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Isolated points of the Taylor spectrum1
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Abstract. In this paper we show that if T= (T_{1}, \ldots, T_{n}) is a doubly commuting n-

tuple of dominant operators satisfying the property (\alpha) , then non-isolated points of the

Taylor spectrum must be points of the Taylor essential spectrum. We also show that
doubly commuting n-tuples such that T_{i} and T_{i}^{*}(i=1,2, \cdots, n) are dominant operators
satisfy this property and then give applications related with Weyl’s theorem and the finite

fiber property.
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1. Introduction

Suppose H is a complex Hilbert space and write \mathcal{L}(H) for the set of all
bounded linear operators acting on H . Let T= (T_{1}, \ldots, T_{n}) be a commuting
n-tuple of operators in \mathcal{L}(H) , let \Lambda[e]=\{\Lambda^{k}[e_{1}, . . ’ e_{n}]\}_{k=0}^{n} be the exterior
algebra on n generators ( e_{i}\wedge e_{j}=-e_{j}\wedge e_{i} for all i , j=1 , \ldots , n ) and write
\Lambda(H)=\Lambda[e]\otimes H . Let \Lambda(T) : \Lambda(H)arrow\Lambda(H) be given by ([5, 10, 11, 15])

\Lambda(T)(\omega\otimes x)=\sum_{i=1}^{n}(e_{i}\wedge\omega)\otimes T_{i}x . (1.1)

The operator (1.1) can be the represented by the Koszul complex for T :

0arrow\Lambda^{0}(H)arrow\Lambda^{1}(H)arrow\Lambda^{0}(T)\Lambda^{1}(T) \Lambda^{n-1}(T)arrow\Lambda^{n}(H)arrow 0 , (1.2)

where \Lambda^{k}(H) is the collection of k-forms and \Lambda^{k}(T)=\Lambda(T)|_{\Lambda^{k}(H)} . Evi-
dently, \Lambda(T)^{2}=0 , so that ran \Lambda(T)\subseteq ker\Lambda(T) . We recall ([5, 11, 15]) that
T is said to be ( Taylor) invertible if ker \Lambda(T)=ran\Lambda(T) (i.e., the Koszul
complex (1.2) is exact at every stage) and is said to be ( Taylor) Fredholm
if ker\Lambda(T)/ran\Lambda(T) is finite dimensional (i.e., all cohomologies of (1.2) are
finite dimensional ). We shall write \sigma\tau(T) and \sigma\tau_{e}(T) for the Taylor spec-
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trum and the Taylor essential spectrum of T , respectively : namely,

\sigma_{T}(T)= { \lambda=(\lambda_{1}, \cdots , \lambda_{n})\in C^{n} : T-\lambda is not invertible}
and

\sigma_{Te}(T)= { \lambda=(\lambda_{1}, \cdots , \lambda_{n})\in C^{n} : T-\lambda is not Fredholm}.

Curto ([5, Corollary 3.8]) has shown that if T=(T_{1}, . . , T_{n}) is a doubly
commuting n-tuple ( [T_{i}, T_{j}^{*}]=0 for all i\neq j ) of hyponormal operators,
then

T is invertible (resp. Fredholm) if and only if

\sum_{i=1}^{n}T_{i}T_{i}^{*} is invertible (resp. Fredholm). (1.3)

Fialkow ([8, Lemma 2.5]) has shown that if T=(T_{1}, \cdots , T_{n}) is a commuting
n-tuple of normal operators, then

\sigma_{T}(T)\backslash \sigma_{Te}(T)\subseteq iso\sigma_{T}(T) , (1.4)

where iso K denotes the isolated points of K . But, in general, (1.4) is not
true for a doubly commuting n-tuple of hyponormal operators. In fact, (1.4)
is not true even for a single hyponormal operators, although hyponormal
operators satisfy Weyl’s theorem ([4]), which says that every point in the
Weyl (Fredholm of index zero) domain must be an isolated eigenvalue of
finite multiplicity. For example, consider the unilateral shift on \ell_{2} .

In this paper we shall find a class of n-tuples satisfying (1.4) in the
middle of commuting normal n-tuples and doubly commuting n-tuples of
dominant operators.

2. Property (\alpha)

We recall ([1, 6]) that a point \lambda=(\lambda_{1}, \cdots, \lambda_{n})\in C^{n} is called a joint
eigenvalue of T=(T_{1}, \cdots, T_{n}) if there exists a nonzero vector x in H for
which

(T_{i}-\lambda_{i})x=0 for each i=1 , \cdots , n . (2.1)

In this case, the set of vectors satisfying (2.1) is called the joint eigenspace
corresponding to the joint eigenvalue. We shall write \sigma_{p}(T) for the set of
all joint eigenvalues of T and \pi_{0}(T) for the set of all joint eigenvalues of T
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of finite multiplicity.
We now consider the following property that T=(T_{1}, \cdots, T_{n}) may

satisfy:

(\alpha) \pi_{0}(T)=\overline{\pi_{0}(T^{*})} and the corresponding joint

eigenspaces of \lambda\in\pi_{0}(T) and \overline{\lambda}\in\pi_{0}(T^{*}) are all equal.

Here T^{*}= (T_{1}^{*}, , T_{n}^{*}) and \overline{K} denotes the set of complex conjugates of ele-
ments in K . Evidently, normal n-tuples satisfy (\alpha) . But doubly commuting
hyponormal n-tuples may not satisfy (\alpha) : for example, if U is the unilateral
shift on \ell_{2} and T=(U, 0) , then \pi_{0}(T)=\emptyset and \pi_{0}(T^{*})=\{(\lambda, 0) : |\lambda|<1\} .

We recall ([14]) that an operator S\in \mathcal{L}(H) is said to be dominant if
for every \lambda\in C there is a constant M_{\lambda} such that

(S-\lambda)(S-\lambda)^{*}\leq M_{\lambda}(S-\lambda)^{*}(S-\lambda) .

In this case, if \sup_{\lambda\in C}M_{\lambda}<\infty , S is said to be M-hyponormal ([13], [16]).
Evidently,

S is hyponormal\Rightarrow S is M- hyponormal\Rightarrow S is dominant.

Our first observation is that the equivalence (1.3) remains valid for “domi-
nant” in place of “hyponormal” :

Lemma 2.1 If T=(T_{1}, \cdots, T_{n}) is a doubly commuting n-tuple of domi-
nant operators, then

T is invertible (resp. Fredholm) if and only if
\sum_{i=1}^{n}T_{i}T_{i}^{*} is invertible (resp. Fredholm). (2.2)

Proof. If T is a doubly commuting n-tuple then by an argument of Curto
([5, Corollary 3.7]), T is invertible (resp. Fredholm) if and only if \sum_{i=1}^{n}fT_{i}

is invertible (resp. Fredholm) for every function f : \{1, 2, \cdots, n\}arrow\{0,1\} ,
where

f_{T_{i}}=\{

T_{i}^{*}T_{i} , f(i)=0
T_{i}T_{i}^{*} , f(i)=1

Suppose for each i , there is a constant M_{i} such that

T_{i}T_{i}^{*}\leq M_{i}(T_{i}^{*}T_{i})
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Put M= \max_{1\leq i\leq n}\{1, M_{i}\} . Then

M^{-1} \sum_{i=1}^{n}T_{i}T_{i}^{*}\leq\sum_{i=1}^{n}f_{T_{i}} .

which gives the result. \square

We are ready for:

Theorem 2.2 IfT= (T_{1}, \cdot. , T_{n}) is a doubly commuting n-tuple of dom-
inant operators and satisfies (\alpha) , then

\sigma_{T}(T)\backslash \sigma_{Te}(T)\subseteq iso\sigma_{T}(T) . (2.3)

Proof. We may assume without loss of generality that 0\in\sigma_{T}(T)\backslash \sigma_{Te}(T) ;
thus T is Fredholm, but not invertible. Then, by (2.2), \sum_{i=1}^{n}T_{i}T_{i}^{*} is Fred-
holm but not invertible. Since T satisfies (\alpha) , we have

Z := ker ( \sum_{i=1}^{n}T_{i}T_{i}^{*})=i=1\cap n ker T_{i}^{*}=i=1\cap n ker T_{i} . (2.4)

Then \sum_{i=1}^{n}T_{i}T_{i}^{*} is reduced by the decomposition H=Z\oplus Z^{\perp} . Since
\sum_{i=1}^{n}T_{i}T_{i}^{*} is positive and hence Fredholm of index zero, it follows that
O\in iso\sigma(\sum_{i=1}^{n}T_{i}T_{i}^{*}) (by Weyl’s theorem [4]) and ( \sum_{i=1}^{n}T_{i}T_{i}^{*})|_{Z}\perp is positive
and invertible, so that ([9, Theorem V.2.1])

||w|| \underline{-}1\inf_{w\in z\perp}\langle\sum_{i=1}^{n}T_{i}T_{i}^{*}w, w\rangle>c for some c>0 . (2.5)

In view of (2.2), we must show that there is \epsilon>0 for which

\Gamma_{\lambda} := \sum_{i=1}^{n}(T_{i}-\lambda_{i})(T_{i}-\lambda_{i})^{*} is invertible for

\lambda=(\lambda_{1}, \cdots, \lambda_{n}) with 0< \sum_{i=1}^{n}|\lambda_{i}|^{2}<\epsilon .

But since \Gamma_{\lambda} is also positive, it suffices to show that

||x||-1x \in H\inf_{-}\langle\Gamma_{\lambda}x, x\rangle>0
for 0< \sum_{i=1}^{n}|\lambda_{i}|^{2}<\epsilon .
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For brevity, we write

\Gamma_{\lambda}=S-U_{\lambda}+(\sum_{i=1}^{n}|\lambda_{i}|^{2})I ,

where S:= \sum_{i=1}^{n}T_{i}T_{i}^{*} and U_{\lambda}:= \sum_{i=1}^{n}(\overline{\lambda_{i}}T_{i}+\lambda_{i}T_{i}^{*}) . Let P be the projec-
tion to kerS and Q=I-P. Then (2.5) is written in the form

QSQ\geq cQ for some c>0 .

We will prove that

\sum_{i=1}^{n}|\lambda_{i}|^{2}\leq c^{2}/(4\sum_{i=1}^{n}||T_{i}||^{2}) \Rightarrow \Gamma_{\lambda}\geq(\sum_{i=1}^{n}|\lambda_{i}|^{2})I .

To see this we will use (2.4) and (2.5) in the following form:

\Gamma_{\lambda}=(P+Q)\Gamma_{\lambda}(P+Q)

=QSQ-QU_{\lambda}Q+( \sum_{i=1}^{n}|\lambda_{i}|^{2})I

\geq cQ- Q+( \sum_{i=1}^{n}|\lambda_{i}|^{2})I

\geq(\sum_{i=1}^{n}|\lambda_{i}|^{2})I .

This completes the proof. \square

Example 2.3 Let U be the unilateral shift on \ell_{2} and V=U\otimes 1 . If
T=(V\otimes 1,1\otimes V) , then T is a doubly commuting hyponormal pair, but
not a normal pair. A simple calculation shows that \pi_{0}(T)=\pi_{0}(T^{*})=\emptyset , so
that T satisfies (\alpha) . In fact, if D is the closed unit disk then

\sigma_{T}(T)=\sigma_{T}(V)\cross\sigma_{T}(V)=\sigma(U)\cross\sigma(U)=D\cross D

and

\sigma_{Te}(T)=\{\sigma_{T}(V)\cross\sigma_{Te}(V)\}\cup\{\sigma_{Te}(V)\cross\sigma_{T}(V)\}

=\{\sigma(U)\cross\sigma(U)\}\cup\{\sigma(U)\cross\sigma(U)\}

=D\cross D ,
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which satisfies (2.3).

We have a concrete class of n-tuples of operators satisfying (2.3):

Theorem 2.4 If T= (T_{1}, \cdot. , T_{n}) is a doubly commuting n-tuple such
that T_{i} and T_{i}^{*} (i=1,2, \cdot , n) are dominant operators, then

\sigma_{T}(T)\backslash \sigma_{Te}(T)\subseteq iso\sigma_{T}(T) .

Proof. In the view of Theorem 2.2 it suffices to show that T satisfies (\alpha) .
We observe that if S\in \mathcal{L}(H) is dominant then an argument of Douglas
([7]) gives that for every \lambda\in C , there is an operator W_{\lambda}\in \mathcal{L}(H) such that
S-\lambda=(S-\lambda)^{*}W_{\lambda} , and hence (S-\lambda)^{*}=W_{\lambda}^{*}(S-\lambda) . Thus we have

ker(S-\lambda)\subseteq ker(S-\lambda)^{*}- (2.6)

Applying (2.6) with T_{i} and T_{i}^{*}(i=1,2, \cdots, n) in place of S gives

ker (T_{i}-\lambda_{i})=ker(T_{i}-\lambda_{i})^{*} for all i=1,2 , \cdots , n ,

which says that T satisfies (\alpha) . \square

Example 2.5 (a) For the validity of Theorem 2.4, we must show that an
operator V need not be normal when V and V^{*} are both dominant (even
M-hyponormal). To see this, consider the operator

V=\{\begin{array}{ll}U K0 U^{*}\end{array}\} : \ell_{2}\oplus\ell_{2}arrow\ell_{2}\oplus\ell_{2} , (2.7)

where U is the unilateral shift on \ell_{2} and K : \ell_{2}arrow\ell_{2} is given by

K(\xi_{1}, \xi_{2}, \xi_{3}, \cdots)=(2\xi_{1},0,0,0, \cdots) .

Then a direct calculation shows that

\frac{1}{2}||(V-\lambda)x||\leq||(V-\lambda)^{*}x||\leq 2||(V-\lambda)x||

for all \lambda\in C and for all x\in\ell_{2}\oplus\ell_{2} ,

which says that V and V^{*} is M-hyponormal. But since

\{\begin{array}{ll}I 00 I+\frac{3}{2}K\end{array}\}=V^{*}V\neq VV^{*}=\{\begin{array}{ll}I+\frac{3}{2}K 00 I\end{array}\} ,

V is not normal (even hyponormal).
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(b) If S , S^{*} , T and T^{*} are dominant operators and if iso \sigma(S)=\emptyset or
iso \sigma(T)=\emptyset then Theorem 2.4 gives

\sigma_{T}(S\otimes 1,1\otimes T)=\sigma_{Te}(S\otimes 1,1\otimes T) .

For example, if V is defined as in (2.7) then since it is a compactly perturbed
bilateral shift, we have \sigma(V)=T (T is the unit circle). Thus if W and W^{*}

are any dominant operators, then

\sigma_{Te}(V\otimes 1,1\otimes W)=\sigma(V)\cross\sigma(W)=T\cross\sigma(W) .

3. Applications

(a) We say ([11, 12]) that T=(T_{1}, \cdots, T_{n}) is ( Taylor) Weyl if T is
Fredholm and index(T) =0 . The Taylor Weyl spectrum, \sigma_{Tw}(T) , of T is
defined by

\sigma_{Tw}(T)= { \lambda=(\lambda_{1}, \cdots , \lambda_{n})\in C^{n} : T-\lambda is not Weyl}.

Then the joint version of Weyl’s theorem may be written by

\sigma_{T}(T)\backslash \sigma_{Tw}(T)=\pi_{00}(T) ,

where \pi_{00}(T)= {iso \sigma_{T}(T) } \cap\pi_{0}(T) . It was known ([2, 3, 12]) that Weyl’s
theorem holds for commuting normal n-tuples. But Weyl’s theorem need
not hold for doubly commuting hyponormal n-tuples. For example, if T=
(U, 0) (U is the unilateral shift on \ell_{2} ), then \sigma_{T}(T)=D\cross\{0\} , \sigma_{Te}(T)=

T\cross\{0\} and since (cf. [5])

index (U-\lambda_{1}, -\lambda_{2})=index[_{-\lambda_{2}}^{U-\lambda_{1}} U^{*}-\overline{\lambda_{1}}-\overline{\lambda_{2]}}

=0 for all (\lambda_{1}, \lambda_{2})\not\in\sigma_{Te}(T)

it follows that \sigma_{Tw}(T)=\sigma_{Te}(T) ; therefore \sigma_{T}(T)\backslash \sigma_{Tw}(T)\not\in iso\sigma_{T}(T) .
However, if T=(T_{1}, \cdots, T_{n}) is a doubly commuting n-tuple of dominant
operators and satisfies (\alpha) , then by (2.3),

\sigma_{T}(T)\backslash \sigma_{Tw}(T)\subseteq iso\sigma_{T}(T) .

But since \sigma_{T}(T)\backslash \sigma_{Tw}(T)\subseteq\pi_{0}(T) , it follows that

\sigma_{T}(T)\backslash \sigma_{Tw}(T)\subseteq\pi_{00}(T) . (3.1)
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Also, an argument of Ch\={o} ([3, Theorem 4]) gives the backward inclusion
of (3.1). Therefore Weyl’s theorem holds for doubly commuting n-tuples of
dominant operators satisfying (\alpha) .

(b) If S=(S_{1}, \cdot\cdot, S_{n}) and T=(T_{1}, \cdot\cdot , T_{n}) are commuting n-tuples,
the elementary operator \mathcal{R}_{ST} is defined by

\mathcal{R}_{ST}(X)=\sum_{i=1}^{n}S_{i}XT_{i} (X\in \mathcal{L}(H) ) .

Then we say that \mathcal{R}_{ST} possesses the finite fiber property if for \lambda\in\sigma(\mathcal{R}_{ST})\backslash

\sigma_{e}(\mathcal{R}_{ST}) ,

X_{\lambda}=\{(\alpha, \beta)\in\sigma\tau(S)\cross\sigma\tau(T) : \alpha 0\beta=\alpha_{1}\beta_{1}+\cdot +\alpha_{n}\beta_{n}=\lambda\}

is finite, and if (\alpha, \beta)\in X_{\lambda} then \alpha is isolated in \sigma_{T}(S) or \beta is isolated in
\sigma_{T}(T) . Fialkow([8]) gave a formula for index(\mathcal{R}_{ST} --\lambda) in the case that
\mathcal{R}_{ST} possesses the finite fiber property and showed that if S and T are both
a normal or an analytic n-tuple, then \mathcal{R}_{ST} possesses the finite fiber prop-
erty. Now, if S and T are both a doubly commuting n-tuples of dominant
operators and satisfy (\alpha) , then since

\sigma(\mathcal{R}_{ST})=\sigma\tau(S)\circ\sigma\tau(T)

and

\sigma_{e}(\mathcal{R}_{ST})=\{\sigma\tau_{e}(S)\circ\sigma\tau(T)\}\cup\{\sigma\tau(S)\circ\sigma\tau_{e}(T)\} ,

it follows from (2.3) that

\lambda\in\sigma(\mathcal{R}_{ST})\backslash \sigma_{e}(\mathcal{R}_{ST})

\Rightarrow\lambda\in[\{iso\sigma\tau(S)\}\circ\sigma\tau(T)]\cup [\sigma\tau(S)\circ {iso \sigma\tau(T)\} ],

which implies that \mathcal{R}_{ST} possesses the finite fiber property. Thus we can
see that the finite fiber property holds for doubly commuting n-tuples of
dominant operators satisfying (\alpha) .
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