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Abstract. Using hyperset theory, the knowledge states of the cognitive agents are in-
troduced, which makes it possible to describe the effect of knowledge publication. Based
on this framework, the process of conversation in the muddy boys puzzle is described as a
dynamical system on the knowledge state space and its orbits are determined explicitly.
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Introduction

Hyperset theory, or non-well-founded set theory, whose foundation was
laid down by Aczel [1], provides us a concise clear-cut language to express
and analyse logically complex phenomena involving various form of circu-
larity and radically increased the universality of the set theory as a basic
language of mathematical science (see [2,4] for introduction to the hyper-
set theory). Main purpose of this paper is to apply this new set theory to
analyze the notion of knowledge and to describe the effect of publication of
some valid information.

There have been many researches on logic of knowledge by mathemat-
ical logicians and computer scientists [3,8] . Recent interest in common
knowledge among the computer scientists seems to come chiefly from the
realization that programming of various protocols of distributed systems be-
come transparent by taking agents’ knowledge into account. In [5], Chandy
and Misra suggests potential usefulness of treating knowledge as local states
of the agents.

In this paper, we introduce the concept of knowledge state of agents:
The global state S of the world consists of the state of the external en-
vironment e\in E and the knowledge states \alpha_{i} of the agents living in the
world:

S=\langle\alpha_{1}, \cdots, \alpha_{n}, e\rangle .
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The knowledge state \alpha_{i} of the agent i is a subset of the state space of
the world. Such an object as S can be formulated as a set only in the
hyperset theory, since we demand the validity of knowledge, i.e., S\in\alpha_{i} ,
which implies S\ni \cdot . \ni S , incompatible with the regularity axiom of the
usual set theory.

Fixing the number of agents and the state space E of the environment
external to agents, we define the state space W_{n,E} of the world. The change
of knowledge can be described as a dynamical system on this class. As an
illustration of our framework, we analyze the famous Muddy Boys Puzzle
[6,7,8,9,10]. We describe the process of the conversation between the teacher
and the boys as a dynamical system on a subset of W_{n,E} and determine
the orbits. The change of knowledge state is usually explained intuitively
by the truncation of binary hypercube [8]. We can now incorporate this
intuition in theoretical framework by virtue of the hyperset theory.

1. Anti-foundation axiom

We shall work in the set theory with the axiom system ZFA: ZermerO-
Fraenkel axioms with the regularity axiom replaced with the Anti-Foun-
dation Axiom of Aczel [1]. In ZFA, we can uniquely solve any system of
set equations: Let X be a class of atoms and \{a_{x}|x\in X\} be a system of
X-sets. Then there exist unique family of sets \{b_{x}|x\in X\} such that

b_{x}=a_{x}[\{b_{x}/x\}] (\forall x\in X) ,

where a[\{b_{x}/x\}] denotes the set obtained from an X set a by substituting
b_{x} to x .

We denote the class of all the hypersets by V and the class of all the
subsets of a class X by pow X.

2. Knowledge propositions

Let E be a non-empty set. Define KPROP(n, E) to be the smallest set
of words on the alphabet set

pow(E) \prod\{K_{1}, \cdots, K_{n}, C, \neg, arrow, \perp\}

satisfying the following conditions:
\circ \perp\in KPROP(n, E) ,
\circ pow(E)\subseteq KPROP(n, E) ,



Hypersets and dynamics of knowledge 217

\circ If \varphi , \psi\in KPROP(n, E) , then K_{i}\varphi , C\varphi , \varphiarrow\psi\in KPROP(n, E) .
We use the following standard abbreviations:

\neg\varphi :=\varphiarrow\perp

\varphi_{1}\vee\varphi_{2} :=\neg\varphi_{1}arrow\varphi_{2}

\varphi_{1}\wedge\varphi_{2} :=\neg(\neg\varphi_{1}\vee\neg\varphi_{2}) .

For a map f defined on E with finite range, we define for i\in\{1, \cdot. , n\}

K_{i}f=\vee K_{i}(f^{-1}v)v\in Range(f)
.

We will give interpretations of elements of KPROP(n,E) so that
\circ K_{i}\varphi will mean that the i-th agent knows \varphi ,
o C\varphi will mean that \varphi is a common knowledge among all the agents.

Then K_{i}f will assert that the i-th agent knows the value of the function f
is v for some v in the range of f without specifying the value v .

3. Knowledge states

Let \mathcal{U}\subseteq V^{n}\cross E be a subclass defined by

\mathcal{U}=\{S|\exists\alpha_{1} . . \exists\alpha_{n}\in V

\exists e\in E[S=\langle\alpha_{1}, \cdot\cdot, \alpha_{n}, e\rangle\wedge S\in\alpha_{1}\cap\cdot \cap\alpha_{n}]\}

Define a class operator X\mapsto K_{n,E}X by

K_{n,E}X:=((powX)^{n}\cross E)\cap \mathcal{U} .

This operator is obviously set continuous and have the largest fixed point
W_{n,E} defined by

W_{n,E}=\cup\alpha\alpha\subseteq K_{n,E}\alpha ’

(see [1]).
Let \pi_{i} : W_{n,E}arrow powW_{n,E} and \pi_{E} : W_{n,E}arrow E be the restrictions to

W_{n,E} , respectively, of the projection to the i-factor:

(powW_{n,E})^{n}\cross Earrow powW_{n,E}

and to E :

(powK_{n,E})^{n}\cross Earrow E .
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In the universe V of hypersets, the class W_{n,E} is not empty. In fact,
for each \gamma\in E , consider the set equation

x=\langle\{x\}, \cdots, \{x\}, \gamma\rangle . (3.1)

Let x=S^{\gamma} be the unique solution. Since \{S^{\gamma}\}\subseteq K_{n,E}\{S^{\gamma}\} and S^{\gamma}\in

\bigcap_{i=1}^{n}\pi_{i}S^{\gamma} hold, we have \{S^{\gamma}\}\subseteq W_{n,E} , whence W_{n,E} is not empty.
a\subseteq W_{n,E} is called closed if a\subseteq K_{n,E}(a) holds.

4. Interpretation of knowledge propositions

We associate a subclass [\varphi]\subseteq W_{n,E} to \varphi\in KPROP(n, E) as follows:
o [\perp]:=\emptyset ,
\circ for \varphi\in pow(E) ,

[\varphi]:=\pi_{E}^{-1}\varphi ,

\circ for \varphi , \varphi_{i}\in KPROP(n, E)(i=1,2) ,

[\neg\varphi]:=[\varphi]^{c} .
[\varphi_{1}arrow\varphi_{2}]:=[\varphi_{1}]^{c}\cup[\varphi_{2}] ,

[K_{i}\varphi]:=\pi_{i}^{-1}pow[\varphi] ,

\circ for \varphi\in KPROP(n, E) , the subclass [C\varphi]\subseteq W_{n,E} is the largest fixed
point of the set continuous operator

X\mapsto[\varphi]\cap K_{n,E}X . (4.1)

Note that

[K_{i}f]=\cup\pi_{i}^{-1}pow(\pi_{E}^{-1}f^{-1}v)v\in Range(f)
.

For S\in W_{n,E} and \varphi\in KPROP(n, E) , we write S\models\varphi if S\in[\varphi] .
When [\varphi]=W_{n,E} , we call \varphi vaiZd and write\models\varphi .

The following proposition gives some fundamental facts concerning our
interpretation of knowledge propositions.

Proposition 4.1 For \varphi\in KPROP(n, E) , S\in W_{n,E} , and a map f de-
fined on E with finite range,
(i) [K_{i}\varphi]\subseteq[\varphi] ,
(ii) [C\varphi]=[\varphi]\cap[K_{1}C\varphi]\cap\cdot\cdot\cap[K_{n}C\varphi] ,
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(iii) If a\subseteq[\varphi]\cap K_{n,E}(a) then a\subseteq[C\varphi] ,
(iv) S\models\neg K_{i}f\Leftrightarrow|f\pi_{E}\pi_{i}S|\geq 2 .

Proof. (i) Suppose S\models K_{i}\varphi . Then T\models\varphi for all T\in\pi_{i}S . Since
S\in\pi_{i}S , we conclude S\models\varphi .

(ii) Obvious since

K_{n,E}X=\pi_{1}^{-1}powX\cap\cdots\cap\pi_{n}^{-1}powX

=[K_{1}X]\cap\cdots\cap[K_{n}X] .

(iii) The largest fixed point of the set continuous operator defined
by (4.1) is precisely the union of those a satisfying the condition in the
statement.

(iv) S\models K_{i}f is equivalent to S\in\pi_{i}^{-1}pow\pi_{E}^{-1}f^{-1}v for some v\in

Range(/). This means f(\pi_{E}\pi_{i}S)=\{v\} . \square

By (ii), (iii), [C\varphi] is characterized as the largest closed subset of [\varphi] .
For S\in W_{n,E} , we define its knowledge closure W_{n,E}(S) as the smallest

closed subset of W_{n,E} that contains S . For \varphi\in KPROP(n, E) and S\models C\varphi ,
we have W_{n,E}(S)\subseteq[C\varphi] .

Proposition 4.2 For \varphi\in KPROP(n, E) and S\in W_{n,E} ,

S\models C\varphi\Leftrightarrow W_{n,E}(S)\subseteq[\varphi] .

Proof. Suppose S\models C\varphi . Then W_{n,E}(S)\subseteq[C\varphi]\underline{\subset}[\varphi] . Conversely,
suppose W_{n,E}(S)\subseteq[\varphi] . Then W_{n,E}(S) , being a closed subset of [\varphi] , is
contained in [C\varphi] . In particular S\models C\varphi . \square

5. Publication operator

For \varphi\in KPROP(n, E) , we define the publication operator

\kappa_{\varphi} : [\varphi]arrow W_{n,E}

by

\kappa_{\varphi}S=\langle\kappa_{\varphi}([\varphi]\cap\pi_{1}S), \cdots, \kappa_{\varphi}([\varphi]\cap\pi_{n}S), \pi_{E}S\rangle

where \kappa_{\varphi}\alpha=\{\kappa_{\varphi}S|S\in\alpha\} for \alpha\subseteq W_{n,E} .
Justification of this recursive definition based on AFA is as follows:
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Consider the following system of set equations:

x_{S}=\langle\{x_{S’}|S’\in\pi_{1}S\cap[\varphi]\}, \cdot\cdot, \{x_{S’}|S’\in\pi_{n}S\cap[\varphi]\}, \pi_{E}S\rangle

on the unknown sets \{x_{S}|S\in[\varphi]\} . Let \{x_{S}=b_{S}|S\in[\varphi]\} be its unique
solution. We define then

\kappa_{\varphi}S:=b_{S} , for S\in[\varphi] .

The operator \kappa_{\varphi} describes the change of the knowledge status of the
world after some true proposition \varphi is made public.

We also define \lambda_{\varphi} : W_{n,E}arrow W_{n,E} by

\lambda_{\varphi}(S):=\{

\kappa_{\varphi} if S\models\varphi

\kappa_{\neg\varphi} if S\models\neg\varphi .

This operator describes the change caused by informing the truth value
of the proposition \varphi . Note that \lambda_{\varphi}[\varphi]\not\leqq[\varphi] in general (cf. Theorem 7.3 and
7.4). A fact concerning the knowledge status of agents may become false
by being made public, which conforms with our daily common sense.

6. Muddy Boy’s Puzzle

As an application of our formalism, we formulate and analyze the fol-
lowing famous puzzle:

There are n(\geq 2) boys in a room, each boy’s face is either muddy
or clean. Each can see whether each boy other than himself has
clean face or not. Now their teacher comes in and tell them that
at least one of them has dirty face. He orders the boys to close
their eyes and asks them
(*) “Raise you hand if you know whether your face is clean or
not.”
Now the teacher repeats the following question:

\circ If a boy raises his hand, then the teacher says to all the boys
“Some of you know that his face is dirty or not,” and then
repeats (*) .

\circ If none of the boys raise their hands, then the teacher says
to them “Nobody in this room knows whether his face is
dirty or not,” and then repeats (*) .

What will happen when the teacher continues this question?
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The answer is well-known and easy to find: Let k denote the number
of boys with muddy faces. Then, up to the (k-1)-th question, no boy
raises his hand, but at the k-th question, the boys with dirty faces raise
their hands and at the (k+1)-th question, every boy raises his hand.

In the following we interpret this puzzle as a dynamical system on the
space of knowledge states and figure out the orbit.

7. Analysis of Muddy Boy’s Puzzle

7.1 Formulation of the puzzle. Put E:=\{0,1\}^{n} and h_{i} : E -

{0, 1} (i=1, \cdots, n) be the projection on the i-th factor. Let h : E –

\{0, 1\}^{n} be the identity map. For \gamma=\langle\gamma_{1}, \cdots, \gamma_{n}\rangle\in E , we write

| \gamma|:=\sum_{i=1}^{n}\gamma_{i} .

Define

\varphi_{0}:=\neg\{0\} (0 :=\langle 0, \cdots, 0\rangle) ,
\psi :=K_{1}h_{1}\vee \vee K_{n}h_{n} ,

\varphi_{1}:=(\bigwedge_{i\neq j}K_{i}h_{j})\wedge\neg\psi .

The initial knowledge status in the classroom is specified by the knowl-
edge proposition \varphi_{0}\wedge C\varphi_{1} . The first statement of the teacher is \varphi_{0} . A
boy raising his hand as the answer to the teacher’s question (*) means the
validity of \psi . Each time the teacher makes public whether or not \psi is true.

More formally, we can depict the process occurring in the room as the
following dynamical system on W_{n,E} :

\circ The initial state S_{0} is in [\varphi_{0}\wedge C\varphi_{1}] .
\circ The first statement of the teacher changes S_{0} to

S_{1}:=\kappa_{\varphi 0}S_{0}\in W_{n,E} .

\circ After each cycle of conversation, the state S_{i} changes to

S_{i+1}:=\lambda_{\psi}(S_{i}) .

The puzzle can be regarded as the question to describe, or find, the
orbit of this dynamical system on W_{n,E} starting from a state S_{0} satisfying
\varphi_{0}\wedge C\varphi_{1} .

We will completely determine the orbits by applying the solution lemma
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of the hyperset theory.

7.2 Basic knowledge states. For each k=0,1 , \cdot\cdot , n , consider the
following system of set equations on \{x_{\gamma}||\gamma|\geq k\} :

x^{\gamma}=\langle\beta_{1}^{k}(x^{\gamma}), \cdots, \beta_{n}^{k}(x^{\gamma}), \gamma\rangle (7.1)_{k}

where

\beta_{i}^{k}(x^{\gamma})=\{

\{x^{\gamma}, x^{\gamma i}\} if |\gamma i|\geq k ,
\{x^{\gamma}\} if |\gamma i|<k

and \gamma i\in E is defined by

\gamma i:=\langle\gamma_{1}, \cdot\cdot, 1-\gamma_{i}, \cdots, \gamma_{n}\rangle .

Let \{x^{\gamma}=S_{k}^{\gamma}||\gamma|\geq k\} be the solution of the equation (7.1)_{k} . Put

S_{k}=\{S_{k}^{\gamma}||\gamma|\geq k\}

Note that S_{k} is closed.

7.3 Solution of the puzzle. The initial state space in the room is
described by the following theorem.

Theorem 7.1

[\varphi 0\wedge C\varphi_{1}]=\{S_{0}^{\gamma}|\gamma\neq 0\}

The first statement of the teacher, which announces the information \varphi 0

has the following effect:

Theorem 7.2

\kappa_{\varphi 0}(S_{0}^{\gamma})=S_{1}^{\gamma} for \gamma\neq 0 .

The subsequent cycle of conversation changes the status of the room as
follows:

Theorem 7.3

\lambda_{\psi}S_{k}^{\gamma}=\{

S_{k+1}^{\gamma} if|\gamma|>k ,
S^{\gamma} if|\gamma|=k ,
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where S^{\gamma} is the set defined by the equation (3.1).

Moreover, at each stage, the knowledge status has the following feature:

Theorem 7.4 For k\geq 1

S_{k}^{\gamma}\models\{

\neg\psi if|\gamma|>k ,
( \bigwedge_{\gamma_{i}=1}K_{i}h_{i})\wedge(\bigwedge_{\gamma_{j}=0}\neg K_{j}h_{j}) if|\gamma|=k .

In particular S_{k}^{\gamma}\models\psi if |\gamma|=k .

The proof of these theorems will be given in the appendix.

8. KPROP(n, E) as a modal logic

In [10], modal systems KT3 , KT4, KT5 are introduced and applied to
analyse knowledge puzzles. When the temporal factor is ignored, these
systems are reduced to K3,K4 and K5 systems, which have axiom schemes
(A1-6), (A1-7) and (A1-8) respectively, where, in our notation,

(A1) \neg\neg\varphiarrow\varphi

(A2) \varphiarrow(\psiarrow\varphi)

(A3) (\varphi_{1}arrow(\varphi_{2}arrow\varphi_{3}))arrow((\varphi_{1}arrow\varphi_{2})arrow(\varphi_{1}arrow\varphi_{3}))

(A4) K_{i}\varphiarrow\varphi

(A5) C\varphiarrow CK_{i}\varphi

(A6) K_{i}(\varphi_{1}arrow\varphi_{2})arrow(K_{i}(\varphi_{1})arrow K_{i}(\varphi_{2}))

(A7) K_{i}\varphiarrow K_{i}K_{i}\varphi

(A8) \neg K_{i}\varphiarrow K_{i^{\neg}}K_{i}\varphi .

Here 0\leq i\leq n and K_{0} denotes C .
The elements of KPROP(n, E) can be regarded as formulas in a modal

propositional logic with modal operators K_{i}(1\leq i\leq n) and C .

Proposition 8.1 (i) For any \varphi , \varphi_{i} , the formulas (A1-6) are valid in
W_{n,E}

(ii) Neither (A7) nor (A8) is valid in W_{n,E}

(iii) For any \varphi and 0\leq i\leq n , the following is a valid formula.
C\varphiarrow K_{i}C\varphi . (C)
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To prove this proposition, we make some definitions. Let Y be a sub-
class of W_{n,E} Denote by CY the largest closed subclass of Y Define
also

K_{i}Y:=\{S|\pi_{i}S\subset Y\} ,

which is included in Y

Lemma 8.2 (i) [K_{i}\varphi]=K_{i}[\varphi] .
(ii) [C\varphi]=C[\varphi] .
(iii) CK_{i}Y=CY (1 \leq i\leq n) .

Proof. The assertions (i) and (ii) are obvious. To prove (iii), it suffices
to show that CY\subset K_{i}Y . since this implies that CY is also the largest
closed subclass of K_{i}Y and hence must be CK_{i}Y Suppose S\in CY Then
S\in Kn,ECY , which means \pi_{i}S\subset CY\subset Y for 1\leq i\leq n . Hence S\in K_{i}Y

\square

Proof of Proposition 8.1 (i) (A1-3) and (A6) are obvious and (A4) is
proved in Proposition 4.1. The validity of (C) is obvious from the defi-
nition of [C\varphi] . (A5) is obvious from the (iii) of the above lemma.

To see that neither (A7) nor (A8) is valid, we construct an element S\in

W_{n,E} and \varphi such that neither S\models(A7) nor S\models(A8) . We assume n=2.
Let S_{1} , S_{2} , S_{3} be the hypersets characterized by the following equations.

S_{1}=\langle\{S_{1}, S_{2}\} , \{S_{1}, S_{2}\}, e_{1}\rangle

S_{2}=\langle\{S_{2}, S_{3}\} , \{S_{2}, S_{3}\}, e_{2}\rangle

S_{3}=\langle\{S_{3}\}, \{S_{3}\}, e_{3}\rangle .

These hypersets belongs to W_{n,E} , since

\{S_{1}, S_{2}, S_{3}\}\subset K_{n,E}\{S_{1}, S_{2}, S_{3}\}

Obviously

S_{1}\models K_{1}\{e_{1}, e_{2}\}

S_{2}\models K_{1} { e_{2} , e3}
Suppose e_{3}\neq e_{1} , e_{2} . Then S_{3}\# \{e_{1}, e_{2}\} , which implies S_{2}\# K_{1}\{e_{1}, e_{2}\}

and S_{1}{?} K_{1}K_{1}\{e_{1, e_{2}\} . Hence

S_{1}\# K_{1}\{e_{1}, e_{2}\} – K_{1}K_{1}\{e_{1}, e_{2}\}
,’
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which means (A7) is not valid generally.
Similarly, we can show

S_{1}\# \neg K_{1}\{e_{2}, e_{3}\} – K_{1^{\neg}}K_{1}\{e_{2}, e_{3}\}

In fact, S_{1}\models\neg K_{1} { e_{2} , e3} but S_{1}{?} K_{1^{\neg}K_{1} { e_{2} , e3}, since S_{2}\models K_{1} { e_{2} , e3}.
Hence (A8) is not valid generally. \square

Theorem 7.1 implies immediately

Corollary 8.3

\models\varphi_{0}\wedge C\varphi_{1}arrow(A7)\wedge(A8) .

Thus in our formulation, the formulas (A7-8) are consequences of the
specification of the puzzle.

We do not know whether all the valid formulas are consequences of
(A1-6) and (C) with the modus ponens as the only deduction rule.

Finally we note that W_{n,E} can be considered as the universal Kripke
structure for the modal logic KPROP(n, E) with the axiom schemes (A1-6)
and (C) [11].
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Appendix

A. Proof of Theorems

A.I Proof of Theorem 7.1

Lemma A.l For S\in W_{n,E}\cap\pi_{E}^{-1}\gamma , S\models\varphi_{1}\Leftrightarrow\pi_{E}\pi_{i}S=\{\gamma, \gamma i\} .

Proof. Let S\in W_{n,E}\cap\pi_{E}^{-1}\gamma .

S\models\varphi_{1}\Leftrightarrow\{

S\models K_{i}h_{j} if j\neq i ,
S\# K_{i}h_{j} if j=i ,

\Leftrightarrow\{

|h_{j}\pi_{E}\pi_{i}S|=1 if j\neq i ,
|h_{j}\pi_{E}\pi_{i}S|\geq 2 if j=i ,

\Leftrightarrow h_{j}\pi_{E}\pi_{i}S=\{

\{\gamma_{j}\} if j\neq i ,

{0, 1} if j=i ,
\Leftrightarrow\pi_{E}\pi_{i}S=\{\gamma, \gamma i\}

\square

Corollary A.2 S_{0}^{\gamma}\models\varphi_{1} for all \gamma .

Proof. From ( 7. 1)_{0} , we have \pi_{i}S_{0}^{\gamma}=\{\gamma, \gamma i\} for all \gamma\in E and i\in
\{1, \cdot , n\} , whence the conclusion by the above lemma. \square

Corollary A.3 S_{0}\subseteq[C\varphi_{1}] .

Proof. Since S_{0} is closed, Corollary A.2 implies

W_{n,E}(S_{0}^{\gamma})\subseteq S_{0}\subseteq[\varphi_{1}] .

Hence, by Proposition 4.2, S_{0}^{\gamma}\models C\varphi_{1} for all \gamma\in E . \square

Proof of Theorem 7.1 It remains to show that

[C\varphi_{1}]\subseteq\{S_{0}^{\gamma}|\gamma\in E\}

Let S\in[C\varphi_{1}] . We consider the following system of set equations:

x_{T}=\langle\{x_{P}|P\in\pi_{1}T\}, , \{x_{P}|P\in\pi_{n}T\}, \pi_{E}T\rangle (A.I)

for the family of unknown sets

\{x_{T}|T\in W_{n,E}(S)\}
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Obviously \{x_{T}=T|T\in W_{n,E}(S)\} is the solution for this equation.
On the other hand

\{x_{T}=S_{0}^{\pi_{E}T}|T\in W_{n,E}(S)\} (A.2)

also satisfies the above equation. In fact, for T\in W_{n,E}(S)\cap\pi_{E}^{-1}\gamma , we have

T\in[\varphi_{1}]\cap\pi_{E}^{-1}\gamma

(Proposition 4.2) and then \pi_{E}\pi_{i}T=\{\gamma, \gamma i\} (Lemma A. 1). Hence

\{S_{0}^{\pi_{E}P}|P\in\pi_{i}T\}=\{S_{0}^{\lambda}|\lambda\in\pi_{E}\pi_{i}T\}

=\{S_{0}^{\gamma} , S_{0}^{\gamma i}\}

for i=1 , \cdot , n . Therefore under the substitution (A.2), the right hand side
of (A. 1) is

\langle\{S_{0}^{\gamma} , S_{0}^{\gamma 1}\} , \cdots , \{S_{0}^{\gamma} , S_{0}^{\gamma n}\} , \gamma\rangle

which is S_{0}^{\gamma} . the left hand side of (A.I) under the substitution (A.2).
The uniqueness of the solution implies S=S_{0}^{\pi_{E}S}\in S_{0} . Hence [C\varphi_{1}]\subseteq

S_{0} . \square

A.2 Proof of Theorem 7.2

Proof. The defining equation of \kappa_{\varphi 0}S_{0}^{\gamma}(\gamma\neq 0) is

x^{\gamma}=\langle\{x^{\lambda}|S_{0}^{\lambda}\in\pi_{1}S_{0}^{\gamma}\cap[\varphi_{0}]\} , \cdots , \{x^{\lambda}|S_{0}^{\lambda}\in\pi_{n}S_{0}^{\gamma}\cap[\varphi_{0}]\} , \gamma\rangle

Since

\pi_{i}S_{0}^{\gamma}\cap[\varphi 0]=\{

\{S_{0}^{\gamma} , S_{0}^{\gamma i}\} if |\gamma i|\neq 0 ,
\{S_{0}^{\gamma}\} if |\gamma i|=0 ,

the above equation can be written as

x^{\gamma}=\langle\beta_{1}^{1}(x^{\gamma}) , \cdot\cdot , \beta_{n}^{1}(x^{\gamma}) , \gamma\rangle ,

which is precisely the defining equation of S_{1}^{\gamma}(|\gamma|>0) . \square
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A.3 Proof of Theorem 7.4

Proof. If |\gamma|>k ,

\pi_{i}S_{k}^{\gamma}=\{S_{k}^{\gamma} , S_{k}^{\gamma i}\} for all i\in\{1, \cdots, n\} ,

which implies, by (iv) of Proposition 4.1,

S_{k}^{\gamma}\models\neg K_{i}h_{i} for all i\in\{1, \cdots, n\} .

Suppose now that |\gamma|=k . Since |\gamma i|\geq k if and only if \gamma_{i}=0 , we have

\pi_{i}S_{k}^{\gamma}=\{

\{S_{k}^{\gamma} , S_{k}^{\gamma i}\} if \gamma_{i}=0 ,
\{S_{k}^{\gamma}\} if \gamma_{i}=1 ,

whence

S_{k}^{\gamma} \models(\bigwedge_{\gamma_{i}=1}K_{i}h_{i})\wedge(\bigwedge_{\gamma_{j}=0^{\neg}}K_{j}h_{j}) .

\square

A.4 Proof of Theorem 7.3

Proof. Suppose first |\gamma|>k . Then

\lambda_{\psi}=\kappa_{\neg\psi}

becasue S_{k}^{\gamma}\models\neg\psi by Theorem 7.4. Therefore \{x^{\gamma}=\lambda_{\psi}S_{k}^{\gamma} ||\gamma|>k\} is
the solution of

x^{\gamma}=\langle\{x^{\delta}|S_{k}^{\delta}\in\pi_{1}S_{k}^{\gamma}\cap[\neg\psi]\} , \cdots , \{x^{\delta}|S_{k}^{\delta}\in\pi_{n}S_{k}^{\gamma}\cap[\neg\psi]\} , \gamma\rangle

By Theorem 7.4 and the defining equation (7.1)_{k} , this equation can be
rewritten as

x^{\gamma}=\langle\{x^{\delta}|\delta\in\{\gamma, \gamma 1\} and |\delta|\geq k+1\} , \cdots .

\{x^{\delta}|\delta\in\{\gamma, \gamma n\} and |\delta|\geq k+1\} , \gamma\rangle ,

namely

x^{\gamma}=\langle\beta_{1}^{k+1}(x^{\gamma}) , \cdots , \beta_{n}^{k+1}(x^{\gamma}) , \gamma\rangle
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This shows \lambda_{\neg}\psi S_{k}^{\gamma}=S_{k+1}^{\gamma} .
Suppose now |\gamma|=k . x^{\gamma}=\lambda_{\psi}S_{k}^{\gamma}=\kappa\psi S_{k}^{\gamma} is the solution of

x^{\gamma}=\langle\{x^{\delta}|S_{k}^{\delta}\in\pi_{1}S_{k}^{\gamma}\cap[\psi]\} , \cdot , \{x^{\delta}|S_{k}^{\delta}\in\pi_{n}S_{k}^{\gamma}\cap[\psi]\} , \gamma\rangle

By Theorem 7.4, S_{k}^{\delta}\models\psi if and only if |\delta|=k , whence

\pi_{i}S_{k}^{\gamma}\cap[\psi]=\{S_{k}^{\gamma}\} ,

for all i and the equation reduces to

x^{\gamma}=\langle\{x^{\gamma}\}, \cdots, \{x^{\gamma}\}, \gamma\rangle

This proves \lambda_{\psi}S_{k}^{\gamma}=S^{\gamma} . \square
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