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Nonlinear oscillations in the wave of a string
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Introduction

In this paper we investigate the existence of solutions u(x, t) for a
piecewise linear perturbation bu^{+}-au^{-} of the 1-dimensional wave opera-

tor u_{tt}-u_{xx} under Dirichlet boundary condition on the interval - \frac{\pi}{2}<x<

\frac{\pi}{2} and \pi-periodic condition on the variable t ,

u_{tt}-u_{xx}+bu^{+}-au^{-}=f(x, t) in (- \frac{\pi}{2}, \frac{\pi}{2})\cross R (0. 1)

u( \pm\frac{\pi}{2} , t)=0

u(x, t+\pi)=u(x, t) .

Here bu^{+} is an upward restoring force and au^{-} a downward restoring
force. We shall assume that f is even in x and t , periodic in t with
period \pi , and we shall look for \pi-periodic solutions of (0. 1).

Let L be the 1-dimensional wave operator, in R^{2}

Lu=u_{tt}-u_{xx} .

Then the eigenvalue problem

Lu=\lambda u in (- \frac{\pi}{2} , \frac{\pi}{2})\cross R (0. 2)

u( \pm\frac{\pi}{2} , t)=0 (0. 3)

u(x, t)=u(-x, t)=u(x, - t)=u(x, t+\pi) (0. 4)

has infinitely many eigenvalues

\lambda_{mn}=(2n+1)^{2}-4m^{2}(m, n=0,1,2, \cdots) .

Hence the eigenvalues in the interval (-15, 9) are given by
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\lambda_{32}=-11<\lambda_{21}=-7<\lambda_{10}=-3<\lambda_{o0}=1<\lambda_{11}=5 .

The eigenfunction \phi_{mn} corresponding to \lambda_{mn} is given by

\phi_{mn}=\cos 2mt\cos(2n+1)x (m, n=0,1,2, \cdots) .

Let Q be the square (- \frac{\pi}{2} , \frac{\pi}{2})\cross(-\frac{\pi}{2}, \frac{\pi}{2}) and H the Gilbert space

defined by

H= { u\in L^{2}(Q)|u is even in x and t }.

Then the set \{\phi_{mn}|m, n=0,1,2, \cdots\} is an orthogonal set in H.

The existence of multiple solutions of equation (0. 1), when the forcing
term f is supposed to be a multiple s\phi_{o0}(s\neq 0, s\in R) of the first positive
eigenfunction and the nonlinearity -(bu^{+}-au^{-}) crosses the first negative
eigenvalue, was shown by a variational reduction method in [2].

In Section 1, we shall investigate the existence of multiple solutions of
equation (0. 1) when the nonlinearity crosses the first positive eigenvalue.

In Section 2, we shall investigate the existence of multiple solutions of
equation (0, 1) when the nonlinearity crosses the first positive eigenvalue
and the first negative eigenvalue.

In proving theorems in Section 1 and Section 2 we applied the
topological method developed in [5].

1 The nonlinearity crosses the first positive eigenvalue

In this section we study equation (0. 1) when the nonlinearity -(bu^{+}

-au^{-}) crosses the first positive eigenvalue. To get some feeling for this
situation we study a simple equation

Lu+bu^{+}-au^{-}=s\phi_{o0} in H. (1. 1)

If \mu_{1} and \mu_{2} are successive eigenvalues and -\mu_{2}<a , b<-\mu_{1} , then equation
(1. 1) bas exactly one solution for all real s (see[3]).

We now examine the equation when a<-1<b .

THEOREM 1.1. Assume a<-\lambda_{o0}=-1<b . Then we have:

(i) If s<0 , (1. 1) has no solution.
(ii) If s=0, (1. 1) has only the trivial solution.

PROOF. We rewrite (1. 1) as
(L-\lambda_{o0})u+(b+\lambda_{o0})u^{+}-(a+\lambda_{o0})u^{-}=s\phi_{o0} .
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Multiply across by \phi_{o0}(x) and integrate over Q. Since ((L-\lambda_{o0})u, \phi_{o0})=0 ,
we have

\int_{Q}\{(b+\lambda_{o0})u^{+}-(a+\lambda_{o0})u^{-}\}\phi_{o0}=s\int_{Q}\phi_{o0}^{2}=\frac{\pi^{2}}{2}s . (1. 2)

But (b+\lambda_{o0})u^{+}-(a+\lambda_{o0})u^{-}\geq 0 for all real valued function u . Also \phi_{o0}(x)

>0 in Q. Therefore the left hand side of (1. 2) is always greater than or
equal to zero, hence there is no solution of (1. 1) if s<0 . Also, if s=0

.’then the only possibility is that u\equiv 0 .

If b<-1<a and s>0 , then the left hand side of (1. 2) is less than or
equal to zero and the right hand side of it is positive. Therefore we have
the following theorem.

THEOREM 1.2. Assume b<-1<a . Then we have:
(i) If s>0 , (1. 1) has no solution.
(ii) If s=0, (1. 1) has only the trivial solution.

THEOREM 1.3. Assume that -5<a<-1<b<3 and s>0 . Then
equation (1. 1) has exactly two solutions.

PROOF. Let V be the subspace of H spanned by \phi_{o0} and W=V^{\perp} .

Let P be the orthogonal projection in H onto V. Then for all u\in H , u=
v+w, where v=Pu , w=(I-P)u . Since the operators P and I-P com-
mute with L, we have that equation (1.1) is equivalent to the pair of equa-
tions

(a) Lw+(I-P)(b(v+w)^{+}-a(v+w)^{-})=0 ,
(b) Lv+P(b(v+w)^{+}-a(v+w)^{-})=s\phi_{o0} .

(1. 3)

First we show that for fixed v\in V. equation (1. 3. a) has a unique
solution w(v) . Let \delta=-1 and g(\xi)=b\xi^{+}-a\xi^{-}-\delta\xi . Then equation (1. 3.
a) is equivalent to

w=(L+\delta)^{-1}(I-P)(-g(v+w)) . (1. 4)

Since (L+\delta)^{-1}(I-P) is a self-adjoint, compact linear map from (I-P)H
into itself, the eigenvalues of (L+\delta)^{-1}(I-P) in W are (\lambda_{mn}+\delta)^{-1} . where
\lambda_{mn}\geq 5 or \lambda_{mn}\leq-3 . Therefore its L^{2} norm is \frac{1}{4} . Since

|g( \xi_{2})-g(\xi_{1})|\leq\max\{|b-\delta|, |\delta-a|\}|\xi_{2}-\xi_{1}|<4|\xi_{2}-\xi_{1}| ,

it follows that the right hand side of (1. 4) defines, for fixed v\in V . a Lips-
chitz mapping (I-P)H into itself with Lipschitz constant \gamma<1 . there
fore, by the contraction mapping principle, for given v\in V . there exists a
unique w\in(I-P)H which satisfies (1. 4). We note that w\equiv 0 is a solution
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of (1. 3. a) for any v\in V=PH . Thus bv^{+}-av^{-}=bv for all v>0 and bv^{+}

-av^{-}=av for all v<0 .
In either case we have (I-P)(bv^{+}-av^{-})=0 and hence w\equiv 0 satisfies

L0+(I-P)(bv^{+}-av^{-})=0 .

Thus equation (1. 1) is reduced to

Lv+P(bv^{+}-av^{-})=s\phi_{o0} ,

where v=c\phi_{o0} , c\in R .
Case 1. c>0 . In this case, we have

-\lambda_{o0}c+bc=s , c= \frac{s}{b-\lambda_{o0}} ,

Case 2. c<0 . In this case, we have

-\lambda_{o0}c+ac=s . c= \frac{s}{a-\lambda_{o0}} ,

and therefore (1. 1) has exactly two solutions. This concludes the proof
of this theorem. \blacksquare

2 The nonliniarity crosses the first positive eigenvalue and
the first negative eigenvalue

In this section we study equation (0. 1) in the case where the nonlinearity
-(bu^{+}-au^{-}) crosses the first positive eigenvalue and the first negative
one. We first consider a simple equation, -5<a<-1=-\lambda_{o0} , -\lambda_{10}=3<b

<7 ,

Lu+bu^{+}-au^{-}=s\phi_{o0} in H. (2. 1)

In section 1, we proved that equation (2. 1) has no solution for s<0 .

THEOREM 2.1. Let -5<a<-1,3<b<7 , and s>0 . Thcn equation
(2. 1) has at least four solutions.

PROOF. We use the contraction mapping theorem to reduce the prob-
lem from an infinite dimensional one in L^{2}(Q) to a finite dimensional one.

Let V be the two dimensional subspace of H spanned by \{\phi_{o0}, \phi_{10}\} and
W the orthogonal complement of V in H. Let P be an orthogonal projec-
tion H onto V. Then for all u\in H , u=v+w, where v=Pu , w=(I
-P)u . Therefore equation (2. 1) is equivalent to
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(a) Lw+(I-P)(b(v+w)^{+}-a(v+w)^{-})=0 , (2. 2)(b) Lv+P(b(v+w)^{+}-a(v+w)^{-})=s\phi_{o0} .

We look on this as a system of two equations in the two unknowns v

and w . Let us show that for fixed v , (2. 2. a) has a unique solution w=
\theta(v) , and that, furthermore, \theta(v) is Lipschitz continuous in terms of v .
This step is similar to the proof of Theorem 1. 3.

Let \delta=\frac{1}{2}(\lambda_{o0}+\lambda_{10})=-1 . Write (2. 2. a) as

(L-\delta)w=-(I-P)(b(v+w)^{+}-a(v+w)^{-}+\delta(v+w))

or equivalently

w=-(L-\delta)^{-1}(I-P)g_{v}(w) , (2. 3)

where

g_{v}(w)=b(v+w)^{+}-a(v+w)^{-}+\delta(v+w) .

Since
|g_{v}(w_{1})-g_{v}(w_{2})| \leq\max\{|b+\delta|, |a+\delta|\}|w_{1}-w_{2}| ,
||g_{v}(w_{1})-g_{v}(w_{2})|| \leq\max\{(|b+\delta|, |a+\delta|\}||w_{1}-w_{2}|| ,

where |||| is the norm in L^{2}(Q) . The operator (L-\delta)^{-1}(I-P) is a self-
adjoint, compact linear map from (I-P)H into itself, the eigenvalues of
(L-\delta)^{-1}(I-P) in W are (\lambda_{mn}-\delta)^{-1} . where \lambda_{mn}\geq 5 or \lambda_{mn}\leq-7 . Therefore

its L^{2} norm is \frac{1}{6} . Since max \{|b+\delta|, |a+\delta|\}<6 , it follows that for fixed
v\in V , the right hand side of (2. 3) defines a Lipschitz mapping (I-P)H
into itself with Lipschitz constant \gamma<1 . Therefore, by the contration
mapping principle, for given v\in V. there exists a unique w\in W which
satisfies (2. 3). Also it follows, by the standard argument principle that
\theta(v) is Lipschitz continuous in terms of v .

Therefore we have reduced equation (2. 1) to the study of an equiva-
lent problem

Lv+P(b(v+\theta(v))^{+}-a(v+\theta(v))^{-})=s\phi_{00} (2. 4)

definded on the two dimensional subspace PH spanned by \{\phi_{o0}, \phi_{10}\} .
While one feels instinctively that (2. 4) ought be easier to solve, there

is the disadvantage of an implicitly defined term \theta(v) in the equation.
However, in our case, it turns out that we know \theta(v) for some very
important v ’s.
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If v\geq 0 or v\leq 0 , then, \theta(v)\equiv 0 . For example, let us take v\geq 0 and
\theta(v)=0 . Then equation (2. 2. a) reduces to

L0+(I-P)(bv^{+}-av^{-})=0

which is satisfied because v^{+}=v , v^{-}=0 and (I-P)v=0, since v\in PH .
Since v=c_{1}\phi_{o0}+c_{2}\phi_{10} , there exists a cone C_{1} defined by c_{1}\geq 0 , |c_{2}|\leq

\epsilon_{0}c_{1} so that v\geq 0 for all v\in C_{1} and a cone C_{2} , c_{1}\leq 0 , |c_{2}|\leq\epsilon_{0}|c_{1}| so that v\leq

0 for all v\in C_{2} .
Thus, we do not know \theta(v) for all v\in PH , but we know w\equiv 0 for v\in

C_{1}\cup C_{2} , and we need to study the map

varrow\Phi(v)=Lv+P(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}) .

First we consider the image of the cone C_{1} . If v=c_{1}\phi_{o0}+c_{2}\phi_{10}\geq 0 we have

\Phi(v)=-\lambda_{1}c_{1}\phi_{o0}-\lambda_{2}c_{2}\phi_{10}+b(c_{1}\phi_{o0}+c_{2}\phi_{10})

=(b-\lambda_{1})c_{1}\phi_{o0}+(b-\lambda_{2})c_{2}\phi_{10} .

Thus the images of the rays c_{1}\phi_{o0}\pm\epsilon_{0}c_{1}\phi_{10} can be explicitly calculated and
they are

(b-\lambda_{1})c_{1}\phi_{o0}\pm(b-\lambda_{2})\epsilon_{0}c_{1}\phi_{10}

or in other words the rays

d_{1} \phi_{o0}\pm\epsilon_{0}(\frac{b-\lambda_{2}}{b-\lambda_{1}})d_{1}\phi_{o0} .

Thus \Phi maps C_{1} into the cone

D_{1}=\{d_{1}\phi_{00}+d_{2}\phi_{10}|d_{1}\geq 0 , |d_{2}| \leq\epsilon_{0}(\frac{b-\lambda_{2}}{b-\lambda_{1}})\} .

Similary for C_{1} we can explicitly calculate the image under \Phi . If c\leq 0 ,

\Phi(c_{1}\phi_{o0}\pm\epsilon_{0}c_{1}\phi_{10})=(a-\lambda_{1})c_{1}\phi_{o0}\pm\epsilon_{0}(a-\lambda_{2})c_{1}\phi_{10} .

Thus, \Phi(v)=t\phi_{o0} has one solution in each of the cones C_{1} , C_{2} , namely

[mathring]_{\frac{t\phi 0}{b-\lambda_{o0}}} , [mathring]_{\frac{t\phi 0}{a-\lambda_{o0}}} . At this stage we need a lemma.

LEMMA 2. 1. there exists d>0 so that

(\Phi(c_{1}\phi_{o0}+c_{2}\phi_{10}), \phi_{o0})\geq d|c_{2}| . (2. 5)

PROOF. Let us write f(u)=bu^{+}-au^{-} for brevity. Then
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\Phi(c_{1}\phi_{o0}+c_{2}\phi_{10})=A(c_{1}\phi_{00}+c_{2}\phi_{10})+P(f(c_{1}\phi_{o0}+c_{2}\phi_{10}+\theta(c_{1}, c_{2}))) .
So, if u=c_{1}\phi_{00}+c_{2}\phi_{10}+\theta(c_{1}, c_{2}) , then

(\Phi(c_{1}\phi_{o0}+c_{2}\phi_{10}), \phi_{o0})=((A+\lambda_{1})(c_{1}\phi_{o0}+c_{2}\phi_{10}), \phi_{o0})+(f(u)-\lambda_{1}u, \phi_{o0}) .

The first term is zero because (A+\lambda_{1})\phi_{00}=0 and A is self-adjoint. The
second term satisfies f(u)-\lambda_{1}u\geq\gamma|u| , where \gamma=\min\{b-\lambda_{1}, \lambda_{1}-a\}>0 .

therefore \Phi(c_{1}\phi_{o0}+c_{2}\phi_{10}) , \phi_{o0}>\geq\gamma\int|u|\phi_{o0} . Now there exists d>0 so
that \gamma\phi_{o0}\geq d|\phi_{10}| and therefore

\gamma\int|u|\phi_{o0}\geq d\int|u||\phi_{10}|\geq d|\int u\phi_{10}|=d|(u, \phi_{10})|

which concludes the proof of the lemma.

We are now in a position to describe the behaviour of \Phi in the com-
plement of the two cases C_{1} and C_{2} . Let us consider the image under \Phi of
c_{1}\phi_{o0}+c_{2}\phi_{10} with c_{2}\geq\epsilon|c_{1}| , c_{2}=k for some k>0 .

The lemma tells us that the image \Phi(L) of c_{2}=k , |c_{1}| \leq\frac{1}{\epsilon}k must lie to

the right of the line c_{1}=dk , and must therefore cross the positive \phi_{o0} axis
in the image space.

Thus we have shown that if u=c_{1}\phi_{00}+k\phi_{10}+\theta(c_{1}, k) , k>0 , |c_{1}| \leq(\frac{k}{\epsilon}) .

Then u satisfies, for some c_{1} , Lu+bu^{+}-au^{-}=s\phi_{o0} for some s>dk and k

positive. Letting \overline{u}=(\frac{t}{s})u , we see that \tilde{u} satisfies

L\overline{u}+b\tilde{u}-a\tilde{u}=t\phi_{00} .

Similarly one shows the existence of another solution u\sim satisfying A \underline{u}

+bu^{+}-a\underline{u}^{-}=t\phi_{o0}\sim
’ with (u, \phi_{10})<0 . Thus we have four solutions, one in

each of the four cones, which C_{1} , C_{2} divide the \phi_{o0} , \phi_{10} plane into. This
concludes the proof of Theorem 2. 1. \blacksquare
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