On a certain property of closed hypersurfaces with constant mean curvature in a Riemannian manifold, II

Tsunehira Koyanagi

(Received September 8, 1995)

Abstract

In this paper, we discuss some properties of a closed hypersurface whose first mean curvature is constant, in a Riemannian manifold admitting a special concircular scalar field.

Key words: hypersurface with constant mean curvature, special concircular scalar field, umbilic point, beging isometric to a sphere.

1. Introduction

Y. Katsurada [2] proved.

Theorem 1.1 (Katsurada) Let R^{n+1} be an $(n+1)$-dimensional Einstein manifold which admits a proper conformal Killing vector field ξ^{i}, that is, a vector field generating a local one-parameter group of conformal transformations, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) its first mean curvature H_{1} is constant,
(ii) the inner product $C^{i} \xi_{i}$ has fixed sign on V^{n}, where C^{i} and ξ_{i} denote the normal vector to V^{n} and the covariant components of the conformal Killing vector field ξ respectively. Then every point of V^{n} is umbilic.

To prove Theorem 1.1, we need integral formulas of Minkowski type for a hypersurface in a Riemannian manifold in which the conformal Killing vector field plays the same role as the position vector in a Euclidean space.

We can prove that if every point of a closed orientable hypersurface in a Euclidean space is umbilic, then the hypersurface is isometric to a sphere. However, in a Riemannian manifold, we can not expect the result of the same kind even if every point of a closed orientable hypersurface is umbilic. On this problem, she [3] also proved the following two Theorems:

Theorem 1.2 (Katsurada) Let ξ^{i} be a proper conformal Killing vector field such that $\nabla_{j} \xi_{i}+\nabla_{i} \xi_{j}=2 \varphi G_{j i}$ in an Einstein manifold R^{n+1} and V^{n} a closed orientable hypersurface such that
(i) $H_{1}=$ const. ,
(ii) $C^{i} \nabla_{i} \varphi$ has fixed sign on V^{n} and is not constant along V^{n}, where $G_{j i}$ and ∇_{i} denote the positive definite fundamental tensor of R^{n+1} and the operator of covariant differentiation with respect to Christoffel symbols $\left\{\begin{array}{l}k \\ j i\end{array}\right\}$ formed with $G_{j i}$ respectively. Then V^{n} is isometric to a sphere.

Theorem 1.3 (Katsurada) Let ξ^{i} be a proper conformal Killing vector field in an Einstein manifold R^{n+1} and V^{n} a closed orientable hypersurface such that
(i) $H_{1}=$ const.,
(ii) $C^{i} \xi_{i}$ has fixed sign on V^{n},
(iii) φ is not constant along V^{n}.

Then V^{n} is isometric to a sphere.
To prove that the hypersurface under consideration is isometric to a sphere, she used the following Theorem due to M. Obata [6].

Theorem 1.4 (Obata) Let $V^{n}(n \geq 2)$ be a complete Riemannian manifold which admits a non-null function ψ such that $\nabla_{b} \nabla_{a} \psi=-\kappa^{2} \psi g_{b a}(\kappa=$ const.), where $g_{b a}$ and ∇_{a} denote the metric tensor of V^{n} and the operator of covariant differentiation with respect to Christoffel symbols $\left\{\begin{array}{c}c \\ b a\end{array}\right\}$ formed with $g_{b a}$ respectively. Then V^{n} is isometric to a sphere of radius $1 / \kappa$.

Let Ψ be a non-constant scalar field in R^{n+1} such that

$$
\begin{equation*}
\nabla_{j} \Psi_{i}=(\rho \Psi+\sigma) G_{j i} \quad(\rho=\text { const. } \neq 0, \sigma=\text { const. }) \tag{1.1}
\end{equation*}
$$

where $\Psi_{i}=\nabla_{i} \Psi$. Here and in the following, Ψ is called a special concircular scalar field [8]. It is known that if an Einstein manifold R^{n+1} admits a proper conformal Killing vector field ξ^{i} such that $\nabla_{j} \xi_{i}+\nabla_{i} \xi_{j}=2 \varphi G_{j i}$, then the non-constant scalar field φ satisfies the partial differential equation given by

$$
\nabla_{j} \nabla_{i} \varphi=\lambda \varphi G_{j i} \quad(\lambda=-R / n(n+1)) \quad([10],[12])
$$

where R denotes the scalar curvature of R^{n+1}. So, in a previous paper [5], we assumed the existence of a non-constant scalar field Φ in R^{n+1}, which
satisfies the partial differential equation defined by

$$
\begin{equation*}
\nabla_{j} \Phi_{i}=\rho \Phi G_{j i} \quad(\rho=\text { const. } \neq 0) \tag{1.2}
\end{equation*}
$$

where $\Phi_{i}=\nabla_{i} \Phi:(1.2)$ is a special case of (1.1). And, in a more general Riemannian manifold R^{n+1} admitting this special conformal Killing vector field $\Phi^{i}\left(=G^{j i} \Phi_{j}\right)$, the present author proved the following analogous results in [5]:

Theorem 1.5 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_{k} R_{j i}=\nabla_{j} R_{k i}$ which admits a special concircular scalar field Φ such that

$$
\nabla_{j} \Phi_{i}=\rho \Phi G_{j i} \quad(\rho=\text { const. } \neq 0)
$$

and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) Θ has fixed sign on V^{n}, where $\Theta=C^{i} \Phi_{i}$.

Then every point of V^{n} is umbilic. If, moreover,
(iii) Θ is not constant along V^{n}, then V^{n} is isometric to a sphere.

Corollary 1.6 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_{k} R_{j i}=0$ which admits a special concircular scalar field Φ, and $V^{n} a$ closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) Θ has fixed sign on V^{n}.

Then every point of V^{n} is umbilic. If, moreover,
(iii) Θ is not constant along V^{n}, then V^{n} is isometric to a sphere.

Corollary 1.7 Let R^{n+1} be an orientable conformally flat Riemannian manifold with $R=$ const. which admits a special concircular scalar field Φ, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) Θ has fixed sign on V^{n}.

Then every point of V^{n} is umbilic. If, moreover,
(iii) Θ is not constant along V^{n}, then V^{n} is isometric to a sphere.

Theorem 1.8 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_{k} R_{j i}+\nabla_{j} R_{i k}+\nabla_{i} R_{k j}=0$ which admits a special concircular scalar field Φ, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) Θ has fixed sign on V^{n}.

Then every point of V^{n} is umbilic. If, moreover, (iii) Θ is not constant along V^{n}, then V^{n} is isometric to a sphere.

Theorem 1.9 Let R^{n+1} be an orientable Riemannian manifold with $R^{j i} R_{j i}=$ const. which admits a special concircular scalar field Φ, and $V^{n} a$ closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const $\neq 0$,
(ii) Θ has fixed sign on V^{n}.

Then every point of V^{n} is umbilic. If, moreover,
(iii) Θ is not constant along V^{n}, then V^{n} is isometric to a sphere.

The Theorem 1.9 is a generalization of Corollary 1.6.
Moreover, in [5], under the new assumption of Φ, that is, Φ is not constant along V^{n}, the present author proved the following analogous results in the same way:

Theorem 1.10 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_{k} R_{j i}=\nabla_{j} R_{k i}$ which admits a special concircular scalar field Φ, and $V^{n} a$ closed orientable hypersurface in R^{n+1} such that
(i) $\quad H_{1}=$ const. $\neq 0$,
(ii) Θ has fixed sign on V^{n},
(iii) Φ is not constant along V^{n}.

Then V^{n} is isometric to a sphere.
Corollary 1.11 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_{k} R_{j i}=0$ which admits a special concircular scalar field Φ, and $V^{n} a$ closed orientable hypersurface in R^{n+1} such that
(i) $\quad H_{1}=$ const. $\neq 0$,
(ii) Θ has fixed sign on V^{n},
(iii) Φ is not constant along V^{n}.

Then V^{n} is isometric to a sphere.
Corollary 1.12 Let R^{n+1} be an orientable conformally flat Riemannian manifold with $R=$ const. which admits a special concircular scalar field Φ, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $\quad H_{1}=$ const. $\neq 0$,
(ii) Θ has fixed sign on V^{n},
(iii) Φ is not constant along V^{n}.

Then V^{n} is isometric to a sphere.

Theorem 1.13 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_{k} R_{j i}+\nabla_{j} R_{i k}+\nabla_{i} R_{k j}=0$ which admits a special concircular scalar field Φ, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) Θ has fixed sign on V^{n},
(iii) Φ is not constant along V^{n}.

Then V^{n} is isometric to a sphere.
Theorem 1.14 Let R^{n+1} be an orientable Riemannian manifold with $R^{j i} R_{j i}=$ const. which admits a special concircular scalar field Φ, and $V^{n} a$ closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) Θ has fixed sign on V^{n},
(iii) Φ is not constant along V^{n}.

Then V^{n} is isometric to a sphere.
The Theorem 1.14 also is a generalization of Corollary 1.11.
The purpose of the present paper is to generalize these Theorems and Corollarys proved in the previous paper [5]. § 2 is devoted to give notations and general formulas in the theory of hypersurfaces in a general Riemannian manifold R^{n+1}. In $\S 3$ we derive some integral formulas which are valid for a closed orientable hypersurface V^{n} in R^{n+1} admitting a special concircular scalar field Φ given by (1.2). In § 4, we discuss some relations of R^{n+1} admitting the scalar field Φ. In $\S 5$ we give a generalization of the first part of Corollary 1.7, and in $\S 6$, generalizations of Corollary 1.7 and Corollary 1.12 respectively. In the last section 7 , moreover, we try to generalize all of Theorems and Corollarys proved in the previous paper [5], §5 and §6, in R^{n+1} admitting a more general special concircular scalar field Ψ given by (1.1).

The author wishes to express his sincere thanks to Dr. T. Nagai and Dr. H. Kôjyô for their valuable suggestions.

2. Notation and general formulas

Let R^{n+1} be an $(n+1)$-dimensional Riemannian manifold with local coordinates x^{i}, and $G_{j i}$ the positive definite fundamental tensor of R^{n+1}. We now consider a hypersurface V^{n} imbedded in R^{n+1} and locally given by

$$
x^{i}=x^{i}\left(u^{a}\right) \quad i=1,2, \cdots, n+1 ; a=1,2, \cdots, n,
$$

where u^{a} are local coordinates of V^{n}. Throughout the present paper, the indices i, j, k, \cdots run from 1 to $n+1$ and the indices a, b, c, \cdots from 1 to n. If we put

$$
B_{a}^{i}=\partial x^{i} / \partial u^{a},
$$

then $B_{a}^{i}(a=1,2, \cdots, n)$ are n linearly independent vectors tangent to V^{n} and the first fundamental tensor $g_{b a}$ of V^{n} is given by

$$
\begin{equation*}
g_{b a}=G_{j i} B_{b}^{j} B_{a}^{i} . \tag{2.1}
\end{equation*}
$$

We assume that n vectors $B_{1}^{i}, B_{2}^{i}, \cdots, B_{n}^{i}$ give the positive orientation on V^{n}, and we denote by C^{i} the unit normal vector to V^{n} such that

$$
B_{1}^{i}, B_{2}^{i}, \cdots, B_{n}^{i}, C^{i}
$$

give the positive orientation in R^{n+1}.
Denoting by ∇_{a} the van der Waerden-Bortolotti covariant differentiation along $V^{n}[7]$, we can write the equations of Gauss and Weingarten in the form

$$
\begin{align*}
& \nabla_{b} B_{a}^{i}=h_{b a} C^{i}, \tag{2.2}\\
& \nabla_{b} C^{i}=-h_{b}{ }^{a} B_{a}^{i} \tag{2.3}
\end{align*}
$$

respectively, where $h_{b a}$ is the second fundamental tensor of V^{n} and $h_{b}{ }^{a}=$ $h_{b c} g^{c a}$. Also, the equations of Codazzi are written as follows:

$$
\begin{equation*}
\nabla_{c} h_{b a}-\nabla_{b} h_{c a}=R_{k j i h} B_{c}^{k} B_{b}^{j} B_{a}^{i} C^{h}, \tag{2.4}
\end{equation*}
$$

where $R_{k j i h}$ is the curvature tensor of R^{n+1}. Transvecting $g^{b a}$ to (2.4) and making use of $g^{b a} B_{b}^{j} B_{a}^{i}=G^{j i}-C^{j} C^{i}$, we find that

$$
\begin{equation*}
\nabla_{c} h_{b}{ }^{b}-\nabla_{b} h_{c}{ }^{b}=R_{k j} B_{c}^{k} C^{j}, \tag{2.5}
\end{equation*}
$$

where $h_{b}{ }^{b}=h_{b a} g^{b a}$ and $R_{k h}=R_{k j i h} G^{j i}$.
Now, if we denote by $k_{1}, k_{2}, \cdots, k_{n}$ the principal curvatures of V^{n}, that is, the roots of the characteristic equation

$$
\operatorname{det}\left(h_{b a}-k g_{b a}\right)=0,
$$

then the first mean cuvature H_{1} and the second mean curvature H_{2} of V^{n}
are given by

$$
\begin{equation*}
n H_{1}=\sum_{c} k_{c}=h_{a}^{a} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\binom{n}{2} H_{2}=\sum_{d<c} k_{d} k_{c}=\frac{1}{2}\left\{\left({h_{b}}^{b}\right)^{2}-{h_{b}}^{a}{h_{a}}^{b}\right\} \tag{2.7}
\end{equation*}
$$

respectively.

3. Integral formulas in \boldsymbol{R}^{n+1} admitting a special concircular scalar field Φ

As mentioned in $\S 1$, we assume the existence of a non-constant scalar function Φ which satisfies the partial differential equation defined by

$$
\begin{equation*}
\nabla_{j} \Phi_{i}=\rho \Phi G_{j i} \quad(\rho=\text { const. } \neq 0) \tag{3.1}
\end{equation*}
$$

where $\Phi_{i}=\nabla_{i} \Phi$.
In the previous paper [5], we gave
Lemma 3.1 Let R^{n+1} be a Riemannian manifold which admits the special concircular scalar field Φ. If, on a hypersurface V^{n} in $R^{n+1}, H_{1} \Theta$ is not identically zero, then Φ is not identically zero on V^{n}, where $\Theta=C^{i} \Phi_{i}$.

Now, on the hypersurface V^{n}, we can put

$$
\Phi^{j}=B_{b}^{j} \phi^{b}+\Theta C^{j}
$$

where $\Phi^{j}=\Phi_{i} G^{j i}$. Transvecting $G_{j i} B_{a}^{i}$ to this equation and making use of (2.1), we get

$$
\begin{equation*}
\phi_{a}=B_{a}^{i} \Phi_{i} \tag{3.2}
\end{equation*}
$$

from which, by covariant differentiation along V^{n} and by virtue of (2.2), (3.1) and (2.1), we obtain

$$
\nabla_{b} \phi_{a}=\Theta h_{b a}+\rho \Phi g_{b a}
$$

And, transvecting $g^{b a}$ to this equation and making use of (2.6), we get

$$
\begin{equation*}
\nabla_{b} \phi^{b}=n\left(H_{1} \Theta+\rho \Phi\right) \tag{3.3}
\end{equation*}
$$

where $\nabla_{b} \phi^{b}=\nabla_{b} \phi_{a} g^{b a}$.

We now put

$$
\omega_{b}=h_{b}^{a} B_{a}^{i} \Phi_{i}
$$

from which, by covariant differentiation along V^{n}, we obtain, by virtue of (2.2), (3.1) and (2.1),

$$
\nabla_{c} \omega_{b}=\nabla_{c} h_{b}^{a} B_{a}^{i} \Phi_{i}+h_{b}^{a} h_{c a} \Theta+\rho \Phi h_{b c}
$$

And, transvecting $g^{b c}$ to this equation, we get

$$
\begin{equation*}
\nabla_{c} \omega^{c}=\nabla_{c} h_{a}{ }^{c} \phi^{a}+{h_{c}}^{a} h_{a}{ }^{c} \Theta+\rho \Phi h_{c}{ }^{c}, \tag{3.4}
\end{equation*}
$$

by virtue of (3.2). On the other hand, we have, from (2.6) and (2.7),

$$
h_{c}^{c}=n H_{1}, \quad h_{c}^{a} h_{a}^{c}=n^{2} H_{1}^{2}-n(n-1) H_{2}
$$

and consequently, we have, from (3.4),

$$
\begin{equation*}
\nabla_{c} \omega^{c}=\nabla_{c} h_{a}^{c} \phi^{a}+n\left\{n H_{1}^{2}-(n-1) H_{2}\right\} \Theta+n \rho \Phi H_{1} \tag{3.5}
\end{equation*}
$$

Next, we assume that the hypersurface V^{n} under consideration is closed, and apply Green's formula [9] to (3.3) and (3.5). Then we obtain

$$
\begin{equation*}
\int_{V^{n}} H_{1} \Theta d A+\int_{V^{n}} \rho \Phi d A=0 \tag{3.6}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{1}{n} \int_{V^{n}} \nabla_{c} h_{a}^{c} \phi^{a} d A & +\int_{V^{n}}\left\{n H_{1}^{2}-(n-1) H_{2}\right\} \Theta d A \\
& +\int_{V^{n}} \rho \Phi H_{1} d A=0 \tag{3.7}
\end{align*}
$$

respectively [2], where $d A$ denotes the area element of V^{n}.
If we assume, moreover, that the first mean curvature of V^{n} is non zero constant, that is,

$$
H_{1}=\text { const. }(\neq 0)
$$

then we obtain, from (2.5),

$$
\nabla_{c} h_{a}^{c}=-R_{j i} B_{a}^{j} C^{i}
$$

and consequently, we have, from (3.7),

$$
-\frac{1}{n} \int_{V^{n}} R_{j i} B_{a}^{j} \phi^{a} C^{i} d A+\int_{V^{n}}\left\{n H_{1}^{2}-(n-1) H_{2}\right\} \Theta d A
$$

$$
\begin{equation*}
+H_{1} \int_{V^{n}} \rho \Phi d A=0 \tag{3.8}
\end{equation*}
$$

Eliminating $\int_{V^{n}} \rho \Phi d A$ from (3.6) and (3.8), we find that

$$
\begin{equation*}
-\frac{1}{n} \int_{V^{n}} R_{j i} B_{a}^{j} \phi^{a} C^{i} d A+(n-1) \int_{V^{n}}\left\{H_{1}^{2}-H_{2}\right\} \Theta d A=0 \tag{3.9}
\end{equation*}
$$

4. Properties of a Riemannian manifold admitting the special concircular scalar field Φ

Let R^{n+1} be a Riemannian manifold which admits a special concircular scalar field Φ defined by (3.1). Substituting (3.1) into the Ricci identity

$$
\nabla_{k} \nabla_{j} \Phi_{i}-\nabla_{j} \nabla_{k} \Phi_{i}=-R_{k j i}^{l} \Phi_{l}
$$

we find that

$$
\begin{equation*}
R_{k j i}^{l} \Phi_{l}=\rho\left(\Phi_{j} G_{k i}-\Phi_{k} G_{j i}\right) \tag{4.1}
\end{equation*}
$$

from which, by covariant differentiation, we obtain

$$
\begin{equation*}
\nabla_{h} R_{k j i}^{l} \Phi_{l}=-\rho \Phi\left\{R_{k j i h}-\rho\left(G_{k i} G_{j h}-G_{k h} G_{j i}\right)\right\} \tag{4.2}
\end{equation*}
$$

So, transvecting $G^{j i}$ to this equation, we obtain

$$
\begin{equation*}
\nabla_{h} R_{k l} \Phi^{l}=-\rho \Phi\left(R_{k h}+n \rho G_{k h}\right) \tag{4.3}
\end{equation*}
$$

and if we put

$$
\begin{equation*}
S_{k h}=R_{k h}+n \rho G_{k h} \tag{4.4}
\end{equation*}
$$

then the tensor $S_{k h}$ is symmetric in k and h, and, consequently, (4.3) is rewritten as follows:

$$
\begin{equation*}
\nabla_{h} R_{k l} \Phi^{l}=-\rho \Phi S_{h k} \tag{4.5}
\end{equation*}
$$

Moreover, transvecting $G^{h k}$ to this equation and making use of $\nabla_{h} R_{l}^{h}=$ $(1 / 2) \nabla_{l} R$, we get

$$
\begin{equation*}
\nabla_{l} R \Phi^{l}=-2 \rho \Phi S \tag{4.6}
\end{equation*}
$$

where $S=S_{h k} G^{h k}$. Also, transvecting $G^{h k}$ to (4.4), we obtain

$$
\begin{equation*}
S=R+n(n+1) \rho \tag{4.7}
\end{equation*}
$$

Next, transvecting $G^{j i}$ to (4.1), we get

$$
R_{k l} \Phi^{l}+n \rho \Phi_{k}=0
$$

Thus, from (4.4), we have

$$
\begin{equation*}
S_{h k} \Phi^{k}=0 \tag{4.8}
\end{equation*}
$$

Now, from $R_{k j i l}=R_{l i j k}$, the left-hand side of (4.2) is equal to $\nabla_{h} R_{l i j k} \Phi^{l}$. Thus, transvecting $G^{h k}$ to (4.2), we get, from (4.4),

$$
\begin{equation*}
\nabla_{h} R_{l i j}^{h} \Phi^{l}=-\rho \Phi S_{i j} \tag{4.9}
\end{equation*}
$$

On the other hand, transvecting $G^{h k}$ to the Bianchi's identity: $\nabla_{h} R_{l i j k}+$ $\nabla_{l} R_{i h j k}+\nabla_{i} R_{h l j k}=0$, we find that

$$
\begin{equation*}
\nabla_{h} R_{l i j}^{h}=\nabla_{l} R_{i j}-\nabla_{i} R_{l j} \tag{4.10}
\end{equation*}
$$

and consequently, transvecting Φ^{l} to this equation, we get, from (4.5) and (4.9),

$$
\begin{equation*}
\nabla_{l} R_{i j} \Phi^{l}=-2 \rho \Phi S_{i j} \tag{4.11}
\end{equation*}
$$

5. A closed hypersurface with $\boldsymbol{H}_{1}=$ const.

We shall prove the following Theorem:
Theorem 5.1 Let R^{n+1} be an orientable conformally flat Riemannian manifold which admits a special concircular scalar field Φ, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $\quad H_{1}=$ const. $\neq 0$,
(ii) there exists a point P_{0} on V^{n} such that $S\left(P_{0}\right)=0$,
(iii) Θ has fixed sign on V^{n}.

Then every point of V^{n} is umbilic.
Proof. In a conformally flat Riemannian manifold R^{n+1},

$$
\begin{aligned}
R_{k j i}^{h}= & -\frac{1}{n-1}\left(R_{k i} \delta_{j}^{h}-R_{j i} \delta_{k}^{h}+G_{k i} R_{j}^{h}-G_{j i} R_{k}^{h}\right) \\
& +\frac{R}{n(n-1)}\left(G_{k i} \delta_{j}^{h}-G_{j i} \delta_{k}^{h}\right)
\end{aligned}
$$

By covariant differentiation, we have

$$
\begin{aligned}
\nabla_{l} R_{k j i}{ }^{h}= & -\frac{1}{n-1}\left(\nabla_{l} R_{k i} \delta_{j}^{h}-\nabla_{l} R_{j i} \delta_{k}^{h}+G_{k i} \nabla_{l} R_{j}{ }^{h}-G_{j i} \nabla_{l} R_{k}{ }^{h}\right) \\
& +\frac{\nabla_{l} R}{n(n-1)}\left(G_{k i} \delta_{j}^{h}-G_{j i} \delta_{k}{ }^{h}\right),
\end{aligned}
$$

from which, replacing l by h and summing for h, we have

$$
\begin{aligned}
\nabla_{h} R_{k j i}{ }^{h}= & -\frac{1}{n-1}\left(\nabla_{j} R_{k i}-\nabla_{k} R_{j i}+G_{k i} \nabla_{h} R_{j}{ }^{h}-G_{j i} \nabla_{h} R_{k}{ }^{h}\right) \\
& +\frac{1}{n(n-1)}\left(G_{k i} \nabla_{j} R-G_{j i} \nabla_{k} R\right) .
\end{aligned}
$$

And, making use of (4.10) and $\nabla_{h} R_{j}{ }^{h}=(1 / 2) \nabla_{j} R$, we find that

$$
\begin{equation*}
\nabla_{j} R_{k i}-\nabla_{k} R_{j i}-\frac{1}{2 n}\left(G_{k i} \nabla_{j} R-G_{j i} \nabla_{k} R\right)=0 . \tag{5.1}
\end{equation*}
$$

Remark 1. In case $n=2$, a conformally flat Riemannian manifold is defined by (5.1).

Now, transvecting $2 n \Phi^{k}$ to (5.1) and making use of (4.5), (4.11) and (4.6), we get

$$
\begin{equation*}
2 n \rho \Phi S_{j i}-\left(\nabla_{j} R \Phi_{i}+2 \rho \Phi S G_{j i}\right)=0 \tag{5.2}
\end{equation*}
$$

Moreover, transvecting Φ^{i} to this equation and making use of (4.8), we have

$$
\begin{equation*}
\nabla_{j} R \Phi_{i} \Phi^{i}+2 \rho \Phi S \Phi_{j}=0 \tag{5.3}
\end{equation*}
$$

And consequently, making use of (3.1) and (4.7), (5.3) is rewritten as follows:

$$
\begin{equation*}
\nabla_{j}\left(S \Phi_{i} \Phi^{i}\right)=0, \tag{5.4}
\end{equation*}
$$

from which, by the assumptions that there exists a point P_{0} on V^{n} such that $S\left(P_{0}\right)=0$, and the hypersurface V^{n} is closed, we find that

$$
\begin{equation*}
S \Phi_{i} \Phi^{i}=0 \tag{5.5}
\end{equation*}
$$

on V^{n}.
On the other hand, transvecting $S^{j i}$ to (5.2) and making use of (4.8), we obtain

$$
\begin{equation*}
\Phi\left(n S_{j i} S^{j i}-S^{2}\right)=0 \tag{5.6}
\end{equation*}
$$

By covariant differentiation, we have, from (4.4) and (4.7),

$$
\Phi_{h}\left(n S_{j i} S^{j i}-S^{2}\right)+2 \Phi\left(n \nabla_{h} R_{j i} S^{j i}-\nabla_{h} R S\right)=0
$$

And, transvecting Φ^{h} to this equation, from (4.11), (4.6) and (5.6), we find that

$$
\begin{equation*}
\Phi_{h} \Phi^{h}\left(n S_{j i} S^{j i}-S^{2}\right)=0 \tag{5.7}
\end{equation*}
$$

Thus, making use of (5.5), we have $\Phi_{h} \Phi^{h} S_{j i} S^{j i}=0$ on V^{n}. And, from the assumption (iii), we find that $S_{j i}=0$ on V^{n}, that is, $R_{j i}=-n \rho G_{j i}$ on V^{n}. Consequently, from (3.9), we obtain

$$
\begin{equation*}
\int_{V^{n}}\left\{H_{1}^{2}-H_{2}\right\} \Theta d A=0 \tag{5.8}
\end{equation*}
$$

Also, we can see that $H_{1}^{2}-H_{2} \geq 0$, because

$$
\begin{equation*}
H_{1}^{2}-H_{2}=\frac{1}{n^{2}(n-1)} \sum_{b<a}\left(k_{b}-k_{a}\right)^{2} \tag{5.9}
\end{equation*}
$$

Thus, from (5.8) and the assumption (iii), we find that $H_{1}^{2}-H_{2}=0$, and consequently, because of (5.9), we conclude that $k_{1}=k_{2}=\cdots=k_{n}$ at each point of V^{n}. This means that every point of V^{n} is umbilic.

Remark 2. The first parts of Corollary 1.7 and Corollary 1.12 are special cases of Theorem 5.1. For, because of (4.6), we have $\Phi S=0$, from which, making use of Lemma 3.1, we can see that there exists a point P_{0} on V^{n} such that $S\left(P_{0}\right)=0$.

6. Some characterizations of a hypersurface to be isometric to a sphere

Now, making use of Theorem 5.1, we prove the following Theorem, which is a generalization of the second part of Corollary 1.7.

Theorem 6.1 Let R^{n+1} be an orientable conformally flat Riemannian manifold which admits a special concircular scalar field Φ, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $\quad H_{1}=$ const. $\neq 0$,
(ii) there exists a point P_{0} on V^{n} such that $S\left(P_{0}\right)=0$,
(iii) Θ has fixed sign on V^{n} and is not constant along V^{n}.

Then V^{n} is isometric to a sphere.
Proof. (After the same method as we did in [5]) By covariant differentiation of $\Theta\left(=C^{i} \Phi_{i}\right)$ along V^{n}, we have, from (2.3) and (3.1),

$$
\begin{equation*}
\nabla_{b} \Theta=-h_{b}{ }^{a} B_{a}^{i} \Phi_{i} \tag{6.1}
\end{equation*}
$$

Also, by virtue of Theorem 5.1, every point of V^{n} is umbilic, that is,

$$
\begin{equation*}
h_{b c}=H_{1} g_{b c} \tag{6.2}
\end{equation*}
$$

Transvecting $g^{c a}$ to this equation, we see that $h_{b}{ }^{a}=H_{1} \delta_{b}{ }^{a}$. So, substituting this equation into (6.1), we have

$$
\begin{equation*}
\nabla_{b} \Theta=-H_{1} B_{b}^{i} \Phi_{i} \tag{6.3}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\nabla_{b} \Theta+H_{1} \nabla_{b} \Phi=0 \tag{6.4}
\end{equation*}
$$

Accordingly, under the assumption that $H_{1}=$ const., we can see that

$$
\begin{equation*}
\Theta+H_{1} \Phi=C \quad(C=\text { const. }) \tag{6.5}
\end{equation*}
$$

on V^{n}.
Now, by covariant differentiation of (6.3) along V^{n}, we get

$$
\begin{equation*}
\nabla_{c} \nabla_{b} \Theta=-H_{1}\left(\rho \Phi g_{c b}+\Theta h_{c b}\right) \tag{6.6}
\end{equation*}
$$

by virtue of (2.2), (3.1) and (2.1). Thus, from (6.2) and (6.5), we find that

$$
\begin{equation*}
\nabla_{c} \nabla_{b} \Theta=-\left\{\left(H_{1}^{2}-\rho\right) \Theta+\rho C\right\} g_{c b} \tag{6.7}
\end{equation*}
$$

Here $H_{1}^{2}-\rho \neq 0$. Because, if $H_{1}^{2}-\rho=0$, then (6.7) becomes $\nabla_{c} \nabla_{b} \Theta=$ $-\rho C g_{c b}$, from which $\Delta \Theta=-n \rho C$, that is, $\Delta \Theta=$ const., where $\Delta \Theta=$ $g^{c b} \nabla_{c} \nabla_{b} \Theta$. However this is impossible, unless $\Theta=$ const. on $V^{n}([1],[9])$. Thus, $H_{1}^{2}-\rho$ being different from zero, (6.7) is rewritten as follows:

$$
\begin{equation*}
\nabla_{c} \nabla_{b}\left(\Theta+\frac{\rho C}{H_{1}^{2}-\rho}\right)=-\left(H_{1}^{2}-\rho\right)\left(\Theta+\frac{\rho C}{H_{1}^{2}-\rho}\right) g_{c b} \tag{6.8}
\end{equation*}
$$

from which we get

$$
\Delta\left(\Theta+\frac{\rho C}{H_{1}^{2}-\rho}\right)=-n\left(H_{1}^{2}-\rho\right)\left(\Theta+\frac{\rho C}{H_{1}^{2}-\rho}\right)
$$

and consequently, it follows that $H_{1}^{2}-\rho>0([11])$. Therefore, using Theorem 1.4, the equation (6.8) shows that the hypersurface V^{n} under consideration is isometric to a sphere ([3], [4]).

Next, under the new assumption that Φ is not constant along V^{n}, we prove the following Theorem in a similar way, which is a generalization of Corollary 1.12.

Theorem 6.2 Let R^{n+1} be an orientable conformally flat Riemannian manifold which admits a special concircular scalar field Φ, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) there exists a point P_{0} on V^{n} such that $S\left(P_{0}\right)=0$,
(iii) Θ has fixed sign on V^{n},
(iv) Φ is not constant along V^{n}.

Then V^{n} is isometric to a sphere.
Proof. \quad Since $\nabla_{b}\left(\Phi_{i} B_{a}{ }^{i}\right)=\nabla_{j} \Phi_{i} B_{b}{ }^{j} B_{a}{ }^{i}+\Phi_{i} \nabla_{b} B_{a}{ }^{i}$, we see, from (3.1), (2.2) and $\Theta=C^{i} \Phi_{i}$, that

$$
\begin{equation*}
\nabla_{b} \nabla_{a} \Phi=\rho \Phi g_{b a}+\Theta h_{b a} . \tag{6.9}
\end{equation*}
$$

Also, by virtue of Theorem 5.1, every point of V^{n} is umbilic, that is, $h_{b a}=$ $H_{1} g_{b a}$. Consequently, from (6.9), we have

$$
\nabla_{b} \nabla_{a} \Phi=\left(\rho \Phi+H_{1} \Theta\right) g_{b a} .
$$

So, substituting (6.5) into this equation, we find that

$$
\begin{equation*}
\nabla_{b} \nabla_{a} \Phi=\left\{-\left(H_{1}^{2}-\rho\right) \Phi+C H_{1}\right\} g_{b a} . \tag{6.10}
\end{equation*}
$$

Here, under the assumption of Theorem 6.2, that is, Φ is not constant along V^{n}, we can prove that $H_{1}^{2}-\rho \neq 0$, by an argument similar to that used in the proof of Theorem 6.1. Thus, (6.10) is rewritten as follows:

$$
\begin{equation*}
\nabla_{b} \nabla_{a}\left(\Phi-\frac{C H_{1}}{H_{1}^{2}-\rho}\right)=-\left(H_{1}^{2}-\rho\right)\left(\Phi-\frac{C H_{1}}{H_{1}^{2}-\rho}\right) g_{b a} \tag{6.11}
\end{equation*}
$$

from which we get

$$
\Delta\left(\Phi-\frac{C H_{1}}{H_{1}^{2}-\rho}\right)=-n\left(H_{1}^{2}-\rho\right)\left(\Phi-\frac{C H_{1}}{H_{1}^{2}-\rho}\right)
$$

and consequently, it follows that $H_{1}^{2}-\rho>0$. Therefore, using Theorem

1.4, the hypersurface V^{n} is isometric to a sphere $([12])$, by virtue of (6.11).

7. A closed hypersurface with $\boldsymbol{H}_{1}=$ const. in $\boldsymbol{R}^{\boldsymbol{n + 1}}$ admitting a special concircular scalar field Ψ

Finally, in R^{n+1}, we assume the existence of a non-constant scalar field Ψ which satisfies the partial differential equation defined by

$$
\begin{equation*}
\nabla_{j} \Psi_{i}=(\rho \Psi+\sigma) G_{j i} \quad(\rho=\text { const. } \neq 0, \sigma=\text { const. }) \tag{7.1}
\end{equation*}
$$

where $\Psi_{i}=\nabla_{i} \Psi$.
In this section, we shall show that, replacing Φ by the special concircular scalar field Ψ defined by (7.1), all of Theorems proved in the present and previous paper [5] similarly are valid.

If we put

$$
\begin{equation*}
\bar{\Phi}=\rho \Psi+\sigma \tag{7.2}
\end{equation*}
$$

then (7.1) becomes

$$
\begin{equation*}
\nabla_{j} \Psi_{i}=\bar{\Phi} G_{j i} \tag{7.3}
\end{equation*}
$$

By covariant differetiation of (7.2), we have

$$
\begin{equation*}
\bar{\Phi}_{i}=\rho \Psi_{i} \tag{7.4}
\end{equation*}
$$

where $\bar{\Phi}_{i}=\nabla_{i} \bar{\Phi}$. Moreover, by covariant differentiation, from (7.3), we find that

$$
\nabla_{j} \bar{\Phi}_{i}=\rho \bar{\Phi} G_{j i}
$$

that is, the scalar field $\bar{\Phi}$ satisfies the same partial differential equation as Φ. Also, transvecting C^{i} to (7.4), we have

$$
C^{i} \bar{\Phi}_{i}=\rho C^{i} \Psi_{i}
$$

on V^{n}, from which, if $C^{i} \Psi_{i}$ has fixed sign on V^{n} and is not constant along V^{n}, then the same holds good of $C^{i} \bar{\Phi}_{i}$. Thus, making use of Theorem 1.5, we get

Theorem 7.1 Let R^{n+1} be an orientable Riemannian manifold with
$\nabla_{k} R_{j i}=\nabla_{j} R_{k i}$ which admits a special concircular scalar field Ψ such that

$$
\nabla_{j} \Psi_{i}=(\rho \Psi+\sigma) G_{j i} \quad(\rho=\text { const. } \neq 0, \sigma=\text { const. }),
$$

and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) Ω has fixed sign on V^{n}, where $\Omega=C^{i} \Psi_{i}$.

Then every point of V^{n} is umbilic. If, moreover,
(iii) Ω is not constant along V^{n}, then V^{n} is isometric to a sphere.

And, from this Theorem, we have
Corollary 7.2 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_{k} R_{j i}=0$ which admits a special concircular scalar field Ψ, and $V^{n} a$ closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) Ω has fixed sign on V^{n}.

Then every point of V^{n} is umbilic. If, moreover, (iii) Ω is not constant along V^{n}, then V^{n} is isometric to a sphere.

Corollary 7.3 Let R^{n+1} be an orientable conformally flat Riemannian manifold with $R=$ const. which admits a special concircular scalar field Ψ, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) Ω has fixed sign on V^{n}.

Then every point of V^{n} is umbilic. If, moreover,
(iii) Ω is not constant along V^{n}, then V^{n} is isometric to a sphere.

These Theorem and Corollarys are a generalization of Theorem 1.5, Corollary 1.6 and Corollary 1.7 respectively.

Making use of Theorem 1.8 and Theorem 1.9 respectively, we have
Theorem 7.4 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_{k} R_{j i}+\nabla_{j} R_{i k}+\nabla_{i} R_{k j}=0$ which admits a special concircular scalar field Ψ, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) Ω has fixed sign on V^{n}.

Then every point of V^{n} is umbilic. If, moreover,
(iii) Ω is not constant along V^{n}, then V^{n} is isometric to a sphere.

Theorem 7.5 Let R^{n+1} be an orientable Riemannian manifold with
$R^{j i} R_{j i}=$ const. which admits a special concircular scalar field Ψ, and $V^{n} a$ closed orientable hypersurface in R^{n+1} such that
(i) $\quad H_{1}=$ const. $\neq 0$,
(ii) Ω has fixed sign on V^{n}.

Then every point of V^{n} is umbilic. If, moreover,
(iii) Ω is not constant along V^{n}, then V^{n} is isometric to a sphere.

And, moreover, making use of Theorem 5.1 and Theorem 6.1, we obtain
Theorem 7.6 Let R^{n+1} be an orientable conformally flat Riemannian manifold which admits a special concircular scalar field Ψ, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $\quad H_{1}=$ const. $\neq 0$,
(ii) there exists a point P_{0} on V^{n} such that $S\left(P_{0}\right)=0$,
(iii) Ω has fixed sign on V^{n}.

Then every point of V^{n} is umbilic. If, moreover,
(iv) Ω is not constant along V^{n}, then V^{n} is isometric to a sphere.

This Theorem is a generalization of Theorem 5.1 and 6.1 , and, moreover, a generalization of Corollary 7.3 too.

Moreover, if Ψ is not constant along V^{n}, then we can see easily that $\bar{\Phi}$ is not constant along V^{n}, by virtue of (7.2). Thus, making use of Theorem 1.10, we get

Theorem 7.7 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_{k} R_{j i}=\nabla_{j} R_{k i}$ which admits a special concircular scalar field Ψ, and $V^{n} a$ closed orientable hypersurface in R^{n+1} such that
(i) $\quad H_{1}=$ const. $\neq 0$,
(ii) Ω has fixed sign on V^{n},
(iii) Ψ is not constant along V^{n}.

Then V^{n} is isometric to a sphere.
And, from this Theorem, we have
Corollary 7.8 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_{k} R_{j i}=0$ which admits a special concircular scalar field Ψ, and $V^{n} a$ closed orientable hypersurface in R^{n+1} such that
(i) $\quad H_{1}=$ const. $\neq 0$,
(ii) Ω has fixed sign on V^{n},
(iii) Ψ is not constant along V^{n}.

Then V^{n} is isometric to a sphere.
Corollary 7.9 Let R^{n+1} be an orientable conformally flat Riemannian manifold with $R=$ const. which admits a special concircular scalar field Ψ, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) Ω has fixed sign on V^{n},
(iii) Ψ is not constant along V^{n}.

Then V^{n} is isometric to a sphere.
These Theorem and Corollarys are a generalization of Theorem 1.10, Corollary 1.11 and Corollary 1.12 respectively.

Moreover, making use of Theorem 1.13 and Theorem 1.14 respectively, we obtain

Theorem 7.10 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_{k} R_{j i}+\nabla_{j} R_{i k}+\nabla_{i} R_{k j}=0$ which admits a special concircular scalar field Ψ, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) Ω has fixed sign on V^{n},
(iii) Ψ is not constant along V^{n}.

Then V^{n} is isometric to a sphere.
Theorem 7.11 Let R^{n+1} be an orientable Riemannian manifold with $R^{j i} R_{j i}=$ const. which admits a special concircular scalar field Ψ, and $V^{n} a$ closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) Ω has fixed sign on V^{n},
(iii) Ψ is not constant along V^{n}.

Then V^{n} is isometric to a sphere.
Finally, making use of Theorem 6.2, we have
Theorem 7.12 Let R^{n+1} be an orientable conformally flat Riemannian manifold which admits a special concircular scalar field Ψ, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) $H_{1}=$ const. $\neq 0$,
(ii) there exists a point P_{0} on V^{n} such that $S\left(P_{0}\right)=0$,
(iii) Ω has fixed sign on V^{n},
(iv) Ψ is not constant along V^{n}.

Then V^{n} is isometric to a sphere.
This Theorem is a generalization of Theorem 6.2, and, moreover, a generalization of Corollary 7.9 too.

References

[1] Bochner S., Vector fields and Ricci curvature. Bull. Amer. Math. Soc. 52 (1946), 776-797.
[2] Katsurada Y., On a certain property of closed hypersurfaces in Einstein space. Comment. Math. Helv. 38 (1964), 165-171.
[3] Katsurada Y., Some characterizations of a submanifold which is isometric to a sphere. Jour. Fac. Sci. Hokkaido Univ. (Ser. I) 21 (1970), 85-96.
[4] Katsurada Y., Nagai T. and Kôjyô H., On submanifolds with constant mean curvature in a Riemannian manifold. Publ. study group of Geom. 9 (1975).
[5] Koyanagi T., On a certain property of closed hypersurfaces with constant mean curvature in a Riemannian manifold. Hokkaido Math. Jour. 16 (1987), 277-293.
[6] Obata M., Certain conditions for a Riemannian manifold to be isometric with a sphere. Jour. Math. Soc. Japan 14 (1962), 333-340.
[7] Schouten J.A., Ricci-Calculus. 2nd ed. Springer, Berlin (1954).
[8] Tashiro Y., Conformal transformations in complete Riemannian manifold. Publ. study group of Geom. 3 (1967).
[9] Yano K. and Bochner S., Curvature and Betti numbers. Princeton, Ann. Math. Studies 32 (1953).
[10] Yano K. and Nagano T., Einstein space admitting a one-parameter group of conformal transformations. Ann. Math. 69 (1959), 451-461.
[11] Yano K., Differential geometry on complex and almost complex space. Pergamon 49 (1965).
[12] Yano K., Note on hypersurfaces in a Riemannian manifold. Canadian Jour. Math. 19 (1967), 439-446.

