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Abstract. In this paper we consider the global existence and uniqueness of weak solu-
tions for the initial boundary value problem of the Maxwell-Schrédinger equations under
the Lorentz gauge condition in one space dimension. We prove the global existence of
energy solutions and also prove the uniqueness in the energy class under an additional
condition, which seems fairly weak.
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1. Introduction and main results

In this paper we consider the global existence and uniqueness of so-
lutions in the energy class for the initial boundary value problem of the
one dimensional Maxwell-Schrédinger equations under the Lorentz gauge
condition:

07 A— 02A = —i{(0: —iA)Y - P — ¢ - (Bs +iA)Y}, (1.1)
teR, zeR,

0fp— 2o =—y]>, teR, zeR,

O+ (8, —iA)’ Y+ =0, teR, zeR,

0, A—8p=0 teR, zecR,

A(0,z) = Ao(z), B8:A(0,z) = Ay (),

¢(0,z) = po(z), Bp(0,z) = p1(x), ¥(0,z) = ho(),

A(t,z), ¥(t,z) =0 (|z] = o0), (1.6)

[o(t, ) — colz|] = 0 (|| — o0),
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1The author was visiting CMA, the Australian National University, when this work was
done.
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where 8, = 8/0t, 8, = 8/08x, i = /=1, 1 denotes the complex conjugate
of ¢ and

co = %/_o:o ()2 da. (1.7)

Here, A(t,z) and ¢(t,z) are the functions from R X R to R which denote
the electromagnetic real potentials, ¢ (t, z) is the function from R x R to C
which denotes the complex scalar field of nonrelativistic charged particles
and is called the Lorentz gauge condition. Equations [1.1}{1.4) are
the classical approximation to the quantum field equations for an electro-
dynamical nonrelativistic many body system.

There are many papers concerning the global existence and the unique-
ness of solutions for the Cauchy problem of the Maxwell-Schrodinger equa-
tions (see, e.g., , , and [13]). For the case of one space dimen-
sion, Nakamitsu and M. Tsutsumi showed that if (Ag, A1), (b0, ®1)
€ H?(R) ® H(R) and ¢9 € H%(R), there exist the unique global solutions
of [1.1)H(1.6) (for the case of two or three space dimensions, see [7], [11],
and [13]). But their assumptions in imply co = 0. Most part of
their paper is devoted to the two dimensional case and they may not
have been so much interested in the one dimensional case.

In one space dimension, it does not seem natural that the following
boundary condition at £ = oo is imposed on the solution ¢ of [1.2):

p(t,z) =0 (|z] = o0).

Because this condition is not compatible with the Lorentz gauge condition
(1.4). In fact, the constraint requires the initial data to satisfy the
following two compatibility conditions:

0z Ao(z) — p1(z) =0, ze€R,
0z A1(z) — Bopo(x) = ~[o(2)]?, z€R.

If 90 and A; vanish at z = o0, then (1.9) implies that

1 [e° 9

o==2 [ [o(@)? dz =0,
2 /-

which excludes the nontrivial case. If we assume that the boundary values

of A(t,z) at x = *o0 are independent of ¢t and the behaviors of ¢(t, z) near

z = 400 and £ = —oo are the same, then it seems natural that we should
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impose the boundary condition on the system [1.1}{1.4) in one space

dimension (we note that %|x| is the fundamental solution of the Laplacian
in R).

Let V(x) be a real-valued function in C*°(R) satisfying the following
assumption:

V(z) > 1 and for some R >0, V(z)=c|z| (Jz| > R). (V)

We put ¢(t, z) = ¢(t,z) — V(x), do(x) = po(z) — V(z) and ¢1(z) = p1(z).
We rewrite as follows:

0] A — 03A = —i{(0: —1A)Y - b — ¢ - (B +1A)P}, (1.10)
teR, z€eR,

29— 829 =02V — |[9|?, teR, z€R, (1.11)

O+ (8, — 1A’ Y+ o +Vip =0, teR, z€eR, (1.12)

0, A—8,0=0, teR, zeR, (1.13)

A(0,z) = Ao(z), 8,A(0,z) = Ay (), (1.14)

¢(0,z) = ¢o(x), 014(0,z) = ¢1(x),

P(0,z) = o(z),

At,z), o(t,z), o(t,z)—>0 (Jz|— o0). (1.15)

The solutions (A4, ¢, ) of (1.10)(1.15) formally satisfy the two conser-
vation laws of the L? norm and the energy:
””vb(t)”L2 = ”¢0||L27 t €R,
E(A(t)a 8tA(t)7 ¢(t)7 ¢(t)) = E(A()a Ala ¢Oa 1/)0)a te R’

where
E(A,8A,6,%) = |(8; — iA)Y[32
1
+ 5104 = 0:813— [ V@IW(@)? do. (1.16)

If the solutions (A, ¢, 1) of (1.10)-(1.15) belong to the following class

H'(R)® H'(R) ® (H'(R) N L*(R; |z|dz)),

then we call these solutions the energy solutions of (1.10)—(1.15). Because

this class is the weakest function space in which the energy identity makes
sense.
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The unique global existence of solutions for (1.10)+1.15) is practically
known, if the initial data are smooth and decay fast at * = +oo. In fact,
the proofs of Theorems 2.1 and 3.1 in [12] are applicable to (1.10)-{1.15),
after a slight modification. However, the unique global existence problem
seems to remain still open for the weak solutions of {1.10)-{1.15). In this
paper, we show the global existence of energy solutions of (1.10)1.15) for
any Ao, 0 € H'(R), A1,¢1 € L%(R) and v € H'(R) N L?(R; |z|dx) and
the uniqueness in the energy class under an additional condition. The proof
of the global existence of the energy solutions is a standard one, which is

based on the a priori estimates derived from the two conservation laws of the
L? norm and the energy. We consider the regularized problem associated
with (1.10)-{1.15) and pass to the limit. In this process, we need carefully
regularize (1.10)(1.15) so as not to break down the Lorentz gauge condi-
tion [(1.13). Because we have to use to obtain the energy identity for
the regularized problem, which gives us the a priori estimates needed for
the proof of the global existence. It is an important problem whether the
energy solutions of [1.10})1.15) constructed as above are unique or not.
The difficulty of proving the uniqueness of the energy solutions consists
in the highly singular derivative coupling term iA9,v of the Schrodinger
part, which arises from the second term at the left hand side of .
There are several papers in which this kind of difficulty for the nonlinear
Schrodinger equation is studied (see, e.g., , and ) In , Kenig,
Ponce and Vega use the smoothing effect of the Schrodinger equation to
overcome this difficulty, but the smallness condition on the initial data is
assumed in [10]. In [8], Hayashi and Ozawa use a kind of the gauge trans-
formation to eliminate the highly singular derivative coupling term from
the nonlinear Schrédinger equation (see also Chihara [1]). But, in both the
proofs of and , the high regularity of solution is required. In this
paper, we show that the gauge transformation used in is applicable to
the energy solutions of (1.10)+1.15) under a certain additional condition
and so we can eliminate the highly singular derivative coupling term from
(1.12). Combining this fact and the LP? — L7 and Strichartz estimates of
the linear Schrodinger equation with a magnetic field due to Yajima ,
we prove the uniqueness of the energy solutions of (1.10)-{1.15) under an
additional condition, which will be stated in below.

Before we state the main results in this paper, we give several notations.
For m € N, we denote the standard L? Sobolev space and its dual space by
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H™(R) and H ™ (R), respectively. We put H'(R) = L%(R). For s € R we
denote the function space L?(R;|z|**dz) by X(s). Let H! and H~! denote
the space H'(R) N X(1/2) and its dual space, respectively. For m € N,

1 < p < o0, an interval I C R and a Banach space X, we define the Banach
space W™P(I; X) by

W1 X) = (£(t) € P X): 2 (1) € (1 X), 1< 5 < m)

with the norm
1/p
I lhwmoai) = (Z 1 rz) - 1Sp <00,

”f”Wmvw(I;X) Hdtjf“L (I;:X), P = 00.

Now we state our main results in this paper. We first mention the
theorem concerning the uniqueness of the energy solutions.

Theorem 1.1 Assume that (Ag, A1), (¢o, 1) € H(R) @ L?(R), Ag, Ay,
bo and ¢, are real-valued, g € H! and V satisfies (V). Let A, satisfy

/O A(y) dy € L¥(R). (1.17)
Let I be a bounded open interval in R with 0 € I. The solutions (A, ¢,¢) of

(1.10)—(1.12) and (1.14)—(1.15) with A and ¢ real-valued are unique in the
following class:

Ac (1] Wo(I; H'7I(R)), (1.18)
j=0
¢ € ﬁ W (I; H' 7 (R)), (1.19)
3=0
Y € L®(I;HY), (1.20)
/ " 0,A(t,y) dy € LO(I x R). (1.21)
0

Remark 1.1. (i) If the functions (A, ¢, 1) satisfy (1.18)-(1.20) and satisfy
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(1.10)(1.12) in the distribution sense, then we have

Ac h CJ (I; H(R)), (1.22)
j=0

82A € L°°(I; H"1(R)), (1.23)

¢ € (1) CL,(I; H' 7 (R)), (1.24)

;¢ € L®(I; H'(R)), (1.25)

Y € Cy(I;HY), (1.26)

Ay € L°(I; H™H. (1.27)

Here, C7*(I; X)) denotes the set of all m-time weakly continuously differen-
tiable functions from I to X.

(ii) In [Theorem 1.1, we do not assume that the solutions satisfy the
Lorentz gauge condition [1.13).

(iii) If A; € L*(R), then A; satisfies [1.17). However, the integrability
of A; over R is not a necessary condition for . In fact, the function

Ai(z) = 1+ 2%V ?sing

is not integrable on R, but it satisfies (1.17).

We can actually construct the energy solutions of (1.10)-(1.15) satisfy-
ing globally in time. We have the following theorem concerning the
unique global existence of the energy solutions.

Theorem 1.2 Assume that (Ao, Al), ((b(), ¢1) € HI(R)@L2(R), Ao, Al,
b0 and ¢1 are real-valued, g € H! and V satisfies (V). Let (Ao, A1, do,
é1, ¥o) and V satisfy the following two compatibility conditions:

;A0 — ¢ =0 in LA(R), (1.28)
8z A1 — B2 = —|ho|® + 82V in H1(R). (1.29)

In addition, let Ay satisfy (1.17). Then, there exist the unique solutions
(A, #,v) of (1.10)—(1.15) such that A and ¢ are real-valued and

Ac (2] C’(R; H' ™7 (R)), (1.30)
3=0
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2
¢ [ C/(R;H' ' (R)), (1.31)
=0
1
pe () CV(R;HH), (1.32)
j=0
/I 0;A(t,y) dy € L>=((-T,T) xR) forany T >0. (1.33)
0

Furthermore, the solution 1)(t) satisfies the conservation law of the L? norm:

@)Lz = |Yollz2, teER.

Remark 1.2. (i) The author does not know whether the solutions of
(1.10)—(1.15) given by Theorem 1.2 satisfy the energy identity (or the energy
inequality).

(ii) We need not assume (1.17), if we prove the global existence of the
energy solutions without the uniqueness (see Proposition 2.5 in Section 2).

(ili) For example, we can actually choose the nontrivial data (Ao, A1,
¢o, d1, o) and V satisfying all the assumptions in Theorem 1.2 as follows.
Let Ag be an arbitrary function in H}(R) and let ¢; = 8;A4p. We put
Yo = (2 4+ 1)73/4 and let V(x) be an arbitrary function satisfying (V).
Furthermore, we put

$o = 2( Va2 +1— V(CB)),

Al = —— — 9,V (x).
= v
Then, we can easily verify that (Ao, A1, do, $1,%0) and V satisfy all the
assumptions in Theorem 1.2.

Our plan in this paper is as follwos. In Section 2 we summarize four
lemmas and one proposition needed for the proofs of [[Theorem 1.1 and The-
orem 1.2. In Section 3 we prove [Theorem 1.1 and [Theorem 1.2 by using the
results stated in Section 2.

We conclude this section by giving several notations. We abbrevi-
ate LP(R) and H™(R) to LP and H™, respectively. Let L] (R;X) and
W "P(R; X) denote the sets of all functions f(t) from R to X such that
for any compact interval I in R, f(t) € LP(I;X) and such that for any
compact interval I in R, f(t) € W™P(I; X), respectively. In the course of

calculations below, various constants are simply denoted by C.
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2. Preliminary results

In this section we state four lemmas and one proposition needed for the
proofs of [Theorem 1.1 and [Theorem 1.2.

We first begin with several estimates of solution for the linear Schro-
dinger equation with a magnetic field.

Lemma 2.1 We put H(t) = (8, +it(8,V))?. LetV satisfy (V). Then, the
operator 1H (t) generates the evolution operator U(t,s), —oo < s <t < 400
associated with the linear Schrodinger equation with a magnetic field:

04 + (0 +it(0;V))?p =0, teR, z€R.

The evolution operator U(t, s) satisfies the following three estimates for any
T > 0.

(i) Let p and q be two positive constants such that 1/p+1/q =1 and
2 <p<oo. Then,

U, s)vllLe < Clt — s|~127HP) |y Lo,
-T<s<t<T, wvelLl,

where C depends only on p and T.
(ii) Let I = (=T,T). Assume that f € L'(I;L?) and q and r are two
positive constants such that 2 < g < oo and (1/2 —1/q)r = 2. Then,

t
I [ Ut9)5(s) dsllrran < Cll i,

where C depends only on q and T
(i) Let I = (=T,T) and let g and r be two positive constants such
that 1 < q<2and 1/q+2/r =5/2. Assume that f € L"(I;L7). Then,

t
I [ Uit9)£(s) dsllzeirizs) < Cllflirqizn,
where C depends only on q and T'.

Lemma 2.1 (i) is the so-called LP — L? estimate, and (ii)
and (iii) are variants of the Strichartz estimate. For (i), see [15,
Theorem 1 and Theorem 4] and for the proofs of (i) and (iii),
see, e.g., [14], [15], [9] and [6].

We next consider the inhomogeneous linear wave equation:
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ORZA-02A=f, tel, z€R, :
A(0,z) = Ao(z), 8:A(0,z) = A;(z), (2.2)

where I is a bounded interval in R with 0 € I.
We have the following lemma, which will be useful in the Proof of

(I’heorem 1.1.

Lemma 2.2 Let I be a bounded interval in R with 0 € I. Assume that
Ag € HY, Ay € L? and f € LY(I; L?). Then, the following identity holds:

/Om 8,A(ty) dy = 2 [Ao(a +1) — Aofe — 1) — Aolt) + Ao(~1)

[T awas [T 4w
2/ /z-l-(t s) 8 y) dy

z—(t—s)
+/( | f(s,y) dy] ds, teR, zekR.
—(t—s

In addition, if Ay satisfies (1.17) and f € LY(I; L!), then

/ 8,A(t,y) dy € L°(I x R).
0
Proof. By the D’Alembert formula, we have

Altz) = Sldo(e+0)+ oo~ 0] +3 [ i) dy

z+(t— s)
// f(s,y)dyds, tel, zeR.
i ~(t=3)

A direct calculation yeilds the identity of Lemma 2.2. The last claim in
Lemma 2.2 follows easily from the identity in the former half of Lemma 2.2.

[]

Remark 2.1. [Lemma 2.2 implies that we can almost regard 8; as +8, for
A(z,t). This is a special property of the one space dimension.
We next conseider the following linear Schrodinger equation:

04 + 24 + ia(t, x)0ph + b(t, z)Y + V(z)h =0,
teR, zeR (2.3)



626 Y. Tsutsumi

We have the following lemma, which will be useful in estimating the
derivative in the spatial variable of the right hand side of {1.10).

Lemma 2.3 Assume that a(t) is a real-valued function in LP° (R; H!),

b(t) € L2 (R; HY) and V satisfies (V). Let ¥(t) be a function satisfying
(2.3) such that

€ ﬂ W (R M%),

Then,
—i0, (Oat) - — - Bpp) = —4|Y[* — alt, )|y
+2(Im b(t, z))||* in H™
for a.e. t € R.

Proof. ~ We first note that when v € H! and v € H™!, the product u - v of
u and v belongs to H~!. We multiply by —it to obtain

Ot - P — 1029 - + a(t, T)0p - ¥ — i(b(t, @) + V(2))[¢|*=0. (2.4)
We take the complex conjugate of (2.4) to obtain
Ot - + 1054 - ¥ + a(t, z)0:¥ - ¥ + i(b(t, x) + V(x))[1|*=0. (2.5)
Identities (2.4) and (2.5) yield
—10(Oxt - Y — - Bph) = —i(029p - — ¥ - O2AD)
= —0yp|* - alt,)0:|9* + 2(Im b(t, z))[¢[* in H™.
This shows [Lemma 2.3. L]

Now we state an elementary lemma concerning the estimate of the H !
norm of nonlinear term.

Lemma 2.4 Letu € H! and v € L?. Then,
[uBzv||g-1 < Cllul| g lv] L2,
where C' does not depend on u and v.

Proof. Let (-,-) denote the duality coupling between the elements in H~!
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and H!. By the Sobolev imbedding theorem, we have

|(udzv, w)| = [(Bzv, uw)]
= |—/ v(wiyu + udyw) dx|
R

< Cliollellul llwllgs, w e H.

This shows Lemma 2.4. ]

Finally we describe the proposition concerning the global existence of
the energy solutions for (1.10)-(1.15).

Proposition 2.5 Assume that (Ag, A1), (do,¢1) € H & L?, A; and ¢;,
§=0,1 are real-valued, o € H* and V satisfies (V). Let (Ao, A1, ¢o, ¢1,%0)
satisfy the following two compatibility conditions:

;A0 — 1 =0 in L2, (2.6)
B A1 — B2¢ = —|tho|* + 02V in H™L.

Then, there exist the solutions (A, ¢,v) of (1.10)—(1.15) with A and ¢ real-
valued such that

A€ ﬂ W2 (R H' ), (2.8)
¢€ﬂWfof°RH1 ’), (2.9)
P € ﬂ W7o (R; H %), (2.10)

|I¢(t)||Lz = |lvoll2, teR (2.11)
(A(t), 0 A(t)) — (Ao, A1) imH'&L* (t—0), (2.12)
(6(1), 3t¢( ) = (do, 1) imnH' @ L*> (t—0), (2.13)
Y(t) > o inH' (t—0). (2.14)

In addition, if we assume

/Ox Ay(y) dy € L™, (2.15)
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then we have

| 2Att.y) dy € LR L), (2.16)
0

Proof.  Let {(Aon,A1n)}, {(¢on, #1n)}, {¥on} and {v,} be the sequences
in C§°(R) such that Ay, — Ag in H', Ay, — A; in L?, ¢g, — ¢p in H!,
$1n — ¢1 in L2 9o, — g in H! and v, — 82V in H! (n — oo) and

0z Agn — O1n = 0, (2.17)

Oz A1in — a§¢0n = _|'¢)On|2 + vp. (2'18)
We can actually choose these sequences as follows. Let x be a function in
C§°(R) such that 0 < x <1, x(z) =0 for |x| > 2 and x(z) =1 for |z| < 1
and let p be a function in C§°(R) such that p > 0 and [ p(z) dz = 1. For

n, € > 0, we put x,(z) = x(nz) and p.(z) = e p(z/e). By * we denote the
convolution with respect to the spatial variable x. We put

Ajne = pex(Xnd;), J7=0,1,

Pjne = pe* (Xn®5), J=0,1,

Yone = pe * (Xn¥o),

Une = pe* (Xn0zV) + e * (Xn%/)o)l2 — pe * (xn|%o|?)
+ pe * (=1(8zx)nA1 + 17 (92X)y fbo + 21(82X)n 0z o).
We choose 7, € > 0 appropriately to obtain the desired sequences.
We first consider the Cauchy problem of [1.10}-{1.15) with 82V re-

placed by vy, in [1.11). Then, for each pair of the initial data (Aon, A1n,

®on, P1n, Yor ), we have the unique local solutions (A, ¢n,1,) of the initial
value problem of (1.10}+1.12) and [1.14)(1.15) belonging to

[J@OCj([—T, T, H*7)] @ [ﬂ Ci([-T, T); H>)|

® C([—T, T); H3n2(3))

with A,, and ¢, real-valued, where the existence time T" > 0 depends only

on ||Aon| g3, [|Ainllmz, l¢onllgs, |f1nllg2 and [|Yon||g2ns ) (for the proof
of the local existence of smooth solutions, see, e.g., the proof of Theorem

2.1 in [12]). We differentiate in z and in t and add the both
resulting equations to obtain by using (1.12), (2.17) and for
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A, and ¢,.

We multiply (1.10), (1.11) and (1.12) by 8; Ay, —0:¢y, and 8¢y, respec-
tively, and we add these three resulting equations to obtain by the
energy identity:

E(An, atAna (.bna wn) - E(AOn, Alna ¢0n’ ¢0n), t € [_T7 T]7 (2°19)

where the energy functional F is defined as in (1.16). We multiply
by ., integrate the resulting equation in z over R and take the imaginary
part to have

[¥n(®)llzz = lonllL2, te€[-T,T] (2.20)

We multiply by Vb, integrate the resulting equation in z over
R and take the imaginary part to have by (2.19) and

VY2472 < IV ?oullZ2

+C] /Ot 102 — 1An(s))¥n(s)l|2[¥n(s)l L2 ds]

< VY2l + Ol 41 [ IVl s,
te[-T,T). : (2.21)

The Gronwall inequality and yield
VY235, 0) 22 < (IVV250nll2e + CleDECM,  te [T,T), (222
where C does not depend on n and T. Therefore, (2.19) and (2.22) give us
182 — 1An(t))n(t)ll 12 < CeM,  t € [-T,T], (2.23)

where C does not depend on n and T
We next note that for u € H!,

8a]ul| < |(85 — iAn)u| ae. inR (2.24)

(for the proof of (2.24), see [2, (2.3) at page 406]). The Gagliardo-Nirenberg
inequality and (2.24) yield

ull oo < Cllull}e2 )| (8 — iAn)ull}s, u€ HY (2.25)

(for the Gagliardo-Nirenberg inequality, see, e.g., [3, Theorem 9.3 in Part
1]). Inequalities [(2.20), (2.23) and (2.25) and the theory of linear hyperbolic
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equations show that

1An @)l + 10 An(t)l| 2 + [ 6n (@)l + 10:n (t)]] 12 < CeM,
te[-T,T], (2.26)

where C does not depend on n and 7'. Inequalities (2.23) and (2.26) imply
that

10:0n(t)|| 12 < Ce“M, ¢ e [-T,T], (2.27)

where C' does not depend on n and T'.

Since we easily obtain the a priori estimates dependent on n for the
higher order derivatives of (A, ¢n, %), we can extend the above local so-
lutions (A, ¢pn, %) globally in time for each n > 1. Accordingly, [2.20)}-
and (2.26){2.27) hold valid for all ¢t € R. Therefore, the standard

compactness argument implies that there exist the global energy solutions

(A(t), o(t),¥(t)) of [1.10)-1.15) satisfying [2.8){2.11) and
V20 @)1172 < (IV240ll72 + Clt))eM, ¢ eR, (2.28)

10z — 1A®)$ (D172 + 0. A(t) — Bz8(2)172
< 18z — iAo)tpoll 72 + || A1 — Bzgbol 72
+ (O — )|V 2|2, + CJteC, te R (2.29)

(for the details, see, e.g., [6, Proof of Proposition 2.1] and [7]).
On the other hand, equations (1.10), (1.11) and the theory of linear

hyperbolic equations, altogether with and [2.10), imply that

1
Ae (C/(R;H ), (2.30)
j=0
1
e )OI (RH), (2.31)
j=0

which show the stronger results than (2.12) and (2.13). We next note that
¥(t) € C(R; L?) N Cy(R; HY) N Cy (R; £(1/2)). (2.32)
By (2.28), (2.29) and (2.32) we have

limsup [[V*9(0)|72 < [V} ol 2, (2.33)
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limsup [[8:9(t)[Z2 < |8z%0Z2- (2.34)

By (2.32)-(2.34), we obtain (2.14).
Finally, if we assume (2.15), then [2.16) follows immediately from [2.8),
(2.10) and Lemma 2.2, [

3. Proof of the main results

In this section we prove [Theorem 1.1 and [Theorem 1.2 by using the

results stated in Section 2.

Proof of Theorem 1.1. We assume that (A, ¢,1) are the solutions of
—(1.15) satisfying [1.18){1.21). Following [8], we put

u(t,) = it,x)exp(—5 [ Alt,y) dy itV (a), (3.1)

w(e) = do(e)exp(—3 [ Aoly) dy) (3.2)

By [(1.18), [1.20), [1.27), [1.21) and (V), we note that u € L>®(I;H') and
Oyu € L®(I;HY). Then, the function u satisfies

i0pu + (8 + 2it(9:V))*u = %(BxA)u + %Azu — ¢u
+ %(/ 8, A(t,y) dy)u + t(8;V)Au + it(92V )u
0
—3t2(9,V)?u inH™!, aetel (3.3)

Since all the terms in (3.3) except :0;u belong to H ~1 we can conclude that
du € H™' and (3.3) holds in H~. Let U(t,s) be the evolution operator
generated by (0, +2it(0;V))? (see Lemma 2.1). By the Duhamel principle,

and (3.3), we have
[ i 3
u(t) = U(t,0)up — z/ Ul(t,s) [5(8$A)u + ZA u — Pu
0
+ %( / 9, A(s, 1) dy)u + s(35V) Au + is(82V )u
0
— 35%(0,V)?u| ds, tel. (3.4)

Now we suppose that (A, ¢,1) and (/i,q?), 1[)) are two pairs of the solu-
tions of [1.10}{1.15) with the same initial data such that A, ¢, A and ¢
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are real-valued and (A, ¢,%) and (/iiqg, ) satisfy [1.18)-{1.21). Let u and
v be defined as in for 1) and 1, respectively. Then, u and v satisfy

(3.4). If we put
w=u—-v, B=A—-A, a=d¢—4,

then we have by

w(t) = —i /Ot Ut s)[%(BxA)w + —;(8$B)v + §A2w

3 - x
+ Z(A + A)Bv — ¢w — av + %(/ 0sA(s,y) dy)w
0
1, /2 ~
+ 5 / 8:B(s,y) dy)v + 5(8,V)Bu + 5(8,V) Aw
0
+ i8(82V)w — 332(8:,;V)2w] ds, tel. (3.5)

Let T be a positive constant with [0, 7] C I to be determined later. We
put I = [0, T.

We take the L8(Ir; L*) norm of to obtain by Lemma 2.1/(i), (ii)
and (1.18)-1.20)

t
lwll L8 (z7;9) < CH/O [t — 81411185 All 2wl s

+110:Bl|2[[vll s + 1Al 4[]l s
+ (1 4llzs + 1AllLe)IIBllz2llvllze + Il 2 [lw]] s

+ e 2ol 2] dsll o)
¢ [ [i(f aats.v) dpullz

([ 8:B(s,v) dylze

+ |1 Bllzlullz + sl All o [l 2 + s(1 + 8)[[w]| 2] ds

< CT3/4[”w”L3(IT;L4) + 02 Bl| oo (17:1.2)

+ Bl Lo (17;22) + el Lo 17522y + 1wl oo (17 12)]

+0 [T10] 01, ) agyte))e

+0 [0 [ 0B, ) dyo@)lze e (3.6)
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where C is a positive constant depending increasingly on 7. We next take

the L°°(Ir; L?) norm of to obtain by Lemma 2.1 (iii) and [(1.18)-(1.20)

Wl oo (7p; 22y < cT3/*
X [0z Al Loo (17:2) W L8 (17:24) + 110 Bll oo (1s22) 10| L8 (1524)]
+ CT([| Al F oo (1 xy 10l oo (17 2)
+ (|1 All oo (17 xRy + 1Al poo (17 xR 1B oo (17522 101 oo (1 xR)
+ (|1l Loo (1 xm) 1wl (27522
+ {lell oo (s 22) 10l Loo (17 xR)]
T oz z
+C [UI([ aA(t.) dyywla + ([ B(t,9) dy)olz
+ 8[| Bll g2 l[ull oo + sl| All oo [lwll 2 + s(1 + s)[Jwl| 2] dt
< CT3/4[HU’“L8(1T;L4) + 1|02 Bl Loo (171.2)]
+ CT[|w|| poo (17522) + I Bl Loo (17522) + |l oo (27:22)]

0 [ 0At,) dy9)]» a

T x
+C [1([ aBty) dyo(lza dt (3.7)

where C is a positive constant depending increasingly on T

Now we have only to estimate the terms at the right hand side of
and [3.7). We first evaluate |0z B|| oo (1,;12)- From the definition of B, it
follows that B(t) satisfies

O}B- B+ B = —i{(0:p -~ 0:9) — (8t - ¥ - 1))
—2(Al|* - A[YI*) + B, teln, (3.8)
B(0,z) = 0;B(0,z) = 0. (3.9)
If we put w = (1 — 82)/2, then we have by and
B(t) = [ w™sint - o) [-i{(@u -3~ - 09)
0

— (8aP - — - 8:9)} — 2(Al|2 — A9|?) + B] ds,
te lr.



634 Y. Tsutsumsi

We differentiate ) in = to obtain by Lemma. 2.3
0Bz < | [ sinte — s)o [0l
+ A0, [[*~2(8, A) |9 [* + 85[|*— A8z || + 2(8, A) Y] ds|| 2

t ~ ~ ~
+ C/O 1Bl 2191120 + Al oo ([l oo + N1 oo )1 — b 22
+[|Bllr2] ds, t € Ir. (3.11)

By integration by parts, (1.18)1.20) and [Lemma 2.4} it follows that the
first integral term at the right hand side of {3.11) is bounded by

3 ~
Il [ cos(t = sy (1Wf* = 9f%) dsil,»

" C/()t[||B8a:|¢’2”H—1 + 1 A8z (¥ = )Pl g1

+ 1AW ~ 9)8:Pll -1 + [ A©@$) @ — ) -
+ 11400 ( — D)l g1 + 102 Bl 2|3
+ @A) (1 = [ -] ds

t -
SCAGW—whrthHW%BMﬂw

+0 [ 1A = DBl + 1(0:8)(5 ~ D)
+maﬁmw2|m%hdw (3.12)
<C [ (06s) = F(6)lgz + 1Bz + 10Bso) ds, € I

At the first inequality, we have used the fact that L' < H~! for the one
dimensional case. Since the second integral term at the right hand side of

can easily be evaluated, we obtain by (3.11) and {3.12)

0Bz < € [ ((s) = $(6)lz
+ | B(8)|| g2 + |0 B(s)||z2) ds, t € Ir. (3.13)

In the same way as in the proof of (3.13) we obtain

IBOIz= < € [ ((s) -9l
#IB)) ds, te I, .14
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t -
la@lze < € [ ((s) = bl
+lla(s)l|z2) ds, te€ Ir. (3.15)
We next evaluate the last term at the right hand side of and [3.7).
By we have
x t z+(t—s)
I/O 6 B(t,y) dy| < C/ ] F(s,y) dy|

+|/ Y ps,) ) dy| | ds, (3.16)

(t—s)

where

F = 2Im (9,(4 —9) - %) + 2km (89 - (4 — 1))
— 2BJy* — 2A(¢ — $)ib — 249($ — ¥). (3.17)
The integration by parts and [(1.18)-(1.20) yield

z+(t—s)
/ / (s,y) dy| ds
t

:2Aum (% — §)P) s,z + (t— 5)) — Im (¢ — D)D) (s, — o)

z+(t—s) B a 5 3
[ (= 9)9,8) + Im (9,5 (9~ 9)
— B|® — A% — §)P — Ad( — )] dy] ds
<C [ m (0= D))o,z + (¢ = 9))] ds
w0 [ lim (6 = st - 9] ds

40 [l = Pz 10wz + 10s12)
1Bl 2l oo 1Al e (a4 1Bl — Bl 2] ds
<c/|W—¢‘xsw+a—an@

+C/ (0 (5,t — 5)| ds (3.18)

+cAuws— 3(s)llz + 1B()|ze] ds, telr, zeR
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In the same way as in the proof of [3.18), we have
// F(s,y) dy| ds
(t—s)
<c [ -dso- -9l d
t ~ -—
+C [ (@ = Bb)(s~(t - )] ds

+C/ llw(s) — D(s)|| g2 + [|1B(s)|l 2] ds, z € R. (3.19)

Therefore, by (3.16)—(3.19) we have
T T
[ 1] auBe.y) dypoie)lze
0 0
T ot o
<c [ [ =0 s,z + (= s)llzz ds dit - [oll e
T st o
+ [0 [ = D))t = 5)| ds de- [olumirar
T rt o
+C [0 [ 1@ =90) o2 = (= lzz ds de- Joll e
T [t o
+ [0 [ 1w = 9yb)(s, = = o) ds dt- ol wiapy

e / / [1(s) — B(8)llzz + 1B(5) ]| r2] ds dt - o poorpar)
< CT?||y - ¢||L°o(IT;L2) + CT ¥ — ¥l oo (rp.22)
+ CT?||B|| oo (17:12) - (3.20)

On the other hand, by we have

T x
[ ) dpw)lie dt < CTIwllimgpz. (320
We next note that

oxp(~5 [ Alt) dy-itV (0) - expl(—3 [ Alt.v) dy=itV ()
<c|[ Bty al

t T
gc/|/ 9.B(s,y) dy| ds, t€lr, z€R.
0o JO
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Therefore, in the same way as in the proof of , we have
Il (t) = ()] 2
t T -
< flw(®)ll e +C/0 Il(/0 0sB(s,y) dy)y(t)|| L2 ds

< w®)llgz + CT + DT|¢ — Pl poo(1psr2)
+ CTZHB”Loo(IT;Lz), telr.

Hence, if we choose T' > 0 so small that
C(T+1)T <1/2,
then we obtain
[ — 1Z|IL°°(IT;L2) < Cllw| oo (rp:z2) + CT? Bl Loo(1y:12)-

Accordingly, noting the above inequality, we can conclude by [3.6), [3.7),
(3.13)-{3.15), [3.20) and [3.21) that

1wl 281724y + 1wl oo (17522

+ 1Bl oo (17522) + 102 Bl oo (17512) + llatll oo (17 22)
< CI(T)T3/4[||WHL8(IT;L4) + [|wl| Loo (1712)
+ 1Bl poo(rrsz2y + [10Bll Lo (17;02) + @l oo (1522 (3722))

where C;(T') is a positive constant depending increasingly on 7. If we
choose T' > 0 so small that

C1(T)T3/4 <1/2,

then (3.22) implies that

Alt) = A1), o(t)=a(t), V(1) =) (3.23)
for t € [0,T]. :
We repeat the above procedure to obtain forallt € I. ]

Remark 3.1. In fact, we do not have to remove the term Vi from
in the above proof of [Theorem 1.1. In that case, we take H = 82 + V in
and we have only to use the results due to Fujiwara [4, 5] for
the proof of instead of the results due to Yajima [15].

We next mention the proof of [Theorem 1.2.
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Proof of [Theorem 1.2. Once we have Theorem 1.1 and [Proposition 2.5, the
proof of [Theorem is standard. So we give only a sketch of the proof of
(Theorem 1.2,

By [Proposition 2.5 and Theorem 1.1, we have the unique global solu-
tions (A4, ¢, ¥) of [1.10}-{1.15) satisfying [2.8}-(2.14) and [2.16). Let ¢,
be an arbitrary constant in R with to # 0. We solve [1.10)-{1.15) with
the initial time and the initial data replaced by to and (A(to), 8;A(to),
é(to), O:0(to), ¥(to)). From the uniqueness of solutions, it follows that the
solutions of this problem are equal to (4, ¢,) and

(A(t), 0:A(t)) — (A(to), 0;Ap(t)) in Hlo L2 (t — o),
(#(t), 2ep(t)) — (9(to), Bed(to)) in H' @ L2 (t — ty),
P(t) = P(to) in H' (t — to).

Since to is an arbitrary constant in R with ¢y # 0, these facts imply the
strong continuity in H' & L? of (A(t),8:A(t)) and (4(t),d;:4(t)) and the
strong continuity in H' of ¢(t) for all ¢t € R, which show (1.30)-(1.32).

]
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