Bounded subsets in spaces of distributions of L^{P} -growth

S. ABDULLAH and S. PILIPOVIĆ (Received July 20, 1992)

Abstract

In this paper we characterize bounded subsets of the spaces \mathfrak{D}'_{L^p} , $1 \le p \le \infty$, of distributions of L^p growth. Moreover, we give necessary and sufficient conditions on a sequence in \mathfrak{D}'_{L^p} to converge to 0.

1980 Mathematics Subject Classification (1985 Revision) 46F05.

The space \mathfrak{D}'_{L^p} of distributions of L^p growth has been studied by several authors in the past few years. Pahk [6] gave necessary and sufficient conditions for a convolution operator in \mathfrak{D}'_{L^p} to be hypoelliptic. Orther and Wagner [5] considered the convolution of elements in these and corresponding weghted spaces and some other related questions. In [1] the spaces of convolution operators and multipliers of these spaces and their topologies are studied. The characterization of bounded sets in ultradistribution spaces $\mathfrak{D}'_{L^p}^{(M_p)}$ is given in [7].

In this work we characterize bounded subsets of the spaces \mathfrak{D}'_{L^p} , and characterize convergent sequences in these spaces.

We use the standard notations as in [7] and [3]. We consider q in the interval $[1, \infty]$ and p=q/(q-1) is its conjugate number; if q=1 then $p = \infty$. Recall [9], the space \mathfrak{D}_{L^q} , $q \in [1,\infty]$, consists of all the functions ϕ in $C^{\infty}(\mathbf{R}^n)$ such that $D^{\alpha}\phi$ in L^q for all α in \mathbf{N}_0^n ($\mathbf{N}_0=\mathbf{N}\cup\{0\}$), provided with the topology defined by the seminorms

$$\|\phi\|_{m,q} = \sup_{\alpha \leq m} \|D^{\alpha}\phi\|_{L^q}, \ m \in \mathbf{N}_0.$$

 \mathfrak{B} is the completion of \mathfrak{D} in $\mathfrak{D}_{L^{\infty}}$; its dual is \mathfrak{D}'_{L^1} . The dual of \mathfrak{D}_{L^q} , $q \in [1, \infty)$, is denoted by \mathfrak{D}'_{L^p} , where p is the conjugate number for q.

In the main Theorem 2 we shall use the fact that \mathfrak{D}_{K} is dense in $\mathfrak{D}_{K,r}$, $r \in \mathbb{N}$, where K is a compact set in \mathbb{R}^{n} and $\mathfrak{D}_{K,r}$ is the space of functions supported by K which have all the derivatives up to r continuous, supplied with the usual norm.

THEOREM 1. Let B' be a subset of \mathfrak{D}'_{L^p} , $p \in [1, \infty]$. The following conditions are equivalent:

(i) B' is bounded.

(ii) For every bounded subset B of \mathfrak{D}_{L^q} , $p \in (1, \infty]$, q = p/(p-1), (reap. of \mathfrak{B} if p=1)

$$\sup\{|T*\phi(x)|; T\in B', \phi\in B, x\in \mathbf{R}^n\}<\infty.$$

(iii) For every bounded open set $\Omega \subset \mathbf{R}^n$ and every $\phi \in \mathfrak{D}_{L^q}$, $p \in (1, \infty]$, q = p/(p-1), (resp. $\phi \in \mathfrak{B}$ if p=1)

 $\sup\{|T*\phi)(x)|, \ T \in B', \ x \in \Omega\} < \infty.$

PROOF. The spaces \mathfrak{D}_{L^q} , $q \in [1, \infty)$ and \mathfrak{B} are barrelled which implies that the weak and strong boundedness in the corresponding strong duals are equivalent. Also, this implies that a set B' is bounded in the strong dual topology if and only if for every bounded set B in the basic space

 $\sup\{| < T, \phi > |; T \in B', \phi \in B\} < \infty.$

Since $B \subset \mathfrak{D}_{L^q}$, $q \in [1, \infty)$ (resp. $B \subset \mathfrak{B}$), is bounded if and only if

 $\{\phi(x-\cdot), \phi \in B, x \in \mathbf{R}^n\}$

is bounded in \mathfrak{D}_{L^q} (resp. in \mathfrak{B}), the proof of the theorem simply follows.

The following theorem characterizes the convergence in \mathfrak{D}'_{L^p} .

THEOREM 2. Let $p \in [1, \infty]$ and T_j , $j \in \mathbb{N}$, be a sequence in \mathfrak{D}' such that for every $\psi \in \mathfrak{D}$, $T_j * \psi$, $j \in \mathbb{N}$, is a sequence from \mathfrak{D}'_{L^p} which converges to 0 in \mathfrak{D}'_{L^p} as $j \to \infty$. Then T_j converges to 0 in \mathfrak{D}'_{L^p} .

PROOF. By [8], any $\psi \in \mathfrak{D}$ is of the form

(1)
$$\psi = \sum_{i=1}^{N} \psi_i * \phi_i, \ \psi_i, \ \phi_i \in \mathfrak{D}, \ i=1, ..., N$$

This implies that $T_j * \psi = \sum_{i=1}^{N} (T_j * \psi_i) * \phi_i$, $j \in \mathbb{N}$, and by [9], for every i=1, ..., N

$$T_j * \psi_i = \sum_{s=0}^{m_i} T_{j,i,s}^{(s)}, \qquad j \in \mathbf{N},$$

where $T_{j,i,s}$, $j \in \mathbb{N}$, is a sequence in L^p which converges to 0 in L^p . This implies that for every $s=0, 1, ..., m_i, i=1, ..., N$

$$T_{j,i,s} * \phi_i \to 0$$
 in L^p as $j \to \infty$.

Thus, the assumption of the theorem implies that for every $\psi \in \mathfrak{D}$, T_{j^*} , ψ , $j \in \mathbb{N}$, is a sequence from L^p which converges to 0 in L^p . By using (1) again, we have $T_j \to 0$ in \mathfrak{D}' , $j \to \infty$.

Let K be a compact set in \mathbf{R}^n and

$$B_1 = \{ \theta \in L^p ; \|\theta\|_{L^p} = 1 \}.$$

Let $\varphi \in \mathfrak{D}_{K}$. Because $\{T_{j} * \varphi, j \in \mathbb{N}\}$ is bounded in L^{p} ,

Thus, $\{T_j * \psi; j \in \mathbb{N}, \psi \in \mathfrak{D} \cap B_1\}$ is equicontinuous in \mathfrak{D}'_{κ} and there exists a neighbourhood of zero in \mathfrak{D}_{κ}

$$V_r(\epsilon) = \{ \theta \in \mathfrak{D}_K ; \|\theta\|_{K,r} \leq \epsilon \}$$

such that

$$heta \in V_r(\epsilon) \Rightarrow \sup_{\substack{j \in \mathbf{N} \\ \psi \in \mathfrak{D} \cap B_1}} | < T_j * \check{\psi} \stackrel{\lor}{ heta} > | = \sup_{\substack{j \in \mathbf{N} \\ \psi \in \mathfrak{D} \cap B_1}} | < T_j * heta, \psi > | \le 1.$$

The same holds for the closure of $V_r(\epsilon)$ in $\mathfrak{D}_{K,r}$ since $\mathfrak{D} \cap B_1$ is dense in B_1 . This implies that for every $\theta \in \mathfrak{D}_{K,r}$, $T_j * \theta \in L^p$, $j \in \mathbb{N}$, and there exists C > 0 such that

$$\sup_{\substack{j\in\mathbb{N}\\\psi\in\mathfrak{D}\cap B_1}} || < T_j * \overset{\vee}{\psi} \overset{\vee}{\theta} > | = \sup_{\substack{j\in\mathbb{N}\\\psi\in\mathfrak{D}\cap B_1}} |T_j * \theta, \psi > | \le C.$$

Thus, for any $\psi \in \mathfrak{D}$ we have

$$\sup_{j\in\mathbf{N}}|\!<\!T_{j}*\theta,\,\psi\!>\!|\!\leq\!C\|\psi\|_{L^{p}},$$

i. e. for every $\theta \in \mathfrak{D}_{K,r}$ the set $\{T_j * \theta; j \in \mathbb{N}\}$ is bounded in L^p . By using [9] we have that for suitable compact neigbourhood of zero $\omega, \overline{\omega} = K, r \in \mathbb{N}$ and $m \in \mathbb{N}$, there are $\theta \in \mathfrak{D}_{K,r}$ and $\phi \in \mathfrak{D}_K$ such that

 $T_j = \Delta^m T_j * \theta + T_j * \phi, \ j \in \mathbf{N}.$

This implies that $\{T_j, j \in \mathbb{N}\}$ is bounded in \mathfrak{D}'_{L^p} .

From this theorem and its proof we have:

COROLLARY 1. Let T_j be a sequence in \mathfrak{D}'_{L^p} , $p \in [1, \infty]$. It coverges to 0 in D'_{L^p} if and only if $T_j * \psi$ converges to 0 in L^{∞} for every $\psi \in \mathfrak{D}(j \to \infty)$.

References

[1] S. ABDULLAH, On convolution operators and multipliers of distributions of L^{p} -growth, will appear in J. Math. Anal. Appl.

- [2] R. ADAMS, Sobolev Spaces, Pure and Applied Mathematics Series, No. 65, Academic Press, New York, 1975.
- [3] J. BARROS-Neto, An Introduction to the Theory of Distributions, Marcel Dekker, New York, 1973.
- [4] J. HORVATH, Topological Vector Spaces and Distributions, Vol. I, Addison-Wosley, Reading, Mass., 1966.
- [5] N. ORTNAR and P. WAGNER, Applications of weighted D'LP-spaces to the convolution of distributions, Bull. Polish Acad. Sci., Math., 37, No. 7-12 (1989), p. 579-595.
- [6] D. PAHK, On the convolution equations in the space of distributions of L^{p} -growth, Proceedings of the Ame. Math. Soc., Vol. 94, May 1985, p. 81-86.
- [7] S. PILIPOVIĆ, Characterizations of bounded sets in spaces of ultradistributions, Preprint.
- [8] L. A. RUBEL, W. A. SQUIRES, B. A. TAYLOR, Irreducibility of certain entire functions with applications to harmonic analysis, Ann. of Math. (2) 108 (1978), 553-567.
- [9] L. SCHWARTZ, Theorie des Distributions, Hermann, Paris, 1966.
- [10] F. TREVES, Topological Vector Spaces, Distributions and Kernels, Pure and Applied Mathematics Series, No. 25, Academic Press, New York, 1967.

Department of Mathematics Jordan University of Science & Technology Irbid-Jordan

University of Novi Sad Institute of Mathematics 21000 Novi Sad, Trg Dositeja Obradovića 4 Yugoslavia