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Lorentz spaces as L;-modules and multipliers

Sadahiro SAEKI and Edward L. THOME
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Let w be a weight function on a locally compact group G, so that the
weighted Li-space Li(w) forms a Banach algebra under convolution.
Suppose that G acts on a locally compact space Q, and that B is a
Banach space consisting of Radon measures on Q which is also a left
Banach L:(w)-module. Under certain conditions on B, we shall charac-
terize those bounded linear operators T : Li(w) — B which satisfy 7 (f*g)
=f+T(g). We shall also show that there are numerous examples of Lor-
entz spaces which form left Banach Li(w)-modules with respect to appro-
priate weight functions.

Introduction.

Let G be a locally compact group, and let w be a weight function on
G (for the definition, see (2.3)). Thus the weighted L,-space L.(w)
forms a Banach algebra under convolution. Suppose that Q is a locally
compact (Hausdorff) space and that G acts on Q as a transformation
group. Thus, for appropriate paris (g, v) of Radon measures # on G and
v on (, the convolution product g*v can be defined in a natural fashion
(2.1) (b). We are interested in those Banach spaces consisting of Radon
measures on Q which form left Banach Li(w)-modules. For such Banach
modules B, we wish to characterize those bounded linear operators 7T :
Li(w) > B which satisfy T(f+*g)=f*T(g) for all f,g=L,(w). Such
attempts have been made by a number of authors, including S.L. Gulick,
T.-S. Liu and A.C.M.van Rooji [3] and [4]; M. Rieffel :and C.V.
Comisky [2]. Our approach to the problem has naturally led us to the
concept of weak tilde-closures of such spaces.

The present paper consists of four sections (plus this introduction).
§1 studies normed spaces comprised of Radon measures on the locally
compact space Q. We shall introduce the concept of weak tilde-closures
of such normed spaces. In the study of translation invariant linear func-
tionals on translation invariant Banach spaces B on G, the “weak” com-
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pactness of the closed unit ball (B): plays a vital role (cf. S. Saeki [16]).
Our result, (1.5), gives a necessary and sufficient condition in order that
(B): be “weakly” compact.

In §2, we shall consider some (weighted) convolution algebras Li(w).
For appropriate normed spaces B of Radon measures on Q, the convolu-
tion f*xu is always defined for f&L(w) and p#EB. It turns out that
whenever B forms a left normed L.(w)-module, then the weak tilde-clo-
sure B~ of B forms a left Banach L:(w)-module (2. 8).

§3 is essentially an appendix, and gives brief accounts of Lorentz
spaces Lp,q. Naturally most of the results are stated only with sketchy
proofs or even without any proofs. The classical paper of R. Hunt
gives a nice treatment of the Lorentz space theory. Appendix A of the
second author’s 1991 Ph.D. dissertation provides detailed studies on the
subject. Although §3 contains some sharper results than those in Hunt
[7], the reader who is familiar with Lorentz spaces may completely skip
§ 3 except for some notation.

The final section, §4, shows that there are “many” Lorentz spaces
Lp.q on Q which form a left Banach L,(w)-module for some weight func-
tion w on G. We hope that these results will justify our introduction of
weighted Li-spaces in §2.

§1. Weak tilde-closure.

Throughout the paper, Q denotes a locally compact Hausdorff space,
C(Q) the space of all bounded continuous (complex-valued) functions on
Q, and C.(Q)={f€C(Q):supp(f) is compact}, where supp(f) is the clo-
sure of {f#0}. For each compact subset K of Q, let Cx(Q) be the space
of all fE€CAQ) with supp(f)CK. Thus Ck(Q) forms a Banach space
with respect to the uniform norm | * ||z

Now let CAQ) denote the space of all linear functionals on Cc(Q).
The value of p=CAQ) at ¢= C:(Q) is denoted by (@) or <@, x>. An ele-
ment u of CAQ) is continuous if for each compact set KCQ, there exists a
finite positive constant y=y(x, K) such that

K¢, wI<7ldl. Vo< Crl(Q).

A continuous linear functional on C.(Q) is often called a Radon measure
on Q [13]. Let C¥(Q) denote the space of all such functionals. For each
subset B of CA{Q), we write (B, C.) to denote the weak topology of B
induced by C.(Q). Thus a net (x) in B converges in o(B, C.) to pEB if
and only if for each #=C.(Q), we have <@, pa> = <, >. Unless other-
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wise mentioned, CXQ) will always be equipped with o(C¥, Cc). Thus
*(Q) forms a locally convex topological (Hausdorff) vector space.

For each normed space B and » >0, let (B),={¢=B:|uls<r}. Asin
[16], we call B a normed space on Q if B is a subspace of C¥(Q) and if
the imbedding x> x: B— CX(Q) is continuous. A Banach space on  is
a Banach space which is also a normed space on Q.

(1.1) DEFINITION. Given a normed space B on , we define the
weak tilde-closure B~ of B in CA{Q) as the collection of all x€C«Q) for
which there exists a norm-bounded net () in B such that ' # in
o(C;, C.). For p=B~, let

| el == inf{sgpllualls},

where the infimum is taken over all nets (x) in B as above.

(1.2) REMARKS: (a) B~ is a vector space and || * |z is a semi-
norm on it. Moreover, BC B~ and |y <|zls for each pEB.

(b) Our definition of weak tilde-closure was motivated by the
definition of the tilde-algebra associated with a Banach function algebra
(cf. Katznelson-McGehee [8] and Varopoulos [19]).

(1.3) PROPOSITION. Let B be a normed space and let T : B — CX(Q)
be a linear mapping. Then T is continuous if and only if for each com-
pact set KCQ, there exists a finite constant n=n(K) such that

(*) Ko, Ti|<nlélu-lule VIECK(Q) and p1EB.
PROOF: Suppose T is continuous, and let
(1) F(p, n)=<¢, Ty Vop=C.(Q) and u<EB.

Then, for each ¢=C.(Q), F(@, +) is a continuous linear functional on B.
So there exists a finite constant a(¢) such that

(2) |F(¢, Wl<a(p)lpl: VesB.

Now let KCQ be an arbitrary compact set. Then Ck(Q) is a Banach
space, and for each #E€B, F(-, 1) is a bounded linear functional on Cx((Q)
since T(B)CCX¥(Q). It follows from (2) and the Banach-Steinhaus Theo-
rem that the functional norms of F(-, #)cua, #E(B)), are uniformly
bounded. That is, there exists a finite constant 7=7(K) such that

(3) |F(¢, wI<nl¢l. VoECk(Q) and pE(B).
In light of (1), (3) is equivalent to (*).
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The converse is an immediate consequence of the definition of o(C¥,
Co).

(1.4) THEOREM. Let B be a normed space on Q. Then

(a) B~ equipped with || + || is a Banach space on Q.

(b) (B™)1 agrees with the closure of (B) in CAQ) and is o(C¥, C.)-com-
pact.

(c) (B™)" =B~ isometrically.

PROOF: Let KCQ be compact. By (1.3) and the definition of a
normed space on {, there exists a finite constant 7x such that

(1) Ko, | <nxldllu-ldle Vo= Ck(Q) and pEB.

It follows from the definition of | - | that (1) holds with B replaced by
B~. That is,

(2) K, W<kl llplls- VHE Cx(Q) and nEB™.

Since K was an arbitrary compact subset of Q, we infer from (2) and
Remark (1.2)(a) that B~CC¥(Q) and | - |z is a norm on B~. Moreover,
(2) shows that g+ x: B~ — C¥(Q) is continuous, and so B~ is a normed
space on ().

Now let #E(B~), be given. For each >0, the definition of |- |&
shows that (1+¢&)'u=((B):)", where the closure is taken in C«{Q) with
respect to o(C, Cc). (Notice also that ((B),)~ agrees with the o(C¥,
Cc)-closure of (B): in C¥(Q) since ((B),)"CB~CCX(Q).) Since (1+¢)'u
— pin o(C;, Ce) as €10, it follows that x itself is in ((B)1)~. As [ylsz=<
|lzlls for every u=B, we conclude that (B™),=((B),)". In particular,
(B™)"=B" isometrically.

Now let (¢¢) be a net in (B™);. By (2) and Tychonov’s [Theorem),
(¢e) has a subnet which converges in o(C;, C.) to some p=CAQ). Since
(B™)1 is closed in CAQ), it follows that x&(B~),. This shows that (B™),
is o(C¥, C.)-compact.

It remains to show the completeness of B~. Let (#,)? be a Cauchy
sequence in B~. Then (#,)7 is norm-bounded. Since (B™): is o(C¥,
Cc)-compact, it follows that (#.)¥ has a o(C¥, Cc)-cluster point pEB".
But then, for each m&EN, p—un is a o(C¥* Cc)-cluster point of the
sequence (fn— ttm)n=1. As (B~)" =B~ isometrically, it follows that

| ee— pemll ==l £ = p2ml (8-
éli’lz'ﬂ”ﬂn_ﬂm”B".
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Since (1,)” is a Cauchy sequence in B~, we conclude that |x«— gnls— 0
as m — . Hence B~ is a Banach space, as desired.

(1.5) COROLLARY. For a normed space B on Q, B™=B isometrical-
ly if and only if the closed unit ball of B is o(C¥, Cc)-compact.

ProOF: If B~ =B isometrically, then (B)i=(B™);, and so (1. 4)
shows that (B): is o(C¥, C.)-compact. Conversely, suppose (B): is o(C¥,
C.)-compact. Then (B): is closed in CA{Q). Hence (B™):=(B): by the
last theorem. Therefore B~ =B isometrically.

(1.6) REMARKS: Fix 1<p<co, and let B=Ly(R)=Ly(R, 4), where 4
is Lebesgue measure on the real line R. We identify B with a subspace of
*(R) via

(p fo= f "gf dv V$ECAQ) and fEB.

Now choose and fix any linear functional F on B which annihilates all of
C.(R), and define |flz=|fl»+|F(f)| for f€B. Then B equipped with
| - ||z forms a normed space on R. Moreover,
(a) B~ =B and |flsz=|fl, for each fEB~;
) |-z and | - |5 are equivalent norms on B if and only if F is a
bounded linear functional on L»(R);
(¢) B~ =B isometrically if and only if F=0.

(1.7) THEOREM. Let B be a normed space on Q. Define

|@lls=sup{|<#, | : p=(B)} VoECe(Q), and
Il =sup{[<@, > : pECQ) and |¢le-<1} VuECHQ).

Then
B~ ={p=C¥Q) : | 1| <o}
and |plz=gl for each nEB~.

PROOF: Plainly | + |z is a semi-norm on Cc(Q), and K@, u|<|¢[5-
luls for p=Ce(Q) and xEB. Hence

(1) Ko, w|<|dlalluls VoEC(Q) and nEB™.

Therefore ©€ B~ implies ||¢| <[ z|s-.

To complete the proof, it will suffice to show that {x€ C¥(Q): x| <1}
is contained in (B7).. Suppose to the contrary that this is false. Then
we can find £€ C¥(Q) such that [z]|<1 and ¢&(B™ ). But (B ) is a o(Cz,
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C.)-compact convex balanced subset of C#(Q) by (1.4). So the
Hahn-Banach convexity theorem provides us with ¢ C.(Q) such that

(2) Ko, LIK1I< K, | YveE(B)h.

As (B)1C(B7), the first inequality in (2) shows that ||¢|lz+<1. It follows
from the second inequality in (2) that
1<K, )< pllpe- [l el < || e,

which contradicts our choice of p.

(1.8) CONVENTION. We shall close this section with some convention
about Radon measures, which will be needed in sections 2 and 4.

(a) Let r be a positive regular Borel measure on Q. We denote by
LY(Q, 7) the space of all (equivalence classes of) r-measurable functions

f on Q such that [{ |fldr<oo for each compact set KCQ. Unless other-
wise stated, we shall imbed LYY(Q, r) into C¥Q) via f — fr:

(b fro= f ofdr VISCQ) and fELPQ, 7).

(b) Let p=C¥(Q) be given. For each ¢= C#(Q), define
F(¢)=sup{K¢, w|: ¢=C(Q) and |¢|<4).

Then F extends to a positive linear functional on C.(Q). So the Riesz
Representation yields a unique positive regular Borel measure
|| on Q such that

F(#)= [¢dlul Vée Cula).

Moreover, L¥(Q, 71)=L«(Q, r) by (12. 18) of E. Hewitt and K.A.
Ross [5]. So we can find a |z|-measurable function v on Q, with |v|=1,
such that

(b = f dudlyl Voe CAQ).

Such a v is unique in the obvious sense. For ¢=C.(Q) and fELYQ, |,
we define

<, fi>= [ dfdu= [ $vd|u

(c) M(Q) is the space of all bounded regular Borel measures on Q
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equipped with the total variation norm | - [». We shall identify M(Q)
with the Banach space dual of Co(Q), where Co(Q) is the uniform closure

§2. Banach modules over weighted L:-spaces.

Let G be a locally compact group with left Haar measure dis(x)=dx.
Given two (Borel) measurable functions f,¢ on G, the convolution prod-
uct of £, g is defined by

(f*g)(x)= / f(»g(y~'x)dy

at each x€G for which y— f(v)g(yv~'x) is Ac-integrable; see [5] If
1€ C¥(G), then u*g is defined by

(u*g)(x)= f g(y~'x) du(y)

at each x€G for which y— g(y~'x) is in Li(G, |¢|). If both f and ¢ are
[0, co]-valued and =0, we shall also use the above formulas to define (f*
9)(x) and (p*g)(x) for all xEG.

It is straightforward to show that if either supp(f) or supp(g)is o-com-
pact, then |f|*|g| is measurable on G, and f*g is measurable on the set
{|If]*]g|<cc}. The same result also holds with f replaced by x. Moreover,
if £, g, h are [0, ]-valued measurable functions on G, and if at least two
of them have o-compact supports, then (f*g)*h=7*(g*h) everywhere.
For partial proofs of these facts, see the appendix to Vol.II of Hewitt-
Ross [5].

Throughout this section and section 4, G is a locally compact group,
and all the Lebesgue spaces L»(G), 0<p<oo, as well as LY(G) are taken
with respect to Ac. We assume that G acts on the locally compact space
Q as a topological transformation group. The latter means that the pair
(G, Q) is equipped with a continuous mapping

(x,w) Px w:GXQ—>Q
such that

(T.1) ew=w YowEQ, and
(T.2) x(yv-w)=(xy) v Vx, y=G and wEQ.

For examples of group actions, see §4.

(2.1) DEFINITIONS. (a) Given a function % on Q, define
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() w)=ho(x)=hx-w) VxEG and weEQ.

Note that if ZEC.(Q), then £2ECAQ) for x€G and ho<C(G) for
wEQ. Moreover, h€C.Q) and v C¥(Q) implies that x> <{xk, v> is con-
tinuous and

G, V> = [) Wx-w) dve) YxEG.

(b) Let x€C*(G) and vECX(Q). Suppose that for each ¢= Cc(Q),
x> {p, vY is in Li(G, |g]). Then we define the convolution product p*v
€ CAQ) by setting

(B, uryd= fG<x¢, V> dulx) Vee CAQ).

(2.2) REMARKS: (a) Whenever uxv is defined, u*v<E C¥(Q).

To see this, fix any compact subset K of Q. By applying the closed
graph theorem, one checks that

pto <, v Cu(Q) — Li(G, | )

is continuous. So there exists a finite constant 7x such that

g, w3l < [ [ag, Wl el bl VbE Ci(@).

Hence u*ve CHQ).

(b) If Q=G but (x, w) — x-w is not the group multiplication in G,
our definition of x*v is confusing. In such a case, we shall write u*ov for
u*y, where 0(x, w)=x-w for x€G and wEQ.

(2.3) DEFINITION. A weight (function) on G is a strictly positive
(finite) Borel function w on G which is submultiplicative :

wixy)<w(x)w(y) Vx,yEG.

Let w be such a function.
(a) Let L1(W):L1(WAG):L1(G, WAG) Thus Ll(U)):Ll(G) for w=1.
(b) For p=C*G), define ||gllmw=|lwullu. Let

M(w)={p€ C(G) : | lmw) <0}

Our definition of a weight function is weaker than the corresponding
definition in H. Reiter [11; p.83], where the reader will find some interest-
ing examples of weight functions. The following two results are essen-
tially well-known.
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(2.4) LEMMA. Let w be a weight function on G. Then:
(a) Both w and 1/w are locally bounded on G.
(b) For each a<l, {w>a} contains a neighborhood of e=G.
(c) Liw)CTM(w) isometrically in the sence that |fAclmw =|wl: for

ProOOF: Choose 7<co so that {x&€G: w(x)+w(x™')<p} contains a
compact set E with A¢(E)>0. Then E'E contains a neighborhood of e
by the Steinhaus Theorem, and

wix ') <wkxHw(y)<p? Vx, yEE.

Therefore w is bounded on some nighborhood of e, and hence on each
‘compact subset of G. Since 0<w(e)<w(x Hw(x) for each x€G, 1/w is
also bounded on each compact subset of G, which establishes (a).

To prove (b), pick any a<1 and any precompact neighborhood U of
e. Since 1/w is bounded on U by (a), there exists ¥>0 such that w(x)=>
y for all x€U. Choose a natural number #» and a neighborhood V of e
so that V*CU and y">a. Then x€V implies

w(x)=[w(x™)]""=y"">a.

Hence V C{w > a}, which confirms (b).
Part (c) is obvious.

(2.5) LEMMA. Let w be a weight function on G. Then each of
Li(w) and M(w) forms a Banach algebra under convolution. Moreover,

f— fAic is an isometric isomorphism of L.(w) onto a closed two-sided
ideal of M(w).

PrROOF: Plainly M(w) is a vector subspace of C¥(G) and | * |y is
a complete norm on it.

Now let g, vEM(w) be given. To prove that p*v exists, pick any
< C:(G). Since 1/w is bounded on supp ¢ by the last lemma, we can
find @<oo such that |¢|<aew on G. Then

[<x9, v>|£f|¢(xy)ldIVI(y)
éa/w(xy)dlr/I(y)
éauJ(x)fw(y)a’IVI(y)

:a/w(x)lluIIM(w).

Since p=eM(w), it follows that x = <{x¢, v> is in Li(G, |¢l). As ¢=C(G)
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was arbitrary, we conclude that pu*v exists.

Now w is strictly positive on G, and so each element of M(w) has
o-compact support. In particular, g*v has o-compact support. So it is
easy to show that

()= [wdlno]
Sfd|u|(x) /w(xy)dh/I(y)
g/w(x)dlu!(x) fW(y)a’|Vl(y)

= ||#||M(w)|| V”M(w).

Hence pxvEM(w) and | g vimaw <| el vlmw.

Plainly the convolution product on M(w) is bilinear. Also its as-
sociativity follows from (2.9) stated below. Hence M(w) is a Banach
algebra under convolution. The proof of the second assertion is left to
the reader.

(2.6) LEMMA. Let vECXG), p=CX¥Q), and h a continuous func-
tion on Q. Suppose that |v|*|o| exists and h& L.(Q, |V|*|o|). Then:
(@) The function

90): = [ 1z wldlol(@) weG
is lower semi-continuous and belongs to L.(G, |v|).
(b) The function
xﬂﬁh(x'w)dp(w)

defined on {g<oo} is Borel measurable and belongs to L.\(G, |v|).
(c) v*p exists, heL.(Q, |v*po|), and

Jord(ro)= { Ji h(x-co)dp(a))}dv(x).

PrOOF: Without loss of generality, we may suppose that 2=>0. For
each nonnegative Borel function f on Q, define

f'(x)zﬁ fx-w)dlol(w) VxEG.

Now let D={¢=Ci(Q): $<h}. Notice that D is directed in the sense
that given ¢, ¢ D, there exists ¢:&D such that max{¢, #.} < ¢s. More-
over, % is a nonnegative lower semi-continuous (in fact, continuous) func-
tion on Q. It follows from (9.11) of E. Hewitt and K. Strom-
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berg that for each x€G,

© K@= [ i 0)dlol()
=sup{¢'(x) : pED}.

Since each ¢ with ¢&D is continuous, we see that %’ is lower semi-con-
tinuous (and hence Borel measurable).

Now it is clear that {¢': & D} is directed. So the theorem cited
above ensures that

fch’dlulzsup {ﬂ ddly|: ¢€D} by (1)

=sup { [ <, lobalvI(x): D)
=sup (g, |[v|*|ol> : =D}
= [, hd(vl+lol) <ce.

Therefore (a)-(c) hold with (v, p) replaced by (||, |p|).

Finally, there exist positive regular Borel measures vx on G (1<k<y),
with v, <|v|, such that y=wv;—v,+i(vs—vs) as linear functionals on CAG).
Similarly there exist positive regular Borel measures pr on Q (1<k<Y),
with p.<p, such that o=p;—p2+i(ps—ps) as linear functionals on C(Q).
Since |v|*|o| exists and hE Li(Q, |u|*|v|), it is clear that v;*0r exists and %
SL(Q, vi*pr) for j, kE{1,2,3,4). Therefore (a)-(c) hold with (v, p) re-
placed by each (v;, px), which obviously completes the proof.

(2.7) DEFINITIONS. (a) A convolution algebra on G is a normed
space A on G such that for each x, vE A, the convolution u*y exists in A
and [l vla<|gllalvla.

(b) Let A be a convolution algebra on G. A left normed (resp,
Banach) A-module on Q is a normed (resp. Banach) space B on Q such
that for each v&A and pEB, v+p exists in B and |v*ols<|lv|lpls.

(c) A normed space S on Q has the L-property if ¢€C.(Q) and vE
S implies ¢v&S and |gvlls<|@l.lvls (cf. JE. Taylor [17]). If, in addition,
the elements of S with compact support are dense in S, then S has the
strong L-property.

Note that, in (a), the associativity of the convolution on A is not pos-
tulated.

(2.8) THEOREM. Let A be a convolution algebra on G which has the
L-property, and let B be a normed space on Q. Suppose that for each (v,
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0)EAXB, vxp exists in B~ and |v+pls-<|vlalols. Then A~ is a convo-
lution algebra on G, B~ is a left Banach A™-module on Q, and
(*) (uxv)ro=pu*(vx0) Vi, vEA™ and pEB”.

PrROOF: Given p€B~, choose a net (o.) in B such that
(1) sgpIlpallaéllpllle~ and pa.— 0 in o(C¢, Co).
Such a net exists by (1.4). We claim that for each ¢=C.(Q)
and each compact set ECG,
(2) (P, pa> = {xp, 0> uniformly in x< E.

In fact, let S=supp ¢ and K={x"'*w:x<E and wES}. Then K is a
compact subset of Q, and «¢E Cx(Q) for each x€E. Since B is a normed
space on ), there exists a finite constant 7x such that

(3) K¢, o< nellgldlo’ls Ve Ck(Q) and ©'EB.
Therefore x, v&€ E implies

|<X¢, Pa?— <3P, Pa>|:|<x¢"y¢, Pa>|
< 7kllxp— sl 0alls by (3)
< 7klxp—»dlulolz by (D).

As ¢ C.(Q), this shows that the functions x — <{x¢, p.> are equi-continu-
ous at each point of E. Since <, 0y = <x¢, 0> for each x€G by (1)
and E is compact, (2) follows from the Arzela-Ascoli

Now set

(4) l¢lle=sup{l<¢, 0>| : pEB~ and |olz-<1} VéECc(Q).

We claim that v€ A~ and pE B~ implies

6 [kt ola=lglmlvladola VoE CL).

Suppose to the contrary that (5) is false for some ¢ C(Q):
||¢||B*IIVI|A-||0||B~<f|<x¢, o>|d|v|(x).

Since x — {x¢, 0> is continuous, it follows from the regularity of |v| that
there exists ¢E Cc(G) such that ||¢].<1 and

Bl alolls< | <, 0>9(0)au().

As pEB~, (1.4) and (2) ensure that there exists o’€B such
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that {|o’|z<|els- and

[Blslalols< | <, 09Nl

Similarly we can find v'€ A such that ||v']4<|v|a- and

(6) | ¢l Nalle’lls <] f G, 0 P(0)dy ().

Upon utilizing the L-property of A, we obtain
Ilalv Ilal0’s<I<&, (gv")*0™>] Dby (6)
<[ gllz(gv)*o’l- by (4)
<|glzll¢vlalo’ls by hypothesis
<[ gl ]allo’ls,

which is of course a contradiction. This reductio ad absurdum establishes
(5).

Recall that (B™)™=B~ isometrically by (1.4). It follows
from (5) and (1. 7) that vEA~ and pEB~ implies v*p exists in
B~ and

(7) [v*olls-<Ivladlols-

If we take Q=G, x*w=xw(x, v=G) and B=A, then (7) ensures that A~
is a convolution algebra on G. Therefore, again by (7), B~ is a left
Banach A "-module on Q.

Now we claim that u€ A~ implies |¢|€ A~ and |||gl|a-<|lglla~ In fact,
an easy application of Lusin’s yields a net (¢.) in Cc(G) such
that |¢ell«<1 for each @ and ¢.u— |gl in o(C¥, C.). Since A has the
L-property, it is clear that A~ has the L-property as well. Hence | ¢azla-
<| - for each @, and so |x|EA™ and |l|xlla-<| ¢ a- by Theoreml (1. 4).

To complete the proof, pick any ¢, vEA™ and oB~. Then |4, |v|
€A~ by the above claim, |¢|*|v|EA~ since A~ is a convolution algebra
on G, and so (|u|*|v|)*o exists since B~ is a left Banach A ~-module on Q.
If g€ Cc(Q), it follows that the continuous function x — <x#, 0> belongs to
Li(G, |¢l*|v]) ; hence

(¢, (ﬂ*u)*p>=fc<x¢, o>d(u*v)(x)
= /G fc o, 0>dv(y)di(x) by (2.6)

:/(;<x¢, v*0>dp(x)  since ud=,(x¢)
=<¢, px(v*p)>.
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As ¢&C(Q) was arbitrary, this establishes (), which completes the
proof.

(2.9) REMARKS: By (2.8) with Q=G, x-w=xw(x, wv€G) and B=A,
the convolution on a convolution algegra A is associative whenever A has
the L-property. In particular, the convolution on M(w) is associative for
each weight function w on G.

(2.10) PPOROSITION.  In addition to the hypotheses of (2.8), suppose
that A has the strong L-property, vEA, 0EB~, and (o) is a norm
~bounded net in B~ such that po — o in o(CE, C.). Then v*pa— v*o in
o(C¥%, C.).

PrROOF: Upon replacing each p. by po.—p, we may suppose that p=
0. Pick any ¢=C.(Q). We need to show that <@, v*p.> — 0.

Let €>0 be given. As A has the strong L-property, we can find v E
A with compact support such that [|[v—v|a<e. Moreover, the net (o) is
norm-bounded in B~ and p.— 0 in o(C¥, C.). Hence the functions x —
{x$, 0> converge to 0 uniformly on each compact subset of G (see the
proof of (2.8)). As supp V' is compact, it follows that

D (b V*pad= / Gy 0>dV () = 0.

Also there exists a finite constant 7x such that
@ K&, 00| <7xl@lllo’ls-, Vo'EB™,
where K=supp ¢. Hence

K¢, (v—=1)* 02| < 7xllllull(v—1)* el by (2)
(3) <l Bllully— v alloals by (2.8)
<7kl @lu- €7,

where y=sup.|lp«|s-<o0. Since >0 was arbitrary, we conclude from (1)
and (3) that <@, v*p.> — 0, as desired.

(2. 11) DEFINITIONS. Let A be a convolution abgebra on G, and let
B be a left Banach A-module on Q. A multiplier (or module-homomor-
phism) from A into B is a bounded linear mapping 7 : A — B such that

T(uxv)=p*(Ty) Wy, vEA.

The space of all such T’s is denoted by #(A, B). For p=C*Q), we
write o€ #(A, B) to mean that the expression T,wv=v*o(vEA) defines
an element 7, of #(A, B).
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Note that #(A, B) forms a Banach space with respect to the opera-
tor norm.

(2.12) THEOREM. Let A be a convolution Banach algebra on G with
the strong L-property, and let B be a left Banach A-module on Q. Suppose
that A has a bounded right approximate identity (va) such that ve*p — 0 in
o(C¥, C.) for each pEB~. Then:

(a) Each TE #(A, B) has the form T="T, for a unique pEB".
(b) If A*xB~CB, then o — T, is a Banach space isomorphism of B~
onto #(A, B). If, in addition, 1i£n||ua||A=1 and | -lz=|+llz on B, then

the isomorphism is isometric.

PrROOF: Pick any v€C*(G) with compact support. For ¢&€ C.(Q),
set

(- 2)@)= [$x-w)du(x) Voo

It is clear that ¢-vE Cc(Q). Moreover, v*p exists for each o€ C¥(Q), and
(1) (Pev, p>=Xp, v*0> Vp=CQ) and pECEHQ)

by Fubini’s

Now A has the L-property, so B~ is a left Banach A ™~module (hence
A-module) on Q by (2.8). Let T #(A, B) be given. Since
(ve) is a bounded net in A, (Tv.) is a bounded net in B. It follows from
Theorem (1. 4) that (7v.) has a o(C¥, Cc)-cluster point p€B~ such that
lols=<7|T|, where y=liminfs|va|s. Passing to a subnet, we may sup-
pose that Tv.— o in o(C¥, C:). To prove T=T,, pick any #=A with
compact support. Then ¢€ Cc(Q) implies

(¢, Tw>=lim<g, T (p*va)>
=lim<¢g, p* Tva>
=1i£n<¢'/¢, Tvey by (1)
=(p-u, 0>=<8, u*p> by (1).

Hence Tu=p*p whenever #E A has compact support. In general, choose
a sequence (1) in A such that each u, has compact support and |l — sl
— 0 ; such a sequence exists since A has the strong L-property. Then

| Tee— ex ol < || T (= )l 5=+ 1 (etn— 1) * 0l -
<| TN - = ptall a+ Nl e2n— el al ol -
—(0 as n— 0,
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Hence Tpu=puxp for each u=A. We have thus proved that
(2) lole=<7IT| and T=T..

Moreover, Tve=v.*p — p in 6(C¥, C.) by hypothesis, so the element pE
B~ satisfying 7= T, is unique, which establishes (a).

To prove (b), suppose that A*B~CB. Choose and fix any pEB~,
and let Tou=pux*p for each u€A. Then T, is linear and T,(u*v)=p* Toy
for each u, vEA by (2.8). To prove T,=.#(A, B), we need to
check the continuity of 7,. Suppose (v».) is a sequence in A such that
lvalla = 0. Then | Tovals-=|va*ole-<|lvalalolls- = 0. Since |*|l&=<[ ‘|z on
B, it follows from the Closed Graph that 7,: A — B is bounded.
Hence 7,€ #(A, B). One more application of the Closed Graph
shows that

(3) o= T,: B~ > #(A, B)

is bounded. From this and (2), we infer that the mapping in (3) is a sur-
jective Banach space isomorphism.
Now suppose further that y=1 and |+ |z=| |z on B. Then pEB~
and vE A implies
| Tovlz=lv*pls
<[vialelz by (2.8).

Hence | 7, <l|olls-, which combined with (2) completes the proof.

(2.13) REMARKS: It is possible to reduce the last theorem from The-
orem4 of C.V. Comisky . However, his proof is based upon some
results of M. Rieffel involving projective tensor products, and first of
all, we can easily modify our proof to obtain a quick and direct proof of
his theorem.

(2.14) DEFINITION. A weight function w on G is moderate if given a
neighborhood V of ¢e€G and >0, VN{w<1+a} has positive Haar mea-
sure.

(2.15) COROLLARY. Let w be a weight function on G, and let B be a
left Banach Li(w)-module on Q.

(i) If the closed unit ball of B is o(Ck, C.)-compact, then p— T,
is a Banach space isomorphism of B onto # (Li(w), B). If, in addition, w
is moderate, then the isomorphism is isometric.

(ii) If B is a closed subspace of B~ such that Li(w)*B~CB,, then p
— T, is a Banach space isomorphism of B~ onto # (Liw), Bo). If in
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addition, w is moderate, then the isomorphism is isometric.

PROOF: We shall first construct a bounded approximate identity for
Ll(W)

By Lemma (2.4), w is locally bounded. So we can find a<co such
that for each neighborhood V of e=G, VN{w<a} has nonzero Haar
measure. Choose and fix any compact neighborhood V5, of e. With each
neighborhood VC V, of e, associate any nonnegative simple Borel func-
tion gv on G such that

(D /gvdle and {gv>0CVN{w<al.

This defines a net (gv) in Li(w), where the V’s are directed downward by
set-inclusion. Note that

(2) lgvawl,= f grwdx<a
by (1).
If f€L(w), then
(3) 1 *gv)whh <l fwlilgvewl < al fwl

by Lemma (2.5) and (2). Moreover, ¢= C.(G) implies

supp (¢*gv)C(supp ¢) Vo

and |¢ * gv—¢ll. = 0 by (1). Since w is locally bounded, it follows that
I(¢pxgv—¢)wl. = 0. Moreover, (3) shows that the operators f — f * gv:
Li(w) = Li(w) have norms <a. As C:(G) is dense in L.(w), we conclude
that

(4) I(f*gv—FHwlh =0 VfELi(w).

In other words, the gv’s form a bounded right approximate identity with
norm <a. Also it is easy to check that

(5) grxpo—p in o(C¥ C.) VosC¥Q).

Now consider the case where w is moderate. Then the net (gv) can
be chosen to satisfy |gvwl: = 1. In fact, if G is discrete, this is obvious.
So suppose that G is nondiscrete. Then, since w is moderate, we can
replace ¢ in (1) by 1+4c(V) to get |gvw|:<1+Ac(V); hence |gvwl — 1.

We are now ready to prove (i) and (ii). If (B) is o(C¥, C.)-com-
pact, then B~ =B isometrically by Corollary (1.5). Hence (i) follows
from (2.12) with A=L(w).
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To prove (ii), let By be a closed subspace of B~ such that L,(w)*B~
CBo. We of course equip Bo with ||+ |s. Since (B~) =B~ isometrically,
it is obvious that

(6) pEB; = pEB~ and |ols<lols:.

To show Bo=B", let a and gvELi(w) be as in the above construction.
Then o€ B~ implies

lgv* oll 5o =l gv* oll - < alloll
by (2.8) and (2), and gv*p — o in o(C¥, C.) by (5). Therefore
(7) 0oEB~ = o€B{ and |plz<alols-

From (6) and (7), we infer that B~=B, as sets and [ols<|ols:<alols
for each p€B~. It is now obvious that if w is moderate, then B"=By¢
isometrically. Hence (ii) also follows [Theoreml(2. 12), which completes
the proof.

§ 3. Lorentz spaces Lp,q.

This section gives brief accounts of Lorentz spaces. For the proofs of
some of those results which are stated without proof, see Hunt and

Yap [21]

Let (X, 1) be a measure space, and let f be a measurable function on
X. For each 0<s<oo, let

pr(s)= p(|£1> )= u({l 7] > s}).

The function g, is called the distribution function of f (with respect to ).
The decreasing rearrangement function of f is the function f* on (0, o)
defined by

fX(t)=inf{s =0 : u(s)<t},

where inf@d=+oo. Thus both gr and f* are [0,cc]-valued decreasing
“right-continuous” functions on (0, o). Let

FRO= [ 7o ds e, @),

For p, g=(0, ), we define

A8 =115 =( % [0 )

WAna=Wloan=(2 [TUr=01F ar)"
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If 0<p<g=00, we also define

A5 =sup 2 £5() and |/lpm=supt?£**().

t>0

Finally, let |f]%«=|/fllo.0=/]e.

For 0<p<co and 0<g<oo, the Lorentz space L, (X, ) is defined to
be the vector space of all (equivalence classes of) measurable functions f
on X with ||f|}s<co. For p=g=00, we let Lyo(X, t)=Lo(X, p).

(3.1) REMARKS: Let f,¢g be two measurable functions on X,0<p
<oo, and 0< g<oo,

(a) If |fI<l|gl ae., then ur<pg and so f*<g*.

(b) (If1”)*=(*)* and (af)*=|alf* for a=C.

(c) For t,s>0, we have f*(¢)<s if and only if u(s)<¢. Hence p=
Ar+, where A is the Lebesgue measure restricted to (0, ). Moreover, one
checks that

i/1%»=sup l‘%f*(t)=sup S[,Uf(S)]%.

t>0 §>0

(d) If fELp(X, ), then |fl}-<[fl}q; in particular, x(s)<oo for
each s>0 and L,¢C Ly,

(e) ”f";,p:”f”p and Lp,p(X, #):LP(X, /l)-

(f) It is not difficult to show that for 1<g<p<oo, ||, is a com-
plete norm on L,.(X, ). However, if p<gq, then |-|%, is not a norm on
Ls,o(X, 1) in general.

(g) For p<1, our definition of ||f|s.s is different from the usual one

(3.2) THEOREM. Let 1<p<o0 and 1<g<co. Then
150 < f .0 <25 1115

for each measurable function f on X. Moreover, |- |p.q is a complete norm
on Lpqo(X, 1).

(3.3) LEMMA. Let f be a measurable function on X, and let ECX
be a measumable set. Then

(i) £|f|dﬂé'£#(E)f* ds.
Moveover, if
(i) s>0 and W(EN{|f]>s)<u(E)= p({|f|>s\E)=0,



74 S. Saeki and E.L. Thome

then equality obtains in (). Conversely, if equality obtains in (i) and both
sides are finite, then (ii) holds.

PROOF: We may suppose that f=0. Since wr=As by (3.1)(c), it
follows that

©  [rde=["uls) as
= [ s ds

=[°f* dt.

Also it is easy to check that f*(£)=0 if and only if #>u-(0). It follows
from (1) applied to x:f that

@ [ fdu= [T
= [ Gt

H(E)

<[ rar,

which establishes (i).
By applying (3.1)(c), we can show that (ii) holds if and only if (xz/)*
=7* on (0, »(E)). This fact combined with (2) completes the proof.

(3.4) The Hardy-Littlewood Inequality. Let fi,..., f» be measurable
functions on X, and let EC X be measurable. Then

[ dus [ st

ProoF: We may suppose that fi, ..., /x=0. Note that for »=1, the
desired inequality is nothing but (3,3)(i). So suppose that #>2 and the
result is true with » replaced by »—1.

Set f=f, g=f2... fn, and ¢=1"... f¥. Then the inductive hypothesis
ensures shat

ffl oo S dqufOf(x) ds g(x) du(x)

=£m'[f>s}gduds

g["f’“) 8(1) dt ds
_ A ° f{f LB dtds by (3.1)(c)
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= [ e at.

Finally, replace fi by xsfi to get the desired inequality.

(3.5) THEOREM. Suppose p, ¢<[1, ©) and q=1 if p=1. If f g are
measurvable functions on X, then

® rx %
flfgl a’#éﬁ frg* dt
< Cp,q”f"z,q”g"zw’:

where Cp,qZ(p/q)Lq(j)’/q’)% if p,q>1 and Cp,q=p otherwise.

PrROOF: The first inequality is the special case of (3.4) with =2
and E=X. In the case p, ¢>1, we apply Hoélder’s Inequality to the func-

1 1
tions f*(¢)¢t?, ¢*(¢+)” and to the measure ¢ 'df to obtain the second in-
equality. The other case is almost obvious.

(3.6) REMARKS AND DEFINITIONS:  Suppose p, ¢<[1, ) and g=1 if p
=1. If g€ Ly (X, 1), then (3.5) enables us to define a linear
functional ¢y on Ly,q(X, 1) by

(i) ¢oN)=[fodu VFELnoX, p.

Let

(i) l¢alb.e=sup{lga(I: /13, <1}.
Thus

(iii) ”¢g“;b.q£ Cp,q”g”;;’,q’,
where Cp.q is as in (3.5).

(3.7) THEOREM. If 1<p<oo, then L }:(X, )~Lp (X, 1t). Move-
over,

lgl?=<lgole.a<plglle VgELpr,e.

(3.8) THEOREM. If 1<p, g<co, then L} (X, p)=~Lp (X, 1r). More-
over,

l ’
(@) lglE.e<(a/p)ldols.a for 1<p<g<co, and
L r’
(b) lglz.e<p(d/0) | dollpe for 1<g<p<oo.

If (X, 1) has no atoms with finite measure, we have better estimates ;
namely,

@) lglt.e=Colalldellpe for 1<p<q<oco, and
(b”) Nglye<t'Crlllgolloe for 1<g=<p<co.
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The proof of (3.8) is somewhat lengthy and can be found in Appendix
A of [18]. (The corresponding result in Hunt [7] is not as precise as
ours. Also his proof appears to be incomplete.)

(3.9) THEOREM. Let 1<p<oo, 1<g<co, and let (f.) be a net in
Lo.o( X, 1) such that |fellp,e<C for all a’s and some C<oo. Then there
exits a subnet (fs) of (fa) and fELp,o( X, 1) such that |fllp.e<C and

() lim [fugdu= [fodn V9ESW, a),

where S(p, q') is the norm-closure of (Lp,oN Lp2)(X, 1) in Ly o(X, 12).

PROOF: We shall consider the three cases (1<g<o, g=1, and ¢
=00) separately.

Casel. Suppose 1<g<co. Then Lpo(X, p)=L}% (X, 1) by (3.
8). Since (f.) is a norm-bounded net in L, (X, ), it follows that (f)
has a subnet (fs) which satisfies (*) for some fE L, X, ). To prove
I /ls.a< C, choose a bounded a linear function ¢ on Ly ¢(X, 1) such that

(1) lgl<1 and  ¢(f)=IFlls.q.
By (3,8), ¢ is induced by some g& L,,(X, ) ; that is

@ ¢W)= [ghdu VRE Lo (X, .

Moreover, Sp,¢=Lp,(X, 1£) since 1<g’<co. So

I Allp.e= f fgdp by (1) and (2)

=lim ffagd# by (*)
=lim¢(fe) by (2)
<lim inf|felp,e by (1)
gc.a

Case 2. Suppose ¢=1. Then |felp<|falon<C for all a’s. It follows
from Case 1 that there exists a subnet (f5) of (f«) and fE L, (X, £) which
satisfy (*) with ¢=2. It is not difficult to show that f€L,.(X, ) and ()
holds for ¢g=1. Since L}1~Ly.~ by (3.7), the proof that ||fll».<C is obvi-
ous from the corresponding proof in Case 1.

Case 3. Suppose g=o. As in Casel, Sp,¢=Lpi(X, 1) and (fz) has a
subnet (fs) which satisfies () for some fE Ly (X, 1). To prove |flp-<
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C,we may suppose that (X, #) is a o-finite measure space having no
atoms ; simply replace X by {f#0} and then (X, ) by (X X[0, 1], #XA),
where A is the Lebesgue measure on [0, 1].

We claim that give ¢>0, there exists a measurable set ECX such
that

(3) ﬁlfla’u=£tf*ds and u(E)<t.

In fact, if t=>p-(0), then take E={f+0}. If t<us0), then we can find E
CX such that (E)=t and {|f|>F*()}CEC{(|f|=f*(¢)}. In either case,
(3) holds by (3. 3).

Upon setting g=xz+sgn f, we have

, t
tl/pf**(t):t—”p‘/o.f*ds
=t‘”’"/fga’# by (3)
=t‘”"'lignffagd# by (*)
e
<tV llmﬁmffElf,eld;z

<177 lim nf A “frds by (3.3) and (3)

Zlimﬂinf tYPFF*(E).

Hence |fls-=sup?f**(¢t)<C.

(3.10) REMARKS: Let 1<p<oo,
(a) As in (3.9), let S(p,©) be the norm-closure of LpoNLy: in

Ly« For f€L,,, let ||l denote the norm of the functional g — / fodu

on S(p’, ). By applying (3.7), it is readily seen that ||« |, is a
norm on L, which is equivalent to ||+ |s:. Moreover, our proof of (3.9)
shows that the closed unit ball of L,; with respect to |1 is weak-*
compact, where “weak-+" refers to the weak-* topology of S*(p,0). It
follows from the Krein-Smulian [15; p.108] that Lp.=S*(p, )
in the obvious sense. (A more direct proof is possible.)

(b) If 1<g<<o, then | *|sq in (3.9) may be replaced by any norm on
L»,q which is eqivalent to |+ |p.¢; in particular, by |- |}¢ if ¢<p. This is
also true for g=1 if the new norm |-| on L, satisfies |f]|<l|lgl whenever
|/|<l|gl. Similar comments apply to (3.11) stated below, as well.
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(3.11) THEOREM. Let (X, &, v) and (Q, %, t) be two o-finite mea-
sure spaces, and let h: XX Q — [0, 0] be (vXr)-measurable. Set (xh)(w)
=h(x, ) for x€X and w<Q, and define

0 )= [ hx 0)du(x)
for t-a.a. wEQ. Then

(i) lvhlpe< ﬁlxhllp,qu(x) (1<p< and 1<g<);
i) Ivklfo< flxklfadu(x) (1<q<p<oo)

PrROOF: By the Monotone Convergence and Fubini’s we
may suppose that v(X)+r(Q)<o and % is a bounded (. X.Z )-measur-
able function.

Let .4, be the Borel o-algebra of (0, ). We shall show that (x, ¢) —
(xh)*(t) is (& X % y)-measurable. To this end, fix any s>0 and set

(1) g(x)Z/xs(h(x, w))dr(w) VxEX,

where xs is the indicator of (s, ). Then g is .« -measurable by Fubini’s
Theorem. Moreover,

{(x, )e X x(0,0) : (xh)*(1) <s}={(x, )EX X(0, ) : r(xh>s)< 1}
={(x, )EX X(0, ) : g(x)<t} by (1),
which is a member of &« X%, As s>0 was arbitrary, this shows that (x,
t) = (xh)*(t) is (& X% )-measurable.
Now let 1<p<oo and 1<g<co be given. If ¢<oo, then x — |x#klp,q is

o/ -measurable by the above remark and by Fubini’s This is
also true for g=0o0 since

%] p.co = sup{t*?(xh)**(¢) : t€Q and ¢ >0}.

Hence the integral in the right-hand-side of (ii) is well-defined.

To prove the inequality in (ii), first consider the case ¢<oo. By our
additional assumptions on v, 7, and 4, it is clear that VvAE L, q(Q, 7).
Moreover, f€ Ly,(Q, ) implies

| [h)f del=| [[ F@) ) @dr(@)an(x)] by ()
< [I71- Nkl o),
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where ||f| denotes the norm of f as a linear functional on L,.¢(Q, ) with
respect to | *lsqe Since L¥q¢>~Lp.q, (ii) follows from the Hahn-Banach

For g=o0, we argue as follows. As in the proof of the last theorem,
we may suppose (Q, r) has no atoms. Given ¢>0, choose a measurable
set ECQ, with r(E)<¢, such that

(2) [ hyde= [ yras.
Then
Hm)**(t)= [ (hdr by (2)
= [[2:(@)hx, w)dr(@)dn()
< [ [[Gm*(s)dsav(x) by (3.3)
=1 Jlm)**(t)dv(x).

Hence (ii) holds for g=0 as well.

Finally, (iii) for p=1 is a direct consequence of Fubini’s [Theoreml If
p>1, then the proof of (iii) is essentially identical with the proof of (ii),
which completes the proof.

Note that (3.11)(iii) with p=g<][1, o] is nothing but Mink-
owski’s Inequality for double integrals.

§4. Lorentz spaces as Li-modules and examples.

As before, G is a locally compact group which acts on the locally
compact space ) as a topological transformasion group. For a function f
on G and x€G, let f/(x)=f(x"'). The symbol A always denotes the mod-
ular function of G. Thus

ff(xa)dx=A(a‘1)ff(x)dx and ff(x“)de/f(x)A(x‘l)dx

whenever f is a nonnegative Haar measurable function on G and <¢<G.
Note that A is a continuous homomorphism of G into the multiplicative
group (0, o). Therefore, for each a¢<R, both A* and max{A? 1} are
moderate weights on G.

Now let 7 be an arbitrary positive regular Borel measure on Q. In
order to avoid non-essential problems about measurability, we shall
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assume that for 0< p<oo and 0<g<oo, L, (Q, r) consists of (equivalence
classes of) Borel measurable functions. However, L(Q, r) is assumed to
consist of r-measurable functions; hence L¥(Q, r)=L(Q, r) isometrically
in the obvious sense. A function f is said to belong locally to a space S
of measurable functions on Q if for each compact set KC{Q, there exists
g=gx< S such that g=f r-almost everywhere on K.

(4.1) LEMMA. Let 7, p be two positive rvegular Bovel measures on Q
which arve wmutually absolutely continuous. Suppose that 1<p<oo, 1<gq
<o, and the Radon-Nikodym derivative do/dr of o with respect to t
belongs locally to Lp.o(Q, 1) if g>1 or to S(p, ) if q=1, where S
(p', o) is the norm-closure of Lp,2(Q,7) in Lyo(Q, 7). Imbed Lo, 7)
into C¥Q) via f — fo:

(b for= f bfdo VIECAQ) and FELplQ, 7).

Then [Lp.o(Q, )] =L,.o(Q, 7) isometrically with respect to ||+ l|p.q (always)
and also with respect to ||+ |}.e (if ¢<p).

PROOF. By our assumptions on 7 and p, f — fo maps Lj,«(Q, 7)
isometrically onto a Banach space on ().

Now let |+| denote either |«|pq or |+|%s (Gif ¢<p). Consider the
closed unit ball B of L, .(Q, r) with respect to | +|. By Corollary (1.5),
the desired conclusion is equivalent to the o(C¥, C.)-compactness of Bp
:={fo: f€B}. Pick any net (f.) in B. By (3.9) combined with
Remark (3.10)(b), we can find f€B and a subnet (fs) of (f.) such that

(1) lim / fagdr= f fgdr Vg S, ),

where S(#, ¢) is the norm closure of (Ly,¢NLp2)(Q, 1) in Lp,q(Q, 7).
We claim that fso — fo in o(C¥ Cc). To confirm this, pick any ¢E

C/Q). By our assumptions on r and p, there exists v&S(p’, ¢’) such that
ddo=¢vdr. Hence

lim / fupdo=1im f Fobvdr
= f févdr by (1)
= f fodp,

which confirms our claim. As (f.) was an arbitrary net in B, this estab-
lishes the o(C¥, C.)-compactness of Bp, which completes the proof.



Lorentz spaces as Li-modules and multipliers 81

(4.2) DEFINITIONS. Let r be a nonzero positive regular Borel mea-
sure on . The maximal Jacobian of 7 (under the action of G) is the
function J: on G defined by

]r(x)zsup{/qS(x‘l-w)dr(cu) o= CEHQ) and f¢>dz'=1}.

The measure 7 is boundedly quasi-invariant under the action of G if J.(x)
<o for each xEG.

It is easy to check that J: is lower semi-continuous,

]r(xy)gjr(x)]r(y) for all x,yEG, and
fh(x"l-w)dr(w)éfr(x) fh(w)dr(a)) VxeG

whenever 7/ is a nonnegative Borel function on Q. In particular, if 7 is
boundedly quasi-invariant, then J: is a weight function on G.

(4.3) THEOREM. Let t and o be two nonzero positive regular Borvel
measures on Q which are mutually absolutely comtinuous and each bounded-
ly quasi-invariant under the action of G. Suppose that 1<p<oo, 1<gq
<o, and do/dr belongs locally to Lp.o(Q, 7). Imbed LpQ, 1) into

XQ) via f — fo. Then Lpo(Q, 1) forms a left Banach M(J¥? Ji)-module
on Q with respect to |« |}q¢ (always) and also with respect to ||+ |%q (if ¢<
b).

PrROOF: Let % be a nonnegative Borel function on Q. For x&G and
w<EQ, write (x '2)(w)=h(x"'-w). We claim that

(1) (x7'B*()<h*(t/].(x)) Vx&G and t>0,

where the decreasing rearrangements are taken with respect to 7. To
confirm this, we first estimate the distribution functin of x™'4. If s=0 and
%s is the indicator of (s, ), then

rein(s) = f 2o(h(xt ) dr(w)

(2) <J.(x) f xs(h(w))dr(w)
:fr(x) Z'h(S).

Given t>0, set s=s(¢t, x)=h*(t/J:(x)). Then w(s)<t/J.(x), or J.(x)za(s)
<t¢. This implies m-14(s)<¢ by (2), or equivalently (x~*%2)*(¢)<s, which
establishes (1). Note that x€G and ¢ >0 implies
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(x B**)(F) = ¢! f e h)*(s)ds

. <t7 [*1*(s/Tex)ds by (1)
=)t [ ) du
=n**(¢/J(x)).

Next we claim that x& G implies

(4) lx = 2l3, e < T2 () Al}.q, and

(5) lx™ Allo.a < T2 () Al 5.0

In fact, if g <o, then
bl =(L [T (G mr@yenra)
g<% [ m{h*(t/lr(x))}"t"“’t“dt)w by (1)

=(L [T oo ear)
=7l

For g=o0, we have

|~ Rl|E o =sup t""*(x " h)*(t)

t>0

<sup t"?n*(t/J:(x)) by (1)

t>0

=Tl Rl .

Thus (4) holds in either case. Similarly (5) follows from (3).

Now let w=/*J and let || denote either ||+ |p,q or ||-[|}.¢ (Gif ¢<p).
Plainly w is a weight function on G, and so M(w) is a convolution alge-
bra on G by (2.5). To prove that L,q(Q, ) forms a left Banach M(w)
module on Q, pick any vEM*(w) and A€ L},4(Q, 7). Set

® ()= [ ol @) Yeeq,
Then (Jiv)k is Borel measurable and
I(T5v) Al < ]; I~ Al Ti(x)dv(x) by (3.11)

2 <IAl [ P (TG)dbx) by (@) or 9
il b <.
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(For more details about the applicability of (3.11), see (4.4) stated
below.)

Next suppose vEM(w) and hEL,q(Q, 7). We claim that ¢ C(Q)
implies

® [ Kb hodldlA@) < [ 1D w)do(w).

To prove this, we may suppose that ¢=>0, 2=0, and v=0. Let S={x""'-
w:xEsupp v and w<Esuppg). Plainly S is a o-compact subset of Q. So
we may apply Fubini’s to get

[t hovav)= [ [ $x- w)1(w)do(w)dulx)
< fc Jo(x™) ﬁ xs(x 7 w)p(w)(x™"+ w)do(w)dy(x)
= [ #(@) [ 267 ) la )@} du(x)d(w)
< [ #(@ ) @)do(w) by (6),

which confirms (8).

From (7) and (8), we infer that the convolution v*(kp) exists. More-
over, the set {(J¥|v|)|#|+0} is o-finite with respect to z by (7) and so with
respect to p. Therefore the Radon-Nikodym-Lebesgue com-
bined with (8) yields a Borel function v*% in LY(Q, o) such that

9) ly*h|<(Jilv) k] and  v*(ho)=(v*h)p.

It follows from (9) and (7) that L,.¢(Q, r) forms a left Banach
M(w)-module on Q, which completes the proof.

(4.4) REMARKS: In the application of (3.11) in the last proof, we
have ignored the basic assumption in (3.11), namely, the o-finiteness of
the underlying measures. (J%v is o-finite, but ¢ is not in general.)
Although this difficulty can be easily circumvented for the purpose of prov-
ing (4.3), we shall give more details which justify our application of (3.
11) in the last proof. Let 1<p<oo, 1<g<co, and vEM*(w), where w=
JZ2 Tk
(i) If heL},4(Q, r) has o-compact support, then the justification of (7)
is similar to that of (8). In particular, (7) is valid whenever ke
CHQ).

(ii) If D is a directed collection of nonnegative lower semi-continuous
functions on Q and if g=sup{f:fED} pointwise, then |gls¢=sup
{5, : fED}.
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[Let %#:Q — [0, 0] be Borel measurable and ¢>0. If s, >0, then
h*(s)>u if and only if z.(«)>s. Hence

(1) = f “1*(s)ds

=" [ duds

Z'[Omin{t, o(u)}du.

Moreover, {r;: fED} is a directed collection of nonnegative lower semi
-continuous functions on (0, ), and its pointwise supremum equals 7, by
the regularity of r. Hence g**=sup{f**: f<D} pointwise. So the result
for g=o0 is obvious. For g<oo, note that {f**:f=D} is a directed col-
lection of nonnegative lower semi-continuous function on (0, ), and so

oo =( [ Tg**(e0ot > ar

=supl{|flls.¢ : FED},

1/q

as desired.]

(iii) Let g:Q — [0, 0] be lower semi-continuous and let D={¢= C(Q):
$<g}. Then {(Jiv)¢: D} is a directed collection of nonnegative
lower semi-continuous functions on Q, and its pointwise supremum
equals (Jiv)g. Hence

(i) glo.a=sup{llJiv)Blls.e : pED} by (ii)
<sup(lvluwwl@ls.q : =D} by (i)
<|vlmanlgls.a.

(iv) Let h:Q—[0,0] be Borel measurable and #2=0 r-almost every-
where. Then (Jiv)h=0 r-almost everywhere.

[Let €>0 be given. As|kl»»=0, it is easy to costruct a nonnegative
lower semi-continuous function ¢ on Q such that 2<g everywhere and
lgls.o<e. Then

(T2 Bl o0 <I(T5v) gllp.0
<|vlmawlglor by (ii)
<elvlmw.

As £>0 was arbitrary, this shows that (Jiv)A=0 r-almost everywhere.]
(v) Let h€L3,4(Q, ) be given. Then there exists #'EL}.4(Q, ) such
that #’=h r-almost everywhere and {#'#+0} is 6-compact. Hence
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I(Tew)hlle.a=I(To0) B lpa by (iv)
<|vlwewllsq by (1)
=[vlscnllllp,q-

If ¢<p, then we may replace | *|p.q by || *[l}¢ in the last three lines,
which completes the detailed proof of the first inequality in (7).

(4.5) REMARK: Let o, 1, p, ¢ be as in the hypotheses of (4.3), and
let w=J?Ji. Define Ms(G) to be the space of all measures on G with
finite support, and equip Ms(G) with | |uw). If vEMs(G), then no
difficulties arise in the proof of (4.3). So we can readily conclude that
Ly,o(Q, r) forms a left Banach Ms(G)-module on Q. On the other hand, w
is lower semi-continuous, so it is easy to check that [Ms:(G)] =M (w)
isometrically. Also [L,qo(Q, 7)] =Ls,¢(Q, r) isometrically by Lemma(4.1)
[under an additional minor condition if g=1]. These facts, combined with
Theorem (2.8), yield an alternative proof of (4.3) which requires neither
(3.10) nor Fubini’s Theorem.

(4.6) REMARKS: Let 7 be a positive regular Borel measure on Q.
Suppose that r is quasi-invariant, that is, dx*r and r are mutually abso-
lutely continuous for each x&G (6« is the Dirac measure at x). Thus, for
each xE G, there exists a positive r-measurable function J(x, +) such that

f h(x 0)dr(w)= f W) (x, 0)dr(w)

whenever % is a nonnegative Borel function on G with o-compact support.
Gulick, Liu and van Rooij prove, among other things, that the collec-
tion {J(x, *): xEG} can be chosen in such a way that (x, ) — J(x, @) is
(A¢ X r)-measurable. They also prove that L,(Q, r) forms a left Banach
L,(G)-module for 1<p<co. However, their definition of the convolution
product f*g of f€L.(G) and g€ Lx(Q, r) depends not only on f and ¢ but
'also on p. That is,

(Frod@)= [F()gla (™, w)ds.

Thus their definition is essentially different from ours unless p=1.

(4.7) THEOREM. Let 1, p, 1<p<oo, and 1<g<oo be as in the
hypotheses of (4.1). Suppose that t and o arve each boundedly quasi-invar-
iant. Imbed Lp.o(Q, t) into CXQ) via f— fo. If w is a weight function
on G such that Ji'? JE<w, then :

(@) Lp,o(Q, ) forms a left Banach M(w)-module on Q
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(b) The multiplier space 4 (L(w), Lpo(Q, 7)) is isomorphic to
Ls,o(Q, t) as Banach spaces ;

(¢) If. in addition, w is moderate, then the isomorphism is isometric
[with respect to ||+ |p.q (always) and also with respect to |- |}q (if
g<p)l.

PrROOF: The first conclusion is an immediate consequence of Theo-
rem (4.3). Since [Ls,q(Q, 7)]"=L¢(Q, r) isometrically by Lemma (4.1),
the second and third conlusions follow from (2.12).

(4.8) REMARKS: In (4.3) and (4.7), we have put aside the impor-
tant two cases, namely, p=¢=1 and p=¢g=o0. We shall discuss these
cases below.

(a) Plainly M(Q) is a left Banach M(G)-module on Q and M(Q) =
M(Q) isometrically. In particular, M(Q) forms a left Banach Li(G)-mod-
ule on Q. It follows from (2.12) that for each closed subspace
A of M(Q) such that L.(G)*M(Q)CA, we have #(L.(G), A)=~M(Q)
isometrically. For Q=G, x-y=xy(x, yeG), and A=L,(G), this result is
nothing but Wendel’s [20].

(b) Let r and p be as in the hypotheses of (4.3), and imbed L(Q, )
into C¥(Q) via =2 — hop. Then it is easy to show that Lo(Q, r) forms a left
Banach M(J%)-module on Q. Moreover, [L«(Q, )] =L«(Q, r) isometrical-
ly; hence #(L.(J%), L-(Q, 7)) and L«(Q, r) are isomorphic as Banach
spaces by (2.12).

(4.9) ExaMPLE (The standard Case). Suppose Q=G, G acts on itself
via group multiplication (x-y=xy), and w, v are two weight functions on
G. Let dr=wdAc and do=vdlc. Then r and p are mutually absolutely
continuous, and the Radon-Nikodym derivative dpo/dr=v/w, which is
locally bounded by (2.4). Moreover, if #>0 is a Borel function on G and
x€ G, then

f h(x™'y)dr(y)= f h(x™'y)w(y)dy
= f h(y)w(xy)dy
<w(x) f hdr.

This shows that 7 is boundely quasi-invariant and J:<w. Similarly p is
boundedly quasi-invariant and J,<v.
Now let 1<p<co and 1<g<co, and imbed L, .G, r) into C¥G) via
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f = fo=fvAdc. Then by (4.3), Ly (G, ) forms a left Banach M(w'?
v*)-module on G (with respect to |+ ||l».; always and also with respect to

I+ 13q if g<p). Moreover, (4.7) ensures that
M (L(w"?v*), Lp,o(Q, 7))=Lpq(Q, 1),

and that if w'?v* is a moderate weight function, then the isomorphism is
isometric. For vEM(w'?v*) and fE€ L,,((Q, 7), a direct calculation shows
that the Radon-Nikodym derivative d[v+(fp)]/dp is given by

x — ﬁx) f f(y7'x)v(yx)dv(y).

These results with w=v=1 and for |+ ||s,q are due to Y.K. Chen and H.C.
Lai [1]; see also T.S. Quek and L.Y.H. Yap [10].

(4.10) EXxAMPLE (The Right-Translation Case). Suppose G acts on
itself via right-translation, that is,

O(x, y)=x-y=y' Vx,vEQG.

Let w, v be two weight functions on G, and let dr=wdl; and do=uvdA..
If 2=0 is a Borel function on G and xG, then

f Wx™"+y)dr(y)= f h(yx)w(y)dy
=A(x7") f (y)w(yx™")dy
<(wA)(x) [ hdr.

Hence J:<(wA)!, and similarly J,<(vA)". Consequently, results similar
to those in Example (4. 9) hold with w'*v* replaced by

[(wA)F]V? v A=(w*) 2o A7
If veM(w")"? v A') and F€ Ls.qo(Q, 7), then d[v*4(f0)]/dp is given by

x = 5y JH @ ea@) ).

(4.11) EXAMPLE (The Inner-Automorphism Case.) Suppose G acts
on itself via inner-automorphism, that is,

O(x, y)=xy=xyx~' Vx,vEG.

Let w, v, r, o be as in the last example. If 2>0 is good enough and x&
G, then
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[ )de()= [ ww(v)ay
= f h(yx)w(xy)dy
=A(x™) f h(y)w(xyx™)dy
<(awho)(x) [ har.

Hence J.<A*w*w and similarly J,<Afv*v. Therefore results similar to
those in Example (4.9) hold with w'?v* replaced by

(Afwt )2 (A0 )= (whw) " (v*0) AV
If ve M{(w*w)"?v*vAY?) and fE€ Lp,q(G, 1), then d[v*e(fo)]/dp is given by

x = v(lx) f F(y ) v(y " xy)A(y)du(y).

(4.12) EXAMPLE (The Linear Group Case). Consider the general lin-
ear group GL(%, R), which acts on R” in the obvious way. Let 4. be
Lebesgue measure on R” and let G be any closed subgroup of GL(%, R).
Choose and fix any strictly positive functions w, v in LY*(R", A,) such that
v/w is locally bounded. Take dr=wdA» and do=vdA»,. Suppose that
there exist weight functions w¢ and v¢ on G such that,

w(Ax)<ws(A)w(x) and v(Ax)<vs(A)v(x)

whenever A€G and x€R” If 2>0 is a Borel function on R” and AEG,
then

A WA %) de(x)= [t WA %) w(x) dan(x)
—|det A A () w(Ax) din(x)
<|det Alwe(A) ﬁ h(x)dr(x).

Hence J-(A)<|det Alwec(A) and similary J.(A)<|det Alvc(A) for each A€
G.
Let 1<p<oo, 1<g<o0o, and define

wp(A)= (ldet Al T/UG(A))UPQdet A| UG(A))#
=wd?(A)v(A)/|det AN

for each A=G. If we imbed L,q(R" r) into C¥R") via f — fo, then
results similar to those in Example (4.9) hold with w'?v* replaced by w».
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For vEM(w,) and fE€ Ly,R", 1), d[v*(fo)]/dp is given by
x— ;éc—)fcf(A‘lx)v(A‘lx)|detAl‘1dv(A).

(4.13) EXAMPLE. Let G be a locally compact abelian group with dual
T (cf. W. Rudin[14]). The Fourier transform of #EM(G) is defined by

~(N_ -1

()= [ 7(xdux) Vrer.

Similarly we define the “inverse” Fourier transform of o€ M(T") by setting
(pv)(x)=ﬁ y(x)do(y) VxEG.

Now choose and fix any positive regular Borel measure r on I" such
that (¢7)'ECo(G) whenever ¢=C.(I"). Also let w=1 be a continuous
moderate weight on G. For 1<p<o and 1<¢g<0, define

Mp,q:Mp,q,w,r:{.UEM(w) . /:ZELP.q(F, Z')}
Then we have:

(a) My, is a left Banach M(w)-module on G with respect to the norm
| oo, 00 =N eelsecr +11 2l (always) and also with respect to |l ¥w.«
=| sy +1 2l3.q (if g<D).

(b) (Mp.q)~"=My,q isometrically.

(c) If A is a closed subspace of Mp,q such that Li(w)*Myp,C A, then

M (Li(w), A)=~M(p, q) isometrically.
These results for w=1 and r=Ar are due to Chen and Lai[1].

PROOF: We shall prove (a)-(c) only for | * [lu.q)-
(a) As w=>=1, the definition of My, makes sense and it is obvious that
M,., forms a Banach space on G. If vEM(w) and #E My.q, then

v+ il o, =llv* el sy +1 0+ 2llp,q
< vlmcoll larcor +1 Dl 25,4
<\ vlmcoll llecs.0)-

Hence M,,q is a left M(w)-module on G.

(b) By virtue of (1.5), it suffices to show that (Mpe) is o(Cé,
Cc)-compact. Let (1) be a net in (Mp,q)1. We need to show that (u.)
has a o(C¥, Cc)-cluster point in (Mp,q)1. We may suppose that both

lignllﬂallmw):a and lim | Zallp,a=5
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exist. Note that a+56<1.
As w>1, (¢a) is a bounded net in M(G). So, after passing to a sub-
net, we may suppose that (u.) converges weak-* to some p€M(G):

1) lim ﬁ Fdpta= [G fdu YFECHG).

Since w is continuous and | galluw) — a, it is obvious that |guw <a.
To prove pE(Mp, o), pick any ¢ Co(T"). Then

@) [} ade= [ ($0)"due

for each a. Since (¢7)'€ Co(G) by hypothesis, if follows from (1) and (2)
that

(3) lim ﬁ fadr= [; (¢7)du Ve Co(I).

On the other hand, ||, «lp.e = 5. Therefore (3.9) and (3) show that there
exists #E Ly,o(T, 7), with |%]»,¢<b, such that

(1) lim ﬁ fabdr= ﬁ hdr VpeE C(T).

Hence ¢= C(T") implies
frﬁsbdr:fc(w)vdﬂ
- ﬁ hodr

by (3) and (4). Therefore Z=h locally r-almost everywhere. However,
{h=+0} is o-finite with respect to r since & L, (T, 7), and / is continuous
on I'. It follows from the regularity of r that Z=# r-almost everywhere.
Hence Z€ L, (T, r) and

320,00 =l el 32y + | 2l 5,4
<a+b<l,

as desired

(c) Since w is a moderate weight function on G, (¢) is a direct con-
sequence of (2.12) combined with (b).

(4.14) REMARKS: In the last examle, we have used the ¢ ;-norm on
R? || (s, )li=Is|+|¢t|. However, it is clear from our proof that in the
definition of |« |u.e, we may instead use any norm on R? such that |(s,
tl<I(s’, ¢")|l whenever 0<s<s" and 0<t<¢. Also the natural analogues
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of (4.11) for p=g=1 and for p=¢g=° hold, provided that r and Ar are
mutually absolutely continuous.

(11]
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