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Lorentz spaces as L_{1}-modules and multipliers

Sadahiro SAEKI and Edward L. THOME
(Received September 2, 1992)

Let w be a weight function on a locally compact group G , so that the
weighted L_{1}-space L_{1}(w) forms a Banach algebra under convolution.
Suppose that G acts on a locally compact space \Omega , and that B is a
Banach space consisting of Radon measures on \Omega which is also a left
Banach L_{1}(w)-module. Under certain conditions on B, we shall charac-
terize those bounded linear operators T:L_{1}(w) -arrow B which satisfy T(f*g)
=f*T(g) . We shall also show that there are numerous examples of Lor-
entz spaces which form left Banach L_{1}(w)-modules with respect to appr0-
priate weight functions.

Introduction.

Let G be a locally compact group, and let w be a weight function on
G (for the definition, see (2. 3)). Thus the weighted L_{1}-space L_{1}(w)

forms a Banach algebra under convolution. Suppose that \Omega is a locally
compact (Hausdorff) space and that G acts on \Omega as a transformation
group. Thus, for appropriate paris (\mu, \nu) of Radon measures \mu on G and
\nu on \Omega , the convolution product \mu*\nu can be defined in a natural fashion
(2. 1) (b). We are interested in those Banach spaces consisting of Radon
measures on \Omega which form left Banach L_{1}(w)-modules. For such Banach
modules B, we wish to characterize those bounded linear operators T :
L_{1}(w)arrow B which satisfy T(f*g)=f*T(g) for all f, g\in L_{1}(w) . Such
attempts have been made by a number of authors, including S.L. Gulick,
T.-S. Liu and A.C.M. van Rooji [3] and [4] ; M. Rieffel [12] : and C.V .
Comisky [2]. Our approach to the problem has naturally led us to the
concept of weak tilde-closures of such spaces.

The present paper consists of four sections (plus this introduction).
\S 1 studies normed spaces comprised of Radon measures on the locally
compact space \Omega . We shall introduce the concept of weak tilde-closures
of such normed spaces. In the study of translation invariant linear func-
tionals on translation invariant Banach spaces B on G, the “weak” com-
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pactness of the closed unit ball (B)_{1} plays a vital role (cf. S. Saeki [16]).
Our result, (1. 5), gives a necessary and sufficient condition in order that
(B)_{1} be “weakly” compact.

In \S 2, we shall consider some (weighted) convolution algebras L_{1}(w) .
For appropriate normed spaces B of Radon measures on \Omega , the convolu-
tion f*\mu is always defined for f\in L_{1}(w) and \mu\in B . It turns out that
whenever B forms a left normed L_{1}(w)-module, then the weak tilde-cl0-
sure B^{-} of B forms a left Banach L_{1}(w)-module (2. 8).

\S 3 is essentially an appendix, and gives brief accounts of Lorentz
spaces L_{p,q} . Naturally most of the results are stated only with sketchy
proofs or even without any proofs. The classical paper [7] of R. Hunt
gives a nice treatment of the Lorentz space theory. Appendix A of the
second author’s 1991 Ph.D. dissertation [18] provides detailed studies on the
subject. Although \S 3 contains some sharper results than those in Hunt
[7], the reader who is familiar with Lorentz spaces may completely skip
\S 3 except for some notation.

The final section, \S 4, shows that there are “many” Lorentz spaces
L_{p,q} on \Omega which form a left Banach L_{1}(w)-module for some weight func-
tion w on G. We hope that these results will justify our introduction of
weighted L_{1}-spaces in \S 2.

\S 1. Weak tilde-closure.

Throughout the paper, \Omega denotes a locally compact Hausdorff space,
C(\Omega) the space of all bounded continuous (complex-valued) functions on
\Omega , and C_{c}(\Omega)= {f\in C(\Omega):supp(f) is compact}, where supp(f) is the c10-
sure of \{f\neq 0\} . For each compact subset K of \Omega , let C_{K}(\Omega) be the space
of all f\in C_{c}(\Omega) with supp(/)cif. Thus C_{K}(\Omega) forms a Banach space
with respect to the uniform norm || ||_{u} .

Now let C_{c}’(\Omega) denote the space of all linear functionals on C_{c}(\Omega) .
The value of \mu\in C_{c}’(\Omega) at \phi\in C_{c}(\Omega) is denoted by \mu(\phi) or \langle\phi, \mu\rangle . An ele-
ment \mu of C_{c}’(\Omega) is continuous if for each compact set K\subset\Omega , there exists a
finite positive constant \gamma=\gamma(\mu, K) such that

|\langle\phi, \mu\rangle|\leq\gamma||\phi||_{u} \forall\phi\in C_{K}(\Omega) .

A continuous linear functional on C_{c}(\Omega) is often called a Radon measure
on \Omega[13] . Let C_{c}^{*}(\Omega) denote the space of all such functionals. For each
subset B of C_{c}’(\Omega) , we write \sigma(B, C_{c}) to denote the weak topology of B
induced by C_{c}(\Omega) . Thus a net (\mu_{a}) in B converges in \sigma(B, C_{C}) to \mu\in B if
and only if for each \phi\in C_{c}(\Omega) , we have \langle\phi, \mu_{a}\ranglearrow\langle\phi, \mu\rangle . Unless other-
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wise mentioned, C_{c}^{*}(\Omega) will always be equipped with \sigma(C_{c}^{*}, C_{c}) . Thus
C_{c}^{*}(\Omega) forms a locally convex topological (Hausdorff) vector space.

For each normed space B and r>0 , let (B)_{r}=\{\mu\in B:||\mu||_{B}\leq r\} . As in
[16], we call B a normed space on \Omega if B is a subspace of C_{c}^{*}(\Omega) and if
the imbedding \mu-arrow\mu:Barrow C_{c}^{*}(\Omega) is continuous. A Banach space on \Omega is
a Banach space which is also a normed space on \Omega .

(1. 1) DEFINITION. Given a normed space B on \Omega , we define the
weak tilde-closure B^{\sim} of B in C_{c}’(\Omega) as the collection of all \mu\in C_{c}’(\Omega) for
which there exists a norm-bounded net (\mu_{a}) in B such that \mu_{a}-

,
\mu in

\sigma(C_{c}’, C_{c}) . For \mu\in B^{-} . let

|| \mu||_{B}-=\inf\{\sup_{a}||\mu_{a}||_{B}\} ,

where the infimum is taken over all nets (\mu_{a}) in B as above.

(1. 2) REMARKS: (a) B^{-} is a vector space and || ||_{B}- is a semi-
norm on it. Moreover, B\subset B^{\sim} and ||\mu||_{B}- \leq||\mu||_{B} for each \mu\in B .

(b) Our definition of weak tilde-closure was motivated by the
definition of the tilde-algebra associated with a Banach function algebra
(cf. Katzne1son^{-}McGehee[8] and Varopoulos [19]).

(1. 3) PROPOSITION. Let B be a normed space and let T:Barrow C_{c}^{*}(\Omega)

be a linear mapping. Then T is continuous if and only if for each com-
pact set K\subset\Omega , there exists a fifinite constant \eta=\eta(K) such that

(*) |\langle\phi, T\mu\rangle|\leq\eta||\phi||_{u}\cdot ||\mu||_{B} \forall\phi\in C_{K}(\Omega) and \mu\in B.

PROOF: Suppose T is continuous, and let

(1) F(\phi, \mu)=\langle\phi, T\mu\rangle \forall\phi\in C_{c}(\Omega) and \mu\in B .

Then, for each \phi\in C_{c}(\Omega) , F(\phi, \cdot) is a continuous linear functional on B.
So there exists a finite constant \alpha(\phi) such that

(2) |F(\phi, \mu)|\leq\alpha(\phi)||\mu||_{B} \forall\mu\in B .

Now let K\subset\Omega be an arbitrary compact set. Then C_{K}(\Omega) is a Banach
space, and for each \mu\in B , F(\cdot, \mu) is a bounded linear functional on C_{K}(\Omega)

since T(B)\subset C_{c}^{*}(\Omega) . It follows from (2) and the Banach-Steinhaus TheO-
rem that the functional norms of F(\cdot, \mu)_{C_{K}(\Omega)} , \mu\in(B)_{1} , are uniformly
bounded. That is, there exists a finite constant \eta=\eta(K) such that

(3) |F(\phi, \mu)|\leq\eta||\phi||_{u} \forall\phi\in C_{K}(\Omega) and \mu\in(B)_{1} .

In light of (1), (3) is equivalent to (*) .
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The converse is an immediate consequence of the definition of \sigma(C_{c}^{*} ,
C_{c}) .

(1. 4) THEOREM. Let B be a normed space on \Omega . Then
(a) B^{\sim} equipped with || ||_{B}- is a Banach space on \Omega .
(b) (B^{\sim})_{1} agrees with the closure of (B)_{1} in C_{c}’(\Omega) and is \sigma(C_{c}^{*}, C_{c}) -com-

pact.
(c) (B^{\sim})^{\wedge}=B^{\sim} isometrically.

PROOF: Let K\subset\Omega be compact. By (1. 3) and the definition of a
normed space on \Omega , there exists a finite constant \eta_{K} such that

(1) |\langle\phi, \mu\rangle|\leq\eta_{K}||\phi||_{u}\cdot ||\mu||_{B} \forall\phi\in C_{K}(\Omega) and \mu\in B .

It follows from the definition of || ||_{B}- that (1) holds with B replaced by
B^{-} That is,

(2) |\langle\phi, \mu\rangle|\leq\eta_{K}||\phi||_{u}\cdot ||\mu||_{B}- \forall\phi\in C_{K}(\Omega) and \mu\in B^{\sim}

Since K was an arbitrary compact subset of \Omega , we infer from (2) and
Remark ( 1. 2)(a) that B^{\sim}\subset C_{c}^{*}(\Omega) and || ||_{B}- is a norm on B^{\sim} Moreover,
(2) shows that \mu->\mu:B^{\sim}arrow C_{c}^{*}(\Omega) is continuous, and so B^{-} is a normed
space on \Omega .

Now let \mu\in(B^{\sim})_{1} be given. For each \epsilon>0 , the definition of || ) ||_{B}-

shows that (1+\epsilon)^{-1}\mu\in((B)_{1})^{-} where the closure is taken in C_{c}’(\Omega) with
respect to \sigma(C_{c}’, C_{c}) . (Notice also that ((B)_{1})^{-} agrees with the \sigma(C_{c}^{*} ,
C_{c})-closure of (B)_{1} in C_{c}^{*}(\Omega) since ((B)_{1})^{-}\subset B^{-}\subset C_{c}^{*}(\Omega).) Since (1+\epsilon)^{-1}\mu

arrow\mu in \sigma(C_{c}’, C_{c}) as \epsilon\downarrow 0 , it follows that \mu itself is in ((B)_{1})^{-} As ||\mu||_{B}- \leq

||\mu||_{B} for every \mu\in B , we conclude that (B^{\sim})_{1}=((B)_{1})^{-} In particular,
(B^{\sim})^{-}=B^{-} isometrically.

Now let (\mu_{a}) be a net in (B^{-})_{1} . By (2) and Tychonov’s Theorem,
(\mu_{a}) has a subnet which converges in \sigma(C_{c}’, C_{c}) to some \mu\in C_{c}’(\Omega) . Since
(B^{\sim})_{1} is closed in C_{c}’(\Omega) , it follows that \mu\in(B^{-})_{1} . This shows that (B^{-})_{1}

is \sigma(C_{c}^{*}, C_{c})-compact.
It remains to show the completeness of B^{\sim} Let (\mu_{n})_{1}^{\infty} be a Cauchy

sequence in B^{-} Then (\mu_{n})_{1}^{\infty} is norm-bounded. Since (B^{\sim})_{1} is \sigma(C_{c}^{*} ,
C_{c})-compact, it follows that (\mu_{n})_{1}^{\infty} has a \sigma(C_{c}^{*}, C_{C})-cluster point \mu\in B^{\wedge}

But then, for each m\in N , \mu-\mu_{m} is a \sigma(C_{c}^{*}, C_{c})-cluster point of the
sequence (\mu_{n}-\mu_{m})_{n=1}^{\infty} . As (B^{\sim})^{\sim}=B^{-} isometrically, it follows that

||\mu-\mu_{m}||_{B}-=||\mu-\mu_{m}||_{(B^{-})^{-}}

\leq\lim_{n}||\mu_{n}-\mu_{m}||_{B}-.
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Since (\mu_{n})_{1}^{\infty} is a Cauchy sequence in B^{\sim} we conclude that ||\mu-\mu_{m}||_{B^{-}}-arrow 0

as marrow\infty . Hence B^{-} is a Banach space, as desired.

(1. 5) COROLLARY. For a normed space B on \Omega , B^{\sim}=B isometrical-
ly if and only if the closed unit ball of B is \sigma(C_{c}^{*}, C_{c})- compact.

PROOF: If B^{\sim}=B isometrically, then (B)_{1}=(B^{-})_{1} , and so (1. 4)

shows that (B)_{1} is \sigma(C_{C}^{*}, C_{c})-compact. Conversely, suppose (B)_{1} is \sigma(C_{C}^{*} ,

C_{c})-compact. Then (B)_{1} is closed in C_{C}’(\Omega) . Hence (B^{-})_{1}=(B)_{1} by the
last theorem. Therefore B^{-}=B isometrically.

(1. 6) REMARKS: Fix 1<p<\infty , and let B=L_{p}(R)=L_{p}(R, \lambda) , where \lambda

is Lebesgue measure on the real line R. We identify B with a subspace of
C_{c}^{*}(R) via

\langle\phi, f\rangle=\int_{-\infty}^{\infty}\phi fdx \forall\phi\in C_{c}(\Omega) and f\in B .

Now choose and fix any linear functional F on B which annihilates all of
C_{c}(R) , and define ||f||_{B}=||f||_{p}+|F(f)| for f\in B . Then B equipped with
||-||_{B} forms a normed space on R. Moreover,

(a) B^{-}=B and ||f||_{B}-=||f||_{p} for each f\in B^{\wedge};

(b) || ||_{B} and || ||_{B}- are equivalent norms on B if and only if F is a
bounded linear functional on L_{p}(R) :

(c) B^{\sim}=B isometrically if and only if F=0 .

(1. 7) THEOREM. Let B be a normed space on \Omega . Defifine
|| \phi||_{B}*=\sup\{|\langle\phi, \mu\rangle| : \mu\in(B)_{1}\} \forall\phi\in C_{c}(\Omega) , and
|| \mu||=\sup { |\langle\phi , \mu\rangle| : \phi\in C_{c}(\Omega) and ||\phi||_{B}*\leq 1 } \forall\mu\in C_{c}^{*}(\Omega) .

Then
B^{\sim}=\{\mu\in C_{c}^{*}(\Omega):||\mu||<\infty\}

and ||\mu||_{B}- =||\mu|| for each \mu\in B^{\sim}

PROOF: Plainly ||\circ||_{B^{*}} is a semi-norm on C_{c}(\Omega) , and |\langle\phi, \mu\rangle|\leq||\phi||_{B^{*}} .
||\mu||_{B} for \phi\in C_{C}(\Omega) and \mu\in B . Hence

(1) |\langle\phi, \mu\rangle|\leq||\phi||_{B^{*}}\cdot||\mu||_{B}- \forall\phi\in C_{c}(\Omega) and \mu\in B^{\sim}

Therefore \mu\in B^{-} implies ||\mu||\leq||\mu||_{B}-.

To complete the proof, it will suffice to show that \{\mu\in C_{C}^{*}(\Omega):||\mu||\leq 1\}

is contained in (B^{-})_{1} . Suppose to the contrary that this is false. Then
we can find \mu\in C_{c}^{*}(\Omega) such that ||\mu||\leq 1 and \mu\not\in(B^{-})_{1} . But (B^{\sim})_{1} is a \sigma(C_{c}^{*} ,
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C_{c})-compact convex balanced subset of C_{c}^{*}(\Omega) by Theorem (1. 4). So the
Hahn-Banach convexity theorem provides us with \phi\in C_{c}(\Omega) such that

(2) |\langle\phi, \nu\rangle|\leq 1<|\langle\phi, \mu\rangle| \forall 1/\in(B^{\wedge})_{1} .

As (B)_{1}\subset(B^{\sim})_{1} , the first inequality in (2) shows that ||\phi||_{B}*\leq 1 . It follows
from the second inequality in (2) that

1<|\langle\phi, \mu\rangle|\leq||\phi||_{B^{*}}\cdot||\mu||\leq||\mu|| ,

which contradicts our choice of \mu .

(1. 8) CONVENTION. We shall close this section with some convention
about Radon measures, which will be needed in sections 2 and 4.

(a) Let \tau be a positive regular Borel measure on \Omega . We denote by
L_{1}^{1oc}(\Omega, \tau) the space of all (equivalence classes of) \tau-measurable functions

f on \Omega such that \int_{K}|f|d\tau<\infty for each compact set K\subset\Omega . Unless other-

wise stated, we shall imbed L_{1}^{1OC}(\Omega, \tau) into C_{c}^{*}(\Omega) via farrow f\tau :

\langle\phi, f\tau\rangle=\int\phi fd\tau \forall\phi\in C_{c}(\Omega) and f\in L_{1}^{1OC}(\Omega, \tau) .

(b) Let \mu\in C_{c}^{*}(\Omega) be given. For each \phi\in C_{c}^{+}(\Omega) , define

F( \phi)=\sup{ |\langle\phi , \mu\rangle| : \emptyset\in C_{c}(\Omega) and |\phi|\leq\phi }.

Then F extends to a positive linear functional on C_{c}(\Omega) . So the Riesz
Representation Theorem yields a unique positive regular Borel measure
|\mu| on \Omega such that

F( \phi)=\int\phi d|\mu| \forall\phi\in C_{c}(\Omega) .

Moreover, L_{1}^{*}(\Omega, \tau)=L_{\infty}(\Omega, \tau) by Theorem (1 \cdot . 18) of E. Hewitt and K.A.
Ross [5]. So we can find a |\mu|-measurable function v on \Omega , with |v|=1 ,
such that

\langle\phi, \mu\rangle=\int\phi vd|\mu| \forall\phi\in C_{c}(\Omega) .

Such a v is unique in the obvious sense. For \phi\in C_{c}(\Omega) and f\in L_{1}^{1OC}(\Omega, |\mu|) ,
we define

\langle\phi, f\mu\rangle=\int\phi fd\mu=\int\phi vd|\mu| .

(c) M(\Omega) is the space of all bounded regular Borel measures on \Omega
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equipped with the total variation norm || ||_{M} . We shall identify M(\Omega)

with the Banach space dual of C_{0}(\Omega) , where C_{0}(\Omega) is the uniform closure
of C_{c}(\Omega) in C(\Omega) .

\S 2. Banach modules over weighted L_{1} -spaces
Let G be a locally compact group with left Haar measure d\lambda_{G}(x)=dx .

Given two (Borel) measurable functions f, g on G , the convolution prod-
uct of f, g is defined by

(f*g)(x)= \int f(y)g(y^{-1}x)dy

at each x\in G for which y-arrow f(y)g(y^{-1}x) is \lambda_{G}- integrable; see [5]. If
\mu\in C_{c}^{*}(G) , then \mu*g is defined by

( \mu*g)(x)=\int g(y^{-1}x)d\mu(y)

at each x\in G for which y\vdasharrow g(y^{-1}x) is in L_{1}(G, |\mu|) . If both f and g are
[0, \infty]-valued and \mu\geq 0 , we shall also use the above formulas to define (f*
g)(x) and (\mu*g)(x) for all x\in G .

It is straightforward to show that if either supp(f) or supp(g)is\sigma-com-
pact, then |f|*|g| is measurable on G, and f*g is measurable on the set
\{|f|*|g|<\infty\} . The same result also holds with f replaced by \mu . Moreover,
if f, g, h are [0, \infty]-valued measurable functions on G , and if at least two
of them have \sigma-compact supports, then (f*g)*h=f*(g*h) everywhere.
For partial proofs of these facts, see the appendix to Vol. II of Hewitt-
Ross [5].

Throughout this section and section 4, G is a locally compact group,
and all the Lebesgue spaces L_{p}(G) , 0<p\leq\infty , as well as L_{1}^{1OC}(G) are taken
with respect to \lambda_{G} . We assume that G acts on the locally compact space
\Omega as a topological transformation group. The latter means that the pair
(G, \Omega) is equipped with a continuous mapping

(x, \omega)->\chi . \omega:G\cross\Omegaarrow\Omega

such that

(T. 1) e\cdot \omega=\omega \forall\omega\in\Omega , and
(T. 2) x\cdot (y\cdot\omega)=(xy)\cdot \omega

\forall x , y\in G and \omega\in\Omega .

For examples of group actions, see \S 4.

(2. 1) DEFINITIONS. (a) Given a function h on \Omega , define
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(_{x}h)(\omega)=h_{\omega}(x)=h(x\cdot\omega) \forall x\in G and \omega\in\Omega .

Note that if h\in C_{c}(\Omega) , then xh\in C_{C}(\Omega) for x\in G and h_{\omega}\in C(G) for
\omega\in\Omega . Moreover, h\in C_{c}(\Omega) and \nu\in C_{c}^{*}(\Omega) implies that x-\nu\langle_{x}h, \nu\rangle is con-
tinuous and

\langle_{x}h, \nu\rangle=\int_{\Omega}h(x\cdot\omega)d\nu(\omega) \forall x\in G .

(b) Let \mu\in C_{c}^{*}(G) and l/\in C_{c}^{*}(\Omega) . Suppose that for each \phi\in C_{C}(\Omega) ,
x-*\langle_{x}\phi_{ 1^{y}},\rangle is in L_{1}(G, |\mu|) . Then we define the convolution product \mu*\iota/

\in C_{c}’(\Omega) by setting

\langle\phi, \mu*\nu\rangle=1_{G}^{\langle_{x}\phi,1\prime\rangle}d\mu(x) \forall\phi\in C_{c}(\Omega) .

(2. 2) REMARKS : (a) Whenever \mu^{*}f_{J} is defined, \mu*\nu\in C_{c}^{*}(\Omega) .

To see this, fix any compact subset K of \Omega . By applying the closed
graph theorem, one checks that

\phi-arrow\langle_{x}\phi_{ 1\prime},\rangle : C_{K}(\Omega)arrow L_{1}(G, |\mu|)

is continuous. So there exists a finite constant \eta_{K} such that

| \langle\phi, \mu*\nu\rangle|\leq\int_{G}|\langle_{x}\phi, \nu\rangle|d|\mu|(x)\leq\eta_{K}||\phi||_{u} \forall\phi\in C_{K}(\Omega) .

Hence \mu^{*}1\nearrow\in C_{C}^{*}(\Omega) .
(b) If \Omega=G but (x, \omega)\}arrow x\cdot\omega is not the group multiplication in G,

our definition of \mu^{*}1/ is confusing. In such a case, we shall write \mu*_{\theta}\iota_{J} for
\mu^{*}l/ , where \theta(x, \omega)=x\cdot \omega for x\in G and \omega\in\Omega .

(2. 3) DEFINITION. A weight (function) on G is a strictly positive
(finite) Borel function w on G which is submultiplicative:

w(xy)\leq w(x)w(y) \forall x , y\in G .

Let w be such a function.
(a) Let L_{1}(w)=L_{1}(w\lambda_{G})=L_{1}(G, w\lambda_{G}) . Thus L_{1}(w)=L_{1}(G) for w=1 .
(b) For \mu\in C_{c}^{*}(G) , define ||\mu||_{M(w)}=||w\mu||_{M} . Let

M(w)=\{\mu\in C_{c}^{*}(G):||\mu||_{M(w)}<\infty\} .

Our definition of a weight function is weaker than the corresponding
definition in H. Reiter [11; p.83], where the reader will find some interest-
ing examples of weight functions. The following two results are essen-
tially well-known.
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(2. 4) LEMMA. Let w be a weight function on G. Then:
(a) Both w and 1/w are locally bounded on G.
(b) For each a<1 , \{w>a\} contains a neighborhood of e\in G.
(c) L_{1}(w)\subset M(w) isometrically in the sence that ||f\lambda_{G}||_{M(w)}=||fw||_{1} for

f\in L_{1}(w) .

PROOF: Choose \eta<\infty so that \{x\in G:w(x)+w(x^{-1})<\eta\} contains a
compact set E with \lambda_{G}(E)>0 . Then E^{-1}E contains a neighborhood of e
by the Steinhaus Theorem, and

w(x^{-1}y)\leq w(x^{-1})w(y)<\eta^{2} \forall x , y\in E .

Therefore w is bounded on some nighborhood of e , and hence on each
compact subset of G. Since 0<w(e)\leq w(x^{-1})w(x) for each x\in G , 1/w is
also bounded on each compact subset of G, which establishes (a).

To prove (b), pick any a<1 and any precompact neighborhood U of
e . Since 1/w is bounded on U by (a), there exists \gamma>0 such that w(x)\geq

\gamma for all x\in U . Choose a natural number n and a neighborhood V of e
so that V^{n}\subset U and \gamma^{1/n}>a . Then x\in V implies

w(x)\geq[w(x^{n})]^{1/n}\geq\gamma^{1/n}>a .

Hence V\subset\{w>a\} , which confirms (b).
Part (c) is obvious.

(2. 5) LEMMA. Let w be a weight function on G. Then each of
L_{1}(w) and M(w) forms a Banach algebra under convolution. Moreover,
farrow f\lambda_{G} is an isometric isomorphism of L_{1}(w) onto a closed twO-sided
ideal of M(w) .

PROOF: Plainly M(w) is a vector subspace of C_{c}^{*}(G) and || ||_{M(w)} is
a complete norm on it.

Now let \mu , \nu\in M(w) be given. To prove that \mu*\nu exists, pick any
\phi\in C_{c}(G) . Since 1/w is bounded on supp \phi by the last lemma, we can
find \alpha<\infty such that |\phi|\leq\alpha w on G. Then

| \langle_{x}\phi, \nu\rangle|\leq\int|\phi(xy)|d|\nu|(y)

\leq\alpha\int w(xy)d|\nu|(y)

\leq\alpha w(x)\int w(y)d|\nu|(y)

=\alpha w(x)||\nu||_{M(w)} .

Since \mu\in M(w) , it follows that x arrow\langle_{\chi}\phi, 1\nearrow\rangle is in L_{1}(G, |\mu|) . As \phi\in C_{c}(G)
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was arbitrary, we conclude that \mu^{*}1/ exists.
Now w is strictly positive on G, and so each element of M(w) has

\sigma-compact support. In particular, \mu*\nu has \sigma-compact support. So it is
easy to show that

||w( \mu*\nu)||_{M}=\int wd|\mu*1/|

\leq\int d|\mu|(x)\int w(xy)d|\nu|(y)

\leq\int w(x)d|\mu|(x)\int w(y)d|\nu|(y)

=||\mu||_{M(w)}||_{1/}||_{M(w)} .

Hence \mu*\nu\in M(w) and ||\mu*1/||_{M(w)}\leq||\mu||_{M(w)}||\nu||_{M(w)} .
Plainly the convolution product on M(w) is bilinear. Also its as-

sociativity follows from (2. 9) stated below. Hence M(w) is a Banach
algebra under convolution. The proof of the second assertion is left to
the reader.

(2. 6) LEMMA. Let f/\in C_{c}^{*}(G) , \rho\in C_{c}^{*}(\Omega) , and h a continuous func-
tion on \Omega . Suppose that |\nu|*|\rho| exists and h\in L_{1}(\Omega, |\nu|*|\rho|) . Then:

(a) The function
g(x):= \int_{\Omega}|h(x\cdot\omega)|d|\rho|(\omega) \forall x\in G

is lower semi-continuous and belongs to L_{1}(G, |\nu|) .
(b) The function

x arrow\int_{\Omega}h(x\cdot\omega)d\rho(\omega)

defifined on \{g<\infty\} is Borel measurable and belongs to L_{1}(G, |1’|) .
(c) \nu*\rho exists, h\in L_{1}(\Omega, |1\nearrow*\rho|) , and

\int_{\Omega}hd(\nu*\rho)=\int_{G}\{\int_{\Omega}h(x\cdot\omega)d\rho(\omega)\}d1/(x) .

PROOF: Without loss of generality, we may suppose that h\geq 0 . For
each nonnegative Borel function f on \Omega , define

f’(x)= \int_{\Omega}f(x\cdot\omega)d|\rho|(\omega) \forall x\in G .

Now let D=\{\phi\in C_{c}^{+}(\Omega):\phi\leq h\} . Notice that D is directed in the sense
that given \phi_{1} , \phi_{2}\in D , there exists \phi_{3}\in D such that \max\{\phi_{1}, \phi_{2}\}\leq\phi_{3} . More-
over, h is a nonnegative lower semi-continuous (in fact, continuous) func-
tion on \Omega . It follows from Theorem (9. 11) of E. Hewitt and K. Strom-
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berg [6] that for each x\in G ,

(1) h’(x)= \int_{\Omega}h(x\cdot\omega)d|\rho|(\omega)

= \sup\{\phi’(x):\phi\in D\} .

Since each \phi’ with \phi\in D is continuous, we see that h’ is lower semi-con-
tinuous (and hence Borel measurable).

Now it is clear that \{\phi’ : \phi\in D\} is directed. So the theorem cited
above ensures that

\int_{G}h’d|\iota\nearrow|=\sup\{\int_{G}\phi’d|\nu| : \phi\in D\} by (1)

= \sup\{\int_{G}\langle_{x}\phi, |\rho|\rangle d|\nu|(x):\emptyset\in D\}

= \sup\{\langle\phi, |\nu|*|\rho|\rangle:\phi\in D\}

= \int_{\Omega}hd(|_{1/}|*|\rho|)<\infty .

Therefore (a)-(c) hold with (\nu, \rho) replaced by (|\nu|, |\rho|) .
Finally, there exist positive regular Borel measures f1_{k} on G(1\leq k\leq 4) ,

with f/_{k}\leq|1\nearrow| , such that \iota/=\nu_{1}-\nu_{2}+i(\nu_{3}-\nu_{4}) as linear functionals on C_{c}(G) .
Similarly there exist positive regular Borel measures \rho_{k} on \Omega(1\leq k\leq 4) ,
with \rho_{k}\leq\rho , such that \rho=\rho_{1}-\rho_{2}+i(\rho_{3}-\rho_{4}) as linear funct\dot{l}onals on C_{c}(\Omega) .
Since |\nu|*|\rho| exists and h\in L_{1}(\Omega, |\mu|*|l’|) , it is clear that f\nearrow j^{*}\rho_{k} exists and h
\in L_{1}(\Omega, \iota/_{j}*\rho_{k}) for j, k\in\{1,2,3, 4\} . Therefore (a)-(c) hold with (\nu, \rho) re-
placed by each (\nu_{j}, \rho_{k}) , which obviously completes the proof.

(2. 7) DEFINITIONS. (a) A convolution algebra on G is a normed
space A on G such that for each \mu , \nu\in A , the convolution \mu*\nu exists in A
and ||\mu*\nu||_{A}\leq||\mu||_{A}||\nu||_{A} .

(b) Let A be a convolution algebra on G. A left normed (resp,
Banach) A-module on \Omega is a normed (resp. Banach) space B on \Omega such
that for each )/\in A and \rho\in B , 1y*\rho exists in B and ||\nu*\rho||_{B}\leq||\nu||_{A}||\rho||_{B} .

(c) A normed space S on \Omega has the L-property if \phi\in C_{c}(\Omega) and \nu\in

S implies \phi 1’\in S and ||\phi\nu||_{s}\leq||\phi||_{u}||\nu||_{S} (cf. J.E. Taylor [17]). If, in addition,
the elements of S with compact support are dense in S, then S has the
strong L-property.

Note that, in (a), the associativity of the convolution on A is not pos-
tulated.

(2. 8) THEOREM. Let A be a convolution algebra on G which has the
L-property, and let B be a normed space on \Omega . Suppose that for each (\nu,
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\rho)\in A\cross B, \})^{*}\rho exists in B^{-} and ||\nu*\rho||_{B}-\leq||\nu||_{A}||\rho||_{B} . Then A^{-} is a convO-

lution algebra on G, B^{\sim}is a left Banach A^{\sim}- module on \Omega , and
(*) (\mu*\nu)*\rho=\mu*(l_{J^{*}}\rho) \forall\mu, \nu\in A^{\sim} and \rho\in B^{\sim}

PROOF: Given \rho\in B^{\sim} choose a net (\rho_{a}) in B such that

(1) \sup_{a}||\rho_{a}||_{B}\leq||\rho||_{B}
- and \rho_{a}arrow\rho in \sigma(C_{c}^{*}, C_{C}) .

Such a net exists by Theorem (1. 4). We claim that for each \phi\in C_{c}(\Omega)

and each compact set E\subset G ,

(2) \langle_{x}\phi, \rho_{a}\ranglearrow\langle_{x}\phi, \rho\rangle uniformly in x\in E .

In fact, let S=supp\phi and K= {x^{-1}\cdot\omega:x\in E and w\in S}. Then K is a
compact subset of \Omega , and \chi\phi\in C_{K}(\Omega) for each x\in E . Since B is a normed
space on \Omega , there exists a finite constant \eta_{K} such that

(3) |\langle\phi, \rho’\rangle|\leq\eta_{K}||\phi||_{u}||\rho’||_{B} \forall\emptyset\in C_{K}(\Omega) and \rho’\in B .

Therefore x , y\in E implies

|\langle_{x}\phi, \rho_{a}\rangle-\langle_{y}\phi, \rho_{a}\rangle|=|\langle_{x}\phi-_{y}\phi, \rho_{a}\rangle|

\leq\eta_{K}||_{x}\phi-_{y}\phi||_{u}||\rho_{a}||_{B} by (3)
\leq\eta_{K}||_{x}\phi-_{y}\phi||_{u}||\rho||_{B^{-}} by (1).

As \phi\in C_{c}(\Omega) , this shows that the functions x arrow\langle_{x}\phi, \rho_{a}\rangle are equi-continu-
ous at each point of E . Since \langle_{x}\phi, \rho_{a}\ranglearrow\langle_{x}\phi, \rho\rangle for each x\in G by (1)

and E is compact, (2) follows from the Arzel\‘a-Ascoli Theorem.
Now set

(4) || \phi||_{B}*=\sup { |\langle\phi , \rho\rangle| : \rho\in B^{\sim} and ||\rho||_{B}-\leq 1 } \forall\phi\in C_{c}(\Omega) .

We claim that 1’\in A^{\sim} and \rho\in B^{-} implies

(5) \int|\langle_{x}\phi, \rho\rangle|d|\nu|(x)\leq||\phi||_{B^{*}}||\nu||_{A}-||\rho||_{B^{-}} \forall\phi\in C_{c}(\Omega) .

Suppose to the contrary that (5) is false for some \phi\in C_{c}(\Omega) :

|| \phi||_{B}*||\nu||_{A}-||\rho||_{B^{-<}}\int|\langle_{x}\phi, \rho\rangle|d|\nu|(x) .

Since x arrow\langle_{x}\phi, \rho\rangle is continuous, it follows from the regularity of |\iota/| that
there exists \emptyset\in C_{c}(G) such that ||\phi||_{u}\leq 1 and

|| \phi||_{B^{*}}||\nu||_{A}-||\rho||_{B}-<|\int\langle_{x}\phi, \rho\rangle\phi(x)d\nu(x)| .

As \rho\in B^{\sim} Theorem (1. 4) and (2) ensure that there exists \rho’\in B such
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that ||\rho’||_{B}\leq||\rho||_{B}- and

|| \phi||_{B^{*}}||\nu||_{A}-||\rho’||_{B}<|\int\langle_{x}\phi, \rho’\rangle\phi(x)d\nu(x)| .

Similarly we can find \nu’\in A such that ||\nu’||_{A}\leq||1\nearrow||_{A}-and

(6) || \phi||_{B}*||\nu’||_{A}||\rho’||_{B}<|\int\langle_{x}\phi, p’\rangle\phi(x)d_{1\nearrow}’(x)| .

Upon utilizing the L-property of A, we obtain
||\phi||_{B}*||\nu’||_{A}||\rho’||_{B}<|\langle\phi, (\phi\nu’)*\rho’\rangle| by (6)

\leq||\phi||_{B}*||(\phi_{1’}’)*\rho’||_{B^{-}} by (4)
\leq||\phi||_{B}*||\phi_{1^{r}}/||_{A}||\rho’||_{B} by hypothesis
\leq||\phi||_{B}*||\nu’||_{A}||\rho’||_{B} ,

which is of course a contradiction. This reductio ad absurdum establishes
(5).

Recall that (B^{\sim})^{\sim}=B^{\sim} isometrically by Theorem (1. 4). It follows
from (5) and Theorem (1. 7) that \nu\in A^{-} and \rho\in B^{\sim} implies )/*\rho exists in
B^{\sim} and

(7) ||_{1\nearrow}*\rho||_{B}-\leq||\nu||_{A^{-}}||\rho||_{B}-.

If we take \Omega=G , x\cdot\omega=x\omega(x, \omega\in G) and B=A, then (7) ensures that A^{\sim}

is a convolution algebra on G. Therefore, again by (7), B^{\sim} is a left
Banach A^{-}-module on \Omega .

Now we claim that \mu\in A^{-} implies |\mu|\in A^{\sim} and |||\mu|||_{A} - \leq||\mu||_{A} -. In fact,
an easy application of Lusin’s Theorem yields a net (\phi_{a}) in C_{c}(G) such
that ||\phi_{a}||_{u}\leq 1 for each \alpha and \phi_{a}\muarrow|\mu| in \sigma(C_{c}^{*}, C_{c}) . Since A has the
L-property, it is clear that A^{\sim} has the L-property as well. Hence ||\phi_{a}\mu||_{A} -

\leq||\mu||_{A}-for each \alpha , and so |\mu|\in A^{-} and |||\mu|||_{A}- \leq||\mu||_{A}-by Theorem (1. 4).
To complete the proof, pick any \mu , \nu\in A^{\sim} and \rho\in B^{\sim} Then |\mu| , |f\nearrow|

\in A^{\sim} by the above claim, |\mu|*|\nu|\in A^{\sim} since A^{\sim} is a convolution algebra
on G, and so (|\mu|*|\nu|)*\rho exists since B^{\sim} is a left Banach A^{\sim}-module on \Omega .
If \phi\in C_{c}(\Omega) , it follows that the continuous function xarrow\langle_{x}\phi, \rho\rangle belongs to
L_{1}(G, |\mu|*|1/|) ; Hence

\langle\phi, (\mu*\nu)*\rho\rangle=\int_{G}\langle_{x}\phi, \rho\rangle d(\mu*\nu)(x)

= \int_{G}\int_{G}\langle_{xy}\phi, \rho\rangle d\nu(y)d\mu(x) by (2. 6)

= \int_{G}\langle_{x}\phi, \nu*\rho\rangle d\mu(x) since xy\phi=_{\mathcal{Y}}(_{\chi}\phi)

=\langle\phi, \mu*(\nu*\rho)\rangle .
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As \phi\in C_{c}(\Omega) was arbitrary, this establishes (*) , which completes the
proof.

(2. 9) REMARKS: By (2. 8) with \Omega=G , x\cdot \omega=x\omega(x, \omega\in G) and B=A,
the convolution on a convolution algegra A is associative whenever A has
the L-property. In particular, the convolution on M(w) is associative for
each weight function w on G .

(2. 10) PPOROSITION. In addition to the hypotheses of (2. 8), suppose
that A has the strong L-property, \nu\in A, \rho\in B^{\wedge} and (\rho_{a}) is a norm
-bounded net in B^{\sim}such that \rho_{a}arrow\rho in \sigma(C_{c}^{*}, C_{c}) . Then \nu*\rho_{a}arrow fJ^{*}\rho in
\sigma(C_{c}^{*}, C_{c}) .

PROOF: Upon replacing each \rho_{a} by \rho_{a}-\rho , we may suppose that \rho=

0 . Pick any \phi\in C_{c}(\Omega) . We need to show that \langle\phi_{ fJ},*\rho_{a}\ranglearrow 0 .
Let \epsilon>0 be given. As A has the strong L-property, we can find \nu’\in

A with compact support such that ||\nu-1\nearrow|’|_{A}<\epsilon . Moreover, the net (\rho_{a}) is
norm-bounded in B^{\sim} and \rho_{a}arrow 0 in \sigma(C_{c}^{*}, C_{c}) . Hence the functions xarrow

\langle_{x}\phi, \rho_{a}\rangle converge to 0 uniformly on each compact subset of G (see the
proof of (2. 8) ) . As supp f1’ is compact, it follows that

(1) \langle\phi, \nu’*\rho_{a}\rangle=\int\langle_{x}\phi, \rho_{a}\rangle d_{1/}’(x)arrow 0 .

Also there exists a finite constant \eta_{K} such that

(2) |\langle\phi, \rho’\rangle|\leq\eta_{K}||\phi||_{u}||\rho’||_{B^{-}} , \forall\rho’\in B^{\sim}

where K=supp\phi . Hence
|\langle\phi, (\nu-1’/)*\rho_{a}\rangle|\leq\eta_{K}||\phi||_{u}||(_{1\prime-f_{J}’})*\rho_{a}||_{B^{-}} by (2)

(3) \leq\eta_{K}||\phi||_{u}||\nu-\nu’||_{A}-||\rho_{a}||_{B^{-}} by (2. 8)
\leq\eta_{K}||\phi||_{u}\cdot\epsilon\gamma ,

where \gamma=\sup_{a}||\rho_{a}||_{B}-<\infty . Since \epsilon>0 was arbitrary, we conclude from (1)
and (3) that \langle\phi, \nu*\rho_{a}\ranglearrow 0 , as desired.

(2. 11) DEFINITIONS. Let A be a convolution abgebra on G, and let
B be a left Banach A-module on \Omega . A multiplier (or module-homomor-
phism) from A into B is a bounded linear mapping T:Aarrow B such that

T(\mu*\iota_{J})=\mu*(T\nu) \forall\mu , \nu\in A .

The space of all such T’s is denoted by \mathscr{M}(A, B) . For \rho\in C_{c}^{*}(\Omega) , we
write \rho\in \mathscr{M}(A, B) to mean that the expression T_{\rho}\nu=\nu*\rho(\nu\in A) defines
an element T_{\rho} of \mathscr{M}(A, B) .
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Note that \mathscr{M}(A, B) forms a Banach space with respect to the opera-
tor norm.

(2. 12) THEOREM. Let A be a convolution Banach algebra on G with
the strong L-property, and let B be a left Banach A-module on \Omega . Suppose
that A has a bounded right approximate identity (\nu_{a}) such that \nu_{a}*\rhoarrow\rho in
\sigma(C_{c}^{*}, C_{c}) for each \rho\in B^{-} Then:

(a) Each T\in \mathscr{M}(A, B) has the form T=T_{\rho} for a unique \rho\in B^{\sim}

(b) If A*B^{\sim}\subset B, then \rhoarrow T_{\rho} is a Banach space isomorphism of B^{\sim}

onto \mathscr{M}(A, B) . If in addition, \lim_{a}||1\prime_{a}||_{A}=1 and ||\cdot||_{B}-=||\circ||_{B} on B, then

the isomorphism is isometric.

PROOF: Pick any \nu\in C_{c}^{*}(G) with compact support. For \phi\in C_{c}(\Omega) ,

set

( \phi\cdot\nu)(\omega)=\int\phi(x\cdot\omega)d_{1}\nearrow(x) \forall\omega\in\Omega .

It is clear that \phi\cdot 1/\in C_{c}(\Omega) . Moreover, )/*\rho exists for each \rho\in C_{c}^{*}(\Omega) , and

(1) \langle\phi\cdot\iota\nearrow, \rho\rangle=\langle\phi, \nu*\rho\rangle \forall\phi\in C_{c}(\Omega) and \rho\in C_{c}^{*}(\Omega)

by Fubini’s Theorem.
Now A has the L-property, so B^{\sim} is a left Banach A^{-}-module (hence

A-module) on \Omega by Theorem (2. 8). Let T\in \mathscr{M}(A, B) be given. Since
(1\nearrow_{a}) is a bounded net in A, ( T\nu_{a}) is a bounded net in B. It follows from
Theorem (1. 4) that ( T\nu_{a}) has a \sigma(C_{c}^{*}, C_{c})-cluster point \rho\in B^{-} such that
||\rho||_{B}-\leq\gamma||T|| , where \gamma=\lim\inf_{a}||\nu_{a}||_{A} . Passing to a subnet, we may sup-
pose that T\nu_{a}arrow\rho in \sigma(C_{c}^{*}, C_{C}) . To prove T=T_{\rho} , pick any \mu\in A with
compact support. Then \phi\in C_{c}(\Omega) implies

\langle \phi, T\mu\rangle=\lim_{a}\langle\phi, T(\mu*_{1/a})\rangle

= \lim_{a} \langle ^{\phi}

= \lim_{a}\langle\phi\cdot\mu, T_{11a}\rangle by (1)

=\langle\phi\cdot\mu, \rho\rangle=\langle\phi, \mu*\rho\rangle by (1).

Hence T\mu=\mu*\rho whenever \mu\in A has compact support. In general, choose
a sequence (\mu_{n}) in A such that each \mu_{n} has compact support and ||\mu_{n}-\mu||_{A}

arrow 0 ; such a sequence exists since A has the strong L-property. Then

||T\mu-\mu*\rho||_{B}-\leq||T(\mu-\mu_{n})||_{B}-+||(\mu_{n}-\mu)*\rho||_{B^{-}}

\leq||T||\cdot||\mu-\mu_{n}||_{A}+||\mu_{n}-\mu||_{A}||\rho||_{B^{-}}

arrow 0 as narrow\infty .
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Hence T\mu=\mu*\rho for each \mu\in A . We have thus proved that
(2) ||\rho||_{B}- \leq\gamma||T|| and T=T_{\rho} .

Moreover, Tfy_{a}=\nu_{a}*\rhoarrow\rho in \sigma(C_{c}^{*}, C_{c}) by hypothesis, so the element \rho\in

B^{-} satisfying T=T_{\rho} is unique, which establishes (a).
To prove (b), suppose that A*B^{-}\subset B . Choose and fix any \rho\in B^{\sim}

and let T_{\rho}\mu=\mu*\rho for each \mu\in A . Then T_{\rho} is linear and T_{\rho}(\mu*\nu)=\mu*T_{\rho}\nu

for each \mu , 1/\in A by Theorem (2. 8). To prove T_{\rho}\in \mathscr{M}(A, B) , we need to
check the continuity of T_{\rho} . Suppose (\nu_{n}) is a sequence in A such that
||\iota/_{n}||_{A}arrow 0 . Then ||T_{\rho 1Jn}||_{B}-=||\iota/_{n}*\rho||_{B}-\leq||\nu_{n}||_{A}||\rho||_{B^{-}}-arrow 0 . Since ||\circ||_{B}- \leq||\cdot||_{B} on
B, it follows from the Closed Graph Theorem that T_{\rho} : Aarrow B is bounded.
Hence T_{\rho}\in \mathscr{M}(A, B) . One more application of the Closed Graph Theorem
shows that

(3) \rhoarrow T_{\rho} : B^{-}arrow \mathscr{M}(A, B)

is bounded. From this and (2), we infer that the mapping in (3) is a sur-
jective Banach space isomorphism.

Now suppose further that \gamma=1 and ||\cdot||_{B}- =||\cdot||_{B} on B. Then \rho\in B^{\wedge}

and )/\in A implies
||T_{\rho}\nu||_{B}=||\nu*\rho||_{B^{-}}

\leq||\nu||_{A}||\rho||_{B^{-}} by (2. 8).

Hence ||T_{\rho}||\leq||\rho||_{B}-, which combined with (2) completes the proof.

(2. 13) REMARKS: It is possible to reduce the last theorem from The-
orem 4 of C.V . Comisky [2]. However, his proof is based upon some
results of M. Rieffel [12] involving projective tensor products, and first of
all, we can easily modify our proof to obtain a quick and direct proof of
his theorem.

(2. 14) DEFINITION. A weight function w on G is moderate if given a
neighborhood V of e\in G and a>0 , V\cap\{w<1+a\} has positive Haar mea-
sure.

(2. 15) COROLLARY. Let w be a weight function on G, and let B be a
left Banach L_{1}(w)-module on \Omega .

(i) If the closed unit ball of B is \sigma(C_{c}^{*}, C_{c})- compact, then \rhoarrow T_{\rho}

is a Banach space isomorphism of B onto \mathscr{M}(L_{1}(w), B) . If in addition, w
is moderate, then the isomorphism is isometric.

(ii) If R is a closed subspace of B^{-} such that L_{1}(w)*B^{\sim}\subset R , then \rho

arrow T_{\rho} is a Banach space isomorphism of B^{\sim} onto \mathscr{M}(L_{1}(w), B_{0}) . If, in
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addition, w is moderate, then the isomorphism is isometric.

PROOF: We shall first construct a bounded approximate identity for
L_{1}(w) .

By Lemma (2. 4), w is locally bounded. So we can find a<\infty such
that for each neighborhood V of e\in G , V\cap\{w\leq a\} has nonzero Haar
measure. Choose and fix any compact neighborhood V_{0} of e . With each
neighborhood V\subset V_{0} of e , associate any nonnegative simple Borel func-
tion g_{V} on G such that

(1) \int g_{V}dx=1 and \{g_{V}>0\}\subset V\cap\{w\leq a\} .

This defines a net (g_{V}) in L_{1}^{+}(w) , where the V’s are directed downward by
set-inclusion. Note that

(2) ||g_{V}w||_{1}= \int g_{V}wdx\leq a

by (1).
If f\in L_{1}(w) , then

(3) ||(f*g_{V})w||_{1}\leq||fw||_{1}||g_{V}w||_{1}\leq a||fw||_{1}

by Lemma (2. 5) and (2). Moreover, \emptyset\in C_{c}(G) implies

supp (\phi*g_{V})\subset(supp\phi)V_{0}

and ||\psi*g_{V}-\phi||_{u}arrow 0 by (1). Since w is locally bounded, it follows that
||(\phi*g_{V}-\phi)w||_{1}arrow 0 . Moreover, (3) shows that the operators f -arrow f*g_{V} :
L_{1}(w)arrow L_{1}(w) have norms \leq a . As C_{c}(G) is dense in L_{1}(w) , we conclude
that

(4) ||(f*g_{V}-f)w||_{1}arrow 0 \forall f\in L_{1}(w) .

In other words, the g_{V} ’s form a bounded right approximate identity with
norm\leq a . Also it is easy to check that

(5) g_{V}*\rhoarrow\rho in \sigma(C_{c}^{*}, C_{c}) \forall\rho\in C_{c}^{*}(\Omega) .

Now consider the case where w is moderate. Then the net (g_{V}) can
be chosen to satisfy ||g_{V}w||_{1}arrow 1 . In fact, if G is discrete, this is obvious.
So suppose that G is nondiscrete. Then, since w is moderate, we can
replace a in (1) by 1+\lambda_{G}(VI to get ||g_{V}w||_{1}\leq 1+\lambda_{G}(V) ; hence ||g_{V}w||_{1}arrow 1 .

We are now ready to prove (i) and (ii). If (B)_{1} is \sigma(C_{c}^{*}, C_{c})-com-
pact, then B^{-}=B isometrically by Corollary (1. 5). Hence (i) follows
from Theorem (2. 12) with A=L_{1}(w) .
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To prove (ii), let B_{0} be a closed subspace of B^{\sim} such that L_{1}(w)*B^{-}

\subset B_{0} . We of course equip B_{0} with ||\cdot||_{B}-. Since (B^{\sim})^{-}=B^{\sim} isometrically,
it is obvious that

(6) \rho\in B_{0}^{-\supset}\rho\in B^{-} and ||\rho||_{B}- \leq||\rho||_{B} -.

To show B_{0}^{-}=B^{\sim} let a and g_{V}\in L_{1}^{+}(w) be as in the above construction.
Then \rho\in B^{\sim} implies

||g_{V}*\rho||_{B_{0}}=||g_{V}*\rho||_{B}-\leq a||\rho||_{B^{-}}

by Theorem (2. 8) and (2), and g_{V}*\rhoarrow\rho in \sigma(C_{c}^{*}, C_{c}) by (5). Therefore

(7) \rho\in B^{\sim}\supset\rho\in B_{0}^{-} and ||\rho||_{B_{0}}-\leq a||\rho||_{B}-.

From (6) and (7), we infer that B^{\sim}=B_{0}^{\sim} as sets and ||\rho||_{B}- \leq||\rho||_{B_{0}}-\leq a||\rho||_{B}-

for each \rho\in B^{-} It is now obvious that if w is moderate, then B^{\sim}=B_{0}

isometrically. Hence (ii) also follows Theorem (2. 12), which completes
the proof.

\S 3. Lorentz spaces L_{p,q} .
This section gives brief accounts of Lorentz spaces. For the proofs of

some of those results which are stated without proof, see Hunt [7] and
Yap [21].

Let (X, \mu) be a measure space, and let f be a measurable function on
X. For each 0\leq s<\infty , let

\mu_{f}(s)=\mu(|f|>s)=\mu(\{|f|>s\}) .

The function \mu f is called the distribution function of f (with respect to \mu).
The decreasing rearrangement function of f is the function f^{*} on (0, \infty)

defined by

f^{*}(t)= \inf\{s\geq 0 : \mu_{f}(s)\leq t\} ,

where \inf\emptyset=+\infty . Thus both \mu f and f^{*} are [0, \infty]-valued decreasing
“right-continuous” functions on (0, \infty) . Let

f^{**}(t)= \frac{1}{t}\int_{0}^{t}f^{*}ds \forall t\in(0, \infty) .

For p, q\in(0^{ },\infty) , we define

||f||_{p,q}^{*}=||f||_{p,q,\mu}^{*}=( \frac{q}{p}\int_{0}^{\infty}[f^{*}(t)]^{q}t^{\frac{q}{p}1}dt)^{\frac{1}{q}}

||f||_{p,q}=||f||_{p,q,\mu}=( \frac{q}{p}\int_{0}^{\infty}[f^{**}(t)]^{q}t^{\frac{q}{p}1}dt)^{\frac{1}{q}}
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If 0<p<q=\infty , we also define

||f||_{p,\infty}^{*}=su_{>}tPt^{\frac{1}{p}}f^{*}(t) and ||f||_{p,\infty}= \sup_{t>0}t^{\frac{1}{p}}f^{**}(t) .

Finally, let ||f||_{\infty,\infty}^{*}=||f||_{\infty,\infty}=||f||_{\infty} .
For 0<p<\infty and 0<q\leq\infty , the Lorentz space L_{p,q}(X, \mu) is defined to

be the vector space of all (equivalence classes of) measurable functions f
on X with ||f||_{p,q}^{*}<\infty . For p=q=\infty , we let L_{p,q}(X, \mu)=L_{\infty}(X, \mu) .

(3. 1) REMARKS: Let f, g be two measurable functions on X, 0<p
<\infty , and 0<q\leq\infty .

(a) If |f|\leq|g|a.e. , then \mu_{f}\leq\mu_{g} and so f^{*\leq}g^{*} .
(b) (|f|^{p})^{*}=(f^{*})^{p} and (\alpha f)^{*}=|\alpha|f^{*} for \alpha\in C .
(c) For t , s>0 , we have f^{*}(t)\leq s if and only if \mu_{f}(s)\leq t . Hence \mu_{f}=

\lambda_{f^{*}} , where \lambda is the Lebesgue measure restricted to (0, \infty) . Moreover, one
checks that

||f||_{p,\infty}^{*}= \sup_{t>0}t^{\frac{1}{p}}f^{*}(t)=\sup_{s>0}s[\mu_{f}(s)]^{\frac{1}{p}} .

(d) If f\in L_{p,q}(X, \mu) , then ||f||_{p,\infty}^{*}\leq||f||_{p,q}^{*},\cdot in particular, \mu_{f}(s)<\infty for
each s>0 and L_{p,q}\subset L_{p,\infty} .

(e) ||f||_{p,p}^{*}=||f||_{p} and L_{p,p}(X, \mu)=L_{p}(X, \mu) .
(f) It is not difficult to show that for 1\leq q\leq p<\infty , ||c ||_{p.q}^{*} is a com-

plete norm on L_{p,q}(X, \mu) . However, if p<q , then ||\cdot ||_{p,q}^{*} is not a norm on
L_{p,q}(X, \mu) in general.

(g) For p\leq 1 , our definition of ||f||_{p,q} is different from the usual one
[7].

(3. 2) THEOREM. Let 1<p<\infty and 1\leq q\leq\infty . Then

||f||_{p,q}^{*} \leq||f||_{p,q}\leq\frac{p}{p-1}||f||_{p,q}^{*}

for each measurable function f on X. Moreover, ||\cdot ||_{p,q} is a complete norm
on L_{p,q}(X, \mu) .

(3. 3) LEMMA. Let f be a measurable function on X, and let E\subset X

be a measumable set. Then

(i) \int_{E}|f|d\mu\leq\int_{0}^{\mu(E)}f^{*}ds.

Moreover, if
(ii) s>0 and \mu(E\cap\{|f|>s\})<\mu(E)\supset\mu(\{|f|>s\}\backslash E)=0 ,
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then equality obtains in (i). Conversely, if equality obtains in (i) and both
sides are fifinite, then (ii) holds.

PROOF: We may suppose that f\geq 0 . Since \mu_{f}=\lambda_{f^{*}} by (3. 1)(c) , it
follows that

(1) \int fd\mu=\int_{0}^{\infty}\mu_{f}(s)ds

= \int_{0}^{\infty}\lambda_{f^{*}}(s)ds

= \int_{0}^{\infty}f^{*}dt .

Also it is easy to check that f^{*}(t)=0 if and only if t>\mu_{f}(0) . It follows
from (1) applied to \chi_{E}f that

(2) \int_{E}fd\mu=\int_{0}^{\infty}(\chi_{E}f)^{*}dt

= \int_{0}^{\mu(E)}(\chi_{E}f)^{*}dt

\leq\int_{0}^{\mu(E)}f^{*}dt ,

which establishes (i).
By applying (3. 1)(c) , we can show that (ii) holds if and only if (\chi_{E}f)^{*}

=f^{*} on (0, \mu(E)) . This fact combined with (2) completes the proof.

(3. 4) The Hardy-Littlewood Inequality. Let f_{1} , \ldots . f_{n} be measurable
functions on X, and let E\subset X be measurable. Then

\int_{E}|f_{1}\ldots f_{n}|d\mu\leq\int_{0}^{\mu(E)}f_{1}^{*}\ldots f_{1}^{*}dt .

PROOF: We may suppose that f_{1} , \ldots , f_{n}\geq 0 . Note that for n=1 , the
desired inequality is nothing but (3, 3)(i) . So suppose that n\geq 2 and the
result is true with n replaced by n-1 .

Set f=f_{1} , g=f_{2}\ldots f_{n} , and \phi=f_{2}^{*}\ldots f_{n}^{*} . Then the inductive hypothesis
ensures shat

\int f_{1}\ldots f_{n}d\mu=\int\int_{0}^{f(x)}dsg(x)d\mu(x)

= \int_{0}^{\infty}\int_{\{f>S\}}gd\mu ds

\leq\int_{0}^{\infty}\int_{0}^{\mu_{f}(S)}\phi(t)dtds

= \int_{0}^{\infty}\int_{\{f^{*}>S\}}\phi(t)dtds by (3. 1)(c)
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= \int_{0}^{\infty}f^{*}(t)\phi(t)dt .

Finally, replace f_{1} by \chi_{E}f_{1} to get the desired inequality.

(3. 5) THEOREM. Suppose p, q\in[1, \infty) and q=1 if p=1 . If f, g are
measurable functions on X, then

\int|fg|d\mu\leq\int_{0}^{\infty}f^{*}g^{*}dt

\leq C_{p,q}||f||_{p,q}^{*}||g||_{pq^{r}}^{*}" ,

where C_{p,q}=(p/q)^{\frac{1}{q}}(p’/q’)^{\frac{1}{q}}’ if p, q>1 and C_{p,q}=p otherwise.

PROOF: The first inequality is the special case of (3. 4) with n=2
and E=X. In the case p, q>1 , we apply H\"older’s Inequality to the func-

tions f^{*}(t)t^{\frac{1}{p}} , g^{*}(t)^{\frac{1}{p}}’ and to the measure t^{-1}dt to obtain the second in-
equality. The other case is almost obvious.

(3. 6) REMARKS AND DEFINITIONS: Suppose p, q\in[1^{ },\infty) and q=1 if p
=1 . If g\in L_{pq}’,’(X, \mu) , then Theorem (3. 5) enables us to define a linear
functional \psi_{g} on L_{p,q}(X, \mu) by

(i) \phi_{g}(f)=\int fgd\mu \forall f\in L_{p,q}(X, \mu) .

Let
(ii) || \phi_{g}||_{\acute{p},q}=\sup\{|\phi_{g}(f)|:||f||_{p,q}^{*}\leq 1\} .

Thus
(iii) ||\phi_{g}||_{\acute{p},q}\leq C_{p,q}||g||_{pq’}^{*}" ,

where C_{p,q} is as in (3. 5).

(3. 7) THEOREM. If 1<p<\infty , then L_{p,1}^{*}(X, \mu)\simeq L_{p^{r},\infty}(X, \mu) . More-
over,

||g||_{p\infty}^{*}"\leq||\phi_{g}||_{\acute{p}\prime,q}\leq p||g||_{p\infty}^{*}” \forall g\in L_{p\infty}’, .

(3. 8) THEOREM. If 1<p , q<\infty , then L_{p,q}^{*}(X, \mu)\simeq L_{p^{r},q’}(X, \mu) . More-
over,

(a) ||g||_{pq^{r}}^{*}"\leq(q/p)^{\frac{1}{q}}||\phi_{g}||_{\acute{p},q} for 1<p\leq q<\infty , and

(b) ||g||_{pq’}^{*}"\leq p’(q’/p’)^{\frac{1}{q}}’||\phi_{g}||_{\acute{p},q} for 1<q\leq p<\infty .

If (X, \mu) has no atoms with fifinite measure, we have better estimates :
namely,

(a ’) ||g||_{pq^{r}}^{*}"=C_{\overline{p},q}^{1}||\phi_{g}||_{\acute{p},q} for 1<p\leq q<\infty , and
(b’) ||g||_{pq’}^{*}"\leq p’C_{\overline{p},q}^{1}||\phi_{g}||_{\acute{p},q} for 1<q\leq p<\infty .
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The proof of (3. 8) is somewhat lengthy and can be found in Appendix
A of [18]. (The corresponding result in Hunt [7] is not as precise as
ours. Also his proof appears to be incomplete.)

(3. 9) THEOREM. Let 1<p<\infty , 1\leq q\leq\infty , and let (f_{a}) be a net in
L_{p,q}(X, \mu) such that ||f_{a}||_{p,q}\leq C for all \alpha ’s and some C<\infty . Then there
exits a subnet (f_{\beta}) of (f_{a}) and f\in L_{p,q}(X, \mu) such that ||f||_{p,q}\leq C and

(*) \lim_{\beta}\int f_{\beta}gd\mu=\int fgd\mu \forall g\in S(p_{J}’q’) ,

where S(p’, q’) is the norm-closure of (L_{p^{\gamma},q^{r}}\cap L_{p2}’,)(X, \mu) in L_{p^{\gamma},q^{r}}(X, \mu) .

PROOF : We shall consider the three cases ( 1<q<\infty , q=1 , and q
=\infty) separately.

Case 1. Suppose 1<q<\infty . Then L_{p,q}(X, \mu)\simeq L_{pq^{r}}^{*}"(X, \mu) by Theorem (3.
8). Since (f_{a}) is a norm-bounded net in L_{p,q}(X, \mu) , it follows that (f_{a})

has a subnet (f_{\beta}) which satisfies (*) for some f\in L_{p,q}(X, \mu) . To prove
||f||_{p,q}\leq C , choose a bounded a linear function \emptyset on L_{p,q}(X, \mu) such that

(1) ||\phi||\leq 1 and \psi(f)=||f||_{p,q} .

By (3, 8) , \emptyset is induced by some g\in L_{p^{r},q’}(X, \mu) ; that is

(2) \phi(h)=\int ghd\mu\forall h\in L_{p,r}(X, \mu) .

Moreover, S_{p^{r},q^{r}}=L_{p\prime,q^{r}}(X, \mu) since 1\leq q’<\infty . So

||f||_{p,q}= \int fgd\mu by (1) and (2)

= \lim_{a}\int f_{a}gd\mu by (*)

= \lim_{a}\phi(f_{a}) by (2)

\leq\lim_{a}\inf||f_{a}||_{p,q} by (1)

\leq C .

Case 2. Suppose q=1 . Then ||f_{a}||_{p,2}\leq||f_{a}||_{p,1}\leq C for all \alpha’s. It follows
from Case 1 that there exists a subnet (f_{\beta}) of (f_{a}) and f\in L_{p,2}(X, \mu) which
satisfy (*) with q=2. It is not difficult to show that f\in L_{p,1}(X, \mu) and (*)

holds for q=1 . Since L_{p.1}^{*}\simeq L_{p\infty}’, by (3. 7), the proof that ||f||_{p,1}\leq C is obvi-
ous from the corresponding proof in Case 1.

Case 3. Suppose q=\infty . As in Case 1, S_{pq^{r}}’,=L_{p^{r},1}(X, \mu) and (f_{a}) has a
subnet (f_{\beta}) which satisfies (*) for some f\in L_{p,\infty}(X, \mu) . To prove ||f||_{p,\infty}\leq
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C , we may suppose that (X, \mu) is a \sigma-finite measure space having no
atoms; simply replace X by \{f\neq 0\} and then (X, \mu) by (X\cross[0,1], \mu\cross\lambda) ,
where \lambda is the Lebesgue measure on [0, 1] .

We claim that give t>0 , there exists a measurable set E\subset X such
that

(3) \int_{E}|f|d\mu=\int_{0}^{t}f^{*}ds and \mu(E)\leq t .

In fact, if t\geq\mu_{f}(0) , then take E=\{f\neq 0\} . If t<\mu_{f}(0) , then we can find E
\subset X such that \mu(E)=t and \{|f|>f^{*}(t)\}\subset E\subset\{(|f|\geq f^{*}(t)\} . In either case,
(3) holds by (3. 3).

Upon setting g=\chi_{E}\cdot sgn\overline{f}_{\Gamma}

, we have

t^{1/p}f^{**}(t)=t^{-1/p^{\gamma}} \int_{0}^{t}f^{*}ds

=t^{-1/p\prime} \int fgd\mu by (3)

=t^{-1/p^{r}} \lim_{\beta}\int f_{\beta}gd\mu by (*)

\leq t^{-1/P’}\lim_{\beta}\inf\int_{E}|f_{\beta}|d\mu

\leq t^{-1/p\prime}\lim_{\beta}\inf\int_{0}^{*}f_{\beta}^{*}ds by (3. 3) and (3)

= \lim_{\beta}\inf t^{1/p}f_{\beta}^{**}(t) .

Hence ||f||_{p,\infty}= \sup_{t}t^{1/p}f^{**}(t)\leq C .

(3.10) REMARKS : Let 1<p<\infty .
(a) As in (3. 9), let S(p’, \infty) be the norm-closure of L_{p\infty}’,\cap L_{p\prime},2 in

L_{p\prime},\infty . For f\in L_{p,1} , let ||f||_{\acute{p},1} denote the norm of the functional g arrow\int fgd\mu

on S(p’, \infty) . By applying Theorem (3. 7), it is readily seen that || ||_{\acute{p},1} is a
norm on L_{p,1} which is equivalent to ||\circ||_{p,1} . Moreover, our proof of (3. 9)
shows that the closed unit ball of L_{p,1} with respect to ||\cdot||_{\acute{p},1} is weak-*
compact, where “weak-* ” refers to the weak-*topology of S^{*}(p’, \infty) . It
follows from the Krein-\check{S}mulian Theorem [15,\cdot p.108] that L_{p,1}\simeq S^{*}(p’, \infty)

in the obvious sense. (A more direct proof is possible.)

(b) If 1<q<\infty , then ||c ||_{p,q} in (3. 9) may be replaced by any norm on
L_{p,q} which is eqivalent to |||||_{p,q} ; in particular, by ||||_{p,q}^{*} if q\leq p . This is
also true for q=1 if the new norm ||\circ|| on L_{p,1} satisfies ||f||\leq||g|| whenever
|f|\leq|g| . Similar comments apply to (3. 11) stated below, as well.
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(3. 11) THEOREM. Let (X, \mathscr{A}-\nu) and (\Omega, \mathscr{B}. \tau) be two a-finite mea-
sure spaces, and let h : X\cross\Omegaarrow[0, \infty] be (\nu\cross\tau)- measurable. Set (xh)(\omega)

=h(x, \omega) for x\in X and \omega\in\Omega , and defifine

(i) ( \nu h)(\omega)=\int h(x, \omega)d\nu(x)

for \tau^{-}a.a . \omega\in\Omega . Then

(ii) || \nu h||_{p,q}\leq\int||xh||_{p,q}d\nu(x) ( 1<p<\infty and 1\leq q\leq\infty ) ;

(iii) || \nu h||_{p,q}^{*}\leq\int||xh||_{p,q}^{*}d\nu(x) (1 \leq q\leq p<\infty) .

PROOF: By the Monotone Convergence and Fubini’s Theorem, we
may suppose that \nu(X)+\tau(\Omega)<\infty and h is a bounded (\mathscr{A}\cross \mathscr{B})-measur-
able function.

Let c\mathscr{B}_{0} be the Borel \sigma-algebra of (0, \infty) . We shall show that (x, t)arrow

(xh)^{*}(t) is (\mathscr{A}\cross \mathscr{B}_{0})-measurable. To this end, fix any s>0 and set

(1) g(x)= \int\chi_{s}(h(x, \omega))d\tau(\omega) \forall x\in X ,

where \chi_{S} is the indicator of (s, \infty) . Then g is \mathscr{A}-measurable by Fubini’s
Theorem. Moreover,

\{(x, t)\in X\cross(0, \infty):(xh)^{*}(t)\leq s\}=\{(x, t)\in X\cross(0, \infty):\tau(xh>s)\leq t\}

=\{(x, t)\in X\cross(0, \infty):g(x)\leq t\} by (1),

which is a member of \mathscr{A}\cross \mathscr{B}_{0} . As s>0 was arbitrary, this shows that (x ,
t) -arrow(xh)^{*}(t) is (\mathscr{A}\cross \mathscr{B}_{0})-measurable.

Now let 1<p<\infty and 1\leq q\leq\infty be given. If q<\infty , then xarrow||xh||_{p,q} is
\mathscr{A}-measurable by the above remark and by Fubini’s Theorem. This is
also true for q=\infty since

||xh||_{p,\infty}= \sup { t^{1/p}(xh)^{**}(t) : t\in Q and t>0}.

Hence the integral in the right-hand-side of (ii) is well-defined.
To prove the inequality in (ii), first consider the case q<\infty . By our

additional assumptions on \nu , \tau , and h, it is clear that \nu h\in L_{p,q}(\Omega, \tau) .
Moreover, f\in L_{p^{r},q^{r}}(\Omega, \tau) implies

| \int(\}/h)fd\tau|=|\iint f(\omega)(xh)(\omega)d\tau(\omega)d\nu(x)| by (i)

\leq\int||f||||xh||_{p,q}dl/(x) ,
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where ||f|| denotes the norm of f as a linear functional on L_{p,q}(\Omega, \tau) with
respect to ||c ||_{p,q} . Since L_{p,q}^{*}\simeq L_{p^{\gamma},q^{r}} , (ii) follows from the Hahn-Banach
Theorem.

For q=\infty , we argue as follows. As in the proof of the last theorem,
we may suppose (\Omega, \tau) has no atoms. Given t>0 , choose a measurable
set E\subset\Omega , with \tau(E)\leq t , such that

(2) \int_{E}(1/h)d\tau=\int_{0}^{t}(\nu h)^{*}ds .

Then

t( \nu h)^{**}(t)=\int_{E}(1/h)d\tau by (2)

= \int\int\chi_{E}(\omega)h(x, \omega)d\tau(\omega)d\nu(x)

\leq\iint_{0}^{t}(xh)^{*}(s)dsd_{1\nearrow}(x) by (3. 3)

=t \int(xh)^{**}(t)d_{1J}(x) .

Hence (ii) holds for q=\infty as well.
Finally, (iii) for p=1 is a direct consequence of Fubini’s Theorem. If

p>1 , then the proof of (iii) is essentially identical with the proof of (ii),
which completes the proof.

Note that Theorem (3. ll)(iii) with p=q\in[1, \infty] is nothing but Mink-
owski’s Inequality for double integrals.

\S 4. Lorentz spaces as L_{1} -modules and examples.

As before, G is a locally compact group which acts on the locally
compact space \Omega as a topological transformasion group. For a function f
on G and x\in G , let f^{\#}(x)=f(x^{-1}) . The symbol \Delta always denotes the mod-
ular function of G. Thus

\int f(xa)dx=\Delta(a^{-1})\int f(x)dx and \int f(x^{-1})dx=\int f(x)\Delta(x^{-1})dx

whenever f is a nonnegative Haar measurable function on G and a\in G .
Note that \Delta is a continuous homomorphism of G into the multiplicative
group (0, \infty) . Therefore, for each \alpha\in R , both \Delta^{a} and \max\{\Delta^{a}1\} are
moderate weights on G.

Now let \tau be an arbitrary positive regular Borel measure on \Omega . In
order to avoid non-essential problems about measurability, we shall
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assume that for 0<p<\infty and 0<q\leq\infty , L_{p,q}(\Omega, \tau) consists of (equivalence
classes of) Borel measurable functions. However, L_{\infty}(\Omega, \tau) is assumed to
consist of \tau-measurable functions; hence L_{1}^{*}(\Omega, \tau)=L_{\infty}(\Omega, \tau) isometrically
in the obvious sense. A function f is said to belong locally to a space S
of measurable functions on \Omega if for each compact set K\subset\Omega , there exists
g=g_{K}\in S such that g=f\tau-almost everywhere on K.

(4. 1) LEMMA. Let \tau, \rho be two positive regular Borel measures on \Omega

which are mutually absolutely continuous. Suppose that 1<p<\infty , 1\leq q

\leq\infty , and the Radon-Nikodym derivative d\rho/d\tau of \rho with respect to \tau

belongs locally to L_{p^{\gamma},q^{r}}(\Omega, \tau) if q>1 or to S(p’, \infty) if q=1, where S
(p’, \infty) is the norm-closure of L_{p^{r},2}(\Omega,\tau) in L_{p^{r},\infty}(\Omega, \tau) . Imbed L_{p,q}(\Omega, \tau)

into C_{c}^{*}(\Omega) via f -arrow f\rho :

\langle\phi, f\rho\rangle=\int\phi fd\rho \forall\phi\in C_{c}(\Omega) and f\in L_{p,q}(\Omega, \tau) .

Then [L_{p,q}(\Omega, \tau)]^{-}=L_{p,q}(\Omega, \tau) isometrically with respect to ||| ||_{p,q} (always)
and also with respect to ||(||_{p,q}^{*} (if q\leq p).

PROOF. By our assumptions on \tau and \rho , f -arrow f\rho maps L_{p,q}(\Omega, \tau)

isometrically onto a Banach space on \Omega .
Now let ||\circ|| denote either ||(||_{p,q} or ||\cdot||_{q,p}^{*} (if q\leq p). Consider the

closed unit ball B of L_{p,q}(\Omega, \tau) with respect to ||\cdot|| . By Corollary (1. 5),
the desired conclusion is equivalent to the \sigma(C_{c}^{*}, C_{c})-compactness of B\rho

:=\{f\rho:f\in B\} . Pick any net (f_{a}) in B . By Theorem (3. 9) combined with
Remark (3.10)(b), we can find f\in B and a subnet (f_{\beta}) of (f_{a}) such that

(1) \lim_{\beta}\int f_{\beta}gd\tau=\int fgd\tau\forall g\in S(p’, q’) ,

where S(p’, q’) is the norm closure of (L_{p^{r},q^{r}}\cap L_{p,2})(\Omega, \tau) in L_{p\prime,q^{r}}(\Omega, \tau) .
We claim that f_{\beta}\rhoarrow f\rho in \sigma(C_{c}^{*}, C_{c}) . To confirm this, pick any \phi\in

C_{c}(\Omega) . By our assumptions on \tau and \rho , there exists v\in S(p’, q’) such that
\phi d\rho=\phi vd\tau . Hence

\lim_{\beta}\int f_{\beta}\phi d\rho=\lim_{\beta}\int f_{\beta}\phi vd\tau

= \int f\phi vd\tau by (1)

= \int f\phi d\rho ,

which confirms our claim. As (f_{a}) was an arbitrary net in B, this estab-
lishes the \sigma(C_{c}^{*}, C_{c})-compactness of Bp, which completes the proof.
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(4. 2) DEFINITIONS. Let \tau be a nonzero positive regular Borel mea-
sure on \Omega . The maximal Jacobian of \tau (under the action of G) is the
function J_{\tau} on G defined by

J \tau(x)=\sup { \int\phi(x^{-1}\cdot\omega)d\tau(\omega):\phi\in C_{c}^{+}(\Omega) and \int\phi d\tau=1 }.

The measure \tau is boundedly quasi-invariant under the action of G if J_{\tau}(x)

<\infty for each x\in G .

It is easy to check that J\tau is lower semi-continuous,

J_{\tau}(xy)\leq J_{\tau}(x)J_{\tau}(y) for all x , y\in G , and
\int h(x^{-1}\cdot\omega)d\tau(\omega)\leq J\tau(x)\int h(\omega)d\tau(\omega) \forall x\in G

whenever h is a nonnegative Borel function on \Omega . In particular, if \tau is
boundedly quasi-invariant, then J_{\tau} is a weight function on G.

(4. 3) THEOREM. Let \tau and \rho be two nonzero positive regular Borel
measures on \Omega which are mutually absolutely continuous and each bounded-
ly quasi-invariant under the action of G. Suppose that 1<p<\infty, 1\leq q

\leq\infty , and d\rho/d\tau belongs locally to L_{p^{\gamma}.q^{r}}(\Omega, \tau) . Imbed L_{p,q}(\Omega, \tau) into
C_{c}^{*}(\Omega) via f - f\rho . Then L_{p,q}(\Omega, \tau) forms a left Banach M(J_{\tau}^{1/p}J_{\rho}^{\#})- module
on \Omega with respect to ||\cdot||_{p,q}^{*} (always) and also with respect to ||c ||_{p,q}^{*} (if q\leq

p) .

PROOF: Let h be a nonnegative Borel function on \Omega . For x\in G and
\omega\in\Omega , write (x^{-1}h)(\omega)=h(x^{-1}\cdot\omega) . We claim that

(1) (x^{-1}h)^{*}(t)\leq h^{*}(t/J_{\tau}(x)) \forall x\in G and t>0 ,

where the decreasing rearrangements are taken with respect to \tau . To
confirm this, we first estimate the distribution functin of x^{-1}h . If s\geq 0 and
\chi_{s} is the indicator of (s^{ },\infty) , then

\tau_{x^{-1}h}(s)=\int\chi_{s}(h(x^{-1}\cdot\omega))d\tau(\omega)

(2)
\leq J_{\tau}(x)\int\chi_{s}(h(\omega))d\tau(\omega)

=J_{\tau}(x)\tau_{h}(s) .

Given t>0 , set s=s(t, x)=h^{*}(t/J_{\tau}(x)) . Then \tau_{h}(s)\leq t/J_{T}(x) , or J_{\tau}(x)\tau_{h}(s)

\leq t . This implies \tau_{x}- 1h(s)\leq t by (2), or equivalently (x^{-1}h)^{*}(t)\leq s , which
establishes (1). Note that x\in G and t>0 implies
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(x^{-1}h^{**})(t)=t^{-1} \int_{0}^{t}(x^{-1}h)^{*}(s)ds

(3)
\leq t^{-1}\int_{0}^{t}h^{*}(s/J\tau(x))ds by (1)

=J \tau(x)t^{-1}\int_{0}^{t/J\tau(\chi\rangle}h^{*}(u)du

=h^{**}(t/J_{\tau}(x)) .

Next we claim that x\in G implies

(4) ||x^{-1}h||_{p,q}^{*}\leq J^{1/p}\tau(x)||h||_{p,q}^{*} , and

(5) ||x^{-1}h||_{p,q}\leq J^{1/p}\tau(x)||h||_{p,q} .

In fact, if q<\infty , then

||x^{-1}h||_{p,q}^{*}=( \frac{q}{p}\int_{0}^{\infty}\{(x^{-1}h)^{*}(t)\}^{q}t^{q|p-1}dt)^{1/q}

\leq(\frac{q}{p}\int_{0}^{\infty}\{h^{*}(t/J\tau(x))\}^{q}t^{q/p}t^{-1}dt)^{1/p} by (1)

=( \frac{q}{p}\int_{0}^{\infty}\{h^{*}(t)\}^{q}\{J\tau(x)t\}^{q/p}t^{-1}dt)^{1/q}

=J^{1/p}\tau(x)||h||_{p,q}^{*} .

For q=\infty , we have

||x^{-1}h||_{p,\infty}^{*}= \sup_{t>0}t^{1/p}(x^{-1}h)^{*}(t)

\leq\sup_{t>0}t^{1/p}h^{*}(t/J\tau(x)) by (1)

=J^{1/p}\tau(x)||h||_{p,\infty}^{*} .

Thus (4) holds in either case. Similarly (5) follows from (3).
Now let w=J^{1/p}\tau J_{\rho}^{\#} , and let ||\cdot|| denote either ||||_{p,q} or |||||_{p,q}^{*} (if q\leq p).

Plainly w is a weight function on G, and so M(w) is a convolution alge-
bra on G by (2. 5). To prove that L_{p,q}(\Omega_{ \tau},) forms a left Banach M(w)
module on \Omega , pick any \nu\in M^{+}(w) and h\in L_{p,q}^{+}(\Omega, \tau) . Set

(6) [(J_{\rho}^{\#} 1’)h](\omega)=\int_{G}h(x^{-1}\cdot\omega)J_{\rho}^{\#}(x)d\nu(x) \forall\omega\in\Omega .

Then (J_{\rho}^{\#}\nu)h is Borel measurable and

||(J_{\rho}^{\#} \nu)h||\leq\int_{G}||x^{-1}h||J_{\rho}^{\#}(x)df/(x) by (3. 11)

(7)
\leq||h||\int_{G}J^{1/p}\tau(x)J_{\rho}^{\#}(x)d\nu(x) by (4) or (5)

=||h||||_{1\nearrow}||_{M(\omega)}<\infty .
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(For more details about the applicability of (3. 11) see (4. 4) stated
below.)

Next suppose \nu\in M(\omega) and h\in L_{p,q}(\Omega, \tau) . We claim that \phi\in C_{C}(\Omega)

implies

(8) \int_{G}|\langle_{x}\phi, h\rho\rangle|d|\nu|(x)\leq\int_{\Omega}|\phi(\omega)|[(J_{\rho}^{\#}|\nu|)|h|](\omega)d\rho(\omega) .

To prove this, we may suppose that \phi\geq 0 , h\geq 0 , and \nu\geq 0 . Let S=\{x^{-1} .
\omega:x\in supp\nu and \omega\in supp\phi}. Plainly S is a \sigma-compact subset of \Omega . So
we may apply Fubini’s Theorem to get

\int_{G}\langle_{x}\phi, h\rho\rangle d\nu(x)=\int_{G}\int_{s}\phi(x\cdot\omega)h(\omega)d\rho(\omega)d1/(x)

\leq\int_{G}J\rho(x^{-1})\int_{\Omega}\chi_{s}(x^{-1}\cdot\omega)\phi(\omega)h(x^{-1}\cdot\omega)d\rho(\omega)d\nu(x)

= \int_{\Omega}\phi(\omega)\int_{G}\chi_{S}(x^{-1}\cdot\omega)h(x^{-1}\cdot\omega)J_{\rho}^{\#}(x)d\nu(x)d\rho(\omega)

\leq\int_{\Omega}\phi(\omega)[(J_{\rho}^{\#}\nu)h](\omega)d\rho(\omega) by (6),

which confirms (8).
From (7) and (8), we infer that the convolution \nu*(h\rho) exists. More-

over, the set \{(J_{\rho}^{\#}|\nu|)|h|\neq 0\} is \sigma-finite with respect to \tau by (7) and so with
respect to \rho . Therefore the Radon-Nikodym-Lebesgue Theorem com-
bined with (8) yields a Borel function \nu*h in L_{1}^{1OC}(\Omega, \rho) such that

(9) |\nu*h|\leq(J_{\rho}^{\#}|\nu|)|h| and \nu*(h\rho)=(\nu*h)\rho .

It follows from (9) and (7) that L_{p,q}(\Omega, \tau) forms a left Banach
M(w)-module on \Omega , which completes the proof.

(4. 4) REMARKS: In the application of (3. 11) in the last proof, we
have ignored the basic assumption in (3. 11), namely, the \sigma-finiteness of
the underlying measures. (J_{\rho}^{\#}\nu is \sigma-finite, but \tau is not in general.)
Although this difficulty can be easily circumvented for the purpose of prov-
ing (4. 3), we shall give more details which justify our application of (3.
11) in the last proof. Let 1<p<\infty , 1\leq q\leq\infty , and \nu\in M^{+}(w) , where w=

J_{\tau}^{1/p}J_{\rho}^{\#} .
(i) If h\in L_{p,q}^{+}(\Omega, \tau) has \sigma-compact support, then the justification of (7)

is similar to that of (8). In particular, (7) is valid whenever h\in

C_{c}^{+}(\Omega) .
(ii) If D is a directed collection of nonnegative lower semi-continuous

functions on \Omega and if g= \sup\{f : f\in D\} pointwise, then ||g||_{p,q}= \sup

\{||f||_{p,q} : f\in D\} .
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[Let h:\Omegaarrow[0, \infty] be Borel measurable and t>0 . If s , u>0 , then
h^{*}(s)>u if and only if \tau_{h}(u)>s . Hence

th^{**}(t)= \int_{0}^{t}h^{*}(s)ds

= \int_{0}^{t}\int_{0}^{h^{*}(s)}duds

= \int_{0}^{\infty}\min\{t, \tau_{h}(u)\}du .

Moreover, \{\tau_{f} : f\in D\} is a directed collection of nonnegative lower semi
-continuous functions on (0, \infty) , and its pointwise supremum equals \tau_{g} by
the regularity of \tau . Hence g^{**}= \sup\{f^{**} : f\in D\} pointwise. So the result
for q=\infty is obvious. For q<\infty , note that \{f^{**} : f\in D\} is a directed col-
lection of nonnegative lower semi-continuous function on (0, \infty) , and so

||g||_{p,q}=( \frac{q}{p}\int_{0}^{\infty}[g^{**}(t)]^{q}t^{q/p-1}dt)^{1/q}

= \sup\{||f||_{p,q} : f\in D\} ,

as desired.]
(iii) Let g:\Omegaarrow[0, \infty] be lower semi-continuous and let D=\{\phi\in C_{c}^{+}(\Omega) :

\phi\leq g\} . Then \{(J_{\rho}^{\#}\nu)\phi:\phi\in D\} is a directed collection of nonnegative
lower semi-continuous functions on \Omega , and its pointwise supremum
equals (J_{\rho}^{\#}\nu)g . Hence

||(J_{\rho}^{\#} \nu)g||_{p,q}=\sup\{||J_{\rho}^{\#}f\nearrow)\phi||_{p,q} : \phi\in D\} by (ii)
\leq\sup(||\nu||_{M(w)}||\phi||_{p,q} : \phi\in D} by (i)
\leq||\nu||_{M(w)}||g||_{p,q} .

(iv) Let h : \Omegaarrow[0^{ },\infty] be Borel measurable and h=0\tau-almost every-
there Then (J_{\rho}^{\#}1\nearrow)h=0\tau-almost everywhere.

[Let \epsilon>0 be given. As ||h||_{p,p}=0 , it is easy to costruct a nonnegative
lower semi-continuous function g on \Omega such that h\leq g everywhere and
||g||_{p,p}<\epsilon . Then

||(J_{\rho}^{\mu}\nu)h||_{p,p}\leq||(J_{\rho}^{\#}\nu)g||_{p,p}

\leq||\nu||_{M(w)}||g||_{p,p} by (iii)
\leq\epsilon||\nu||_{M(w)} .

As \epsilon>0 was arbitrary, this shows that (J_{\rho}^{\#}1_{J})h=0 \tau-almost everywhere.]
(v) Let h\in L_{p,q}^{+}(\Omega, \tau) be given. Then there exists h’\in L_{p,q}^{+}(\Omega, \tau) such

that h’=h\tau-almost everywhere and \{h’\neq 0\} is \sigma-compact. Hence



Lorentz spaces as L_{1} -modules and multipliers 85

||(J_{\rho}^{\#}\nu)h||_{p,q}=||(J_{\rho}^{\#}\nu)h’||_{p,q} by (iv)
\leq||\nu||_{M(w)}||h’||_{p,q} by (i)
=||\nu||_{M(w)}||h||_{p,q} .

If q\leq p , then we may replace ||\cdot||_{p,q} by ||\circ||_{p,q}^{*} in the last three lines,
which completes the detailed proof of the first inequality in (7).

(4. 5) REMARK: Let \rho , \tau , p , q be as in the hypotheses of (4. 3), and
let w=J_{\tau}^{1/p}J_{\rho}^{\#} . Define M_{8}(G) to be the space of all measures on G with
finite support, and equip M_{\delta}(G) with ||\cdot||_{M(w)} . If \iota/\in M_{\delta}(G) , then no
difficulties arise in the proof of (4. 3). So we can readily conclude that
L_{p,q}(\Omega, \tau) forms a left Banach M_{8}(G)-module on \Omega . On the other hand, w
is lower semi-continuous, so it is easy to check that [M_{8}(G)]^{\sim}=M(w)

isometrically. Also [L_{p,q}(\Omega, \tau)]^{\sim}=L_{p,q}(\Omega, \tau) isometrically by Lemma(4. 1)
[under an additional minor condition if q=1]. These facts, combined with
Theorem (2. 8), yield an alternative proof of (4. 3) which requires neither
(3. 10) nor Fubini’s Theorem.

(4. 6) REMARK: : Let \tau be a positive regular Borel measure on \Omega .
Suppose that \tau is quasi-invariant, that is, \delta_{x}*\tau and \tau are mutually abs0-
lutely continuous for each x\in G ( \delta_{\chi} is the Dirac measure at x). Thus, for
each x\in G , there exists a positive \tau-measurable function J(x^{ }, \cdot ) such that

\int h(x^{-1}\cdot\omega)d\tau(\omega)=\int h(\omega)J(x, \omega)d\tau(\omega)

whenever h is a nonnegative Borel function on G with \sigma-compact support.
Gulick, Liu and van Rooij [3] prove, among other things, that the collec-
tion \{J(X^{ },\cdot):x\in G\} can be chosen in such a way that (x, \omega)arrow J(x, \omega) is
(\lambda_{G}\cross\tau)-measurable. They also prove that L_{p}(\Omega, \tau) forms a left Banach
L_{1}(G)-module for 1\leq p\leq\infty . However, their definition of the convolution
product f*g of f\in L_{1}(G) and g\in L_{p}(\Omega, \tau) depends not only on f and g but
also on p. That is,

(f*g)( \omega)=\int f(x)g(x^{-1}\cdot\omega)J^{1/p}(x^{-1}. \omega)dx .

Thus their definition is essentially different from ours unless p=1 .

(4. 7) THEOREM. Let \tau, \rho, 1<p<\infty , and 1\leq q\leq\infty be as in the
hypotheses of (4. 1). Suppose that \tau and \rho are each boundedly quasi-invar-
iant. Imbed L_{p,q}(\Omega, \tau) into C_{c}^{*}(\Omega) via farrow f\rho . If w is a weight function
on G such that J_{\tau}^{1/p}J_{\rho}^{\#}\leq w , then:

(a) L_{p,q}(\Omega, \tau) forms a left Banach M(w)-module on \Omega ;
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(b) The multiplier space \mathscr{M}(L_{1}(w), L_{p,q}(\Omega, \tau)) is isomorphic to
L_{p,q}(\Omega, \tau) as Banach spaces ;

(c) If, in addition, w is moderate, then the isomorphism is isometric
[with respect to ||\circ||_{p,q} (always) and also with respect to ||||_{p,q}^{*} (if
q\leq p)] .

PROOF: The first conclusion is an immediate consequence of TheO-
rem (4. 3). Since [L_{p,q}(\Omega, \tau)]^{-}=L_{p,q}(\Omega, \tau) isometrically by Lemma (4. 1),
the second and third conlusions follow from Theorem (2. 12).

(4. 8) REMARKS: In (4. 3) and (4. 7), we have put aside the impor-
tant two cases, namely, p=q=1 and p=q=\infty . We shall discuss these
cases below.

(a) Plainly M(\Omega) is a left Banach M(G)-module on \Omega and M(\Omega)^{\sim}=

M(\Omega) isometrically. In particular, M(\Omega) forms a left Banach L_{1}(G)-mod-
ule on \Omega . It follows from Theorem (2. 12) that for each closed subspace
A of M(\Omega) such that L_{1}(G)*M(\Omega)\subset A , we have \mathscr{M}(L_{1}(G), A)\simeq M(\Omega)

isometrically. For \Omega=G , x\cdot y=xy(x, y\in G) , and A=L_{1}(G) , this result is
nothing but Wendel’s Theorem [20].

(b) Let \tau and \rho be as in the hypotheses of (4. 3), and imbed L_{\infty}(\Omega, \tau)

into C_{c}^{*}(\Omega) via harrow h\rho . Then it is easy to show that L_{\infty}(\Omega, \tau) forms a left
Banach M(J_{\rho}^{\#})-module on \Omega . Moreover, [L_{\infty}(\Omega, \tau)]^{\sim}=L_{\infty}(\Omega, \tau) isometrical-
ly; hence \mathscr{M}(L_{1}(J_{\rho}^{\#}), L_{\infty}(\Omega, \tau)) and L_{\infty}(\Omega, \tau) are isomorphic as Banach
spaces by Theorem (2. 12).

(4. 9) EXAMPLE (The standard Case). Suppose \Omega=G , G acts on itself
via group multiplication (x\cdot y=xy) , and w , v are two weight functions on
G. Let d\tau=wd\lambda_{G} and d\rho=vd\lambda_{G} . Then \tau and \rho are mutually absolutely
continuous, and the Radon-Nikodym derivative d\rho/d\tau=v/w , which is
locally bounded by (2. 4). Moreover, if h\geq 0 is a Borel function on G and
x\in G , then

\int h(x^{-1}\cdot y)d\tau(y)=\int h(x^{-1}y)w(y)dy

= \int h(y)w(xy)dy

\leq w(x)\int hd\tau .

This shows that \tau is boundely quasi-invariant and J_{\tau}\leq w . Similarly \rho is
boundedly quasi-invariant and J_{\rho}\leq v .

Now let 1<p<\infty and 1\leq q\leq\infty , and imbed L_{p,q}(G, \tau) into C_{c}^{*}(G) via
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farrow f\rho=fv\lambda_{G} . Then by (4. 3), L_{p,q}(G, \tau) forms a left Banach M(w^{1/p}

v^{\#}) -module on G (with respect to || , ||_{p,q} always and also with respect to
||\cdot ||_{p,q}^{*} if q\leq p). Moreover, Theorem (4. 7) ensures that

\mathscr{M}(L_{1}(w^{1/p}v^{\#}), L_{p,q}(\Omega, \tau))\simeq L_{p,q}(\Omega, \tau) ,

and that if w^{1/p}v^{\#} is a moderate weight function, then the isomorphism is
isometric. For \nu\in M(w^{1/p}v^{\#}) and f\in L_{p,q}(\Omega, \tau) , a direct calculation shows
that the Radon-Nikodym derivative d[]_{J^{*(f\rho)]}}/d\rho is given by

x arrow\frac{1}{v(x)}\int f(y^{-1}x)v(y^{-1}x)d\nu(y) .

These results with w=v=1 and for ||t ||_{p,q} are due to Y.K. Chen and H.C.
Lai [1]; see also T.S . Quek and L.Y.H. Yap [10].

(4. 10) EXAMPLE (The Right-Translation Case). Suppose G acts on
itself via right-translation, that is,

\theta(x, y)=x\cdot y=yx^{-1} \forall x,y\in G .

Let w , v be two weight functions on G, and let d\tau=wd\lambda_{G} and d\rho=vd\lambda_{G} .
If h\geq 0 is a Borel function on G and x\in G , then

\int h(x^{-1}\cdot y)d\tau(y)=\int h(yx)w(y)dy

= \Delta(x^{-1})\int h(y)w(yx^{-1})dy

\leq(w\Delta)\#(x)\int hd\tau .

Hence J_{\tau}\leq(w\Delta)\# , and similarly J_{\rho}\leq(v\Delta)\# . Consequently, results similar
to those in Example (4. 9) hold with w^{1/p}v^{\#} replaced by

[(w\Delta)\#]^{1/p}v\Delta=(w^{\#})^{1/p}v\Delta^{1/p^{\gamma}}

If \nu\in M((w^{\#})^{1/p}v\Delta^{1/p\prime}) and f\in L_{p,q}(\Omega, \tau) , then d[l/*_{\theta}(f\rho)]/d\rho is given by

x arrow\frac{1}{v(x)}\int f(xy)v(xy)\Delta(y)d\nu(y) .

(4. 11) EXAMPLE (The Inner-Automorphism Case.) Suppose G acts
on itself via inner-automorphism, that is,

\theta(x, y)=x\cdot y=xyx^{-1} \forall x,y\in G .

Let w , v , \tau , \rho be as in the last example. If h\geq 0 is good enough and x\in

G, then
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\int h(x^{-1}\cdot y)d\tau(y)=\int h(x^{-1}yx)w(y)dy

= \int h(yx)w(xy)dy

= \Delta(x^{-1})\int h(y)w(xyx^{-1})dy

\leq(\Delta^{\#}w^{\#}w)(x)\int hd\tau .

Hence J_{\tau}\leq\Delta^{\#}w^{\#}w and similarly J_{\rho}\leq\Delta^{\#}v^{\#}v . Therefore results similar to
those in Example (4. 9) hold with w^{1/p}v^{\#} replaced by

(\Delta^{\#}w^{\#}w)^{1/p}(\Delta^{\#}v^{\#}v)\#=(w^{\#}w)^{1/p}(v^{\#}v)\Delta^{1/p\prime}

If \nu\in M((w^{\#}w)^{1/p}v^{\#}v\Delta^{1/p\prime}) and f\in L_{p,q}(G, \tau) , then d[\nu*(\theta f\rho)]/d\rho is given by

x arrow\frac{1}{v(x)}\int f(y^{-1}xy)v(y^{-1}xy)\Delta(y)d_{1/}(y) .

(4. 12) EXAMPLE (The Linear Group Case). Consider the general lin-
ear group GL(n, R) , which acts on R^{n} in the obvious way. Let \lambda_{n} be
Lebesgue measure on R^{n}- and let G be any closed subgroup of GL(n, R) .
Choose and fix any strictly positive functions w , v in L_{1}^{1OC}(R^{n}, \lambda_{n}) such that
v/w is locally bounded. Take d\tau=wd\lambda_{n} and d\rho=vd\lambda_{n} . Suppose that
there exist weight functions w_{G} and v_{G} on G such that,

w(Ax)\leq w_{G}(A)w(x) and v(Ax)\leq v_{G}(A)v(x)

whenever A\in G and x\in R^{n} . If h\geq 0 is a Borel function on R^{n} and A\in G ,

then

\int_{R^{n}}h(A^{-1}x)d\tau(x)=\int_{R^{n}}h(A^{-1}x)w(x)d\lambda_{n}(x)

=| \det A|\int_{R^{n}}h(x)w(Ax)d\lambda_{n}(x)

\leq|\det A|w_{G}(A)\int_{R^{n}}h(x)d\tau(x) .

Hence J_{\tau}(A)\leq|\det A|w_{G}(A) and similary J_{\rho}(A)\leq|\det A|v_{G}(A) for each A\in

G.
Let 1<p<\infty , 1\leq q\leq\infty , and define

w_{p}(A)=(|\det A|w_{G}(A))^{1/p}(|\det A|v_{G}(A))\#

=w_{G}^{1/p}(A)v_{G}^{\#}(A)/|\det A|^{1/p^{r}}

for each A\in G . If we imbed L_{p,q}(R^{n}-\tau) into C_{c}^{*}(R^{n}) via farrow f\rho , then
results similar to those in Example (4. 9) hold with w^{1/p}v^{\#} replaced by w_{p} .
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For \nu\in M(w_{p}) and f\in L_{p,q}(R^{n}. \tau) , d[\nu*(f\rho)]/d\rho is given by

x arrow\frac{1}{v(x)}\int_{G}f(A^{-1}x)v(A^{-1}x)|\det A|^{-1}d\nu(A) .

(4. 13) EXAMPLE. Let G be a locally compact abelian group with dual
\Gamma (cf. W. Rudin [14]). The Fourier transform of \mu\in M(G) is defined by

\hat{\mu}(\gamma)=\int_{G}\gamma(x^{-1})d\mu(x) \forall\gamma\in\Gamma r

Similarly we define the “inverse” Fourier transform of \rho\in M(\Gamma) by setting

( \rho^{\vee})(x)=\int_{\Gamma}\gamma(x)d\rho(\gamma) \forall x\in G .

Now choose and fix any positive regular Borel measure \tau on \Gamma such
that (\phi\tau)^{\vee}\in C_{0}(G) whenever \phi\in C_{c}(\Gamma) . Also let w\geq 1 be a continuous
moderate weight on G. For 1<p<\infty and 1\leq q\leq\infty , define

M_{p,q}=M_{p,q,w,\tau}=\{\mu\in M(w):\hat{\mu}\in L_{p,q}(\Gamma-\tau)\} .

Then we have:

(a) M_{p,q} is a left Banach M(w)-module on G with respect to the norm
||\mu||_{M(p,q)}=||\mu||_{M(w)}+||\hat{\mu}||_{p,q} (always) and also with respect to ||\mu||*M(p,q)

=||\mu||_{M(w)}+||\overline{\mu}||_{p,q}^{*} (if q\leq p).
(b) (M_{p,q})^{\sim}=M_{p,q} isometrically.
(c) If A is a closed subspace of M_{p,q} such that L_{1}(w)*M_{p,q}\subset A , then

\mathscr{M}(L_{1}(w), A)\simeq M(p, q) isometrically.
These results for w=1 and \tau=\lambda_{\Gamma} are due to Chen and Lai [1],

PROOF: We shall prove (a)-(c) only for ||(||_{M(p,q)} .
(a) As w\geq 1 , the definition of M_{p,q} makes sense and it is obvious that

M_{p,q} forms a Banach space on G. If \nu\in M(w) and \mu\in M_{p,q} , then

||\nu*\mu||_{M(p,q)}=||\nu*\mu||_{M(w)}+||- . \hat{\mu}||_{p,q}

\leq||\nu||_{M(w)}||\mu||_{M(w)}+||\overline{\nu}||_{u}||\hat{\mu}||_{p,q}

\leq||\nu||_{M(w)}||\mu||_{M(p,q\rangle} .

Hence M_{p,q} is a left M(w)-module on G.
(b) By virtue of (1. 5), it suffices to show that (M_{p,q})_{1} is \sigma(C_{c}^{*} ,

C_{c})-compact Let (\mu_{a}) be a net in (M_{p,q})_{1} . We need to show that (\mu_{a})

has a \sigma(C_{c}^{*}, C_{c})-cluster point in (M_{p,q})_{1} . We may suppose that both

\lim_{a}||\mu_{a}||_{M(w)}=a and \lim_{a}||\hat{\mu}_{a}||_{p,q}=b
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exist. Note that a+b\leq 1 .
As w\geq 1 , (\mu_{a}) is a bounded net in M(G) . So, after passing to a sub-

net, we may suppose that (\mu_{a}) converges weak-*to some \mu\in M(G) :

(1) \lim_{a}\int_{G}fd\mu_{a}=\int_{G}fd\mu\forall f\in C_{0}(G) .

Since w is continuous and ||\mu_{a}||_{M(w)} -arrow a , it is obvious that ||\mu||_{M(w)}\leq a .
To prove \mu\in(M_{p,q})_{1} , pick any \phi\in C_{c}(\Gamma) . Then

(2) \int_{\Gamma}\hat{\mu}_{a}\phi d\tau=\int_{G}(\phi\tau)^{\vee}d\mu_{a}

for each \alpha . Since (\phi\tau)^{\vee}\in C_{0}(G) by hypothesis, if follows from (1) and (2)
that

(3) \lim_{a}\int_{\Gamma}\overline{\mu}_{a}\phi d\tau=\int_{G}(\phi\tau)^{\vee}d\mu\forall\phi\in C_{c}(\Gamma) .

On the other hand, ||\hat{\mu} , a||_{p,q}arrow b . Therefore (3. 9) and (3) show that there
exists h\in L_{p,q}(\Gamma-\tau) , with ||h||_{p,q}\leq b , such that

(4) \lim_{a}\int_{\Gamma}\hat{\mu}_{a}\phi d\tau=\int_{\Gamma}h\phi d\tau\forall\phi\in C_{c}(\Gamma) .

Hence \phi\in C_{c}(\Gamma) implies

\int_{\Gamma}\hat{\mu}\phi d\tau=\int_{G}(\phi\tau)^{\vee}d\mu

= \int_{\Gamma}h\phi d\tau

by (3) and (4). Therefore \hat{\mu}=h locally \tau-almost everywhere. However,
\{h\neq 0\} is \sigma-finite with respect to \tau since h\in L_{p,q}(\Gamma r.\tau) , and \hat{\mu} is continuous
on \Gamma_{-} It follows from the regularity of \tau that \hat{\mu}=h\tau-almost everywhere.
Hence \hat{\mu}\in L_{p,q}(\Gamma. \tau) and

||\mu||_{M(p,q)}=||\mu||_{M(w)}+||h||_{p,q}

\leq a+b\leq 1 ,

as desired
(c) Since w is a moderate weight function on G, (c) is a direct con-

sequence of Theorem (2. 12) combined with (b).

(4. 14) REMARKS: In the last examle, we have used the \swarrow 1^{-}norm on
R^{2} , ||(s, t)||_{1}=|s|+|t| . However, it is clear from our proof that in the
definition of ||\cdot ||_{M(p,q)} , we may instead use any norm on R^{2} such that ||(s ,
t||\leq||(s’, t’)|| whenever 0\leq s\leq s’ and 0\leq t\leq t’ Also the natural analogues
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of (4. 11) for p=q=1 and for p=q=\infty hold, provided that \tau and \lambda_{\Gamma} are
mutually absolutely continuous.
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