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Introduction

In this paper we investigate the existence of solutions u(x, t) for a
nonlinear perturbation f(x, u) of the 1-dimensional wave operator u_{tt}

-u_{xx} under Dirichlet boundary condition on the interval - \frac{\pi}{2}<x<\frac{\pi}{2} and

\pi-periodic condition on the variable t ,

u_{tt}-u_{xx}+f(x, u)=W(x) in (- \frac{\pi}{2}, \frac{\pi}{2})\cross R ,

u( \pm\frac{\pi}{2}, t)=0, (0. 1)

u(x, t+\pi)=u(x, t)=u(x, - t)=u(-x, t) .

When a string with a nonuniform density vibrates up and down, the up-
ward restoring coefficient and the downward restoring coefficient of it are
not uniform. Hence it happens a nonlinear perturbation f(x, u) in the
wave of a string and we have a nonlinear wave equation (0. 1).

In [CJK], it was shown that when the nonlinear perturbation f(x, u)
is piecewise linear one bu^{+}-au^{-} with -5<a<-1,3<b<7 , the equation

u_{tt}-u_{xx}+bu^{+}-au^{-}=s\phi_{o0} in (- \frac{\pi}{2}, \frac{\pi}{2})\cross R ,

u( \pm\frac{\pi}{2}, t)=0, (0. 2)

u(x, t+\pi)=u(x, t)=u(x, - t)=u(-x, t) ,

where s>0 and \phi_{o0} is the positive eigenfunction of the wave operator, has
at least four solutions. This was proved by topological methods.

In [CJ], the authors applied the variational reduction method to show

that if s>0 and - 1<a<3<b<7 with \frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+7}}>1 , then equation
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(0. 2) has at least three solutions.
In this paper, we improve the earlier result of [CJK] in a way. In

[CJK], the authors have been concerned only with the piecewise linear
perturbation, but here we do not restrict the nonlinear perturvation only
to the piecewise linear case.

Our main idea of this paper is the following. We use the Contraction
Mapping Theorem to reduce the problem from an infinite dimensional one
in L^{2}(\Omega) to a 2-dimensional one. Next we convert the two dimensional
problem into degree theoretic statements in the space L^{2}(\Omega) , and then
show that these results can be perturbed to give the result for the non-
linear equation with large coefficient s of \phi_{o0} .

Let L be the 1-dimensional wave operator, in R^{2} .

Lu=u_{tt}-u_{xx} .

Then the eigenvalue problem

Lu=\lambda u in (- \frac{\pi}{2}, \frac{\pi}{2})\cross R ,

u( \pm\frac{\pi}{2}, t)=0,

u(x, t)=u(-x, t)=u(x, - t)=u(x, t+\pi)

has infinitely many eigenvalues

\lambda_{mn}=(2n+1)^{2}-4m^{2} (m, n=0,1,2, \cdots) .

Hence the eigenvalues in the interval (-15, 9) are given by

\lambda_{32}=-11<\lambda_{21}=-7<\lambda_{10}=-3<\lambda_{o0}=1<\lambda_{11}=5 .

The eigenfunction \phi_{mn} corresponding to \lambda_{mn} is given by

\phi_{mn}=\cos 2mt cos (2n+1)x (m, n=0,1,2, \cdots) .

Let Q be the square (- \frac{\pi}{2}, \frac{\pi}{2})\cross(-\frac{\pi}{2}, \frac{\pi}{2}) and H the Hilbert space

defined by

H= { u\in L^{2}(Q)|u is even in x and t }.

Then the set \{\phi_{mn}|m, n=0,1, 2, \cdots\} is an orthogonal set in H. We will
look for \pi-periodic solutions of (0. 1) when the nonlinear perturbation
f(x, u) crosses the first positive eigenvalue and the first negative one.
The existence of \pi-periodic solutions of (0. 1) will be shown by
topological methods (cf. [LM1], [MRW], [LM]).
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1. A piecewise linear perturbation case

In this section, we remind of the process of the proof of the existence
of the solutions of the piecewise linear wave operator with constant
coefficients, -5<a<-1=-\lambda_{o0} , -\lambda_{10}=3<b<7 ,

Lu+bu^{+}-au^{-}=s\phi_{00} in H. (1. 1)

Let V be the two dimensional subspace of H spanned by \{\phi_{o0}, \phi_{10}\} and
W the orthogonal complement of V in H. Let P be an orthogonal projec-
tion H onto V. Then for all u\in H , u=v+w, where v=Pu , w=
(I-P)u . Therefore equation (1. 1) is equivalent to

(a) Lw+(I-P)(b(v+w)^{+}-a(v+w)^{-})=0 , (1. 2)
(b) Lv+P(b(v+w)^{+}-a(v+w)^{-})=s\phi_{00} .

We note that for fixed v , (1. 2. a) has a unique solution w=\theta(v) , and that
furthermore, \theta(v) is Lipschitz continuous in terms of v .

If v\geq 0 or v\leq 0 , then \theta(v)\equiv 0 . Since v=c_{1}\phi_{00}+c_{2}\phi_{10} , there exists a
cone C_{1} defined by c_{1}\geq 0 , |c_{2}|\leq\epsilon_{0}c_{1} so that v\geq 0 for all v\in C_{1} and a cone
C_{3} defined by c_{1}\leq 0 , |c_{2}|\leq\epsilon_{0}|c_{1}| so that v\leq 0 for all v\in C_{3} . In particular,
since \phi_{o0}=\cos x and \phi_{10}=\cos x\cos 2t , in this case, the elementary calcula-
tion shows \epsilon_{0}=1 . Also, we define another cone C_{2} by c_{2}\geq 0 , |c_{1}|\leq c_{2} and a
cone C_{4} by c_{2}\leq 0 , |c_{1}|\leq|c_{2}| . Then the plane spanned by \phi_{o0} and \phi_{10} con-
S\dot{l}sts of four cones C_{1} , C_{2} , C_{3} , C_{4} .

We do not know \theta(v) for all v\in PH , but we know \theta(v)\equiv 0 for v\in

C_{1}\cup C_{3} . We define a map \Phi:PHarrow PH by

\Phi(v)=Lv+P(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}) .

Then there exists d>0 such that
(\Phi(c_{1}\phi_{00}+c_{2}\phi_{10}), \phi_{o0})\geq d|c_{2}|

(see [CJK], [Me]). Hence the map \Phi:PHarrow PH takes the value \phi_{o0} once
in each of the four different regions C_{i}(1\leq i\leq 4) of the plane (see [CJK]).
We define a map F:R^{2}arrow R^{2} by

F(s_{1}, s_{2})=(t_{1}, t_{2}) if v=s_{1}\phi_{00}+s_{2}\phi_{10} and \Phi(v)=t_{1}\phi_{o0}+t_{2}\phi_{10} .

The next lemma gives an information on the degree of the map in the
regions C_{i}(1\leq i\leq 4) .

lemma 1. 1 Let p=(1 , 0) . Let r be so large that r>1 , r(b+1)>1 and
rd>1 . Let
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D_{1}=\{(s_{1}, s_{2})|0<s_{1}<r, |s_{2}|<s_{1}\} ,
D_{2}=\{(s_{1}, s_{2})||s_{1}|\leq r, |s_{1}|<s_{2}<r\} ,
D_{3}=\{(s_{1}, s_{2})|-r<s_{1}<0, |s_{2}|<|s_{1}|\} ,
D_{4}=\{(s_{1}, s_{2})||s_{1}|\leq r, - r<s_{2}<-|s_{1}|\} .

If \deg(F, D_{k}, p) denotes the Brouwer degree of F with respect to D_{k} and p

for 1\leq k\leq 4 , then \deg(F, D_{k}, p) is defined for 1\leq k\leq 4 and
\deg(F, D_{k}, p)=(-1)^{k+1} .

Proof First we consider the Brouwer degree of F with respect to D_{1} . If
(s_{1}, s_{2})\in\overline{D}_{1} and v=s_{1}\phi_{o0}+s_{2}\phi_{10} , then \theta(v)=0 . Since v\geq 0 in D_{1} , we have

\Phi(v)=Lv+P(b(v+\theta(v))^{+}-a(v+\theta(v))^{-})

=L(s_{1}\phi_{o0}+s_{2}\phi_{10})+P(b(s_{1}\phi_{o0}+s_{2}\phi_{10}))

=\lambda_{o0}s_{1}\phi_{o0}+\lambda_{10}s_{2}\phi_{10}+b(s_{1}\phi_{o0}+s_{2}\phi_{10})

=(\lambda_{o0}+b)s_{1}\phi_{o0}+(\lambda_{10}+b)s_{2}\phi_{10} .

So we have, for (s_{1}, s_{2})\in\overline{D}_{1} ,

F(s_{1}, s_{2})=((b+\lambda_{00})s_{1}, (b+\lambda_{10})s_{2}) .

Since 1<r(b+1) , the equation F(s_{1}, s_{2})=p has a unique solution (s_{1}, s_{2})=

((b+\lambda_{o0})^{-1},0) . Since the determinant of the linear diagonal map B is posi-
tive, we have

\deg(F, D_{1}, \Phi)=1 .

In the case of (s_{1}, s_{2})\in\overline{D}_{3} , we have the diagonal map

F(s_{1}, s_{2})=((a+\lambda_{o0})s_{1}, (a+\lambda_{10})s_{2})

and the determinant is also positive near the unique solution in this region
given by ((a+\lambda_{o0})^{-1},0) . Hence we have

\deg(F, D_{3}, p)=1 .

Now we consider the Brouwer degree of F with respect to D_{2} . The
boundary of D_{2} consists of three line segments;

(i) a ray in the first quadrant R_{1} , s_{1}>0 and s_{2}=s_{1} ,
(ii) a ray in the second quadrant R_{2} , s_{1}<0 and s_{2}=-s_{1} ,
(iii) a line segment L of s_{2}=r , paralled to the s_{1} axis.

The image of R_{1} under F will be a straight line segment in the first quad-
rant, the image of R_{2} will be a straight line segment in the fourth quad-
rant and the image of L will be to the right of line s_{1}=1 , by virtue of the
requirement rd>1 .
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Now we consider the linear map uarrow Bu , where B is given by

B=\{\begin{array}{ll}1 00 -1\end{array}\}\{\begin{array}{ll}0 1-1 0\end{array}\}

The image of R_{1} under B, BR_{1} will be a straight line in the first quadrant.
So if 0\leq\lambda\leq 1 , we have

\lambda Bs+(1-\lambda)F(s)\neq p , s=(s_{1}, s_{2})\in R_{1} .

The image of the ray R_{2} under B is in the fourth quadrant and again we
have, 0\leq\lambda\leq 1 ,

\lambda Bs+(1-\lambda)F(s)\neq p , s=(s_{1}, s_{2})\in R_{2} .

If s\in L , then s_{2}=r>1 and

Bs\in\{(s_{1}, s_{2})|s_{1}>1\} ,

and hence \lambda Bs+(1-\lambda)F(s)\neq p for s\in L .
By the usual homotopy argument,

\deg(F, D_{2}, p)=\deg(B, D_{2}, p) .

But we know that Bs -p has exactly one zero in D_{2} , and the sign of the
determinant of B is -1. Thus

\deg(F, D_{2}, p)=-1 .

Similarly, we have

\deg(F, D_{4}, p)=-1 . \square

Using the definition of the degree of a mapping on an arbitrary finite
dimensional space we obtain the following lemma.

Lemma 1. 2 If for 1\leq k\leq 4 ,

U_{k}=\{v\in V|v=s_{1}\phi_{o0}+s_{2}\phi_{10}, (s_{1}, s_{2})\in D_{k}\}

and T:Varrow V is defined by

Tv=PL^{-1}(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}) ,

then

\deg( I+T_{f}U_{k}, [mathring]_{\frac{\phi 0}{\lambda_{10}}})=(-1)^{k+1}-

Next we can deduce, from our knowledge of the two dimensional
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degree, a result on the degree of the associated map on infinite dimen-
sional space.

We let

Nu=L^{-1}(bu^{+}-au^{-}) .

Note that N is a compact operator from H to H. Now we have the fol-
lowing theorem.

Theorem 1. 3 Let U_{k}, 1\leq k\leq 4 , and T be as in the preceding lemma.
If r_{2}>0 is sufficiently large and for 1\leq k\leq 4 ,

Y_{k}=\{u\in L^{2}(\Omega)|Pu\in U_{k}, ||(I-P)u||<r_{2}\} ,

then the Leray-Schauder degree d (I+N, Y_{k}, [mathring]_{\frac{\phi 0}{\lambda_{o0}}}) is defined and

d (I+N, Y_{k}, [mathring]_{\frac{\phi_{0}}{\lambda_{o0}}})=d(I+T, U_{k}, [mathring]_{\frac{\phi 0}{\lambda_{o0}}})

=(-1)^{k+1}r

Proof First we observe that there exists r_{1}>0 such that if v\in\overline{U}_{k} ,
1\leq k\leq 4 and w=(1-s)(I-P)N(v+w), 0\leq s\leq 1 , then ||w||<r_{1} . In fact, the
map warrow(1-s)(I-P)N(v+w) is a contraction on (I-P)H, for
s(0\leq s\leq 1) .

Now we choose r_{2}>r_{1} and define h_{1} : Y_{k}\cross[0,1]arrow L^{2} , for some fixed
k , by

h_{1}(u, s)=(I-P)N(v+w)+PN(v+w+s(\theta(v)-w)) ,

where v=Pu , w=(I-P)u . Then we obtain

u+h_{1}(u, s)\neq[mathring]_{\frac{\phi_{0}}{\lambda_{o0}}} for (u, s)\in\partial Y_{k}\cross[0,1] .

To prove the above, we consider two possibilities in u\in\partial Y_{k} . One is
that u=v+w with v\in\partial U_{k} , ||w||<r_{2} , s\in[0,1] , and

u+h_{1}(u, s)=[mathring]_{\frac{\phi 0}{\lambda_{o0}}} .

This equation is equivalent to

w+(I-P)N(v+w)=0,

v+PN(v+w+s(\theta(v)-w))=[mathring]_{\frac{\phi 0}{\lambda_{o0}}} .
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The first of these implies w=\theta(v) , and the second implies

v+PN(v+\theta(v))=v+N(v)=[mathring]_{\frac{\phi 0}{\lambda_{o0}}} ,

which contradicts the fact that v\in\partial U_{k} .
Now suppose v\in U_{k} , w\in(I-P)H , ||w||=r_{2} . If 0\leq s\leq 1 and

u+h_{1}(u, s)=[mathring]_{\frac{\phi 0}{\lambda_{o0}}} ,

then

w+(I-P)N(v+w)=0,

hence w=\theta(v) and ||w||\leq r_{1}<r_{2} , which is a contradiction. This shows
that

u+h_{1}(u, s)\neq[mathring]_{\frac{\phi_{0}}{\lambda_{o0}}}

for all (u, s)\in\partial Y_{k}\cross[0,1] , and it follows by homotopy invariance of
degree that

d (I+N, Y_{k} , [mathring]_{\frac{\phi 0}{\lambda_{o0}}})=d(I+h_{1}(\cdot, 1), Y_{k} , [mathring]_{\frac{\phi 0}{\lambda_{o0}}}) .

Now let h_{2} : Y_{k}\cross[0,1]arrow L^{2}(\Omega) be defined by

h_{2}(u, s)=(1-s)(I-P)N(u)+PN(v+\theta(v)) , v=Pu .

If v\in\partial U_{k} , w\in(I-P)H , 0\leq s\leq 1 , u=v+w, and u+h_{2}(u, s)=[mathring]_{\frac{\phi 0}{\lambda_{o0}}} , then

we have

v+T(v)=v+PN(v+\theta(v))=P(u+h_{2}(u, s))=[mathring]_{\frac{\phi 0}{\lambda_{o0}}} ,

which contradicts the fact that there is no solution if v\in\partial U_{k} . If u=

v+w, v\in U_{k} , w=(I-P)H, ||w||=r_{2},0\leq s\leq 1 and u+h_{2}(u, s)=[mathring]_{\frac{\phi 0}{\lambda_{o0}}}, then

0=(I-P)(u+h_{2}(u, s))=w+(1-s)(I-P)N(v+w) ,

which would imply that ||w||<r_{2} , which is a contradiction. Therefore we
have

u+h_{2}(u, s)\neq[mathring]_{\frac{\phi 0}{\lambda_{o0}}}, for (u, s)\in\partial Y_{k}\cross[0,1] .
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Since h_{1}(u, 1)=h_{2}(u, 0) , we infer by homotopy invariance that

d (I+N, Y_{k} , [mathring]_{\frac{\phi 0}{\lambda_{o0}}})=d(I+h_{2}(\cdot, 1), Y_{k} , \frac{\phi_{00}}{\lambda_{o0}}) .

Let B be the open ball of radius r_{2} in (I-P)H. If u\in\overline{Y}_{k} , v=Pu ,
w=(I-P)u , then

u+h_{2}(u, 1)=v+PN(v+\theta(v))+w .

Thus we see that the map u - u+h_{2}(u, 1) is uncoupled an PH\oplus(I-P)H

and is the identity on (I-P)H. Therefore by the product property of
degree,

d (I+N, Y_{k} , [mathring]_{\frac{\phi 0}{\lambda_{o0}}})=d(I+T, U_{k} , [mathring]_{\frac{\phi 0}{\lambda_{o0}}})=(-1)^{k+1} .

This concludes the proof of the theorem. \square

2. A nonlinear perturbation case

In this section we are in a position to produce solutions to the non-
linear problem

Lu+f(u)=s\phi_{o0}+h(x) , (2. 1)

where we assume for the nonlinear perturbation,

f(\zeta)=b\zeta^{+}-a\zeta^{-}+f_{0}(\zeta) with \lim_{|\zeta|arrow\infty}\frac{f_{0}(\zeta)}{\zeta}=0

and -5<a<-1,3<b<7 . To apply Theorem 1. 3, putting f_{1}(u)=

bu^{+}-au^{-} we rewrite (2. 1) as

Lz+f_{1}(z)+ \frac{f_{0}(sz)}{s}=\phi_{o0}+\frac{h(x)}{s}, (2. 2)

where z= \frac{u}{s} . In particular, if f_{0}=0 and h=0 , then equation (2. 2)

becomes a nonlinear wave equation with a piecewise linear perturbation
bu^{+}-au^{-} -5<a<-1,3<b<7 ,

Lu+bu^{+}-au^{-}=\phi_{o0} .

Let

N_{s}(z)=L^{-1}(f_{1}(z)+ \frac{f_{0}(sz)}{s}-\frac{h}{s})



Multiplicity of solutions of nonlinear wave equations 61

and let

N(z)=L^{-1}(f_{1}(z)) .

Then

\lim_{sarrow\infty}||N(z)-N_{s}(z)||=0

uniformly for z in bounded subsets of L^{2}(\Omega) .

Now we have the main theorem.

Theorem 2. 1 Assume that the nonlinear perturbation satisfies

f(\zeta)=b\zeta^{+}-a\zeta^{-}+f_{0}(\zeta) with \lim_{|\zeta|arrow\infty}\frac{f_{0}(\zeta)}{\zeta}=0

and -5<a<-1,3<b<7 .

Then there exists s_{0}>0 such that if s\geq s_{0} the nonlinear wave equation

Lu+f(u)=s\phi_{00}+h(x)

has at least four solutions.

Proof We have established that

z+N(z)\neq[mathring]_{\frac{\emptyset 0}{\lambda_{o0}}} for all z\in\partial Y_{k} , 1\leq k\leq 4 .

Since \partial Y_{k} is closed and bounded, and N is continuous and compact, there
exists \eta>0 such that

||z+N(z)-[mathring]_{\frac{\phi 0}{\lambda_{o0}}}||\geq\eta if z\in\partial Y_{k} .

Now choose So so that

||N_{s}(z)-N(z)||< \frac{\eta}{2} for all z\in\partial Y_{k} , 1\leq k\leq 4 .

Then

||z+N(z)+(1- \lambda)(N_{s}(z)-N(z))-[mathring]_{\frac{\phi_{0}}{\lambda_{o0}}}||\geq\frac{\eta}{2}

for 0\leq\lambda\leq 1 , from which we conclude

d ( I+N_{s} , Y_{k} , [mathring]_{\frac{\phi 0}{\lambda_{o0}}})=d(I+N, Y_{k} , [mathring]_{\frac{\phi 0}{\lambda_{o0}}})=(-1)^{k+1} . 1\leq k\leq 4 .
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This proves the theorem, since we have at least one solution in Y_{k} , 1\leq k\leq 4 .
\square
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