On a certain property of closed hypersurfaces with constant mean curvature in a Riemannian manifold, II

Tsunehira Koyanagi

(Received September 8, 1995)

Abstract. In this paper, we discuss some properties of a closed hypersurface whose first mean curvature is constant, in a Riemannian manifold admitting a special concircular scalar field.

Key words: hypersurface with constant mean curvature, special concircular scalar field, umbilic point, beging isometric to a sphere.

1. Introduction

Y. Katsurada [2] proved.

Theorem 1.1 (Katsurada) Let \mathbb{R}^{n+1} be an (n+1)-dimensional Einstein manifold which admits a proper conformal Killing vector field ξ^i , that is, a vector field generating a local one-parameter group of conformal transformations, and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

(i) its first mean curvature H_1 is constant,

(ii) the inner product $C^i \xi_i$ has fixed sign on V^n ,

where C^i and ξ_i denote the normal vector to V^n and the covariant components of the conformal Killing vector field ξ respectively. Then every point of V^n is umbilic.

To prove Theorem 1.1, we need integral formulas of Minkowski type for a hypersurface in a Riemannian manifold in which the conformal Killing vector field plays the same role as the position vector in a Euclidean space.

We can prove that if every point of a closed orientable hypersurface in a Euclidean space is umbilic, then the hypersurface is isometric to a sphere. However, in a Riemannian manifold, we can not expect the result of the same kind even if every point of a closed orientable hypersurface is umbilic. On this problem, she [3] also proved the following two Theorems:

¹⁹⁹¹ Mathematics Subject Classification : 53C40.

T. Koyanagi

Theorem 1.2 (Katsurada) Let ξ^i be a proper conformal Killing vector field such that $\nabla_j \xi_i + \nabla_i \xi_j = 2\varphi G_{ji}$ in an Einstein manifold \mathbb{R}^{n+1} and \mathbb{V}^n a closed orientable hypersurface such that

(i) $H_1 = const.$,

(ii) $C^i \nabla_i \varphi$ has fixed sign on V^n and is not constant along V^n ,

where G_{ji} and ∇_i denote the positive definite fundamental tensor of \mathbb{R}^{n+1} and the operator of covariant differentiation with respect to Christoffel symbols $\binom{k}{ii}$ formed with G_{ji} respectively. Then V^n is isometric to a sphere.

Theorem 1.3 (Katsurada) Let ξ^i be a proper conformal Killing vector field in an Einstein manifold \mathbb{R}^{n+1} and \mathbb{V}^n a closed orientable hypersurface such that

(i) $H_1 = const.$,

(ii) $C^i \xi_i$ has fixed sign on V^n , (iii) φ is not constant along V^n .

Then V^n is isometric to a sphere.

To prove that the hypersurface under consideration is isometric to a sphere, she used the following Theorem due to M. Obata [6].

Theorem 1.4 (Obata) Let V^n $(n \ge 2)$ be a complete Riemannian manifold which admits a non-null function ψ such that $\nabla_b \nabla_a \psi = -\kappa^2 \psi g_{ba}$ ($\kappa =$ const.), where g_{ba} and ∇_a denote the metric tensor of V^n and the operator of covariant differentiation with respect to Christoffel symbols $\{{}^c_{ba}\}$ formed with g_{ba} respectively. Then V^n is isometric to a sphere of radius $1/\kappa$.

Let Ψ be a non-constant scalar field in \mathbb{R}^{n+1} such that

$$\nabla_{j}\Psi_{i} = (\rho\Psi + \sigma)G_{ji} \quad (\rho = \text{const.} \neq 0, \sigma = \text{const.}), \tag{1.1}$$

where $\Psi_i = \nabla_i \Psi$. Here and in the following, Ψ is called a *special concircular* scalar field [8]. It is known that if an Einstein manifold R^{n+1} admits a proper conformal Killing vector field ξ^i such that $\nabla_j \xi_i + \nabla_i \xi_j = 2\varphi G_{ji}$, then the non-constant scalar field φ satisfies the partial differential equation given by

$$\nabla_j \nabla_i \varphi = \lambda \varphi G_{ji} \quad (\lambda = -R/n(n+1)) \quad ([10], [12]),$$

where R denotes the scalar curvature of R^{n+1} . So, in a previous paper [5], we assumed the existence of a non-constant scalar field Φ in R^{n+1} , which satisfies the partial differential equation defined by

$$\nabla_j \Phi_i = \rho \Phi G_{ji} \quad (\rho = \text{const.} \neq 0), \tag{1.2}$$

where $\Phi_i = \nabla_i \Phi$: (1.2) is a special case of (1.1). And, in a more general Riemannian manifold R^{n+1} admitting this special conformal Killing vector field Φ^i (= $G^{ji}\Phi_j$), the present author proved the following analogous results in [5]:

Theorem 1.5 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_k R_{ji} = \nabla_j R_{ki}$ which admits a special concircular scalar field Φ such that

 $\nabla_{i}\Phi_{i} = \rho\Phi G_{ii} \quad (\rho = const. \neq 0),$

and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

(i) $H_1 = const. \neq 0$,

(ii) Θ has fixed sign on V^n , where $\Theta = C^i \Phi_i$.

Then every point of V^n is umbilic. If, moreover,

(iii) Θ is not constant along V^n , then V^n is isometric to a sphere.

Corollary 1.6 Let \mathbb{R}^{n+1} be an orientable Riemannian manifold with $\nabla_k \mathbb{R}_{ji} = 0$ which admits a special concircular scalar field Φ , and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

(i)
$$H_1 = const. \neq 0$$

(ii) Θ has fixed sign on V^n .

Then every point of V^n is umbilic. If, moreover,

(iii) Θ is not constant along V^n , then V^n is isometric to a sphere.

Corollary 1.7 Let R^{n+1} be an orientable conformally flat Riemannian manifold with R = const. which admits a special concircular scalar field Φ , and V^n a closed orientable hypersurface in R^{n+1} such that

- (i) $H_1 = const. \neq 0$,
- (ii) Θ has fixed sign on V^n .

Then every point of V^n is umbilic. If, moreover,

(iii) Θ is not constant along V^n , then V^n is isometric to a sphere.

Theorem 1.8 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_k R_{ji} + \nabla_j R_{ik} + \nabla_i R_{kj} = 0$ which admits a special concircular scalar field Φ , and V^n a closed orientable hypersurface in R^{n+1} such that

(i) $H_1 = const. \neq 0$,

(ii) Θ has fixed sign on V^n .

Then every point of V^n is umbilic. If, moreover,

(iii) Θ is not constant along V^n , then V^n is isometric to a sphere.

Theorem 1.9 Let R^{n+1} be an orientable Riemannian manifold with $R^{ji}R_{ji} = const.$ which admits a special concircular scalar field Φ , and V^n a closed orientable hypersurface in R^{n+1} such that

- (i) $H_1 = const. \neq 0$,
- (ii) Θ has fixed sign on V^n .
- Then every point of V^n is umbilic. If, moreover,

(iii) Θ is not constant along V^n , then V^n is isometric to a sphere.

The Theorem 1.9 is a generalization of Corollary 1.6.

Moreover, in [5], under the new assumption of Φ , that is, Φ is not constant along V^n , the present author proved the following analogous results in the same way:

Theorem 1.10 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_k R_{ji} = \nabla_j R_{ki}$ which admits a special concircular scalar field Φ , and V^n a closed orientable hypersurface in R^{n+1} such that

(i) $H_1 = const. \neq 0$,

(ii) Θ has fixed sign on V^n ,

(iii) Φ is not constant along V^n .

Then V^n is isometric to a sphere.

Corollary 1.11 Let \mathbb{R}^{n+1} be an orientable Riemannian manifold with $\nabla_k \mathbb{R}_{ji} = 0$ which admits a special concircular scalar field Φ , and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

(i) $H_1 = const. \neq 0$,

(ii) Θ has fixed sign on V^n ,

(iii) Φ is not constant along V^n .

Then V^n is isometric to a sphere.

Corollary 1.12 Let \mathbb{R}^{n+1} be an orientable conformally flat Riemannian manifold with $\mathbb{R} = \text{const.}$ which admits a special concircular scalar field Φ , and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

(i)
$$H_1 = const. \neq 0$$
,

- (ii) Θ has fixed sign on V^n ,
- (iii) Φ is not constant along V^n .

Then V^n is isometric to a sphere.

Theorem 1.13 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_k R_{ji} + \nabla_j R_{ik} + \nabla_i R_{kj} = 0$ which admits a special concircular scalar field Φ , and V^n a closed orientable hypersurface in R^{n+1} such that

(i) $H_1 = const. \neq 0$,

- (ii) Θ has fixed sign on V^n ,
- (iii) Φ is not constant along V^n .

Then V^n is isometric to a sphere.

Theorem 1.14 Let \mathbb{R}^{n+1} be an orientable Riemannian manifold with $\mathbb{R}^{ji}\mathbb{R}_{ji} = \text{const.}$ which admits a special concircular scalar field Φ , and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

- (i) $H_1 = const. \neq 0$,
- (ii) Θ has fixed sign on V^n ,

(iii) Φ is not constant along V^n .

Then V^n is isometric to a sphere.

The Theorem 1.14 also is a generalization of Corollary 1.11.

The purpose of the present paper is to generalize these Theorems and Corollarys proved in the previous paper [5]. § 2 is devoted to give notations and general formulas in the theory of hypersurfaces in a general Riemannian manifold R^{n+1} . In § 3 we derive some integral formulas which are valid for a closed orientable hypersurface V^n in R^{n+1} admitting a special concircular scalar field Φ given by (1.2). In § 4, we discuss some relations of R^{n+1} admitting the scalar field Φ . In § 5 we give a generalization of the first part of Corollary 1.7, and in § 6, generalizations of Corollary 1.7 and Corollary 1.12 respectively. In the last section 7, moreover, we try to generalize all of Theorems and Corollarys proved in the previous paper [5], § 5 and § 6, in R^{n+1} admitting a more general special concircular scalar field Ψ given by (1.1).

The author wishes to express his sincere thanks to Dr. T. Nagai and Dr. H. Kôjyô for their valuable suggestions.

2. Notation and general formulas

Let R^{n+1} be an (n + 1)-dimensional Riemannian manifold with local coordinates x^i , and G_{ji} the positive definite fundamental tensor of R^{n+1} . We now consider a hypersurface V^n imbedded in R^{n+1} and locally given by

$$x^{i} = x^{i}(u^{a})$$
 $i = 1, 2, \cdots, n+1; a = 1, 2, \cdots, n,$

T. Koyanagi

where u^a are local coordinates of V^n . Throughout the present paper, the indices i, j, k, \cdots run from 1 to n + 1 and the indices a, b, c, \cdots from 1 to n.

If we put

$$B_a^i = \partial x^i / \partial u^a,$$

then B_a^i $(a = 1, 2, \dots, n)$ are *n* linearly independent vectors tangent to V^n and the first fundamental tensor g_{ba} of V^n is given by

$$g_{ba} = G_{ji} B_b^j B_a^i. aga{2.1}$$

We assume that n vectors $B_1^i, B_2^i, \dots, B_n^i$ give the positive orientation on V^n , and we denote by C^i the unit normal vector to V^n such that

$$B_1^i, B_2^i, \cdots, B_n^i, C^i$$

give the positive orientation in \mathbb{R}^{n+1} .

Denoting by ∇_a the van der Waerden-Bortolotti covariant differentiation along V^n [7], we can write the equations of Gauss and Weingarten in the form

$$\nabla_b B^i_a = h_{ba} C^i, \tag{2.2}$$

$$\nabla_b C^i = -h_b{}^a B^i_a \tag{2.3}$$

respectively, where h_{ba} is the second fundamental tensor of V^n and $h_b{}^a = h_{bc}g^{ca}$. Also, the equations of Codazzi are written as follows:

$$\nabla_c h_{ba} - \nabla_b h_{ca} = R_{kjih} B^k_c B^j_b B^i_a C^h, \qquad (2.4)$$

where R_{kjih} is the curvature tensor of R^{n+1} . Transvecting g^{ba} to (2.4) and making use of $g^{ba}B^j_bB^i_a = G^{ji} - C^jC^i$, we find that

$$\nabla_c h_b{}^b - \nabla_b h_c{}^b = R_{kj} B_c^k C^j, \qquad (2.5)$$

where $h_b{}^b = h_{ba}g^{ba}$ and $R_{kh} = R_{kjih}G^{ji}$.

Now, if we denote by k_1, k_2, \dots, k_n the principal curvatures of V^n , that is, the roots of the characteristic equation

$$det(h_{ba} - kg_{ba}) = 0,$$

then the first mean cuvature H_1 and the second mean curvature H_2 of V^n

are given by

$$nH_1 = \sum_c k_c = h_a^a \tag{2.6}$$

and

$$\binom{n}{2}H_2 = \sum_{d < c} k_d k_c = \frac{1}{2} \left\{ (h_b{}^b)^2 - h_b{}^a h_a{}^b \right\}$$
(2.7)

respectively.

3. Integral formulas in \mathbb{R}^{n+1} admitting a special concircular scalar field Φ

As mentioned in § 1, we assume the existence of a non-constant scalar function Φ which satisfies the partial differential equation defined by

$$\nabla_j \Phi_i = \rho \Phi G_{ji} \quad (\rho = \text{const.} \neq 0), \tag{3.1}$$

where $\Phi_i = \nabla_i \Phi$.

In the previous paper [5], we gave

Lemma 3.1 Let \mathbb{R}^{n+1} be a Riemannian manifold which admits the special concircular scalar field Φ . If, on a hypersurface V^n in \mathbb{R}^{n+1} , $H_1\Theta$ is not identically zero, then Φ is not identically zero on V^n , where $\Theta = C^i \Phi_i$.

Now, on the hypersurface V^n , we can put

$$\Phi^j = B^j_b \phi^b + \Theta C^j,$$

where $\Phi^{j} = \Phi_{i}G^{ji}$. Transvecting $G_{ji}B_{a}^{i}$ to this equation and making use of (2.1), we get

$$\phi_a = B_a^i \Phi_i, \tag{3.2}$$

from which, by covariant differentiation along V^n and by virtue of (2.2), (3.1) and (2.1), we obtain

$$\nabla_b \phi_a = \Theta h_{ba} + \rho \Phi g_{ba}.$$

And, transvecting g^{ba} to this equation and making use of (2.6), we get

$$\nabla_b \phi^b = n(H_1 \Theta + \rho \Phi), \tag{3.3}$$

where $\nabla_b \phi^b = \nabla_b \phi_a g^{ba}$.

We now put

 $\omega_b = h_b{}^a B_a^i \Phi_i,$

from which, by covariant differentiation along V^n , we obtain, by virtue of (2.2), (3.1) and (2.1),

$$\nabla_c \omega_b = \nabla_c h_b{}^a B^i_a \Phi_i + h_b{}^a h_{ca} \Theta + \rho \Phi h_{bc}.$$

And, transvecting g^{bc} to this equation, we get

$$\nabla_c \omega^c = \nabla_c h_a{}^c \phi^a + h_c{}^a h_a{}^c \Theta + \rho \Phi h_c{}^c, \qquad (3.4)$$

by virtue of (3.2). On the other hand, we have, from (2.6) and (2.7),

$$h_c^{\ c} = nH_1, \quad h_c^{\ a}h_a^{\ c} = n^2H_1^2 - n(n-1)H_2,$$

and consequently, we have, from (3.4),

$$\nabla_c \omega^c = \nabla_c h_a{}^c \phi^a + n \Big\{ n H_1^2 - (n-1) H_2 \Big\} \Theta + n \rho \Phi H_1.$$
(3.5)

Next, we assume that the hypersurface V^n under consideration is closed, and apply Green's formula [9] to (3.3) and (3.5). Then we obtain

$$\int_{V^n} H_1 \Theta dA + \int_{V^n} \rho \Phi dA = 0 \tag{3.6}$$

and

$$\frac{1}{n} \int_{V^n} \nabla_c h_a{}^c \phi^a dA + \int_{V^n} \left\{ nH_1^2 - (n-1)H_2 \right\} \Theta dA + \int_{V^n} \rho \Phi H_1 dA = 0$$
(3.7)

respectively [2], where dA denotes the area element of V^n .

If we assume, moreover, that the first mean curvature of V^n is non zero constant, that is,

$$H_1 = \text{const.} (\neq 0),$$

then we obtain, from (2.5),

$$\nabla_c h_a{}^c = -R_{ji}B^j_aC^i,$$

and consequently, we have, from (3.7),

$$-\frac{1}{n}\int_{V^{n}}R_{ji}B_{a}^{j}\phi^{a}C^{i}dA + \int_{V^{n}}\left\{nH_{1}^{2}-(n-1)H_{2}\right\}\Theta dA$$

+
$$H_1 \int_{V^n} \rho \Phi dA = 0.$$
 (3.8)

Eliminating $\int_{V^n} \rho \Phi dA$ from (3.6) and (3.8), we find that $-\frac{1}{n} \int_{V^n} R_{ji} B^j_a \phi^a C^i dA + (n-1) \int_{V^n} \left\{ H_1^2 - H_2 \right\} \Theta dA = 0.$ (3.9)

4. Properties of a Riemannian manifold admitting the special concircular scalar field Φ

Let \mathbb{R}^{n+1} be a Riemannian manifold which admits a special concircular scalar field Φ defined by (3.1). Substituting (3.1) into the Ricci identity

$$\nabla_k \nabla_j \Phi_i - \nabla_j \nabla_k \Phi_i = -R_{kji}{}^l \Phi_l,$$

we find that

$$R_{kji}{}^l\Phi_l = \rho(\Phi_j G_{ki} - \Phi_k G_{ji}), \qquad (4.1)$$

from which, by covariant differentiation, we obtain

$$\nabla_h R_{kji}{}^l \Phi_l = -\rho \Phi \Big\{ R_{kjih} - \rho (G_{ki}G_{jh} - G_{kh}G_{ji}) \Big\}.$$

$$(4.2)$$

So, transvecting G^{ji} to this equation, we obtain

$$\nabla_h R_{kl} \Phi^l = -\rho \Phi(R_{kh} + n\rho G_{kh}), \qquad (4.3)$$

and if we put

$$S_{kh} = R_{kh} + n\rho G_{kh}, \tag{4.4}$$

then the tensor S_{kh} is symmetric in k and h, and, consequently, (4.3) is rewritten as follows:

$$\nabla_h R_{kl} \Phi^l = -\rho \Phi S_{hk}. \tag{4.5}$$

Moreover, transvecting G^{hk} to this equation and making use of $\nabla_h R^h_{\ l} = (1/2)\nabla_l R$, we get

$$\nabla_l R \Phi^l = -2\rho \Phi S,\tag{4.6}$$

where $S = S_{hk}G^{hk}$. Also, transvecting G^{hk} to (4.4), we obtain

$$S = R + n(n+1)\rho.$$
 (4.7)

Next, transvecting G^{ji} to (4.1), we get

$$R_{kl}\Phi^l + n\rho\Phi_k = 0.$$

Thus, from (4.4), we have

$$S_{hk}\Phi^k = 0. (4.8)$$

Now, from $R_{kjil} = R_{lijk}$, the left-hand side of (4.2) is equal to $\nabla_h R_{lijk} \Phi^l$. Thus, transvecting G^{hk} to (4.2), we get, from (4.4),

$$\nabla_h R_{lij}{}^h \Phi^l = -\rho \Phi S_{ij}. \tag{4.9}$$

On the other hand, transvecting G^{hk} to the Bianchi's identity: $\nabla_h R_{lijk} + \nabla_l R_{ihjk} + \nabla_i R_{hljk} = 0$, we find that

$$\nabla_h R_{lij}{}^h = \nabla_l R_{ij} - \nabla_i R_{lj}, \qquad (4.10)$$

and consequently, transvecting Φ^l to this equation, we get, from (4.5) and (4.9),

$$\nabla_l R_{ij} \Phi^l = -2\rho \Phi S_{ij}. \tag{4.11}$$

5. A closed hypersurface with $H_1 = \text{const.}$

We shall prove the following Theorem:

Theorem 5.1 Let \mathbb{R}^{n+1} be an orientable conformally flat Riemannian manifold which admits a special concircular scalar field Φ , and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

- (i) $H_1 = const. \neq 0$,
- (ii) there exists a point P_0 on V^n such that $S(P_0) = 0$,
- (iii) Θ has fixed sign on V^n .

Then every point of V^n is umbilic.

Proof. In a conformally flat Riemannian manifold \mathbb{R}^{n+1} ,

$$R_{kji}{}^{h} = -\frac{1}{n-1} (R_{ki}\delta_{j}{}^{h} - R_{ji}\delta_{k}{}^{h} + G_{ki}R_{j}{}^{h} - G_{ji}R_{k}{}^{h}) + \frac{R}{n(n-1)} (G_{ki}\delta_{j}{}^{h} - G_{ji}\delta_{k}{}^{h}).$$

By covariant differentiation, we have

$$\nabla_l R_{kji}{}^h = -\frac{1}{n-1} (\nabla_l R_{ki} \delta_j{}^h - \nabla_l R_{ji} \delta_k{}^h + G_{ki} \nabla_l R_j{}^h - G_{ji} \nabla_l R_k{}^h) + \frac{\nabla_l R}{n(n-1)} (G_{ki} \delta_j{}^h - G_{ji} \delta_k{}^h),$$

from which, replacing l by h and summing for h, we have

$$\nabla_h R_{kji}{}^h = -\frac{1}{n-1} (\nabla_j R_{ki} - \nabla_k R_{ji} + G_{ki} \nabla_h R_j{}^h - G_{ji} \nabla_h R_k{}^h) + \frac{1}{n(n-1)} (G_{ki} \nabla_j R - G_{ji} \nabla_k R).$$

And, making use of (4.10) and $\nabla_h R_j{}^h = (1/2) \nabla_j R$, we find that

$$\nabla_j R_{ki} - \nabla_k R_{ji} - \frac{1}{2n} (G_{ki} \nabla_j R - G_{ji} \nabla_k R) = 0.$$
(5.1)

Remark 1. In case n = 2, a conformally flat Riemannian manifold is defined by (5.1).

Now, transvecting $2n\Phi^k$ to (5.1) and making use of (4.5), (4.11) and (4.6), we get

$$2n\rho\Phi S_{ji} - (\nabla_j R\Phi_i + 2\rho\Phi SG_{ji}) = 0.$$
(5.2)

Moreover, transvecting Φ^i to this equation and making use of (4.8), we have

$$\nabla_j R \Phi_i \Phi^i + 2\rho \Phi S \Phi_j = 0. \tag{5.3}$$

And consequently, making use of (3.1) and (4.7), (5.3) is rewritten as follows:

$$\nabla_j (S\Phi_i \Phi^i) = 0, \tag{5.4}$$

from which, by the assumptions that there exists a point P_0 on V^n such that $S(P_0) = 0$, and the hypersurface V^n is closed, we find that

$$S\Phi_i\Phi^i = 0 \tag{5.5}$$

on V^n .

On the other hand, transvecting S^{ji} to (5.2) and making use of (4.8), we obtain

$$\Phi(nS_{ji}S^{ji} - S^2) = 0. (5.6)$$

T. Koyanagi

By covariant differentiation, we have, from (4.4) and (4.7),

$$\Phi_h(nS_{ji}S^{ji} - S^2) + 2\Phi(n\nabla_h R_{ji}S^{ji} - \nabla_h RS) = 0.$$

And, transvecting Φ^h to this equation, from (4.11), (4.6) and (5.6), we find that

$$\Phi_h \Phi^h (nS_{ji}S^{ji} - S^2) = 0.$$
(5.7)

Thus, making use of (5.5), we have $\Phi_h \Phi^h S_{ji} S^{ji} = 0$ on V^n . And, from the assumption (iii), we find that $S_{ji} = 0$ on V^n , that is, $R_{ji} = -n\rho G_{ji}$ on V^n . Consequently, from (3.9), we obtain

$$\int_{V^n} \left\{ H_1^2 - H_2 \right\} \Theta dA = 0.$$
(5.8)

Also, we can see that $H_1^2 - H_2 \ge 0$, because

$$H_1^2 - H_2 = \frac{1}{n^2(n-1)} \sum_{b < a} (k_b - k_a)^2.$$
(5.9)

Thus, from (5.8) and the assumption (iii), we find that $H_1^2 - H_2 = 0$, and consequently, because of (5.9), we conclude that $k_1 = k_2 = \cdots = k_n$ at each point of V^n . This means that every point of V^n is umbilic.

Remark 2. The first parts of Corollary 1.7 and Corollary 1.12 are special cases of Theorem 5.1. For, because of (4.6), we have $\Phi S = 0$, from which, making use of Lemma 3.1, we can see that there exists a point P_0 on V^n such that $S(P_0) = 0$.

6. Some characterizations of a hypersurface to be isometric to a sphere

Now, making use of Theorem 5.1, we prove the following Theorem, which is a generalization of the second part of Corollary 1.7.

Theorem 6.1 Let \mathbb{R}^{n+1} be an orientable conformally flat Riemannian manifold which admits a special concircular scalar field Φ , and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

(i)
$$H_1 = const. \neq 0$$
,

(ii) there exists a point P_0 on V^n such that $S(P_0) = 0$,

(iii) Θ has fixed sign on V^n and is not constant along V^n .

Then V^n is isometric to a sphere.

Proof. (After the same method as we did in [5]) By covariant differentiation of $\Theta(=C^i\Phi_i)$ along V^n , we have, from (2.3) and (3.1),

$$\nabla_b \Theta = -h_b{}^a B_a{}^i \Phi_i. \tag{6.1}$$

Also, by virtue of Theorem 5.1, every point of V^n is umbilic, that is,

$$h_{bc} = H_1 g_{bc}. \tag{6.2}$$

Transvecting g^{ca} to this equation, we see that $h_b{}^a = H_1 \delta_b{}^a$. So, substituting this equation into (6.1), we have

$$\nabla_b \Theta = -H_1 B_b{}^i \Phi_i, \tag{6.3}$$

that is,

$$\nabla_b \Theta + H_1 \nabla_b \Phi = 0. \tag{6.4}$$

Accordingly, under the assumption that $H_1 = \text{const.}$, we can see that

$$\Theta + H_1 \Phi = C \quad (C = \text{const.}) \tag{6.5}$$

on V^n .

Now, by covariant differentiation of (6.3) along V^n , we get

$$\nabla_c \nabla_b \Theta = -H_1(\rho \Phi g_{cb} + \Theta h_{cb}), \tag{6.6}$$

by virtue of (2.2), (3.1) and (2.1). Thus, from (6.2) and (6.5), we find that

$$\nabla_c \nabla_b \Theta = -\left\{ (H_1^2 - \rho)\Theta + \rho C \right\} g_{cb}.$$
(6.7)

Here $H_1^2 - \rho \neq 0$. Because, if $H_1^2 - \rho = 0$, then (6.7) becomes $\nabla_c \nabla_b \Theta = -\rho C g_{cb}$, from which $\Delta \Theta = -n\rho C$, that is, $\Delta \Theta = \text{const.}$, where $\Delta \Theta = g^{cb} \nabla_c \nabla_b \Theta$. However this is impossible, unless $\Theta = \text{const.}$ on V^n ([1], [9]). Thus, $H_1^2 - \rho$ being different from zero, (6.7) is rewritten as follows:

$$\nabla_c \nabla_b \left(\Theta + \frac{\rho C}{H_1^2 - \rho} \right) = -(H_1^2 - \rho) \left(\Theta + \frac{\rho C}{H_1^2 - \rho} \right) g_{cb}, \tag{6.8}$$

from which we get

$$\Delta\left(\Theta + \frac{\rho C}{H_1^2 - \rho}\right) = -n(H_1^2 - \rho)\left(\Theta + \frac{\rho C}{H_1^2 - \rho}\right),$$

and consequently, it follows that $H_1^2 - \rho > 0$ ([11]). Therefore, using Theorem 1.4, the equation (6.8) shows that the hypersurface V^n under consideration is isometric to a sphere ([3], [4]).

Next, under the new assumption that Φ is not constant along V^n , we prove the following Theorem in a similar way, which is a generalization of Corollary 1.12.

Theorem 6.2 Let \mathbb{R}^{n+1} be an orientable conformally flat Riemannian manifold which admits a special concircular scalar field Φ , and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

(i)
$$H_1 = const. \neq 0$$
,

(ii) there exists a point P_0 on V^n such that $S(P_0) = 0$,

- (iii) Θ has fixed sign on V^n ,
- (iv) Φ is not constant along V^n .

Then V^n is isometric to a sphere.

Proof. Since $\nabla_b(\Phi_i B_a{}^i) = \nabla_j \Phi_i B_b{}^j B_a{}^i + \Phi_i \nabla_b B_a{}^i$, we see, from (3.1), (2.2) and $\Theta = C^i \Phi_i$, that

$$\nabla_b \nabla_a \Phi = \rho \Phi g_{ba} + \Theta h_{ba}. \tag{6.9}$$

Also, by virtue of Theorem 5.1, every point of V^n is umbilic, that is, $h_{ba} = H_1 g_{ba}$. Consequently, from (6.9), we have

 $\nabla_b \nabla_a \Phi = (\rho \Phi + H_1 \Theta) g_{ba}.$

So, substituting (6.5) into this equation, we find that

$$\nabla_b \nabla_a \Phi = \left\{ -(H_1^2 - \rho) \Phi + C H_1 \right\} g_{ba}.$$
 (6.10)

Here, under the assumption of Theorem 6.2, that is, Φ is not constant along V^n , we can prove that $H_1^2 - \rho \neq 0$, by an argument similar to that used in the proof of Theorem 6.1. Thus, (6.10) is rewritten as follows:

$$\nabla_b \nabla_a \left(\Phi - \frac{CH_1}{H_1^2 - \rho} \right) = -(H_1^2 - \rho) \left(\Phi - \frac{CH_1}{H_1^2 - \rho} \right) g_{ba}, \tag{6.11}$$

from which we get

$$\Delta \left(\Phi - \frac{CH_1}{H_1^2 - \rho} \right) = -n(H_1^2 - \rho) \left(\Phi - \frac{CH_1}{H_1^2 - \rho} \right),$$

and consequently, it follows that $H_1^2 - \rho > 0$. Therefore, using Theorem

1.4, the hypersurface V^n is isometric to a sphere ([12]), by virtue of (6.11).

7. A closed hypersurface with $H_1 = \text{const.}$ in \mathbb{R}^{n+1} admitting a special concircular scalar field Ψ

Finally, in \mathbb{R}^{n+1} , we assume the existence of a non-constant scalar field Ψ which satisfies the partial differential equation defined by

$$\nabla_{j}\Psi_{i} = (\rho\Psi + \sigma)G_{ji} \quad (\rho = \text{const.} \neq 0, \sigma = \text{const.}), \tag{7.1}$$

where $\Psi_i = \nabla_i \Psi$.

In this section, we shall show that, replacing Φ by the special concircular scalar field Ψ defined by (7.1), all of Theorems proved in the present and previous paper [5] similarly are valid.

If we put

$$\overline{\Phi} = \rho \Psi + \sigma, \tag{7.2}$$

then (7.1) becomes

$$\nabla_j \Psi_i = \overline{\Phi} G_{ji}. \tag{7.3}$$

By covariant differentiation of (7.2), we have

$$\overline{\Phi}_i = \rho \Psi_i, \tag{7.4}$$

where $\overline{\Phi}_i = \nabla_i \overline{\Phi}$. Moreover, by covariant differentiation, from (7.3), we find that

$$\nabla_j \overline{\Phi}_i = \rho \overline{\Phi} G_{ji},$$

that is, the scalar field $\overline{\Phi}$ satisfies the same partial differential equation as Φ . Also, transvecting C^i to (7.4), we have

$$C^i \overline{\Phi}_i = \rho C^i \Psi_i$$

on V^n , from which, if $C^i \Psi_i$ has fixed sign on V^n and is not constant along V^n , then the same holds good of $C^i \overline{\Phi}_i$. Thus, making use of Theorem 1.5, we get

Theorem 7.1 Let \mathbb{R}^{n+1} be an orientable Riemannian manifold with

 $\nabla_k R_{ji} = \nabla_j R_{ki}$ which admits a special concircular scalar field Ψ such that

$$abla_j \Psi_i = (\rho \Psi + \sigma) G_{ji} \quad (\rho = const. \neq 0, \sigma = const.),$$

and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

(i) $H_1 = const. \neq 0$,

(ii) Ω has fixed sign on V^n , where $\Omega = C^i \Psi_i$.

Then every point of V^n is umbilic. If, moreover,

(iii) Ω is not constant along V^n , then V^n is isometric to a sphere.

And, from this Theorem, we have

Corollary 7.2 Let \mathbb{R}^{n+1} be an orientable Riemannian manifold with $\nabla_k \mathbb{R}_{ji} = 0$ which admits a special concircular scalar field Ψ , and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

(i)
$$H_1 = const. \neq 0$$
,

(ii) Ω has fixed sign on V^n .

Then every point of V^n is umbilic. If, moreover,

(iii) Ω is not constant along V^n , then V^n is isometric to a sphere.

Corollary 7.3 Let \mathbb{R}^{n+1} be an orientable conformally flat Riemannian manifold with $\mathbb{R} = \text{const.}$ which admits a special concircular scalar field Ψ , and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

(i)
$$H_1 = const. \neq 0$$
,

(ii) Ω has fixed sign on V^n .

Then every point of V^n is umbilic. If, moreover,

(iii) Ω is not constant along V^n , then V^n is isometric to a sphere.

These Theorem and Corollarys are a generalization of Theorem 1.5, Corollary 1.6 and Corollary 1.7 respectively.

Making use of Theorem 1.8 and Theorem 1.9 respectively, we have

Theorem 7.4 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_k R_{ji} + \nabla_j R_{ik} + \nabla_i R_{kj} = 0$ which admits a special concircular scalar field Ψ , and V^n a closed orientable hypersurface in R^{n+1} such that

- (i) $H_1 = const. \neq 0$,
- (ii) Ω has fixed sign on V^n .

Then every point of V^n is umbilic. If, moreover,

(iii) Ω is not constant along V^n , then V^n is isometric to a sphere.

Theorem 7.5 Let \mathbb{R}^{n+1} be an orientable Riemannian manifold with

 $R^{ji}R_{ji} = const.$ which admits a special concircular scalar field Ψ , and V^n a closed orientable hypersurface in R^{n+1} such that

(i) $H_1 = const. \neq 0$,

(ii) Ω has fixed sign on V^n .

Then every point of V^n is umbilic. If, moreover,

(iii) Ω is not constant along V^n , then V^n is isometric to a sphere.

And, moreover, making use of Theorem 5.1 and Theorem 6.1, we obtain

Theorem 7.6 Let \mathbb{R}^{n+1} be an orientable conformally flat Riemannian manifold which admits a special concircular scalar field Ψ , and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

(i) $H_1 = const. \neq 0$,

- (ii) there exists a point P_0 on V^n such that $S(P_0) = 0$,
- (iii) Ω has fixed sign on V^n .

Then every point of V^n is umbilic. If, moreover,

(iv) Ω is not constant along V^n , then V^n is isometric to a sphere.

This Theorem is a generalization of Theorem 5.1 and 6.1, and, moreover, a generalization of Corollary 7.3 too.

Moreover, if Ψ is not constant along V^n , then we can see easily that Φ is not constant along V^n , by virtue of (7.2). Thus, making use of Theorem 1.10, we get

Theorem 7.7 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_k R_{ji} = \nabla_j R_{ki}$ which admits a special concircular scalar field Ψ , and V^n a closed orientable hypersurface in R^{n+1} such that

- (i) $H_1 = const. \neq 0$,
- (ii) Ω has fixed sign on V^n ,
- (iii) Ψ is not constant along V^n .

Then V^n is isometric to a sphere.

And, from this Theorem, we have

Corollary 7.8 Let \mathbb{R}^{n+1} be an orientable Riemannian manifold with $\nabla_k \mathbb{R}_{ji} = 0$ which admits a special concircular scalar field Ψ , and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

(i) $H_1 = const. \neq 0$,

- (ii) Ω has fixed sign on V^n ,
- (iii) Ψ is not constant along V^n .

Then V^n is isometric to a sphere.

Corollary 7.9 Let R^{n+1} be an orientable conformally flat Riemannian manifold with R = const. which admits a special concircular scalar field Ψ , and V^n a closed orientable hypersurface in R^{n+1} such that

- (i) $H_1 = const. \neq 0$,
- (ii) Ω has fixed sign on V^n ,
- (iii) Ψ is not constant along V^n .

Then V^n is isometric to a sphere.

These Theorem and Corollarys are a generalization of Theorem 1.10, Corollary 1.11 and Corollary 1.12 respectively.

Moreover, making use of Theorem 1.13 and Theorem 1.14 respectively, we obtain

Theorem 7.10 Let R^{n+1} be an orientable Riemannian manifold with $\nabla_k R_{ji} + \nabla_j R_{ik} + \nabla_i R_{kj} = 0$ which admits a special concircular scalar field Ψ , and V^n a closed orientable hypersurface in R^{n+1} such that

(i) $H_1 = const. \neq 0$,

(ii) Ω has fixed sign on V^n ,

(iii) Ψ is not constant along V^n .

Then V^n is isometric to a sphere.

Theorem 7.11 Let \mathbb{R}^{n+1} be an orientable Riemannian manifold with $\mathbb{R}^{ji}\mathbb{R}_{ji} = \text{const.}$ which admits a special concircular scalar field Ψ , and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

- (i) $H_1 = const. \neq 0$,
- (ii) Ω has fixed sign on V^n ,
- (iii) Ψ is not constant along V^n .

Then V^n is isometric to a sphere.

Finally, making use of Theorem 6.2, we have

Theorem 7.12 Let \mathbb{R}^{n+1} be an orientable conformally flat Riemannian manifold which admits a special concircular scalar field Ψ , and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

- (i) $H_1 = const. \neq 0$,
- (ii) there exists a point P_0 on V^n such that $S(P_0) = 0$,
- (iii) Ω has fixed sign on V^n ,
- (iv) Ψ is not constant along V^n .

Then V^n is isometric to a sphere.

This Theorem is a generalization of Theorem 6.2, and, moreover, a generalization of Corollary 7.9 too.

References

- [1] Bochner S., Vector fields and Ricci curvature. Bull. Amer. Math. Soc. 52 (1946), 776–797.
- [2] Katsurada Y., On a certain property of closed hypersurfaces in Einstein space. Comment. Math. Helv. 38 (1964), 165–171.
- [3] Katsurada Y., Some characterizations of a submanifold which is isometric to a sphere. Jour. Fac. Sci. Hokkaido Univ. (Ser. I) **21** (1970), 85–96.
- [4] Katsurada Y., Nagai T. and Kôjyô H., On submanifolds with constant mean curvature in a Riemannian manifold. Publ. study group of Geom. 9 (1975).
- [5] Koyanagi T., On a certain property of closed hypersurfaces with constant mean curvature in a Riemannian manifold. Hokkaido Math. Jour. 16 (1987), 277–293.
- [6] Obata M., Certain conditions for a Riemannian manifold to be isometric with a sphere. Jour. Math. Soc. Japan 14 (1962), 333-340.
- [7] Schouten J.A., *Ricci-Calculus*. 2nd ed. Springer, Berlin (1954).
- [8] Tashiro Y., Conformal transformations in complete Riemannian manifold. Publ. study group of Geom. **3** (1967).
- [9] Yano K. and Bochner S., Curvature and Betti numbers. Princeton, Ann. Math. Studies **32** (1953).
- [10] Yano K. and Nagano T., Einstein space admitting a one-parameter group of conformal transformations. Ann. Math. **69** (1959), 451–461.
- [11] Yano K., Differential geometry on complex and almost complex space. Pergamon **49** (1965).
- [12] Yano K., Note on hypersurfaces in a Riemannian manifold. Canadian Jour. Math. 19 (1967), 439–446.

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060, Japan