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Stationary Navier-Stokes equations with
non-vanishing outflow condition

Hiroko MORIMOTO
(Received February 27, 1995)

Abstract. About 60 years ago, J. Leray showed the existence of the solution to the
non-homogeneous boundary value problem of the Navier-Stokes equations under vanish-
ing outflow condition [3]. See also [2]. We are concerned with the problem whether the
boundary value problem has a solution under non-vanishing outflow condition. For gen-
eral domain, this problem is still open. But in an annular domain in the plane, we can
show an affirmative result of this problem by constructing exact solutions. The uniqueness
and the stability are discussed.
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1. Introduction

Let D be a bounded domain in R^{n}(n\geq 2) with smooth boundary
\partial D . The motion of viscous incompressible fluid in D is described by the
non-homogeneous boundary value problem of the Navier-Stokes equations:

\{

-\nu\triangle u+ (u \tau \nabla)u+\frac{1}{\rho}\nabla p =f in D

divu =0 in D
(1)

u=b on \partial D (2)

where, u=(u_{1}, u_{2}, \cdots, u_{n}) (velocity vector), p (pressure) are unknown,
\rho (density), lJ (kinetic viscosity) are given positive constants, f (external
force) and b (velocity on the boundary) are given vectors.

About 60 years ago, J. Leray showed the existence of the solution to
this problem under the vanishing outflow condition:

\int_{\Gamma_{i}}b\cdot nds=0 , 1\leq i\leq k , (3)

where \partial D=\bigcup_{i=1}^{k}\Gamma_{i} , \Gamma_{i} is the connected component of \partial D and n is the
unit outward normal to the boundary \partial D . Under this condition, there
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exists smooth vector function c defined on \overline{D} such that rot c=b on \partial D .
Therefore, after some modification of c near the boundary, we can estimate
the nonlinear term in (1) as small as we wish, that is, for any \epsilon>0 there
exists an extension b_{\epsilon} of b to the domain D such that div b_{\epsilon}=0 in D and
the inequality:

|((u\nabla)b_{\xi j}, u)|\leq\epsilon||\nabla u||^{2} , \forall u\in C_{0,\sigma}^{\infty}(D) (4)

holds, where (\cdot, \cdot) is the L^{2}-inner product, and || || is the norm ([3], [2]).
The condition (3) is stronger than the non-vanishing outflow condition:

\int_{\partial D}b\cdot nds=\sum_{i=1}^{k}\int_{\Gamma_{i}}b\cdot nds=0 , (5)

which is satisfied by the boundary value b of the solenoidal vector. We are
concerned with the problem whether the boundary value problem (1) (2) has
a solution provided that the condition (5) is satisfied, even if the condition
(3) may not hold. Let us call this problem (P). For general domain, the
problem (P) is still open An affirmative result is obtained by Amick [1], in
the 2 dimensional domain, when the domain, boundary value and external
force are symmetric with respect to one line. On the other hand, Takeshita
[5] obtained the following:

Theorem Let D be the annular domain \{x\in R^{n}|R_{1}<|x|<R_{2}\} and
\Gamma_{i}=\{x\in R^{n}||x|=R_{i}\} , i=1,2 , its boundary. If b satisfies

\int_{\Gamma_{1}}b\cdot nds=a , \int_{\Gamma_{2}}b\cdot nds=-a ,

and if, for any \epsilon>0 , there exists an extension of b satisfying (4), then
a=0 .

Therefore, it seems that we can not use Leray’s method to solve the
problem (P). In the previous paper [4], we showed an affirmative result of
this problem in an annular domain in the plane, by constructing an exact
solution of (1) (2). In this paper, we refine the result in [4]. The stability
of the solution and another boundary condition are also discussed.

2. Notations and results

We use some function spaces. Let C_{0,\sigma}^{\infty}(D) be the set of all smooth
solenoidal functions with compact support in D ; let H_{\sigma} be the closure of
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C_{0,\sigma}^{\infty}(D) in L^{2}(D)^{n} , and V, the closure of C_{0,\sigma}^{\infty}(D) in the Sobolev space
H^{1}(D)^{n} .

Definition 1 A function u is said the weak solution of (1) if and only if

u\in H_{\sigma}\cap H^{1}(D)^{n}

and

\nu(\nabla u, \nabla v)-((u. \nabla)v, u)=(f, v) , for \forall v\in V

holds.

In the following, we restrict ourselves to 2 dimensional case. Let D be
the annular domain

D=\{x\in R^{2}|R_{1}<|x|<R_{2}\} ,

and \Gamma_{i} its boundary

\Gamma_{i}=\{x\in R^{2}||x|=R_{i}\} , i=1,2 .

We consider the boundary value problem (1), (2) for f=0, and

b= \frac{\mu}{R_{i}}e_{r}+\omega_{i}R_{i}e_{\theta} on \Gamma_{i} , i=1,2 , (6)

where \mu , \omega_{1} , \omega_{2} are constants and e_{r} , e_{\theta} are the unit vectors in polar coor-
dinates representation \{r, \theta\}

Remark 1. If \mu\neq 0 , then this boundary value b satisfies the condition (5)
but not the condition (3).

Theorem 1 Let \mu\neq-2\iota’ , and let \omega_{1} , \omega_{2} be arbitrary constants. Then
the problem (1), (2) with (6) has an exact solution:

u_{0}= \frac{\mu}{r}e_{r}+(\frac{c_{1}}{r}+c_{2}r^{1+\frac{\mu}{\nu}})e_{\theta} , (7)

p= \rho\int[\frac{\mu^{2}+c_{1}^{2}}{r^{3}}+2c_{1}c_{2}r^{\mu}\nu-1+c_{2}^{2}r^{\frac{2\mu}{\nu}+1]}dr, (8)

where c_{1}= \frac{\omega_{1}R_{1}^{2}R_{2}^{2+\frac{\mu}{\nu}}-\omega_{2}R_{2}^{2}R_{1}^{2+\frac{\mu}{\nu}}}{R_{2}^{2+\frac{\mu}{\nu}}-R_{1}^{2+_{\nu}^{\mu}}} , c_{2}= \frac{\omega_{2}R_{2}^{2}-\omega_{1}R_{1}^{2}}{R_{2}^{2+_{\nu}^{\mu}}-R_{1}^{2+_{\nu}^{\mu}}} .
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Theorem 2 Let \mu\neq-2\nu . If |\mu| , |\omega_{1}-\omega_{2}| are sufficiently small, the weak
solution satisfying the boundary condition (2) with (6) in the trace sense is
unique.

Theorem 3 Let \mu=-2\nu , and let \omega_{1} , \omega_{2} be arbitrary constants. Then the
problem (1), (2) with (6) has an exact solution:

u= \frac{-2\nu}{r}e_{r}+\frac{1}{r} ( c_{1}+c_{2} log r ) e_{\theta} , (9)

p= \rho\int[\frac{\mu^{2}+c_{1}^{2}}{r^{3}}+\frac{2c_{1}c_{2}\log r+c_{2}^{2}(\log r)^{2}}{r^{3}}]dr , (10)

where c_{1}= \frac{\omega_{1}R_{1}^{2}1ogR_{2}-\omega_{2}R_{2}^{2}\log R_{1}}{1ogR_{2}-1ogR_{1}} , c_{2}= \frac{\omega_{2}R_{2}^{2}-\omega_{l}R_{1}^{2}}{1ogR_{2}-1ogR_{1}} .

Theorem 4 Let \mu=-2\nu . If |\mu| , |\omega_{1}| , |\omega_{2}| are sufficiently small, then
the weak solution satisfying the boundary condition (2) with (6) in the trace
sense is unique.

Remark 2. If \mu=0 , then the solution obtained above is the well known
Couette flow.

Remark 3. These solutions are interesting because it depends on \nu .

Remark 4. In a case where the boundary value b depends on the variable
\theta , we obtain an exact solution. Let b be as follows:

\{

b= \sum_{n}(\alpha_{n}^{i}\cos n\theta+\beta_{n}^{i}\sin n\theta)e_{r}+\sum_{n}(\beta_{n}^{i}\cos n\theta-\alpha_{n}^{i}\sin n\theta)e_{\theta} ,
(11)

on |x|=R_{i} , i=1,2 ,

where \alpha_{n}^{i} , \beta_{n}^{i} , \gamma_{n}^{i} , \delta_{n}^{i} are constants satisfying the following relation:

\{

\alpha_{n}^{1}R_{1}^{1-n}=\alpha_{n}^{2}R_{2}^{1-n} ,

\beta_{n}^{1}R_{1}^{1-n}=\beta_{n}^{2}R_{2}^{1-n} ,
n=0, \pm 1, \pm 2 , \cdots (12)

Then the boundary value problem (1) (2) with (11) has a solution in the
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form:

\{

u=u_{r}e_{r}+u_{\theta}e_{\theta}

u_{r}= \sum_{n}(\frac{r}{R_{1}})^{n-1} ( \alpha_{n}^{1} cos n\theta+\beta_{n}^{1} sin n\theta )

u_{\theta}= \sum_{n}(\frac{r}{R_{1}})^{n-1}(\beta_{n}^{1}\cos n\theta-\alpha_{n}^{1}\sin n\theta) .

(13)

Since this solution u is a gradient of harmonic polynomials, u does not
depend on \nu , that is, is a solution of the Euler equations. But, if \alpha_{0}^{1}\neq 0 ,
then the boundary value satisfies the condition (5), but not (3).

Let us consider the initial boundary value problem for the Navier-Stokes
equations:

\{

\frac{\partial u}{\partial t} = \nu\triangle u-(u\nabla)u-\frac{1}{\rho}\nabla p , x\in D , t>0 ,

div u=0, x\in D , t>0 ,

u =b, x\in\partial D , t>0 ,

u|_{t=0}=a , x\in D , t=0.

(14)

Suppose the initial value a\in H_{\sigma} and the boundary condition (6). Let
u_{0} , p0 be the stationary solution obtained by Theorem 1, 3. Put u=
u_{0}+w,p=p0+q . The equations for w , q are as follows:

\{

\frac{\partial w}{\partial t}=\nu\triangle w-(w(\nabla)w-(u_{0}\nabla)w-(w\nabla)u_{0}-\frac{1}{\rho}\nabla q ,

div w=0, (15)
w|_{\partial D}=0 ,

w|_{t=0}=a-u_{0} .

Definition 2 A function w is called the weak solution of (15) if and only
if

w\in L^{2}(0, T : V)

and



646 H. Morimoto

\{

\frac{d}{dt}(w, v)+\nu(\nabla w, \nabla v)

=((w\nabla)v, w)+((u_{0}\nabla)v, w)-((w\nabla)u_{0}, v)

for \forall v\in V,
w|_{t=0}=a-u_{0}

hold, u=u_{0}+w is said the weak solution of (14)

Theorem 5 For sufficiently large \nu , the above exact solution u_{0} is as-
symptotically stable, that is, for some positive constant \alpha_{0} ,

||u(t)-u_{0}||\leq e^{-\alpha_{0}t}||a-u_{0}|| , \forall t>0

holds for any weak solution u of (14).

3. Proof of Theorems

Proof of Theorem 1. We look for a solution in the form u_{0}=u_{r}e_{r}+u_{\theta}e_{\theta}

assuming that u_{r} , u_{\theta} , p depend only on r . Then the following boundary value
problem for ordinary differential equations is derived from the Navier-Stokes
equations (1) and the boundary condition (2) with (6).

- \nu(u_{r}’+\frac{1}{r}u_{r}’-\frac{1}{r^{2}}u_{r})+\frac{1}{\rho}p’+u_{r}u_{r}’-\frac{1}{r}u_{\theta}^{2}=0 (16)

- \nu(u_{\theta}’+\frac{1}{r}u_{\theta}’-\frac{1}{r^{2}}u_{\theta})+u_{r}u_{\theta}’+\frac{1}{r}u_{r}u_{\theta}=0 (17)

\frac{1}{r}(ru_{r})’=0 (18)

u_{r}(R_{i})=\mu/R_{i} , u_{\theta}(R_{i})=\omega_{i}R_{i} , i=1,2 (19)

where ’ means differentiation with respect to r .
From (18) and the boundary condition (19), u_{r}=\mu/r . Substituting this

u_{r} in (17), we get an ordinary differential equation for u_{\theta} . And the solution
(7) is obtained. Finally p is calculated from (16). See [4] for details. \square

Proof of Theorem 2. Let u be any solution to (1) satisfying the boundary
condition (6). Let w=u_{0}-u . Then w belongs to V and satisfies the
following:
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\nu(\nabla w, \nabla v)-\{((u_{0}1\nabla)v, u_{0})-((u\nabla)v, u)\}=0

for \forall v\in V. (20)

Therefore we obtain:

\nu||\nabla w||^{2}=-((w\cdot\nabla)u_{0}, w) .

Let J be the right hand side of the above equation. Then,

J= \int_{R_{1}}^{R_{2}}\int_{0}^{2\pi}\{\frac{\mu}{r^{2}}(w_{r}^{2}-w_{\theta}^{2})+(\frac{2c_{1}}{r^{2}}-\frac{\mu}{\nu}c_{2}r^{\frac{\mu}{\nu}})w_{r}w_{\theta}\}rdrd\theta ,

and we obtain the estimate:

|J|\leq c_{0}||\nabla w||^{2}

(c_{0}= \frac{|\mu|+|c_{1}|}{2}(\log\frac{R_{2}}{R_{1}})^{2}+\frac{|\mu c_{2}|}{2\nu}\int_{R_{1}}^{R_{2}}r^{1+\frac{\mu}{\nu}}\log\frac{r}{R_{1}}dr) (21)

Therefore, if c_{0}<\nu , then the uniqueness follows. For small | \frac{\mu}{\nu}|.

, we
have

c_{1}= \frac{\omega_{1}-\omega_{2}+\frac{\mu}{\nu}(\omega_{1}1ogR_{2}-\omega_{2}1ogR_{1})+O((\frac{\mu}{\nu})^{2})}{R_{2}^{2}-R_{1}^{2}+\frac{\mu}{\nu}(R_{2}^{2}1ogR_{2}-R_{1}^{2}\log R_{1})+O((\frac{\mu}{\nu})^{2})}R_{1}^{2}R_{2}^{2} .

The condition c_{0}<\nu follows from the smallness of|\mu| , |\omega_{1}-\omega_{2}| and Theorem
1 is demonstrated. \square

The Proof of Theorem 3, Theorem 4 is similar to that of Theorem 1,
Theorem 2 and is omitted.

Proof of Theorem 5. We suppose \mu\neq-2\nu . Let v=w(=u-u_{0}) in the
Definition 2. Then, we have:

\frac{1}{2}\frac{d}{dt}||w||^{2}+\nu||\nabla w||^{2}=-((w\nabla)u_{0}, w)\leq c_{0}||\nabla w||^{2}

where c_{0} is the constant in (21). Using Poincar\’e’s inequality:

c_{D}||w||^{2}\leq||\nabla w||^{2} , \forall w\in V,

we obtain the following inequality:

\frac{d}{dt}||w||^{2}+2c_{D}(\nu-c_{0})||w||^{2}\leq 0 . (22)
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If \nu is sufficiently large such that \nu>c_{0} holds, then \alpha_{0}\equiv c_{D}(\nu-c_{0})>0 .
Integrating the equation (22), we obtain the desired result.

The case \mu=-2\nu is similarly demonstrated. \square
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