\} is the connected component of the identity element. By
Proposition 2. 2 of Zeuner [32] and Theorem 1. 3 of Vrem [31], C_{e} is a
normal subgroup of K isomorphic to the usual group on T By Theorem
6. 4, K is isomorphic to K(T, H, h, r, \rho) for su\overline{l}tableind\overline{l}cesH , h , r and \rho .
As T/H\simeq T-H is the finite cyclic subgroup of T of a certain order n\in

N. Moreover, the involutive automorphism h on T/H\simeq T is either the
complex conjugation or the identity. In the first case, we conclude from



180 M. Voit

Eq. (6. 1) that either \rho=0 or that \rho is a Haar measure on T/H\simeq T with
c:=||\rho||<1 . As r=\pm 1 by Theorem 6. 4, K is isomorphic to a hypergroup

considered in case (1). Assume now that h is the identity mapping.
Then r\in T admits a square root in T_{\wedge} and the hypergroups K(T, \{e\} , id ,

r , \rho) and K(T. \{e\}, id, 0, \delta_{r}1l2*\rho) are isomorphic by Lemma 6. 6. Hence,
K(T. H, id, r, \rho) and K(T. H, id, 0, \delta_{r^{1l2}}*\rho) are isomorphic which ensures
that K is isomorphic to a hypergroup as considered in case (2). Thus the
proof is complete.

The following result can be derived in the same way from the fact
that each compact subgroup of R is trivial.

6. 8. COROLLARY. Consider the following hypergroups on the set
K:=R\cross\{0,1\} :

(1) K=R\ltimes Z(2) is the semidirect product of the groups R and Z(2)
(where the non-trivial element of Z(2) acts on R by taking the
inverse element).

(2) Take \rho\in M_{b}^{+}(R) such that \rho has compact support and \rho=\rho^{-}and ||\rho||

<1 hold. Let the commutative hypergroup convolution on K=K(\rho)

be generated by

\delta_{(x.0)}*\delta_{(y,0)}=\delta_{(x+y,0)} , \delta_{(x,0)}*\delta_{(y,1)}=\delta_{(x,1)}*\delta_{(y,0)}=\delta_{(\chi+y,1)} , and
\delta_{(x,1)}*\delta_{(y,1)}=(1-||\rho||)(\delta_{(x+y,0)}+\int_{R}\delta_{(x+y+t,1)}d\rho(t) for all x, y\in R.

Then K(\rho)\iota^{-}s isomorphic to K(\tilde{\rho}) if and only if there exists a>0 such
that \overline{\rho}(A)=\rho(a\cdot A) for all Borel set A\subset R (where a\cdot A=\{ax:x\in A\}).

Furthermore, if K is any hypergroup structure on R\cross\{0,1\} , then K is
isomorphic either to the group R\ltimes Z(2) or to a hypergroup K(\rho) as
introduced in (2).

6. 9. Consider the following hypergroups on K:=Z\cross\{0,1\} :
(1) K=Z\ltimes Z_{2}\overline{1}S the semidirect product of the groups Z and Z_{2} (where

the nontrivial element of Z_{2} acts on Z by taking the inverse ele-
ment).

(2) Take r\in\{0,1\} and \rho\in M_{b}^{+}(Z) such that \rho is finitely supported,
\rho=\rho^{-}*\delta_{-r} , and ||\rho||<1 . Let the hypergroup convolution on K=
K(r, \rho) be generated by

\delta_{(m,0)}*\delta_{(n,0)}=\delta_{(m+n,0)} , \delta_{(m,0)}*\delta_{(n,1)}=\delta_{(m,1\rangle}*\delta_{(n,0\rangle}=\delta_{(m+n,1)} , and
\delta_{(m,1)}*\delta_{(n,1)}=(1-||\rho||)\delta_{(m+n-r,0)}+\int_{Z}\delta_{(m+n+k,1)}d\rho(k) for all m, n\in Z .
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It can be shown as in Corollary 6. 7 that (1) and (2) define hypergroups,
and that the hypergroups K(r, \rho) and K(\tilde{r}.\overline{\rho}) are isomorphic if and only
if r=\tilde{r} and \rho=\tilde{\rho} .

Moreover, if K is any hypergroup containing the group Z as normal
subgroup of index 2, then K is isomorphic either to the group Z\ltimes Z_{2} or to
a commutat\overline{l}ve hypergroup as introduced in (2). This follows again from
Theorem 6. 4.

To determine the dual of K(r, \rho) , we have to consider two different
cases:

If r=0, then Remark 6. 5(2) shows that all characters of K(0, \rho) are
given by

\alpha_{\pm,z}(n, i)=\{

z^{n} if i=0
z^{n}(\hat{\rho}(z)\pm\sqrt{|\overline{\rho}(z)|^{2}+4(1-||\rho||)})/2 if i=1

(6. 6)

where n\in Z , z\in T Obviously, K(0, \rho)^{\wedge} is homeomorphic to T\cross\{0,1\} .

If r=1 , then all characters of K(1, \rho) are given by

\alpha_{z}(n, i)=\{

z^{2n}
\overline{1}fi=0

z^{2n}(\hat{\rho}(z^{2})+z\sqrt{|\overline{\rho}(z^{2})|^{2}+4(1-||\rho||)})/2 if i=1
(6. 7)

where n\in Z and z\in T This is a consequence of Remark 6.5 and a suit-
able parametrization of K(1, \rho)^{\wedge} In part\overline{l}cularK(1, \rho)^{\wedge} is homeomorphic
to the torus T

As each hypergroup structure on T is isomorphic to the usual group
structure on T by Proposition 2, 2 of Zeuner [32], K(1, \rho)^{\wedge} carries a dual
hypergroup structure if and only if K(1, \rho) is a group isomorphic to Z ,

i.e., \rho=0 .
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