
Hokkaido Mathematical Joumal Vol. 25 (1996) p. 387-405

On a certain property of closed hypersurfaces
with constant mean curvature
in a Riemannian manifold, II
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Abstract. In this paper, we discuss some properties of a closed hypersurface whose first

mean curvature is constant, in a Riemannian manifold admitting a special concircular

scalar field.
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1. Introduction

Y, Katsurada [2] proved.

Theorem 1.1 (Katsurada) Let R^{n+1} be an (n+1) -dimensional Einstein

manifold which admits a proper conformal Killing vector fifield \xi^{i} , that is, a

vector fifield generating a local one-parameter group of conformal transfor-
mations, and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) its fifirst mean curvature H_{1} is constant,
(ii) the inner product C^{i}\xi_{i} has fifixed sign on V^{n} .

where C^{i} and \xi_{i} denote the normal vector to V^{n} and the covariant compO-

nents of the conformal Killing vector fifield \xi respectively. Then every point

of V^{n} is umbilic.

To prove Theorem 1.1, we need integral formulas of Minkowski type for
a hypersurface in a Riemannian manifold in which the conformal Killing
vector field plays the same role as the position vector in a Euclidean space.

We can prove that if every point of a closed orientable hypersurface in

a Euclidean space is umbilic, then the hypersurface is isometric to a sphere.
However, in a Riemannian manifold, we can not expect the result of the
same kind even if every point of a closed orientable hypersurface is umbilic.
On this problem, she [3] also proved the following two Theorems:
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Theorem 1.2 (Katsurada) Let \xi^{i} be a proper conformal Killing vector
fifield such that \nabla_{j}\xi_{i}+\nabla_{i}\xi_{j}=2\varphi G_{ji} in an Einstein manifold R^{n+1} and V^{n}

a closed orientable hypersurface such that
(i) H_{1}=const. ,
(ii) C^{i}\nabla_{i}\varphi has fifixed sign on V^{n} and is not constant along V^{n} ,
where G_{ji} and \nabla_{i} denote the positive defifinite fundamental tensor of R^{n+1}

and the operator of covariant differentiation with respect to Christoffel sym-
bols \{\begin{array}{l}kji\end{array}\} formed with G_{ji} respectively. Then V^{n} is isometric to a sphere.

Theorem 1.3 (Katsurada) Let \xi^{i} be a proper conformal Killing vector
fifield in an Einstein manifold R^{n+1} and V^{n} a closed orientable hypersurface
such that
(i) H_{1}=const. ,
(ii) C^{i}\xi_{i} has fifixed sign on V^{n} ,
(iii) \varphi is not constant along V^{n} .
Then V^{n} is isometric to a sphere.

To prove that the hypersurface under consideration is isometric to a
sphere, she used the following Theorem due to M. Obata [6].

Theorem 1.4 (Obata) Let V^{n}(n\geq 2) be a complete Riemannian man-
ifold which admits a non-null function \psi such that \nabla_{b}\nabla_{a}\psi=-\kappa^{2}\psi g_{ba}(\kappa=

const.), where g_{ba} and \nabla_{a} denote the metric tensor of V^{n} and the operator
of covariant differentiation with respect to Christoffel symbols \{\begin{array}{l}cba\end{array}\} formed
with g_{ba} respectively. Then V^{n} is isometric to a sphere of radius 1/\kappa .

Let \Psi be a non-constant scalar field in R^{n+1} such that

\nabla_{j}\Psi_{i}=(\rho\Psi+\sigma)G_{ji} (\rho=const. \neq 0, \sigma=const.) , (1.1)

where \Psi_{i}=\nabla_{i}\Psi . Here and in the following, \Psi is called a special concircular
scalar field [8]. It is known that if an Einstein manifold R^{n+1} admits a proper
conformal Killing vector field \xi^{i} such that \nabla_{j}\xi_{i}+\nabla_{i}\xi_{j}=2\varphi G_{ji} , then the
non-constant scalar field \varphi satisfies the partial differential equation given
by

\nabla_{j}\nabla_{i}\varphi=\lambda\varphi G_{ji} (\lambda=-R/n(n+1)) ([10], [12]),

where R denotes the scalar curvature of R^{n+1} . So, in a previous paper [5],
we assumed the existence of a non-constant scalar field \Phi in R^{n+1} , which
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satisfies the partial differential equation defined by

\nabla_{j}\Phi_{i}=\rho\Phi G_{ji} (\rho=const. \neq 0) , (1.2)

where \Phi_{i}=\nabla_{i}\Phi : (1.2) is a special case of (1.1). And, in a more general
Riemannian manifold R^{n+1} admitting this special conformal Killing vector
field \Phi^{i}(=G^{ji}\Phi_{j}) , the present author proved the following analogous results
in [5]:

Theorem 1.5 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}=\nabla_{j}R_{ki} which admits a special concircular scalar fifield \Phi such that

\nabla_{j}\Phi_{i}=\rho\Phi G_{ji} (\rho=const. \neq 0) ,

and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Theta has fifixed sign on V^{n} , where \Theta=C^{i}\Phi_{i} .
Then every point of V^{n} is umbilic. If, moreover,
(iii) \ominus is not constant along V^{n} , then V^{n} is isometric to a sphere.

Corollary 1.6 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}=0 which admits a special concircular scalar fifield \Phi , and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) O- has fifixed sign on V^{n} .
Then every point of V^{n} is umbilic. If, moreover,
(iii) \Theta is not constant along V^{n} , then V^{n} is isometric to a sphere.

Corollary 1.7 Let R^{n+1} be an orientable conformally flat Riemannian

manifold with R=const . which admits a special concircular scalar fifield \Phi ,
and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) O- has fifixed sign on V^{n} .
Then every point of V^{n} is umbilic. If, moreover,
(iii) O- is not constant along V^{n} , then V^{n} is isometric to a sphere.

Theorem 1.8 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}+\nabla_{j}R_{ik}+\nabla_{i}R_{kj}=0 which admits a special concircular scalar fifield
\Phi , and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Theta has fifixed sign on V^{n} .
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Then every point of V^{n} is umbilic. If, moreover,
(iii) \Theta is not constant along V^{n} , then V^{n} is isometric to a sphere.

Theorem 1.9 Let R^{n+1} be an orientable Riemannian manifold with
R^{ji}R_{ji}=const . which admits a special concircular scalar fifield \Phi , and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Theta has fifixed sign on V^{n} .
Then every point of V^{n} is umbilic. If, moreover,
(iii) \ominus is not constant along V^{n} , then V^{n} is isometric to a sphere.

The Theorem 1.9 is a generalization of Corollary 1.6.
Moreover, in [5], under the new assumption of \Phi , that is, \Phi is not

constant along V^{n} , the present author proved the following analogous results
in the same way:

Theorem 1.10 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}=\nabla_{j}R_{ki} which admits a special concircular scalar fifield \Phi , and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \ominus has fifixed sign on V^{n} ,
(iii) \Phi is not constant along V^{n} .
Then V^{n} is isometric to a sphere.

Corollary 1.11 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}=0 which admits a special concircular scalar fifield \Phi , and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Theta has fifixed sign on V^{n} .
(iii) \Phi is not constant along V^{n} .
Then V^{n} is isometric to a sphere.

Corollary 1.12 Let R^{n+1} be an orientable conformally flat Riemannian
manifold with R const, which admits a special concircular scalar fifield \Phi ,
and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \ominus has fifixed sign on V^{n} ,
(iii) \Phi is not constant along V^{n} .
Then V^{n} is isometric to a sphere.



Closed hypersurfaces with constant mean curvature, II 391

Theorem 1.13 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}+\nabla_{j}R_{ik}+\nabla_{i}R_{kj}=0 which admits a special concircular scalar fifield
\Phi , and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \ominus has fifixed sign on V^{n} ,
(iii) \Phi is not constant along V^{n} .
Then V^{n} is isometric to a sphere.

Theorem 1.14 Let R^{n+1} be an orientable Riemannian manifold with
R^{ji}R_{ji}=const . which admits a special concircular scalar fifield \Phi , and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \ominus has fifixed sign on V^{n} ,
(iii) \Phi is not constant along V^{n} .
Then V^{n} is isometric to a sphere.

The Theorem 1.14 also is a generalization of Corollary 1.11.
The purpose of the present paper is to generalize these Theorems and

Corollarys proved in the previous paper [5]. \S 2 is devoted to give notations
and general formulas in the theory of hypersurfaces in a general Riemannian
manifold R^{n+1} . In \S 3 we derive some integral formulas which are valid for
a closed orientable hypersurface V^{n} in R^{n+1} admitting a special concircular
scalar field \Phi given by (1.2). In \S 4, we discuss some relations of R^{n+1}

admitting the scalar field \Phi . In \S 5 we give a generalization of the first part
of Corollary 1.7, and in \S 6, generalizations of Corollary 1.7 and Corollary
1.12 respectively. In the last section 7, moreover, we try to generalize all of
Theorems and Corollarys proved in the previous paper [5], \S 5 and \S 6, in
R^{n+1} admitting a more general special concircular scalar field \Psi given by
(1.1).

The author wishes to express his sincere thanks to Dr. T. Nagai and
Dr. H. K\^ojy\^o for their valuable suggestions.

2. Notation and general formulas

Let R^{n+1} be an (n+1)-dimensional Riemannian manifold with local
coordinates x^{i} . and G_{ji} the positive definite fundamental tensor of R^{n+1} .
We now consider a hypersurface V^{n} imbedded in R^{n+1} and locally given by

x^{i}=x^{i}(u^{a}) i=1,2 , \cdots , n+1;a=1,2 , \cdots , n ,
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where u^{a} are local coordinates of V^{n} . Throughout the present paper, the
indices i , j , k , \cdot run from 1 to n+1 and the indices a , b , c , from 1 to n .

If we put

B_{a}^{i}=\partial x^{i}/\partial u^{a} ,

then B_{a}^{i} (a=1,2, \cdot , n) are n linearly independent vectors tangent to V^{n}

and the first fundamental tensor g_{ba} of V^{n} is given by

g_{ba}=G_{ji}B_{b}^{j}B_{a}^{i} . (2.1)

We assume that n vectors B_{1}^{i} , B_{2}^{i} , \cdots , B_{n}^{i} give the positive orientation on
V^{n} , and we denote by C^{i} the unit normal vector to V^{n} such that

B_{1}^{i} , B_{2}^{i} , \cdot , B_{n}^{i} , C^{i}

give the positive orientation in R^{n+1} .
Denoting by \nabla_{a} the van der Waerden-Bortolotti covariant differentia-

tion along V^{n}[7] , we can write the equations of Gauss and Weingarten in
the form

\nabla_{b}B_{a}^{i}=h_{ba}C^{i} , (2.2)

\nabla_{b}C^{i}=-h_{b}^{a}B_{a}^{i} (2.3)

respectively, where h_{ba} is the second fundamental tensor of V^{n} and h_{b}^{a}=

h_{b_{C}g}^{ca} . Also, the equations of Codazzi are written as follows:

\nabla_{c}h_{ba}-\nabla_{b}h_{ca}=R_{kjih}B_{c}^{k}B_{b}^{j}B_{a}^{i}C^{h} , (2.4)

where R_{kjih} is the curvature tensor of R^{n+1} . Transvecting g^{ba} to (2.4) and
making use of g^{ba}B_{b}^{j}B_{a}^{i}=G^{ji}-C^{j}C^{i} . we find that

\nabla_{c}h_{b}^{b}-\nabla_{b}h_{c}^{b}=R_{kj}B_{c}^{k}C^{j} . (2.5)

where h_{b}^{b}=h_{ba}gba and R_{kh}=R_{kjih}G^{ji} .
Now, if we denote by k_{1} , k_{2} , \cdots , k_{n} the principal curvatures of V^{n} , that

is, the roots of the characteristic equation

det ( h_{ba} –kgba)=0,

then the first mean cuvature H_{1} and the second mean curvature H_{2} of V^{n}
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are given by

nH_{1}= \sum_{c}k_{c}=h_{a}^{a}
(2.6)

and

(\begin{array}{l}n2\end{array})

H_{2}= \sum_{d<c}k_{d}k_{C}=\frac{1}{2}\{(h_{b}^{b})^{2}-h_{b}^{a}h_{a}^{b}\} (2.7)

respectively.

3. Integral formulas in R^{n+1} admitting a special concircular
scalar field \Phi

As mentioned in \S 1, we assume the existence of a non-constant scalar
function \Phi which satisfies the partial differential equation defined by

\nabla_{j}\Phi_{i}=\rho\Phi G_{ji} (\rho=const. \neq 0) , (3.1)

where \Phi_{i}=\nabla_{i}\Phi .
In the previous paper [5], we gave

Lemma 3.1 Let R^{n+1} be a Riemannian manifold which admits the special
concircular scalar fifield \Phi . If, on a hypersurface V^{n} in R^{n+1} , H_{1}\Theta is not
identically zero, then \Phi is not identically zero on V^{n} . where \Theta=C^{i}\Phi_{i} .

Now, on the hypersurface V^{n} , we can put

\Phi^{j}=B_{b}^{j}\phi^{b}+O-C^{j} ,

where \Phi^{j}=\Phi_{i}G^{ji} . Transvecting G_{ji}B_{a}^{i} to this equation and making use of
(2.1), we get

\phi_{a}=B_{a}^{i}\Phi_{i} , (3.2)

from which, by covariant differentiation along V^{n} and by virtue of (2.2),
(3.1) and (2.1), we obtain

\nabla_{b}\phi_{a}=O-h_{ba}+\rho\Phi g_{ba} .

And, transvecting g^{ba} to this equation and making use of (2.6), we get

\nabla_{b}\phi^{b}=n(H_{1}\ominus+\rho\Phi) , (3.3)

where \nabla_{b}\phi^{b}=\nabla_{b}\phi_{a}g^{ba} .
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We now put

\omega_{b}=h_{b}^{a}B_{a}^{i}\Phi_{i} ,

from which, by covariant differentiation along V^{n} , we obtain, by virtue of
(2.2), (3.1) and (2.1),

\nabla_{c}\omega_{b}=\nabla_{c}h_{b}^{a}B_{a}^{i}\Phi_{i}+h_{b}^{a}h_{ca}\Theta+\rho\Phi h_{bc} .

And, transvecting g^{bc} to this equation, we get

\nabla_{c}\omega^{c}=\nabla_{c}h_{a}^{c}\phi^{a}+h_{c}^{a}h_{a}^{c}\Theta+\rho\Phi h_{c}^{c} , (3.4)

by virtue of (3.2). On the other hand, we have, from (2.6) and (2.7),

h_{c}^{c}=nH_{1} , h_{c}^{a}h_{a}^{c}=n^{2}H_{1}^{2}-n(n-1)H_{2} ,

and consequently, we have, from (3.4),

\nabla_{c}\omega^{c}=\nabla_{c}h_{a}^{c}\phi^{a}+n\{nH_{1}^{2}-(n-1)H_{2}\}\Theta+n\rho\Phi H_{1} . (3.5)

Next, we assume that the hypersurface V^{n} under consideration is closed,
and apply Green’s formula [9] to (3.3) and (3.5). Then we obtain

\int_{V^{n}}H_{1}\Theta dA+\int_{V^{n}}\rho\Phi dA=0 (3.6)

and

\frac{1}{n}\int_{V^{n}}\nabla_{c}h_{a}^{c}\phi^{a}dA+\int_{V^{n}}\{nH_{1}^{2}-(n-1)H_{2}\}O-dA

+ \int_{V^{n}}\rho\Phi H_{1}dA=0 (3.7)

respectively [2], where dA denotes the area element of V^{n} .
If we assume, moreover, that the first mean curvature of V^{n} is non zero

constant, that is,

H_{1}=const . (\neq 0) ,

then we obtain, from (2.5),

\nabla_{c}h_{a}^{c}=-R_{ji}B_{a}^{j}C^{i} ,

and consequently, we have, from (3.7),

- \frac{1}{n}\int_{V^{n}}R_{ji}B_{a}^{j}\phi^{a}C^{i}dA+\int_{V^{n}}\{nH_{1}^{2}-(n-1)H_{2}\}\ominus dA
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+H_{1} \int_{V^{n}}\rho\Phi dA=0 . (3.8)

Eliminating \int_{V^{n}}\rho\Phi dA from (3.6) and (3.8), we find that

- \frac{1}{n}\int_{V^{n}}R_{ji}B_{a}^{j}\phi^{a}C^{i}dA+(n-1)\int_{V^{n}}\{H_{1}^{2}-H_{2}\}\ominus dA=0 . (3.9)

4. Properties of a Riemannian manifold admitting the special
concircular scalar field \Phi

Let R^{n+1} be a Riemannian manifold which admits a special concircular
scalar field \Phi defined by (3.1). Substituting (3.1) into the Ricci identity

\nabla_{kjjki}\nabla\Phi_{i}-\nabla\nabla\Phi=-R_{kji}^{l}\Phi_{l} ,

we find that

R_{kji}^{l}\Phi_{l}=\rho(\Phi jGki-\Phi kGji) , (4.1)

from which, by covariant differentiation, we obtain

\nabla_{h}R_{kji}^{l}\Phi_{l}=-\rho\Phi\{R_{kjih}-\rho(G_{kijhkhji}G-GG)\} . (4.2)

So, transvecting G^{ji} to this equation, we obtain

\nabla_{h}R_{kl}\Phi^{l}=-\rho\Phi(R_{kh}+n\rho G_{kh}) , (4.3)

and if we put

S_{kh}=R_{kh}+n\rho G_{kh} , (4.4)

then the tensor S_{kh} is symmetric in k and h , and, consequently, (4.3) is
rewritten as follows:

\nabla_{h}R_{kl}\Phi^{l}=-\rho\Phi S_{hk} . (4.5)

Moreover, transvecting G^{hk} to this equation and making use of \nabla_{h}R_{l}^{h}=

(1/2)\nabla_{l}R , we get

\nabla_{l}R\Phi^{l}=-2\rho\Phi S , (4.6)

where S=S_{hk}G^{hk} . Also, transvecting G^{hk} to (4.4), we obtain

S=R+n(n+1)\rho . (4.7)
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Next, transvecting G^{ji} to (4. 1), we get

R_{kl}\Phi^{l}+n\rho\Phi_{k}=0 .

Thus, from (4.4), we have

S_{hk}\Phi^{k}=0 . (4.8)

Now, from R_{kjil}=R_{lijk} , the left-hand side of (4.2) is equal to \nabla_{h}R_{lijk}\Phi^{l} .
Thus, transvecting G^{hk} to (4.2), we get, from (4.4),

\nabla_{h}R_{lij}^{h}\Phi^{l}=-\rho\Phi S_{ij} . (4.9)

On the other hand, transvecting G^{hk} to the Bianchi’s identity: \nabla_{h}R_{lijk}+

\nabla_{l}R_{ihjk}+\nabla_{i}R_{hljk}=0 , we find that

\nabla_{h}R_{lij}^{h}=\nabla_{l}R_{ij}-\nabla_{i}R_{lj} , (4.10)

and consequently, transvecting \Phi^{l} to this equation, we get, from (4.5) and
(4.9),

\nabla_{l}R_{ij}\Phi^{l}=-2\rho\Phi S_{ij} . (4.11)

5. A closed hypersurface with H_{1}=const .
We shall prove the following Theorem:

Theorem 5.1 Let R^{n+1} be an orientable conformally flat Riemannian
manifold which admits a special concircular scalar fifield \Phi , and V^{n} a closed
orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) there exists a point P_{0} on V^{n} such that S(P_{0})=0 ,
(iii) \ominus has fifixed sign on V^{n} .
Then every point of V^{n} is umbilic.

Proof. In a conformally flat Riemannian manifold R^{n+1} ,

R_{kji}^{h}=- \frac{1}{n-1}(Rki\delta^{h}j-Rji\delta^{h}k+GkiR^{h}j-GjiR^{h}k)

+ \frac{R}{n(n-1)}(G_{ki}\delta_{j}^{h}-G_{ji}\delta_{k}^{h}) .
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By covariant differentiation, we have

\nabla_{l}R_{kji}^{h}=-\frac{1}{n-1}(\nabla_{l}R_{ki}\delta_{j}^{h}-\nabla_{l}R_{ji}\delta_{k}^{h}+G_{ki}\nabla_{l}R_{j}^{h}-G_{ji}\nabla_{l}R_{k}^{h})

+ \frac{\nabla_{l}R}{n(n-1)}(G_{ki}\delta_{j}^{h}-G_{ji}\delta_{k}^{h}) ,

from which, replacing l by h and summing for h , we have

\nabla_{h}R_{kji}^{h}=-\frac{1}{n-1}(\nabla jRki-\nabla kRji+Gki\nabla hR^{h}j-Gji\nabla_{h}R_{k}^{h})

+ \frac{1}{n(n-1)}(G_{ki}\nabla_{j}R-G_{ji}\nabla_{k}R) .

And, making use of (4.10) and \nabla_{h}R_{j}^{h}=(1/2)\nabla_{j}R , we find that

\nabla_{j}R_{ki}-\nabla_{k}R_{ji}-\frac{1}{2n}(G_{ki}\nabla_{j}R-G_{ji}\nabla_{k}R)=0 . (5.1)

Remark 1. In case n=2 , a conformally flat Riemannian manifold is de-
fined by (5.1).

Now, transvecting 2n\Phi^{k} to (5.1) and making use of (4.5), (4.11) and
(4.6), we get

2n\rho\Phi S_{ji}-(\nabla_{j}R\Phi_{i}+2\rho\Phi SG_{ji})=0 . (5.2)

Moreover, transvecting \Phi^{i} to this equation and making use of (4.8), we have

\nabla_{j}R\Phi_{i}\Phi^{i}+2\rho\Phi S\Phi_{j}=0 . (5.3)

And consequently, making use of (3.1) and (4.7), (5.3) is rewritten as follows:

\nabla_{j}(S\Phi_{i}\Phi^{i})=0 , (5.4)

from which, by the assumptions that there exists a point P_{0} on V^{n} such
that S(P_{0})=0 , and the hypersurface V^{n} is closed, we find that

S\Phi_{i}\Phi^{i}=0 (5.5)

on V^{n} .
On the other hand, transvecting S^{ji} to (5.2) and making use of (4.8),

we obtain

\Phi(nS_{ji}S^{ji}-S^{2})=0 . (5.6)
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By covariant differentiation, we have, from (4.4) and (4.7),

\Phi_{h}(nS_{ji}S^{ji}-S^{2})+2\Phi(n\nabla_{h}R_{ji}S^{ji}-\nabla_{h}RS)=0 .

And, transvecting \Phi^{h} to this equation, from (4.11), (4.6) and (5.6), we find
that

\Phi_{h}\Phi^{h}(nS_{ji}S^{ji}-S^{2})=0 . (5.7)

Thus, making use of (5.5), we have \Phi_{h}\Phi^{h}S_{ji}S^{ji}=0 on V^{n} . And, from the
assumption (iii), we find that S_{ji}=0 on V^{n} . that is, R_{ji}=-n\rho G_{ji} on V^{n} .
Consequently, from (3.9), we obtain

\int_{V^{n}}\{H_{1}^{2}-H_{2}\}\ominus dA=0 . (5.8)

Also, we can see that H_{1}^{2}-H_{2}\geq 0 , because

H_{1}^{2}-H_{2}= \frac{1}{n^{2}(n-1)}\sum_{b<a}(k_{b}-k_{a})^{2} . (5.9)

Thus, from (5.8) and the assumption (iii), we find that H_{1}^{2}-H_{2}=0 , and
consequently, because of (5.9), we conclude that k_{1}=k_{2}= . =k_{n} at each
point of V^{n} . This means that every point of V^{n} is umbilic. \square

Remark 2. The first parts of Corollary 1.7 and Corollary 1.12 are special
cases of Theorem 5.1. For, because of (4.6), we have \Phi S=0 , from which,
making use of Lemma 3.1, we can see that there exists a point P_{0} on V^{n}

such that S(P_{0})=0 .

6. Some characterizations of a hypersurface to be isometric to a
sphere

Now, making use of Theorem 5.1, we prove the following Theorem,
which is a generalization of the second part of Corollary 1.7.

Theorem 6.1 Let R^{n+1} be an orientable conformally flat Riemannian
manifold which admits a special concircular scalar fifield \Phi , and V^{n} a closed
orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) there exists a point P_{0} on V^{n} such that S(P_{0})=0 ,
(iii) \ominus has fifixed sign on V^{n} and is not constant along V^{n} .
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Then V^{n} is isometric to a sphere.

Proof. (After the same method as we did in [5]) By covariant differen-
tiation of\ominus(=C^{i}\Phi_{i}) along V^{n} , we have, from (2.3) and (3.1),

\nabla_{b}\Theta=-h_{b}^{a}B_{a}^{i}\Phi_{i} . (6.1)

Also, by virtue of Theorem 5.1, every point of V^{n} is umbilic, that is,

h_{bc}=H_{1}g_{bc} . (6.2)

Transvecting g^{ca} to this equation, we see that h_{b}^{a}=H_{1}\delta_{b}^{a} . So, substituting
this equation into (6.1), we have

\nabla_{b}\Theta=-H_{1}B_{b}^{i}\Phi_{i} , (6.3)

that is,

\nabla_{b}\ominus+H_{1}\nabla_{b}\Phi=0 . (6.4)

Accordingly, under the assumption that H_{1}=const. , we can see that

O-+H_{1}\Phi=C (C=const.) (6.5)

on V^{n} .
Now, by covariant differentiation of (6.3) along V^{n} , we get

\nabla_{c}\nabla_{b}\ominus=-H_{1}(\rho\Phi g_{cb}+\ominus h_{cb}) , (6.6)

by virtue of (2.2), (3.1) and (2.1). Thus, from (6.2) and (6.5), we find that

\nabla_{c}\nabla_{b}\Theta=-\{(H_{1}^{2}-\rho)\Theta+\rho C\}gcb . (6.7)

Here H_{1}^{2}-\rho\neq 0 . Because, if H_{1}^{2}-\rho=0 , then (6.7) becomes \nabla_{c}\nabla_{b}\Theta=

-\rho Cgcb , from which \triangle\Theta=-n\rho C , that is, \triangle\ominus=const ., where \triangle\ominus=

g^{cb}\nabla_{c}\nabla_{b}\ominus . However this is impossible, unless \ominus=const . on V^{n}([1], [9]) .

Thus, H_{1}^{2}-\rho being different from zero, (6.7) is rewritten as follows:

\nabla_{c}\nabla_{b}(\ominus+\frac{\rho C}{H_{1}^{2}-\rho})=-(H_{1}^{2}-\rho)(\Theta+\frac{\rho C}{H_{1}^{2}-\rho})gcb , (6.8)

from which we get

\triangle(0-+\frac{\rho C}{H_{1}^{2}-\rho})=-n(H_{1}^{2}-\rho)(\ominus+\frac{\rho C}{H_{1}^{2}-\rho}) .
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and consequently, it follows that H_{1}^{2}-\rho>0([11]) . Therefore, using The-
orem 1.4, the equation (6.8) shows that the hypersurface V^{n} under consid-
eration is isometric to a sphere ([3], [4]). \square

Next, under the new assumption that \Phi is not constant along V^{n} , we
prove the following Theorem in a similar way, which is a generalization of
Corollary 1. 12.

Theorem 6.2 Let R^{n+1} be an orientable conformally flat Riemannian
manifold which admits a special concircular scalar fifield \Phi , and V^{n} a closed
orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) there exists a point P_{0} on V^{n} such that S(P_{0})=0 ,
(iii) \Theta has fifixed sign on V^{n} ,
(iv) \Phi is not constant along V^{n} .
Then V^{n} is isometric to a sphere.

Proof. Since \nabla_{b}(\Phi_{i}B_{a}^{i})=\nabla_{j}\Phi_{i}B_{b}^{j}B_{a}^{i}+\Phi_{i}\nabla_{b}B_{a}^{i} . we see, from (3.1),
(2.2) and\ominus=C^{i}\Phi_{i} , that

\nabla_{b}\nabla_{a}\Phi=\rho\Phi g_{ba}+\ominus h_{ba} . (6.9)

Also, by virtue of Theorem 5.1, every point of V^{n} is umbilic, that is, h_{ba}=

H_{1}g_{ba} . Consequently, from (6.9), we have

\nabla_{b}\nabla_{a}\Phi=(\rho\Phi+H_{1}\Theta)g_{ba} .

So, substituting (6.5) into this equation, we find that

\nabla_{b}\nabla_{a}\Phi=\{-(H_{1}^{2}-\rho)\Phi+CH_{1}\}g_{ba} . (6.10)

Here, under the assumption of Theorem 6.2, that is, \Phi is not constant along
V^{n} . we can prove that H_{1}^{2}-\rho\neq 0 , by an argument similar to that used in
the proof of Theorem 6.1. Thus, (6.10) is rewritten as follows:

\nabla_{b}\nabla_{a}(\Phi-\frac{CH_{1}}{H_{1}^{2}-\rho})=-(H_{1}^{2}-\rho)(\Phi-\frac{CH_{1}}{H_{1}^{2}-\rho})g_{ba} , (6.11)

from which we get

\triangle(\Phi-\frac{CH_{1}}{H_{1}^{2}-\rho})=-n(H_{1}^{2}-\rho)(\Phi-\frac{CH_{1}}{H_{1}^{2}-\rho}) ,

and consequently, it follows that H_{1}^{2}-\rho>0 . Therefore, using Theorem
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1.4, the hypersurface V^{n} is isometric to a sphere ([12]), by virtue of (6.11).
\square

7. A closed hypersurface with H_{1}=const . in R^{n+1} admitting a
special concircular scalar field \Psi

Finally, in R^{n+1} . we assume the existence of a non-constant scalar field
\Psi which satisfies the partial differential equation defined by

\nabla_{j}\Psi_{i}=(\rho\Psi+\sigma)G_{ji} (\rho=const. \neq 0, \sigma=const.) , (7.1)

where \Psi_{i}=\nabla_{i}\Psi .
In this section, we shall show that, replacing \Phi by the special concircular

scalar field \Psi defined by (7.1), all of Theorems proved in the present and
previous paper [5] similarly are valid.

If we put

\overline{\Phi}=\rho\Psi+\sigma , (7.2)

then (7.1) becomes

\nabla_{j}\Psi_{i}=\overline{\Phi}G_{ji} . (7.3)

By covariant differetiation of (7.2), we have

\overline{\Phi}_{i}=\rho\Psi_{i} , (7.4)

where \overline{\Phi}_{i}=\nabla_{i}\overline{\Phi} . Moreover, by covariant differentiation, from (7.3), we find
that

\nabla_{j}\overline{\Phi}_{i}=\rho\overline{\Phi}G_{ji} ,

that is, the scalar field \overline{\Phi} satisfies the same partial differential equation as
\Phi . Also, transvecting C^{i} to (7.4), we have

C^{i}\overline{\Phi}_{i}=\rho C^{i}\Psi_{i}

on V^{n} . from which, if C^{i}\Psi_{i} has fixed sign on V^{n} and is not constant along
V^{n} , then the same holds good of C^{l}\overline{\Phi}_{i} . Thus, making use of Theorem 1.5,
we get

Theorem 7.1 Let R^{n+1} be an orientable Riemannian manifold with
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\nabla_{k}R_{ji}=\nabla_{j}R_{ki} which admits a special concircular scalar fifield \Psi such that

\nabla_{j}\Psi_{i}=(\rho\Psi+\sigma)G_{ji} (\rho=const. \neq 0, \sigma=const.) ,

and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Omega has fifixed sign on V^{n} , where \Omega=C^{i}\Psi_{i} .
Then every point of V^{n} is umbilic. If, moreover,
(iii) \Omega is not constant along V^{n} , then V^{n} is isometric to a sphere.

And, from this Theorem, we have

Corollary 7.2 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}=0 which admits a special concircular scalar fifield \Psi , and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Omega has fifixed sign on V^{n} .
Then every point of V^{n} is umbilic. If, moreover,
(iii) \Omega is not constant along V^{n} . then V^{n} is isometric to a sphere.

Corollary 7.3 Let R^{n+1} be an orientable conformally flat Riemannian
manifold with R=const . which admits a special concircular scalar fifield \Psi ,
and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Omega has fifixed sign on V^{n} .
Then every point of V^{n} is umbilic. If, moreover,
(iii) \Omega is not constant along V^{n} , then V^{n} is isometric to a sphere.

These Theorem and Corollarys are a generalization of Theorem 1.5,
Corollary 1.6 and Corollary 1.7 respectively.

Making use of Theorem 1.8 and Theorem 1.9 respectively, we have

Theorem 7.4 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}+\nabla_{j}R_{ik}+\nabla_{i}R_{kj}=0 which admits a special concircular scalar fifield
\Psi , and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Omega has fifixed sign on V^{n} .
Then every point of V^{n} is umbilic. If, moreover,
(iii) \Omega is not constant along V^{n} , then V^{n} is isometric to a sphere.

Theorem 7.5 Let R^{n+1} be an orientable Riemannian manifold with
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R^{ji}R_{ji}=const . which admits a special concircular scalar fifield \Psi , and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Omega has fifixed sign on V^{n} .
Then every point of V^{n} is umbilic. If, moreover,
(iii) \Omega is not constant along V^{n} , then V^{n} is isometric to a sphere.

And, moreover, making use of Theorem 5.1 and Theorem 6.1, we obtain

Theorem 7.6 Let R^{n+1} be an orientable conformally flat Riemannian
manifold which admits a special concircular scalar fifield \Psi , and V^{n} a closed
orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) there exists a point P_{0} on V^{n} such that S(P_{0})=0 ,
(iii) \Omega has fifixed sign on V^{n} .
Then every point of V^{n} is umbilic. If, moreover,
(iv) \Omega is not constant along V^{n} , then V^{n} is isometric to a sphere.

This Theorem is a generalization of Theorem 5.1 and 6.1, and, moreover,
a generalization of Corollary 7.3 too.

Moreover, if \Psi is not constant along V^{n} , then we can see easily that \overline{\Phi}

is not constant along V^{n} , by virtue of (7.2). Thus, making use of Theorem
1.10, we get

Theorem 7.7 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}=\nabla_{j}R_{ki} which admits a special concircular scalar fifield \Psi , and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Omega has fifixed sign on V^{n} ,
(iii) \Psi is not constant along V^{n} .
Then V^{n} is isometric to a sphere.

And, from this Theorem, we have

Corollary 7.8 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}=0 which admits a special concircular scalar fifield \Psi , and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Omega has fifixed sign on V^{n} .
(iii) \Psi is not constant along V^{n} .
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Then V^{n} is isometric to a sphere.

Corollary 7.9 Let R^{n+1} be an orientable conformally flat Riemannian
manifold with R=const . which admits a special concircular scalar fifield \Psi ,
and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Omega has fifixed sign on V^{n} ,
(iii) \Psi is not constant along V^{n} .
Then V^{n} is isometric to a sphere.

These Theorem and Corollarys are a generalization of Theorem 1.10,
Corollary 1.11 and Corollary 1.12 respectively.

Moreover, making use of Theorem 1.13 and Theorem 1.14 respectively,
we obtain

Theorem 7.10 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}+\nabla_{j}R_{ik}+\nabla_{i}R_{kj}=0 which admits a special concircular scalar fifield
\Psi , and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Omega has fifixed sign on V^{n} ,
(iii) \Psi is not constant along V^{n} .
Then V^{n} is isometric to a sphere.

Theorem 7.11 Let R^{n+1} be an orientable Riemannian manifold with
R^{ji}R_{ji}=const . which admits a special concircular scalar fifield \Psi , and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) \Omega has fifixed sign on V^{n} ,
(iii) \Psi is not constant along V^{n} .

Then V^{n} is isometric to a sphere.

Finally, making use of Theorem 6.2, we have

Theorem 7.12 Let R^{n+1} be an orientable conformally flat Riemannian
manifold which admits a special concircular scalar fifield \Psi , and V^{n} a closed
orientable hypersurface in R^{n+1} such that
(i) H_{1}=const . \neq 0 ,
(ii) there exists a point P_{0} on V^{n} such that S(P_{0})=0 ,
(iii) \Omega has fifixed sign on V^{n} ,
(iv) \Psi is not constant along V^{n} .
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Then V^{n} is isometric to a sphere.

This Theorem is a generalization of Theorem 6.2, and, moreover, a
generalization of Corollary 7.9 too.
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