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Liouville setup and contact cobordism

Jiro ADACHI
(Received November 14, 1995)

Abstract. We define the Liouville setup which specifies some condition of a contact

manifold embedded in a symplectic manifold as a hypersurface. The existence of a stan-

dard form of a tubular neighborhood of the contact manifold is proven in this article.

Using this fact, we define a contact cobordism for contact forms and prove that it ad-
mits the transitive law. Moreover, to define the contact cobordism for contact structures,

we define some “Plug” as a subset of the symplectification.
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1. Introduction

Constructing and classifying contact structures are basic problems for a
long time. A. Weinstein ([W2]) introduced a notion of contact surgery and
symplectic handlebodies by regarding contact manifolds as hypersurfaces in
symplectic manifolds and using Liouville vector fields. In this article, we
follow his framework.

Let M be a (2n+1)-dimensional smooth manifold. A contact structure
on M is a completely nonintegrable tangent hyperplane field V. In other
words, V can be (at least locally) defined by a 1-form \alpha , D=ker\alpha , which
satisfies the condition that \alpha\wedge(d\alpha)^{n} never vanishes. A pair (M, D) satisfying
the above condition is called a contact manifold. In this paper, we suppose
that M is oriented and a contact structure V is defined by a global l-form
\alpha . Also we call the pair (M, \alpha) a contact manifold.

A contact form \alpha defines an orientation of M via the volume form
\alpha\wedge(d\alpha)^{n} . If the given orientation coincides with the orientation induced by
the contact form, the contact manifold (M, \alpha) is called positively oriented.

Let W be a 2n-dimensional smooth manifold. A symplectic structure
on W is a closed nondegenerate 2-form \omega on W That is, d\omega=0 and \omega^{n}

never vanishes. A pair (W, \omega) is called symplectic manifold.
A symplectic structure defines an orientation of W via the volume form

\omega^{n} . If W is oriented and the given orientation coincides with the orientation
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induced by the symplectic structure, the symplectic manifold (W, \omega) is called
positively oriented.

Definition 1.1 A vector field \xi on a symplectic manifold (W, \omega) is called
Liouville vector fifield, if the Lie derivative satisfies the following condition

L_{\xi}\omega=-\omega .

For example, the radial vector field

\xi_{0}:=-\frac{1}{2}\sum_{i=1}^{n}(x_{i}\frac{\partial}{\partial x_{i}}+y_{i}\frac{\partial}{\partial y_{i}})

on \mathbb{R}^{2n} is a Liouville vector field with respect to the standard symplectic
structure \omega_{0}:=\sum_{i=1}^{n}dx_{i}\wedge dy_{i} .

A vector field \xi on (W, \omega) is a Liouville vector field if and only if d\tilde{\alpha}=

-\omega , where \tilde{\alpha}:=\xi\lrcorner\omega .

Proposition 1.2 ([W1]). Let (W, \omega) be a symplectic manifold and Xa
Liouville vector fifield on (W, \omega) . If a hypersurface M in W is transverse to
X , then the pull back of a 1-form \tilde{\alpha}:=X\lrcorner\omega on M is a contact form on
Mr

This proposition means that contact manifolds sometimes arise as sub-
manifolds of symplectic manifolds.

On the contrary, any orientable contact manifold (M, \alpha) can be realized
as a hypersurface which is transverse to a Liouville vector field in a certain
symplectic manifold.

In fact, the 2-form \omega’:=-d(e^{t}\alpha) on M\cross \mathbb{R} is a symplectic structure, and
the vector field \xi’:=-\frac{\partial}{\partial t} on M\cross \mathbb{R} is a Liouville vector field with respect
to \omega’ Considering M=M\cross\{0\} a hypersurface in M\cross \mathbb{R} , the contact form
on M obtained by Proposition 1.2 from the symplectic structure \omega’ and the
Liouville vector field \xi’ on M\cross \mathbb{R} is coincides with the given contact form
\alpha .

The symplectic manifold

(M\cross \mathbb{R}, \omega’)

is called the symplectifification of the contact manifold (M, \alpha) . (compare
with [A] )
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In this article, we l.fltroduce the notion of Liouville setup. Let (W, \omega)

be a symplectic manifold, \xi a Liouville vector field on (W, \omega) , and M a
hypersurface in W which is transverse to \xi . We write the contact form on
M obtained by Proposition 1.2 \alpha:=i^{*}(\xi\lrcorner\omega) , where i : M\epsilon_{->}W is the
inclusion.

Definition 1.3 (Liouville setup). We call the 4-tuple \{(W, \omega), \xi, M, \alpha\}

of the above symplectic manifold, Liouville vector field, hypersurface, and
contact form Liouville setup.

We show the existence of a nice tubular neighborhood of the hypersur-
face in a Liouville setup. We can identify this tubular neighborhood with
the symplectification of the contact manifold locally, (see section 2 below.)

According to this notion, we define the contact cobordism with a Li-
ouville vector fifield for contact forms. Let (M_{0}, \alpha_{0}) , (M_{1}, \alpha_{1}) be positively
oriented closed (2n-1)-dimensional contact manifolds.

Definition 1.4 (Contact cobordism for contact form). We say that (M_{0} ,
\alpha_{0}) is contact cobordant to (M_{1}, \alpha_{1}) with a Liouville vector fifield, if there
exists a compact positively oriented 2n-dimensional symplectic manifold
(W, \omega) and Liouville vector field \xi on (W, \omega) which satisfy the following
conditions.

(i) \partial W=M_{0}u-M_{1} (where -M_{1} is M_{1} with the reversed orien-
tation.)

(ii) \xi is transverse to \partial W

(iii) Contact forms induced by Proposition 1.2 on M_{0} , M_{1} are coincide
with given contact forms \alpha_{0} , \alpha_{1} respectively.

We note this relation (M_{0}, \alpha_{0}) ” (M_{1}, \alpha_{1}) .
We call the pair \{(W, \omega), \xi\} of above symplectic manifold and Liouville

vector field the contact cobordism from (M_{0}, \alpha_{0}) to (M_{1}, \alpha_{1}) with a Liouville
vector fifield.

Sufficiently small neighborhoods of the boundary components of this
cobordism have the structure of the Liouville setup. This arrow means the
orientation of the Liouville vector field.

Example. (1) First,we consider trivial example. Let (M, \alpha) be a contact
manifold. A subset of the symplectification of (M, \alpha)

(M\cross[0,1],\tilde{\omega})\subset(M\cross \mathbb{R}, \omega’=-d(e^{t}\alpha)) ,
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where \tilde{\omega} is a pull back of \omega’ , is a contact cobordism with the Liouville vector
field \xi’=-\frac{\partial}{\partial t} from (M, e\alpha) to (M, \alpha) .
(2) Let (X, \alpha) be an orientable contact manifold, and Y\subset X an isotropic
sphere. Moreover, let X’ be the manifold obtained from X by elementary
surgery along Y We set CSN(X, Y):=(TY)^{\perp}’/TY , where\perp’ means sym-
plectic orthogonal with respect to da. According to A. Weinstein ([W2]), if
CSN(X, Y) is trivial, there exists a contact cobordism with a Liouville vec-
tor field from X’ to X , obtained by attaching a standard handle to X\cross[0,1]

along a neighborhood of Y
The existence of the above nice tubular neighborhood mentioned in the

next section enables us to show the following theorem.

Theorem A The relation contact cobordant with a Liouville vector fifield
admits the transitive law and the antisymmetric law. That is to say,

(i) If (M_{0}, \alpha_{0}) ” (M_{1}, \alpha_{1}) and (M_{1}, \alpha_{1}) ” (M_{2}, \alpha_{2}) ,
then (M_{0}, \alpha_{0}) ” (M_{2}, \alpha_{2}) .

(ii) If (M_{0}, \alpha_{0}) ” (M_{1}, \alpha_{1}) , then (M_{1}, \alpha_{1}) ” (M_{0}, \alpha_{0}) never oc-
curs.

We mention that this relation preserves the “fillableness” (see 3.1 for
definition.) in the inverse direction of the arrow. In fact, if a contact
manifold is contact cobordant to zero with a Liouville vector field it is
fillable.

Moreover, we extend the notion of contact cobordism for contact struc-
tures.

To consider the contact cobordism as a relation between contact struc-
tures, we must identify a contact form \alpha with what is multiplied by a
non-zero function f .

Let (M_{0}, D_{0}) , (M_{1}, D_{1}) be positively oriented closed (2n-1)-dimen-
sional contact manifolds. Where D_{i}=ker\alpha_{i}(i=0,1) are contact struc-
tures.

Definition 1.5 (Contact cobordism for contact structure). We say that
(M_{0}, D_{0}) is contact cobordant to (M_{1}, D_{1}) with a Liouville vector fifield, if
there exists a compact positively oriented 2n-dimensional symplectic mani-
fold (W, \omega) and Liouville vector field \xi on (W, \omega) which satisfy the following
conditions.
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(i) \partial W=M_{0}\cup-M_{1} (where -M_{1} is M_{1} with the reversed orien-
tation.)

(ii) \xi is transverse to \partial W

(iii) Contact forms \beta_{j}(j=0,1) induced by Proposition 1.2 on M_{j}

give the same contact structures as D_{j} . In other words, there
exists positive functions f_{j} on M_{j} which satisfy \alpha_{j}=f_{j} \beta_{j}

We note this relation (M_{0}, D_{0}) ” (M_{1}, D_{1}) .
We call the pair \{(W, \omega), \xi\} of above symplectic manifold and Liou-

ville vector field the contact cobordism from (M_{0}, D_{0}) to (M_{1}, D_{1}) with a
Liouville vector fifield.

We must define the “Liouville Plug ” to show the following theorem, be-
cause considering contact structures, cobordisms cannot be pasted together
directly. The Liouville Plug is some subset of the symplectification of the
contact manifold. (see Definition 4.3 below.)

Theorem B The relation contact cobordant with a Liouville vector fifield
for contact structures admits the reflective law and the transitive law. That
is to say,

(i) (M_{0}, D_{0}) ” (M_{0}, D_{0}) .
(ii) If (M_{0}, D_{0}) ” (M_{1}, D_{1}) and (M_{1}, D_{1}) ” (M_{2}, D_{2}) ,

then (M_{0}, D_{0}) ” (M_{2}, D_{2}) .

Another notion of contact cobordisms are defined by V.L . Ginzburg
([G1]) and Ya. Eliashberg ([E]). The Ginzburg’s notion is an equivalence
relation and cobordism groups are calculated ([G2]). Although, this contact
cobordism class does not depend on the contact structure, but only the
manifold. The Eliashberg’s notion is defined as an almost complex manifold
and its strictly pseud0-convex and concave boundary components. The
contact cobordism in this article is defined as a symplectic manifold and
its \omega -convex and concave (in terms of [EG]) boundary components. It is a
symplectic version of Eliashberg’s notion.

The author wish to thank Professor Kenji Yamato for numerous discus-
sions, valuable suggestions and warmhearted encouragements.

2. Standard form of tubular neighborhood in Liouville setup

Let (W, \omega) be a symplectic manifold, \xi a Liouville vector field on (W, \omega) ,
and M a hypersurface in W which is transverse to \xi . We write the contact
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form on M obtained by Proposition 1.2 \alpha:=i^{*}(\xi\lrcorner\omega) , where i:Marrow W
is the inclusion.

Here, we suppose M is compact.
We suppose that a Liouville setup \{(W, \omega), \xi, M, \alpha\} is given. It is possi-

ble to construct another Liouville setup \{(M\cross \mathbb{R}, \omega’), \xi’, M\cross\{0\}, \alpha\} having
the same hypersurface M and contact form \alpha by using symplectifification of

the contact manifold (M, \alpha) . Where, we set \omega’:=-d(e^{t}\alpha) , \xi’:=-\frac{\partial}{\partial t} .

Theorem 2.1 (Standard form of a tubular neighborhood in a Liouville
setup). For a sufficiently small \in , there exist a into diffeomorphism g :
M\cross(-\in, \in)arrow W , which admits following properties.

(i) g(x, 0)=x , for arbitrary x in M .
(ii) g_{*}\xi’=\xi

(iii) \omega’=g^{*}\omega

We call this tubular neighborhood in the Liouville setup standard form.
Proof. As the Liouville vector field \xi is transverse to M, and M is com-
pact, it is possible to construct a tubular neighborhood of M in W using the
integral curve of \xi . In fact, for the integral curve c(t, x) of \xi with the initial
value c(0, x)=x\in M . we may set g(x, t):=c(t, x) . Then for sufficiently
small \in , this mapping g:M\cross(-\in, \in) -arrow W is into diffeomorphism. Because
of this construction, this into diffeomorphism g admits following properties.

(i) g(x, 0)=c(0, x)=x , for arbitrary x in M.

(ii) g_{*}( \xi’)=g_{*}(-\frac{\partial}{\partial t})=\xi

We must check this tubular neighborhood admits the property (iii). We
set \tilde{\alpha}:=\xi\lrcorner\omega and \tilde{\alpha}’:=\xi’\lrcorner\omega’ For inclusion mappings i : Marrow W and
i’ : M=M\cross\{0\}arrow M\cross \mathbb{R} , i^{*}\tilde{\alpha}=\alpha and i^{*}\tilde{\alpha}’=\alpha’ .
Firstly, we take Lie derivative of \tilde{\alpha}’ and g^{*}\tilde{\alpha} along \xi’ on M\cross(-\in, \in) .

L_{\xi’}\tilde{\alpha}’=d(\xi’\lrcorner\tilde{\alpha}’)+\xi’\lrcorner d\tilde{\alpha}’=-\tilde{\alpha}’

L_{\xi’}(g^{*}\tilde{\alpha})=d(\xi’\lrcorner g^{*}\tilde{\alpha})+\xi’\lrcorner dg\tilde{\alpha}=*-g^{*}\tilde{\alpha}

Let \{\varphi_{s}\}_{s\in \mathbb{R}} be a 1-parameter transformation group of \xi , then

\frac{d}{ds}\varphi_{s}^{*}\tilde{\alpha}’=\varphi_{s}^{*}L_{\xi’}\tilde{\alpha}’=-\varphi_{s}^{*}\tilde{\alpha}’

\frac{d}{ds}\varphi_{s}^{*}g^{*}\tilde{\alpha}=\varphi_{s}^{*}L_{\xi’g}^{*}\tilde{\alpha}=-\varphi_{s}^{*}g^{*}\tilde{\alpha}
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Regarding them as differential equations with respect to s ,

\varphi_{s}^{*}\tilde{\alpha}’=e^{-s}
\tilde{\alpha}’ . \varphi_{s}^{*}(g^{*}\tilde{\alpha})=e^{-s}\cdot g^{*}\tilde{\alpha} (2.1)

Secondly, for arbitrary (x, O)\in M\cross\{0\} ,

\tilde{\alpha}_{(x,0)}’=(g^{*}\tilde{\alpha})_{(x,0)} . (2.2)

In fact, for arbitrary u \in T_{x}M\subset T_{(x,0)}(M\cross \mathbb{R})=T_{x}M\oplus \mathbb{R}[-\frac{\partial}{\partial t}] ,

\tilde{\alpha}_{(x,0)}’(u)=(g^{*}\tilde{\alpha})_{(x,0)}(u) , \tilde{\alpha}_{(x,0)}’(\xi_{(x,0)}’)=(g^{*}\tilde{\alpha})_{(x,0)}(\xi_{(x,0)}’) .

As \xi’ is transverse to M, the above claim is proved.
By (2.1) and (2.2), (\varphi_{s}^{*}\tilde{\alpha}’)_{(x,0)}=\{\varphi_{s}^{*}(g^{*}\tilde{\alpha})\}_{(x,0)} . Then, \tilde{\alpha}_{(x,-s)}’=

(g^{*}\tilde{\alpha})_{(x,-s)} for any (x, s)\in M\cross(-\in, \in) . In other words, as differential
forms on M\cross(-\in, \epsilon) ,

\tilde{\alpha}’=g^{*}\tilde{\alpha}

Taking an exterior differentiation,

\omega’=-d\tilde{\alpha}’=-d(g^{*}\tilde{\alpha})=g^{*}\omega

We have thus proved the property (iii). This completes the proof of TheO-
rem 2.1. \square

When, on a Liouville setup \{(W, \omega), \xi, M, \alpha\} , W is a manifold with
boundary and M is a connected component of the boundary of W , the
following lemma holds.

Corollary 2.2 (Standard form of a collar neighborhood in a Liouville
setup). There exist an into diffeomorphism g:M\cross(-\in, 0] – W when \xi

is looking inward at M, or g:M\cross[0, \in)arrow W them \xi is looking outward
at M, for sufficiently small \in , which admits following properties.

(i) g(x, O)=x , for arbitrary x in M
(ii) g_{*}\xi’=\xi

(iii) \omega’=g^{*}\omega

We call this collar neighborhood in the Liouville setup standard form.
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3. Properties of the Contact cobordism

3.1. Contact cobordism for contact form
The following notion plays an important role in the classification of

contact structures.

Definition 3.1 (fillable contact manifold). A positively oriented contact
manifold (M, \alpha) is called fifillable, if there exists a positively oriented symplec-
tic manifold (M, \omega) bounded by M. which satisfies the following condition.

(i) the restriction \omega|_{ker\alpha} is nondegenerate,
(ii) the orientation of (M, \alpha) coincides with the orientation as the

boundary of (W, \omega) .

Following propositions follow immediately from the Definition 1.4.

Proposition 3.2 If a contact manifold (M, \alpha) is contact cobordant to zero
with a Liouville vector fifield, then (M, \alpha) is fifillable.
Proof. We take the cobordism (W, \omega) from (M, \alpha) to zero as a symplectic
manifold which defines the fillableness of (M, \alpha) .

The orientation condition (ii) of Definition 3.1 is immediate from the
Definition 1.4 of contact cobordism with a Liouville vector field.

Let \alpha be a contact form obtained by the Liouville vector field. By the
Definition 1.1 of Liouville vector field d\alpha=-\omega . As \alpha is a contact form d\alpha

is non-degenerate on ker \alpha . \square

Let (M_{0}, \alpha_{0}) , (M_{1}, \alpha_{1}) be positively oriented closed (2n-1)-dimensional
contact manifolds.

Proposition 3.3 Let \{(W, \omega), \xi\} be a 2n-dimensional contact cobordism
from (M_{0}, \alpha_{0}) to (M_{1}, \alpha_{1}) with a Liouville vector fifield. Then, the Liouville
vector fifield \xi is looking inward at M_{0} and looking outward at M_{1} .

Proof. Let i_{j} : M_{j}arrow W , (j=0,1) be inclusions. Then

i_{j}^{*}\{\xi\lrcorner\omega^{n}\}=-n\alpha_{j}\wedge(d\alpha_{j})^{n-1}

The left-hand side is a volume form of M_{j} which gives the positive orienta-
tion when \xi is looking outward, and the right-hand side gives the negative
orientation on M_{j} . \square

Proposition 3.4 Let \{(W, \omega), \xi\} be a contact cobordism from (M_{0}, \alpha_{0})
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to (M_{1}, \alpha_{1}) with a Liouville vector fifield. Then

\int_{M_{0}}\alpha_{0}\wedge(d\alpha_{0})^{n-1}>\int_{M_{1}}\alpha_{1}\wedge(d\alpha_{1})^{n-1}

Proof. Let i : \partial Warrow W , i_{j} : M_{j}arrow W(j=0,1) be inclusions. Then

\int_{W}\omega^{n}=\int_{W}\omega\wedge\omega^{n-1}

=- \int_{\partial W}i^{*}\{(\xi\lrcorner\omega)\wedge\omega^{n-1}\}

=- \int_{M_{0}}i_{0}^{*}\{(\xi\lrcorner\omega)\wedge\omega^{n-1}\}+\int_{M_{1}}i_{1}^{*}\{(\xi\lrcorner\omega)\wedge\omega^{n-1}\}

= \int_{M_{0}}\alpha_{0}\wedge(d\alpha_{0})^{n-1}-\int_{M_{1}}\alpha_{1}\wedge(d\alpha_{1})^{n-1} .

As W is a positively oriented symplectic manifold, the left-hand side is
positive. Then \int_{M_{0}}\alpha_{0}\wedge(d\alpha_{0})^{n-1}>\int_{M_{1}}\alpha_{1}\wedge(d\alpha_{1})^{n-1} . \square

3.2. Contact cobordism for contact structure
The following proposition which corresponds to Proposition 3.3 is also

follows immediately from the definition.
Let (M_{0}, D_{0}) , (M_{1}, D_{1}) be positively oriented closed (2n-1)-dimen-

sional contact manifolds. Where D_{i}=ker\alpha_{i}(i=0,1) are contact struc-
tures.

Proposition 3.5 Let \{(W, \omega), \xi\} be a 2n-dimensional contact cobordism
from (M_{0}, D_{0}) to (M_{1}, D_{1}) with a Liouville vector fifield. Then, the Liouville
vector fifield \xi is looking inward at M_{0} and looking outward at M_{1} .

4. Proofs of theorems

4.1. Proof of Theorem A
Using the standard form of a collar neighborhood in a Liouville setup,

we can show Theorem A.
The following lemma is essential for the proof of the above theorem.

Lemma 4.1 Let \{(W_{i}, \omega_{i}), \xi_{i}, M_{i}, \alpha_{i}\}(i=1,2) be Liouville setups. Where
W_{i} is with boundary, M_{i} is a connected component of \partial W_{i} , \xi_{1} is looking
outward at M_{1} , and \xi_{2} is looking inward at M_{2} .

We suppose that there exists a contact diffeomorphism \varphi : (M_{1}, \alpha_{1}) -
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(M_{2}, \alpha_{2}) which satisfifies \varphi^{*}\alpha_{2}=\alpha_{1} . Let W=W_{1} \bigcup_{\varphi}W_{2} be a manifold ob-
tained by pasting W_{1} and W_{2} by \varphi . Then there exist a symplectic structure
\Omega on W and a Liouville vector fifield — on (W, \Omega) satisfying

\Omega|_{W_{i}}=\omega_{i} and –|_{W_{i}}-=\xi_{i} (i=1,2)

Proof On account of Corollary 2.2, there exist standard collar neighbor-
hoods of M_{i}(i=1,2) in respective Liouville setups. In other words, there
exist into diffeomorphisms

g_{1} : M_{1}\cross[0, \in)arrow W_{1} , g_{2} : M_{2}\cross(-\in, 0]arrow W_{2}

satisfying following conditions, (i=1,2)
(i) g_{i}(x_{i}, 0)=x_{i} , for arbitrary x_{i} in M_{i}

(ii) g_{i*}\xi’=\xi_{i} , where \xi’:=-\frac{\partial}{\partial t}

(iii) \omega_{i}’=g_{i}^{*}\omega_{i} , where \omega_{i}’:=-d(e^{t}\alpha_{i})

Let \pi : W_{1}uW_{2}arrow W be a projection. We define h:M_{1}\cross(-\epsilon, \in)arrow W by

h(x, t):=\{
\pi\circ g_{1}(x, t) t\geq 0

\pi og_{2}(\varphi(x), t) t<0
then h is well defined and is an into diffeomorphism. Moreover, we define
— and \Omega by

— :=\{
\pi_{*}\xi_{i} on \pi(W_{i}-M_{i}) (i=1,2)
h_{*}\xi’ on h(M_{1}\cross(-\epsilon, \epsilon))

\Omega:=\{

(\pi|_{W_{i}-M_{i}})^{-1*}\omega_{i} on \pi(W_{i}-M_{i}) (i=1,2)
h^{-1*}\omega_{1}’ on h(M_{1}\cross(-\in, \in))

then they are well defied. — is a C^{\infty}-vector field on W and \Omega is a C^{\infty}-

differential 2-form on W .

From these constructions, identifying W_{i} with \pi(W_{i}) , we get –|_{W_{i}}-=\xi_{i}

and \Omega|_{W_{i}}=\omega_{i} . It is also immediate from these constructions that \Omega is a
symplectic structure on W and that— is a Liouville vector field on (W, \Omega) .

\square

Proof of Theorem A. The antisymmetric law (ii) is immediate from PropO-
sition 3.4.

Let \{(W_{1}, \omega_{1}), \xi_{1}\} be a contact cobordism from (M_{0}, \alpha_{0}) to (M_{1}, \alpha_{1})
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and \{(W_{2}, \omega_{2}), \xi_{2}\} that from (M_{1}, \alpha_{1}) to (M_{2}, \alpha_{2}) . Applying Lemma 4.1t0
Liouville setups \{(W_{1}, \omega_{1}), \xi_{1}, M_{1}, \alpha_{1}\} and \{(W_{2}, \omega_{2}), \xi_{2}, M_{1}, \alpha_{1}\} , and \varphi=

id_{M_{1}} , we get a contact cobordism \{(W, \Omega),---\} from (M_{0}, \alpha_{0}) to (M_{1}, \alpha_{1}) .
\square

4.2. Proof of Theorem B
To prove the transitive law is not so simple. We can apply Lemma 4.1

for the same contact forms. But as we consider contact structures now,
we must consider contact forms multiplied by non-zero functions. Then
when \{(W, \omega), \xi\} is a contact cobordism from (M_{0}, \alpha_{0}) to (M_{1}, \alpha_{1}) , we must
construct a contact cobordism \{(W’, \omega’), \xi’\} from (M_{0}, c\cdot\alpha_{0}) to (M_{1}, f\cdot\alpha_{1})

for any non-zero function f and some constant c .
First, we show the following.

Proposition 4.2 Let (W, \omega) be a symplectic manifold and M a hypersur-
face of W If \xi_{0} , \xi_{1} be two distinct Liouville vector fifields on (W, \omega) which
are transverse to M and respective contact forms \alpha_{0} , \alpha_{1} induced by PropO-
sition 1.2 defifine the same contact structure on M, then \alpha_{0}=\alpha_{1} .

Proof. As \alpha_{0} and \alpha_{1} defines the same contact structure on M, there is a
non-zero function f on M which satisfies \alpha_{0}=f\cdot\alpha_{1} .
Taking the exterior derivative,

d\alpha_{0}=df\wedge\alpha_{1}+fd\alpha_{1}

As contact forms \alpha_{0} , \alpha_{1} are induced by Proposition 1.2, d\alpha_{0}=d\alpha_{1}=-i^{*}\omega .
Then

(1-f)d\alpha_{1}=df\wedge\alpha_{1}

(1-f)\alpha_{1}\wedge d\alpha_{1}=0

As \alpha_{1} is a contact form, f\equiv 1 on M . This completes the proof. \square

This Proposition 4.2 means that the construction mentioned above is
impossible by changing only the Liouville vector field. We must change the
symplectic manifold. So we define the Liouville Plug as a subset of the
symplectification of the contact manifold. Using the Liouville Plug, this
difficulty is eliminated.

Let (M, \alpha) be a closed positively oriented contact manifold and f a
positive function on M. We can suppose that F:=k . f satisfies 0<F<1
for some sufficiently small positive constant k , since M is compact. Then
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log F<0 .

Definition 4.3 (Liouville Plug). We set

P:=M\cross[\log F, 0]= { (x , t)\in M\cross \mathbb{R}| log F(x)\leq t\leq 0}
\subset M\cross 1R

Let \tilde{\omega} be a symplectic structure on P which is a pull back of -d(e^{t}\alpha) on
M\cross \mathbb{R} , and \tilde{\xi} be a Liouville vector field on (P,\tilde{\omega}) which is a restriction of
- \frac{\partial}{\partial t} . We call the pair \{(P,\tilde{\omega}),\tilde{\xi}\} the Liouville Plug.

The essential property of this Liouville Plug is the following.

Proposition 4.4 Let \{(P,\tilde{\omega}),\tilde{\xi}\} be a Liouville Plug for a contact manifold
(M, \alpha) and a function F on M which satisfifies 0<F<1 . Then contact
forms induced by Proposition 1.2 on M\cross\{0\} and M\cross\{\log F\}:=\{(x, t)\in

M\cross \mathbb{R}|t=\log F(x)\} are \alpha and F\cdot\alpha respectively.

Proof. It is immediate from Proposition 1.2. Let i_{0} : M\cross\{0\}arrow P and
i_{F} : M\cross\{\log F\}arrow P be inclusion mappings. The contact form on M\cross\{0\}

is i_{0}^{*}(\tilde{\xi}\lrcorner\tilde{\omega})=e^{0} \alpha=\alpha .
Moreover that on M\cross\{\log F\} is

i_{F}(\tilde{\xi}\lrcorner\tilde{\omega})=\exp(\log F) \alpha=F\cdot\alpha .

\square

Now we can show Theorem B.

Proof. The reflective law follows immediately from the existence of a
symplectification.

Now we will show the transitive law. Let \{(W_{1}, \omega_{1}), \xi_{1}\} be a contact
cobordism with a Liouville vector field from (M_{0}, D_{0}) to (M_{1}, D_{1}) for contact
forms \alpha_{i}(i=0,1) which satisfy D_{i}=ker\alpha_{i} . And let \{(W_{2}, \omega_{2}), \xi_{2}\} be a
contact cobordism with a Liouville vector field from (M_{1}, D_{1}) to (M_{2}, D_{2})

for contact forms \beta_{1} and \alpha_{2} which satisfy D_{1}=ker\beta_{1} and D_{2}=ker\alpha_{2} . Let
\varphi : M_{1} – M_{1} be a contact diffeomorphism which satisfies

\varphi^{*}\beta_{1}=f\cdot\alpha_{1}

for some non-zero function f on M_{1} .
We can assume that the function f satisfies 0<f<1 . In fact, by



Liouville setup and contact cobordism 649

taking k\cdot\omega_{2} as a symplectic structure on W_{2} in stead of \omega_{2} for a constant k ,
\{(W_{2}, k\cdot\omega_{2}), \xi_{2}\} becomes a contact cobordism with a Liouville vector field
from (M_{1}, D_{1}) to (M_{2}, D_{2}) with respect to contact forms \beta_{1}’:=k \beta_{1} and
k\alpha_{2} . Then the contact diffeomorphism \varphi : M_{1}arrow M_{1} satisfies

\varphi^{*}\beta_{1}’=k\varphi^{*}\beta_{1}=(k\cdot f) \alpha_{1}

We have only to take a constant k so that the function f’:=k\cdot f satisfies 0<
f’<1 . Note that this assumption means the condition of Proposition 4.4
is satisfied.

Then we take a Liouville Plug \{(P,\tilde{\omega}),\tilde{\xi}\} for (M_{1}, \alpha_{1}) and f . Note that
this Liouville plug has the property of Proposition 4.4. Let

\psi : M_{1}\cross\{0\}arrow M_{1}\cross\{\log f\}

be a diffeomorphism defined by \psi(x, 0):= (x , log f(x) ) . \psi satisfies \psi^{*}(f

\alpha_{1})=f \alpha_{1} . So, taking the composed diffeomorphism \varphi\circ\psi^{-1} : M_{1}\cross

\{\log f\} – M_{1} , we have

(\varphi 0\psi^{-1})^{*}\beta_{1}=\psi^{-1*}0\varphi^{*}\beta_{1}=\psi^{-1*}(f\cdot\alpha_{1})=f\cdot\alpha_{1} .

Applying Lemma 4.1 to id:(M_{1}, \alpha_{1}) – (M_{1}\cross\{0\}, \alpha_{1}) and the contact
diffeomorphism

\varphi 0\psi^{-1} : (M_{1}\cross\{\log f\}, f\alpha_{1})arrow(M_{1}, \beta_{1}) ,

we get a contact cobordism with a Liouville vector field

\{(W_{1}\bigcup_{id}P\bigcup_{\varphi 0\psi^{-1}}W_{2},\tilde{\Omega}),-\sim--\}

from (M_{0}, \alpha_{0}) to (M_{2}, \alpha_{2}) , that is from (M_{0}, D_{0}) to (M_{2}, D_{2}) . This com-
pletes the proof of the transitive law. \square
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