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Models for coactions of finite groups
on the AFD factor of type II_{1}
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Abstract. We proved in [Y1] that every coaction \beta of a finite group G on a II_{1} factor
gives rise to a normal subgroup N\beta of G , called the inner part of \beta , and a “dual” 2-c0cycle
\mu\beta on \ell\infty(G/N_{\beta}) . In this paper, we shall show that such a coaction \beta produces a function
\gamma_{\beta} on G\cross G/N_{\beta} as well so that the triple (N_{\beta}, \mu_{\beta}, \gamma_{\beta}) (modulo some equivalence) is a
conjugacy invariant. It shall be shown too that, given an abstract triple (N, \mu, \gamma) as above
which satisfies suitable conditions, there exists a coaction \beta=\beta_{(N,\mu,\gamma)} , called a model
coaction, of G on the AFD factor of type II_{1} so that (N_{\beta}, \mu_{\beta}, \gamma_{\beta}) realizes the given data
(N, \mu, \gamma) .
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0. Introduction

After Connes’ breakthrough in classification of actions of cyclic groups
and the integer group on the AFD (approximately finite-dimensional) factor
of type II_{1} [C1-2], his automorphism technique has been intensively devel-
oped and extended by several mathematicians [J], [O], [S-T1,2], [K-S-T] to
the case of discrete amenable group actions on the AFD factors. When we
consider a furhter possible extension of these results, it would be natural
to ask ourselves what happens if we repalce groups by (discrete) quantized
groups. As a result in connection with this question, we now know (see
[L] and [Y] ) that every finite-dimensional Kac algebra acts outerly on the
AFD II_{1} factor. Thus it is naturally expected that classification of actions
of finite-dimensional Kac algebras should be possible as well along the line
of Jones’ work. If possible, this means that one needs to introduce a Kac
algebra version of the characteristic invariant and the inner invariant. This
program has been successfully completed by S. Popa and A. Wassermann
in [P-W] in the case of cocommutative Kac algebras, i.e., in the case of
coactions (of compact Lie groups), by classifying their dual actions. The
results in \S 5 of [S-Tl] also should be noted. Meanwhile, in connection with
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this program, we associated in [Y1] with every coaction \beta of a finite group
G on a finite factor A a unique reduced Kac algebra of the group algebra of
G , largest among the reduced Kac algebras the restriction (of \beta ) to which
is “inner.” It was proven there too that there exists a “2-cocycle” \mu_{\beta} on the
Kac algebra d\iota lalC_{\beta} of the reduced algebra in such a way that the twisted
algebra associated with \mu_{\beta} , together with the restriction of the dual action
\hat{\beta} of (3 and “the derived coaction,” corresponds to the characteristic invari-
ant (of the dual action \hat{\beta} ) in the sense of Popa and Wassermann. So, the
next natural step one can think of would be to construct appropriate models
for coactions on the AFD II_{1} factor. The purpose of the present paper is
to achieve this goal. It should be, however, remarked with emphasis that
a construction of such models has been already given again by Popa and
Wassermann in [P-W] (see also [S-Tl]) by means of constructing models
for dual actions (of compact Lie groups); they even exhibited models for
a wider class of actions. Therefore, the author must frankly admit that
the only excuse f()r presenting this note is that our (alternative) method
employed in this paper has a close connection with “the inner parts of coac-
tions” introduced in [Y1] and “dual 2-cocycles,” and is thus more analogous
to the argument set out in [J].

We now describe the organization of this paper. In Section 1, we review
fundamental results obtained in [Y1], introducing the notation used in the
following sections. In Section 2, we show that the derived coaction of a
c()actioIl on a finite factor is always inner. In Section 3, we deduce important
properties of a function which completely determines the derived coaction.
In Section 4, we study 2-cocycles on commutative Kac algebras and twisted
crossed products by coactions of finite groups. Section 5 is devoted to
constructing models for coactions of finite groups on the AFD factor of type
II_{1} . In the last section, we give a definition of some conjugacy invariant
for finite group coactions, which may be regarded as “the characteristic
invariant” for coactions in our framework.

1. The inner part of coactions –Review

This section contains a review of the results concerning the inner part
of finite group coactions on finite factors. In [Y1], it is shown that every
coaction \beta of a finite group G on a finite factor A determines a unique
normal subgroup N_{\beta} of G so that the “restriction” of \beta to the reduced
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algebra R(G/N_{\beta}) of the group algebra R(G) is “inner.” It is proven there
too that there exists a “2-cocycle” \mu_{\beta} on \ell^{\infty}(G/N_{\beta}) in such a way that the
twisted product associated with the 2-cocycle is isomorphic to the relative
commutant of A in the crossed product by the coaction. Both 1V_{\beta} and \mu_{\beta}

are conjugacy invariants for coactions of G on A. In the following, we review
the construction of these invariants in order to prepare for the discussion
starting from Section 2. Readers are referred to [Y1] for more details.

Throughout this paper, G is a finite group. We use the standard nota-
tion \ell^{\infty}(G) for the set C^{G} of all functions on G when each element of it is
viewed as a multiplication operator on the Hilbert space p^{2}(G) . We always
consider that \ell^{\infty}(G) is equipped with the usual Kac (Hopf) algebraic struc-
tllre: the coproduct \Gamma_{G} , the coinvolution j_{G} , the counit \epsilon_{G} etc. are defined
by

\Gamma_{G}(f)(s, t)=f(.st) , jc(f)(s)=f(s^{-1}) , \epsilon_{G}(f)=f(e) ,

where e\in G is the identity of G . When C^{G} is regarded as the (pre)dual of
the C^{*} algebra \ell^{\infty}(G) , it is denoted by \ell^{1}(G) , which is an involutive Banach
algebra with product (convolution) * and involution \# defined by

(f*g)(t)= \sum_{s\in G}f(s)g(s^{-1}t) , f^{\beta}(t)=\overline{f(t^{-1})}

(f, g\in\ell^{1}(G) , t\in G) .

We set f^{\vee}(t)=f(t^{-1}) and \overline{f}(t)=\overline{f(t)} . The symbol \delta_{s}\in\ell^{\infty}(G) , where
s\in G , stands for the function on G given by \delta_{s}(t)=\delta_{s,t} . The left regular
representation of G (or \ell^{1}(G) ) is denoted by \lambda . The von Neumann algebra
generated by \lambda(G) on \ell^{2}(G) is denoted by R(G) (i.e., R(G) is the group
algebra of G). We also fix a coaction \beta of G on a finite factor A. For the
definition of a coaction, we refer readers to [N-T]. The coaction \beta determines
a unique family \{\Phi_{s}\}_{s\in G} of linear transformations on A characterized by
the equation

\beta(a)=\sum_{s\in G}\Phi_{s}(a)\otimes\lambda(s)
(a\in A) . (1.1)

This family satisfies the following conditions:

(CAO) \Phi_{s}(1)=\delta_{s,e} 1 (CA1) \Phi_{s}\circ\Phi_{t}=\delta_{s,t}\Phi_{s} ,

(CA2) \Phi_{s}(a)^{*}=\Phi_{s^{--1}}(a^{*}) , (CA3) id_{A}= \sum_{s\in G}\Phi_{s}
,
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(CA4) \Phi_{t} (ab)=
\sum_{s\in G}\Phi_{s}(a)\Phi_{s^{-1}t}(b)

(a, b\in A) .

It is well-known that the coactions of G on A are in bijective correspondence
with the families \{\Phi_{s}\}_{s\in G} of linear maps of A satisfying (CAO)-(CA4) .
Every element X in the crossed product A\cross_{\beta}R(G) by the coaction \beta

can be written uniquely in the form X= \sum_{s\in G}\beta(c(s))(1\otimes\delta_{s}) for some
a= \{a(s)\}_{s\in G}\in\prod_{s\in G}A (see Proposition 1.1 of [Y1]). We write X_{a} for X
in this case. The relative commutant A^{c} of \beta(A) in the crossed product is
then the set of all elements X_{c} in which \{c(s)\} satisfies

xc(t)= \sum_{s\in G}c(s)\Phi_{st^{-1}}(x) (1.2)

for all x\in A . We denote by Re1(/3) the set of all families \{c(s)\}_{s\in G} satisfying
(1.2). The set Re1(/3) has a *-algebraic structure coming from that of A^{c} :
ac=\{a(s)c(s)\}_{s\in G}\in Re1(\beta) and c^{*}=\{c(s)^{*}\}\in Re1(\beta) if a=\{a(s)\} , c=
\{c(s)\}\in Re1(/3). Moreover, if c=\{c(s)\}\in Re1(/3) and f\in C^{G} , then
c_{f}= \{\sum_{s\in G}b(s)f(s^{-1}t)\}_{t\in G} also belongs to Re1(/3). Under this operation,
Re1(/3) is proven to be an \ell^{1}(G) -module. Namely, one has (c_{f})_{g}=c_{f*g} for
any f, g\in\ell^{1}(G) . For any a=\{a(s)\} , c=\{c(s)\}\in Re1(\beta) , \sum_{s\in G}a(s)c(st)

lies in the center of A for any t \in G . Since A is a factor, the equation

\sum_{s\in G}a(s)c(st)^{*}=f_{a,c}(t)
1

defines a function f_{a,c} on G . With this notation, we have

f_{a,c}^{\Downarrow}=f_{c,a} , \overline{f_{a,c}}=f_{a^{*},c^{*}} ,

g*f_{a,c}*h=f_{a_{g^{\vee}},c_{\overline{h}}}

for any g , h\in C^{G} . The linear span I_{\beta} of elements f in \ell^{1}(G) of the form
f=f_{a,c} for some a , c\in Re1(\beta) then forms a tw0-sided ideal of \ell^{1}(G) . So
there exists a unique central projection p_{\beta} in \ell^{1}(G) such that I_{\beta}=\ell^{1}(G)*p_{\beta} .
We denote by Int(/3) the set of all normalized irreducible characters \chi of G
such that \chi*p_{\beta}\neq 0 , and call it the inner part of \beta . Here, by an irreducible
character, we mean that it is the character of some irreducible representation
of G . It can be shown that there exists an element b=\{b(s)\}\in Re1(\beta) so
that p_{\beta}=f_{b}(=f_{b,b}) and \sum_{s\in G}b(s)=1 . With this b=\{b(s)\} , if we
define an operator V_{\beta} in A\otimes R(G) by V_{\beta}= \sum_{s\in G}b(s)\otimes\lambda(s)_{\backslash }^{*} then it
can be viewed as a unitary in the reduced algebra A\otimes R(G)_{\lambda(p_{\beta})} (i.e.,
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V_{\beta}^{*}V_{\beta}=V_{\beta}V_{\beta}^{*}=1\otimes\lambda(p_{\beta})) and satisfies

\beta(a)(1\otimes\lambda(p_{\beta}))=V_{\beta}^{*}(a\otimes 1)V_{\beta} (a\in A) .

We describe this situation by saying that the restriction of \beta to R(G)_{\lambda(p_{\beta})} is
inner. We showed in Theorem 3.6 of [Y1] that the reduced algebra R(G)_{\lambda(p_{\beta})}

has a (reduced) Kac algebraic strucure (cf. [E-S]). Thus there exists a unique
normal subgroup N_{\beta} of G such that R(G)_{\lambda(p_{\beta})} is isomorphic to R(G/N\beta)

as Kac algebras. Hence the Kac algebra dual C_{\beta} of R(G)_{\lambda(p_{\beta})} is the *-

subalgebra of \ell^{\infty}(G) that is invariant under translation by elements of N_{\beta} ,

so that C_{\beta} can be identified with \ell^{\infty}(G/N_{\beta}) . With b=\{b(s)\} as above, the
equation

\mu_{\beta}(f, g)
1= \sum_{t\in G}b_{g}(t)b_{f}(t)b(t)^{*}

(f, g\in C_{\beta})

defines a bilinear form \mu_{\beta} on C_{\beta} . It turned out in Proposition 3.4 of [Y1]
that \mu_{\beta} is a cocycle on C_{\beta} in the sense of theory of Hopf algebras (see [M]
for example). Thus, with the ordinary sigma notation, the equation

f\#
g= \sum_{(f),(g)}\mu_{\beta}(f_{(1)}, g_{(1)})f_{(2)}g_{(2)}

(f, g\in C_{\beta})

defines a new product, called the twisted product associated with \mu_{\beta} , in
C_{\beta} with 1 the identity with respect to the twisted product. Each vector f
in C_{\beta} can be uniquely written in the form f=f_{b^{*},c^{*}} for some c\in Re1(\beta) .

From this, it follows that the equation

f_{b^{*},c^{*}}^{\star}=f_{b^{*},c}

defines a conjugate-linear map of C_{\beta} . It is in fact an involution in C_{\beta} with
the twisted product. It is proven in Theorem 4.9 of [Y1] that the map
\Pi : A^{c}arrow C_{\beta} defined by \Pi(X_{c})=f_{bc}*,* is a *-isomorphism from the
realtive commutant A^{c} onto the twisted algebra C_{\beta} . For each s\in G , we
define a linear map \Psi_{s} from Re1(/3) into itself by

\Psi_{s}(c)(t)=\Phi_{tst^{-1}}(c(t)) (c\in Re1(\beta)) .

Then \{\Psi_{s}\}_{s\in G} also satisfies conditions (CAO)-(CA4) . Thus

\delta_{\beta}(f_{b^{*},c}*)=\sum_{s\in G}f_{b^{*},\Psi_{s^{-1}}(c)^{*}}\otimes\lambda(s)
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gives rise to a coaction \delta_{\beta} of G on the twisted algebra C_{\beta} . We call it the de-
rived coaction of \beta . The author was informed by Professor Y. Doi that this
coaction is called the Miyashita(-Ulbrich) action in theory of Hopf algebras
(see [D-T]). I am grateful to Prof. Doi for this information and sending me
a reprint [D-T]. Under the isomorphism \Pi , the fixed-point algebra of the
derived coaction coincides with the center of the crossed product.

2. The inner part of the derived coaction

Throughtout this section, we fix a coaction \beta of a finite group G on
a finite factor A with \tau the unique faithful normal tracial state. We shall
freely use the notation introduced in Section 1.

Let b=\{b(t)\}_{t\in G} be the element of Re1(/3) that appeared in the pre-
ceding section. Suppose that f\in C_{\beta} . Then we have

f=f_{b^{*},(b_{f})^{*}} (2.1)

Indeed, since p_{\beta}=f_{b^{*},b^{*}} and p_{\beta}*f=f by definition, it follows from
I_{\lrcorner}emma1.6 of [Y1] that f=f_{b^{*},(b^{*})_{\overline{f}}}=f_{b^{*},(b_{f})^{*}} . Hence the derived coaction
\delta_{\beta} of G on the twisted algebra C_{\beta} can be described as follows.

\delta_{\beta}(f)=\sum_{s\in G}f_{b^{*},\Psi_{s}(b_{f})^{*}}-1\otimes\lambda(s)
.

With this in mind, we define, for each s\in G , a linear map \Omega_{s} from C_{\beta} into
itself by

\Omega_{s}(f)=f_{b^{*},\Psi_{s}(b_{f})^{*}}-1 (f\in C_{\beta}) (2.2)

Thus the family \{\Omega_{s}\}_{s\in G} determines the derived coaction on C_{\beta} . By a
simple calculation, we obtain

f_{b^{*},\Psi_{s}(b_{f})^{*}}-1(t)= \sum_{r\in G}f_{\Psi_{-rs1-r1}(b),b}(rt^{-1})f(r) .

So let us define a function \gamma_{0} on G\cross G by

\gamma_{0}(s, t)=f_{\Psi_{s}(b),b}(t) .

Then, with f\in C_{\beta} , we have

\Omega_{s}(f)(t)=\sum_{r\in G}\gamma_{0}(rs^{-1}r^{-1}, rt^{-1})f(r) . (2.3)
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We put \xi_{0}=f_{b^{*},b} . From\overline{1}(2.1) dl.lld Lemma 1.6 of [Y1], we easily find th.at ,
f\iota)r any f\in C_{\beta}^{v} ,

\xi_{0}*\overline{f}=f^{\star} (2.4)

In the meantime, we assert tll.d .
\xi_{0}(t)=\sum_{s\epsilon^{-G}}\neg\overline{(\mu_{\beta ts}\delta 1,}\delta_{\overline{5}})-=\sum_{s\in G}\overline{\mu_{\beta}(\delta_{t^{-1}s}*p_{\beta},\delta_{6}*p_{\beta})}

(2.5)

111 f.act , by the definition of the b\overline{1}11r1c^{1}ar form \mu_{\beta} , we have

\sum_{s\in G}\overline{\mu_{\beta}(\delta_{t}}\overline{1_{6},\delta_{6})}=\sum_{r,s\in(_{J}’}\overline{\tau(b_{\delta_{s}}(r)b_{\delta_{t^{-1_{6}}}}(r)b(r)^{*})}

= \sum_{r,s\in G’}\overline{\tau(b(rs^{-1})b(rs^{-1}t)b(r)^{*})}

= \sum_{r,s\in G^{l}}\tau\overline{(b(s^{-1})b(s^{-1}t)b(r)^{*})}

= \sum_{s\in G}\overline{\tau(b(s^{-1})b(s^{-1}t))}

= \sum_{s\in G}\tau(b(s^{-1})^{*}b(s^{-1}t)^{*})=\xi_{0}(t)
.

This proves (2.5). Since (f^{\star})^{\star}=f for ally f\in C_{\beta} , it follows that \xi_{0}*\overline{\xi_{0}}=p_{\beta} .
bIoreover, frorn I_{\lrcorner}emrna 1.6 of [Y1], we have \xi_{\check{0}}=\xi_{0} . To su\ln up, we obtain

\xi_{0}*\overline{\xi_{0}}=\xi_{0}*\xi\#=p_{\beta} . (2.6)

F’ro111 this, it res\iota 1lts the equation

J_{\mu}f=f^{\star} (ft_{-}^{-}C_{\beta})

(leli\iota les a conjugate-linear unitary illvoltltioll J_{\mu} on the Hilbert space \{ f\in

l^{2}(G) : f\in C_{\beta} }.
Now we turn attention t\iota) compute the inner part of the derived coac-

tion. To do so, for each t\in G , we define a family \{d(t)\}_{t\in G} of functions on
G by d(t)=\delta_{t^{-1}}*p_{\beta} , which clearly belongs to C_{\beta} . Our immediate goal is to
show that this family d=\{d(t)\}_{t\in G} plays the same role as b=\{b(s)\}_{s\in G} ill
the previous section does. First, we assert that \{d(t)\} belongs to Rel(\mbox{\boldmath $\delta$}\mbox{\boldmath $\beta$}).
For this, let f\in C_{\beta} . From (2.2) and Lemma 4.5 of [Y1],

\sum_{r\in G}\{d(r)\#\Omega_{rt^{-1}}(f)\}(s)
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= \sum_{r\in G}\{f_{b^{*},b_{s_{r}}^{*}}-1\# f_{b^{*},\Psi_{tr}(b_{f})^{*}}-1\}(s)

= \sum_{r\in G}\{fb^{*},b_{\delta_{-1}}^{* -1}r\Psi_{tr}(b_{f})^{*\}(s)},

= \sum_{r,u\in G}\tau
( b(u)^{*}\Psi_{tr^{-1}}(b_{f}) (us)b(usr))

= \sum_{r,u\in G}\tau
( b(u)^{*}\Phi_{ustr^{-1}s^{-1}u^{-1}}(b_{f} (us))b(usr))

= \sum_{r,u\in G}\tau
( b(u)^{*}\Phi_{ustr^{-1}}(b_{f} (us))b(r)).

Since \{b(s)\} is in Re1(/3), we have \Phi_{g}(x)b(s)=b(gs)\Phi_{g}(x) for any x\in A

and g , s\in G . From this, together with (4.1) of [Y1], it follows that

\sum_{r\in G}\{d(r)\#\Omega_{rt^{-1}}(f)\}(s)

= \sum_{r,u\in G}\tau
( b(u)^{*}b(ust)\Phi_{ustr^{-1}}(b_{f} (us)))

= \sum_{u\in G}\tau
( b(u)^{*}b(ust)b_{f} (us))

= \sum_{u\in G}\tau(b(ust)b_{f}(us)b(u)^{*})=\{f\# d(t)\}(s)
.

Thus \sum_{r\in G}d(r)\#\Omega_{rt^{-1}}(f)=f\# d(t) , which shows that d=\{d(t)\}_{t\in G} be-
longs to Rel(\mbox{\boldmath $\delta$}\mbox{\boldmath $\beta$}). Moreover, \{d(t)\} satisfies the following identities.

Lemma 2.7 With d(t)=\delta_{t^{-1}}*p_{\beta} , we have

(a) f\# d(t)= \sum_{s\in G}d(s)\#\Omega_{st^{-1}}(f)
;

(b)
\sum_{s\in G}d(s)\#

d(st)^{\star}=p_{\beta}(t) 1,
\sum_{s\in G}d(s)^{\star}\# d(t^{-1}s)=p_{\beta}(t)

1;

(c)
\sum_{s\in G}d(s)\#

f\beta
d(t^{-1}s)^{\star}= \sum_{s\in G}p_{\beta}(s^{-1}t)\Omega_{s}(f)

for any t\in G and f\in C_{\beta} .

Proof. We have already proven the first identity. For (b), note that
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d(s)=f_{b,b_{\delta}}**s-1 Thus, by Lemma 4.5 of [Y1], we have

\sum_{s\in G}\{d(s)\# d(st)^{\star}\}(u)=\sum_{s\in G}\{f_{b^{*},b_{\delta}}s-1\# f_{b^{*},b_{\delta}^{*}}^{\star}\}(u)t^{-1_{S}-1}

= \sum_{s\in G}f_{b^{*},b_{\delta}^{*}} ^{b_{\delta}}s-1’ t^{-1_{S}-1}(u)

= \sum_{r,s\in G}\tau(b(r)^{*}b(rust)^{*}b(rus))

= \sum_{r,s\in G}\tau(b(r)^{*}b(st)^{*}b(s))

= \sum_{s\in G}\tau(b(st)^{*}b(s))=f_{b}(t)=p_{\beta}(t) .

This proves the first identity of (b). For the second identity, we use the last
equality of (2.5) of [Y1]. From this,

\sum_{s\in G}\{d(s)^{\star}\# d(t^{-1}s)\}(u)=\sum_{s\in G}f_{b^{*},b_{\delta ^{b^{*(u)}}}}s-1\delta’ s-1t

= \sum_{r,s\in G}\tau(b(r)^{*}b(rut^{-1}s)b(rus)^{*})

= \sum_{r,s\in G}\tau(b(rus)^{*}b(r)^{*}b(rut^{-1}s))

= \sum_{r,s\in G}\tau(b(s)^{*}b(r)^{*}b(rut^{-1}u^{-1}r^{-1}s))

= \sum_{r,s\in G}p_{\beta}(s^{-1}rutu^{-1}r^{-1})\tau(\Phi_{s}(b(r)^{*}))
.

Recall that \Phi_{e} is a conditional expectation from A onto the fixed-point
algebra A^{\beta} . In fact, it is the unique conditional expectation that preserves
the trace \tau , since \Phi_{e}=(\iota\otimes\varphi_{G})\circ\beta , where \varphi_{G} denotes the Plancherel measure
of G . Thus \tau=\tau\circ\Phi_{e} . From this, it follows that \tau(\Phi_{s}(b(r)^{*}))=\delta_{s,e}\tau(b(r)^{*}) .
Hence

\sum_{s\in G}\{d(s)^{\star}Qd(t^{-1}s)\}(u)=\sum_{r\in G}p_{\beta}(rutu^{-1}r^{-1})\tau(b(r)^{*})

=p_{\beta}(t) .

This proves the second identity. For the last identity, let f\in C_{\beta} . we
use the equality of (2.5) of [Y1] again in the following computation. Since
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f=f_{b^{*},(b_{f})^{*}} , we have

\sum_{s\in G}\{d(s)\# f\# d(t^{-1}s)^{\star}\}(u)

= \sum_{s\in G}f_{b^{*},b_{\delta}^{* ^{b_{f_{S}^{b_{\delta}}}^{*}},-1_{t}}}s-1(u)

= \sum_{r,s\in G}\tau(b(r)^{*}b(rut^{-1}s)^{*}b_{f}(ru)b(rus))

–

,
\sum_{7s\in G}

,
\tau(b(r)^{*}b(s)^{*}b_{f}(ru)b(rutu^{-1}r^{--\perp}s^{7}))

= \sum_{r,s\in G}-p_{\beta}(s^{-}-\neg 1-rut1-u1-r1)\tau(b(r)^{*}\Phi_{s}(b_{f}(7^{\cdot}u)))

= \sum_{7,s\in G^{l}}p_{\beta(6}.1- t-1)_{\Gamma}’(b(\gamma\cdot)^{*}\Phi_{rusu}1_{7}-1(b_{f}(ru)))

= \sum_{r,s\in G}p_{\beta}(s^{-1}t^{-1})\tau(b(r)^{*}\Psi_{s}(b_{f})(ru))

= \sum_{s\in t_{X}^{-(}}p_{/};(s^{-- 1}t^{-1})f_{b^{*}\Psi_{3}(b_{f})^{r}}(\tau\iota)

= \sum_{s\in G^{\gamma}}-p_{13}(s^{-1}t)fl_{s}(f)(u)\neg
.

This completes the proof. \square

Proposition 2.8 ?^{l}he restriction of the de\mathfrak{l}’.\dot{l}ved coaction on C_{\beta} to the re-
duccd Kac algebra R(G)_{\lambda(p_{\beta})} is inner in the sense that there exists a unitary
L^{r_{b_{\beta}}}i/lG_{\beta}\backslash {?} R(G)_{\lambda(_{l^{J}0)}6ue\cdot h that

\delta_{\beta}(f)(1\otimes\lambda(p_{\beta}))=V_{\delta_{\beta}}^{*}(f\otimes 1)V_{\delta_{\beta}}

f_{CJ\prime}
. all f\in C_{\beta}^{\gamma} .

Proof. With \{d(s)\}_{s\in G} in Re1(\delta_{\beta}) introduced above, we define an element
V_{6_{\beta}} in C_{\beta}\otimes R(G) by

V_{\delta_{\beta}}= \sum_{s\in G}d(s)\otimes\lambda(s)^{*}

From the first identity of Part (b) of Lemma 2.7, we find that V_{\delta_{\beta}}V_{\delta_{\beta}}^{*}=

1\otimes\lambda(p_{\beta}) . Remark that 1\otimes\lambda(p_{\beta}) is central in C_{\beta}\otimes R(G) . Thus the finite-
dimensionality of C_{\beta}\otimes R(G) implies that V_{\delta_{\beta}}^{*}V_{\delta_{\beta}}=1\otimes\lambda(p_{\beta}) . Now, by
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identity (a) of Lemma 2.7, it can be verified that

V_{\delta_{\beta}}\delta_{\beta}(f)=(f\otimes 1)V_{\delta_{\beta}}

for all f\in C_{\beta} . Thus, we are done. \square

3. The function \gamma

In the preceding section, we introduced the function \gamma_{0} on G\cross G which
completely describes the G-grading in C_{\beta} (recall (2.3)) determined by the
derived coaction \delta_{\beta} . The purpose of the present section is to closely exam-
ine some properties this function possesses. In what follows, we still fix a
coaction \beta of G on A with \tau the unique faithful normal tracial state, and
keep all the notation established in Section 2, except that we write \mu for \mu_{\beta}

for simplicity.

Lemma 3.1 We have

\overline{\gamma_{0}(s,t)}=\gamma_{0}(t^{-1}st, t^{-1}) , (3.2)

\sum_{r\in G}\gamma_{0}(s, r)p_{\beta}(r^{-1}t)=\gamma_{0}(s, t)
. (3.3)

In particular, the function t\in G\mapsto\gamma_{0}(s, t) belongs to C_{\beta} for each s\in G .

Proof First, by Lemma 4.6 of [Y1],

\overline{\gamma_{0}(s,t)}=\overline{f_{\Psi_{s}(b),b}(t)}

=f_{\Psi_{s}(b)^{*},b^{*}}(t)

= \sum_{r\in G}\tau(\Psi_{s}(b)(r)^{*}b(rt))

= \sum_{r\in G}\tau(\Phi_{rsr^{-1}}(b(r))^{*}b(rt))

= \sum_{r\in G}\tau(\Phi_{rs^{-1}r^{-1}}(b(r)^{*})b(rt))

= \sum_{r\in G}\tau(b(r)^{*}\Phi_{rsr^{-1}}(b(rt)))

= \sum_{r\in G}\tau(\Psi_{t^{-1}st}(b)(rt)b(r)^{*})

=f_{\Psi_{t^{-1}st}(b),b}(t^{-1})=\gamma_{0}(t^{-1}st, t^{-1}) .

This proves (3.2). The second identity is clearly equivalent to f_{\Psi_{s}(b),b}*p_{\beta}=
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f_{\Psi_{s}(b),b} . But this follows from the fact that f_{\Psi_{S}(b),b}\in C_{\beta} . \square

In the subsections A-F that follow, we deduce identities that \gamma_{0} needs
to satisfy for \{\Omega_{s}\}_{s\in G} to define the derived coaction.

A. By (2.3), we have

\Omega_{s}(1)(t)=\sum_{r\in G}\gamma_{0}(rs^{-1}r^{-1}, rt^{-1})
.

Hence, the identity \Omega_{s}(1)=\delta_{s,e}1 is equivalent to

\sum_{r\in G}\gamma_{0}(rs^{-1}r^{-1}, rt^{-1})=\delta_{s,e}
(s, t\in G) (3.4)

If we use (3.2), then identity (3.4) can be transformed into

\sum_{r\in G}\overline{\gamma 0(tst^{-1},tr^{-1})}=\delta_{s,e}
.

Upon replacing s by t^{-1}st in the above equality, we obtain

\sum_{r\in G}\gamma 0(s, r)=\delta_{s,e}
(s\in G) (3.4)’

B. Let f\in C_{\beta} . Then

\sum_{s\in G}\Omega_{s}(f)(t)=\sum_{r,s\in G}\gamma 0(rs^{-1}r^{-1}, rt^{-1})f(r)

= \sum_{r\in G}(\sum_{s\in G}\gamma 0(s, rt^{-1}))f(r) .

In the meantime,

f(t)=(p_{\beta}*f)(t)= \sum_{r\in G}p_{\beta}(r^{-1}t)f(r)
.

Thus the condition \sum_{s\in G}\Omega_{s}(f)=f is equivalent to

\sum_{r\in G}(\sum_{s\in G}\gamma_{0}(s, rt^{-1})-p_{\beta}(r^{-1}t))f(r)=0
.

This is true for all f\in C_{\beta} . From this, together with (3.3), it follows that

\sum_{s\in G}\gamma 0(s, rt^{-1})=p_{\beta}(r^{-1}t)
.



Models for coactions of fifinite groups on the AFD factor of type II_{1} 345

Therefore, we may conclude that

\sum_{s\in G}\gamma_{0}(s, t)=p_{\beta}(t)
. (3.5)

for any t\in G .

C. Let f be in C_{\beta} . Then

\Omega_{u}(\Omega_{v}(f))(t)

= \sum_{r\in G}\gamma_{0}(ru^{-1}r^{-1}, rt^{-1})\Omega_{v}(f)(r)

= \sum_{s\in G}(\sum_{r\in G}\gamma_{0}(ru^{-1}r^{-1}, rt^{-1})\gamma_{0}(sv^{-1}s^{-1}, sr^{-1}))f(s) .

In the meantime, we have

\delta_{u,v}\Omega_{u}(f)(t)=\sum_{s\in G}\delta_{u,v}\gamma_{0}(su^{-1}s^{-1}, st^{-1})f(s)
.

Hence the identity \Omega_{u}(\Omega_{v}(f))=\delta_{u,v}\Omega_{u}(f) for all f\in C_{\beta} and u , v\in G

implies that

\sum_{r\in G}\gamma 0(ru^{-1}r^{-1}, rt^{-1})\gamma 0(sv^{-1}s^{-1}, sr^{-1})=\delta_{u,v}\gamma 0(su^{-1}s^{-1}, st^{-1})

for all s , t , u , v\in G . It is easy to see that the above equality is the same as

\sum_{r\in G}\gamma_{0}(rur^{-1}, rt)\gamma_{0}(v^{-1}, r^{-1})=\delta_{u,v}\gamma_{0}(u, t) (3.6)

for all t , u , v\in G .

D. Let f , g be in C_{\beta} . Recall that f\# g= \sum_{s,t\in G}\mu(\delta_{s}*p_{\beta}, \delta_{t}*p_{\beta})(\delta_{s^{-1}}*

f)(\delta_{t^{-1}}*g) . Thus

\Omega_{s} (f\# g)(t)

= \sum_{r,u,v\in G}\gamma_{0}(rs^{-1}r^{-1}, rt^{-1})\mu(\delta_{u}*p_{\beta}, \delta_{v}*p_{\beta})f(ur)g(vr)

= \sum_{r,u,v\in G}\gamma_{0}(rs^{-1}r^{-1}, rt^{-1})\mu(\delta_{ur^{-1}}*p_{\beta}, \delta_{vr^{-1}}*p_{\beta})f(u)g(v)
.

Meanwhile, we have

\sum_{p\in G}\{\Omega_{p}(f)\#\Omega_{p^{-1}s}(g)\}(t)
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= \sum_{p,m,n\in G}\mu(\delta_{m}*p_{\beta}, \delta_{n}*p_{\beta})\Omega_{p}(f)(mt)\Omega_{p^{-1}s}(nt)

= \sum_{p,m,n,u,v\in G}\mu(\delta_{m}*p_{\beta}, \delta_{n}*p_{\beta})\gamma_{0}(up^{-1}u^{-1}, ut^{-1}m^{-1})

\cross\gamma_{0}(vs^{-1}pv^{-1}, vt^{-1}n^{-1})f(u)g(v) .

Hence the identity \Omega_{s} (f \# g)=\sum_{p\in G}\Omega_{p}(f)\#\Omega_{p^{-1}s}(g) for all f , g\in C_{\beta} and
s\in G implies that

\sum_{r\in G}\gamma_{0}(rs^{-1}r^{-1}, rt^{-1})\mu(\delta_{ur^{-1}}*p_{\beta}, \delta_{vr^{-1}}*p_{\beta})

= \sum_{p,m,n\in G}\mu(\delta_{m}*p_{\beta}, \delta_{n}*p_{\beta})\gamma_{0}(up^{-1}u^{-1}, ut^{-1}m^{-1})

\cross\gamma_{0}(vs^{-1}pv^{-1}, vt^{-1}n^{-1}) (3.7)

for all s , t , u , v\in G .

E. Let f\in C_{\beta} . From (2.4), we have

\Omega_{s}(f)^{\star}(t)=\sum_{r,u\in G}\xi_{0}(r)\overline{\gamma_{0}(us^{-1}u^{-1},ut^{-1}r)f(u)}
.

Meanwhile,

\Omega_{s^{-1}}(f^{\star})(t)=\sum_{r\in G}\gamma_{0}(rsr^{-1}, rt^{-1})f^{\star}(r)

= \sum_{r,u\in G}\gamma_{0}(rsr^{-1}, rt^{-1})\xi_{0}(ru^{-1})\overline{f(u)}
.

Hence the identity \Omega_{s}(f)^{\star}=\Omega_{s^{-1}}(f^{\star}) for all f\in C_{\beta} and s\in G yields

\sum_{r\in G}\xi_{0}(r)\overline{\gamma 0(us^{-1}u^{-1},ut^{-1}r)}=\sum_{r\in G}\gamma 0(rsr^{-1}, rt^{-1})\xi_{0}(ru^{-1})

for all s , t , u\in G . This turns out to be equivalent to

\sum_{r\in G}\xi_{0}(r)\overline{\gamma_{0}(s^{-1},tr)}=\sum_{r\in G}\xi_{0}(r)\gamma_{0}(rsr^{-1}, rt)
(3.8)

for all s , t\in G .

F. Finally, we consider the property of the derived coaction that its
restriction to the Kac algebra R(G)_{\lambda(p_{\beta})} is inner. In view of (the proof of)
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Proposition 2.8, this property can be characterized as

f\beta
d(t)= \sum_{s\in G}d(s)\#\Omega_{st^{-1}}(f)

(f\in C_{\beta}) , (3.9)

where d(t)=\delta_{t^{-1}}*p_{\beta}\in C_{\beta} . Recall again that f\# g= \sum_{s,t\in G}\mu(\delta_{s}*p_{\beta}, \delta_{t}*

p_{\beta})(\delta_{s^{-1}}*f)(\delta_{t^{-1}}*g) . We have

\{f\# d(t)\}(r)=\sum_{u,v\in G}\mu_{\beta}(\delta_{u}*p_{\beta}, \delta_{v}*p_{\beta})f(ur)p_{\beta}(tvr)

= \sum_{u\in G}\mu_{\beta}(\delta_{ur^{-1}}*p_{\beta^{ \delta_{(rt)}}-1},*p_{\beta})f(u)
.

Meanwhile,

\sum_{s\in G}\{d(s)\#\Omega_{st^{-1}}(f)\}(r)

= \sum_{s,m,n\in G}\mu_{\beta}(\delta_{m}*p_{\beta}, \delta_{n}*p_{\beta})p_{\beta}(smr)\Omega_{st^{-1}}(f)(nr)

= \sum_{s,n,u\in G}\mu_{\beta}(\delta_{(rs)^{-1}}*p_{\beta}, \delta_{n}*p_{\beta})\gamma 0(uts^{-1}u^{-1}, ur^{-1}n^{-1})f(u)
.

Thus identity (3.9) implies that

\mu_{\beta}(\delta_{ur^{-1}}*p_{\beta}, \delta_{(rt)^{-1}}*p_{\beta})

= \sum_{s,n,v\in G}\mu_{\beta}(\delta_{(rs)^{-1}}*p_{\beta}, \delta_{n}*p_{\beta})\gamma_{0}(vts^{-1}v^{-1}, vr^{-1}n^{-1})p_{\beta}(v^{-1}u)

= \sum_{s,n,v\in G}\mu_{\beta}(\delta_{(rs)^{-1}}*p_{\beta}, \delta_{n}*p_{\beta})

\cross\gamma_{0}(vrts^{-1}r^{-1}v^{-1}, vn^{-1})p_{\beta}(v^{-1}ur^{-1}) .

for any r , t , u\in G . Upon replacing u by ur and t by r^{-1}t in the above
equality, we obtain

\mu_{\beta}(\delta_{u}*p_{\beta}, \delta_{t^{-1}}*p_{\beta})

= \sum_{s,n,v\in G}\mu_{\beta}(\delta_{(rs)^{-1}}*p_{\beta}, \delta_{n}*p_{\beta})\gamma_{0}(vts^{-1}r^{-1}v^{-1}, vn^{-1})p_{\beta}(v^{-1}u)

= \sum_{s,n,v\in G}\mu_{\beta}(\delta_{s^{-1}}*p_{\beta}, \delta_{n}*p_{\beta})\gamma 0(vts^{-1}v^{-1}, vn^{-1})p_{\beta}(v^{-1}u)
. (3.10)

for any u , t\in G .
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We summarize the discussion in the subsections A-F in the lemma that
follows.

Lemma 3.11 Defifine a function \gamma_{0} on G\cross G by

\gamma_{0}(s, t)=f_{\Psi_{s}(b),b}(t) .

Then it satisfifies the following identities.

(11.0) \Omega_{s}(f)(t)=\sum_{r\in G}\gamma o(rs^{-1}r^{-1}, rt^{-1})f(r)
;

(11.1)
\sum_{r\in G}\gamma_{0}(rs^{-1}r^{-1}, rt^{-1})=\delta_{s,e}

;

(11.2)
\sum_{r\in G}\gamma o(r, t)=p_{\beta}(t)

;

(11.3)
\sum_{r\in G}\gamma 0(rur^{-1}, rt)\gamma 0(v, r^{-1})=\delta_{u,v}\gamma_{0}(u, t)

;

(11.4)
\sum_{r\in G}\gamma_{0}(rs^{-1}r^{-1}, rt^{-1})\mu(\delta_{ur^{-1}}*p_{\beta}, \delta_{vr^{-1}}*p_{\beta})

= \sum_{p,m,n\in G}\mu(\delta_{m}*p_{\beta}, \delta_{n}*p_{\beta})\gamma 0(up^{-1}u^{-1}, ut^{-1}m^{-1})

\cross\gamma_{0}(vs^{-1}pv^{-1}, vt^{-1}n^{-1}) ;

(11.5) \sum_{r\in G}\xi_{0}(r)\overline{\gamma o(s^{-1},tr)}=\sum_{r\in G}\xi_{0}(r)\gamma 0(rsr^{-1}, rt)
;

(11.6) \mu_{\beta}(\delta_{u}*p_{\beta}, \delta_{t^{-1}}*p_{\beta})

= \sum_{r,p,q\in G}\mu_{\beta}(\delta_{r^{-1}}*p_{\beta}, \delta_{p}*p_{\beta})\gamma_{0}(qtr^{-1}q^{-1}, qp^{-1})p_{\beta}(q^{-1}u)

for all s , t , u , v\in G and f\in C_{\beta} .

From Theorem 3.6 of [Y1], R(G)_{\lambda(p_{\beta})} is isomorphic to the group algebra
R(G/N_{\beta}) of the quotient group G/N_{\beta} as Kac algebras for a unique normal
subgroup N_{\beta} of G . Hence C_{\beta} is exactly the set of all functions on G that are
invariant under translation by elements of N_{\beta} , and thus can be regarded as
\ell^{\infty}(G/N_{\beta}) . In what follows, we do identify C_{\beta} with \ell^{\infty}(G/N_{\beta}) . The iden-
tification is thus done through the embedding \pi_{*} : \ell^{\infty}(G/N_{\beta})arrow\ell^{\infty}(G)

defined by \pi_{*}(f)=f\circ\pi ( f\in\ell^{\infty}(G/N_{\beta})) , where \pi denotes the canonical
surjection from G onto G/N_{\beta} . So \mu shall be regarded as a bilinear form
on \ell^{\infty}(G/N_{\beta}) from now on. Note that, under this identification, the func-
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tion p_{\beta}=|N_{\beta}|^{-1}\chi_{N_{\beta}} is the same as |N_{\beta}|^{-1}\delta_{e} (i.e., \pi_{*}^{-1}(p_{\beta})=|N_{\beta}|^{-1}\delta_{e} ),
where \delta_{e} in this case stands for the characteristic function of the iden-
tity e of G/N_{\beta} . In general, we have \pi_{*}^{-1}(\delta_{s}*p_{\beta})=|N_{\beta}|^{-1}\delta_{\pi(s)} for any
s\in G , so that we identify \delta_{s}*p_{\beta} with |N_{\beta}|^{-1}\delta_{\pi(s)} . Moreover, it is true
that \pi_{*}(g*h)=|N_{\beta}|\pi_{*}(g)*\pi_{*}(h) for all g , h\in\ell^{\infty}(G/N_{\beta}) . Our next
purpose is to examine how the family \{\Omega_{s}\}_{s\in G} and the function \gamma 0 can
be described through this identification. For this end, we choose a section
\phi : G/N_{\beta}arrow G of \pi . By Lemma 3.1, the function t\in G\mapsto\gamma_{0}(s, t)

belongs to C_{\beta} for each s\in G ; hence it can be viewed as a function on
G\cross G/N_{\beta} . More precisely, the equation

\gamma(s, w)=\gamma_{0}(s, \phi(w)) (s\in G, w\in G/N_{\beta})

defines a function \gamma on G\cross G/N_{\beta} , and this definition is independent of the
choice of the section \phi . In fact, by definition, one has \gamma(s, w)=f_{\Psi_{s}(b),b}(w) .
The function \gamma is characterized by the equality:

\gamma 0(s, t)=\gamma(s, \pi(t)) (s, t\in G) .

In the later discussion, we shall find that this function \gamma is more important
than \gamma_{0} . So, in the next lemma, we would like to restate equations (11.0)-
(11.6) of Lemma 3.11 in terms of the function \gamma . We leave the verification
to readers.

Lemma 3.12 The function \gamma on G\cross G/N_{\beta} defifined above satisfifies the
following equalities., where, i\underline{n(P5)}and (P6), \eta_{0} is the function on G/N_{\beta}

defifined by \eta_{0}(x)=\sum_{y\in G/N_{\beta}}\mu(\delta_{x^{-1}y}, \delta_{y})(i.e., \eta_{0}=|N_{\beta}|\pi_{*}^{-1}(\xi_{0}) with the
previous notation).

(PO) \Omega_{s}(f)(w)=\sum_{r\in G}\gamma(rs^{-1}r^{-1}, \pi(r)w^{-1})f(\pi(r))
;

(P1)
\sum_{r\in G}\gamma(rs^{-1}r^{-1}, \pi(r)w^{-1})=\delta_{s,e}

;

(P2)
\sum_{r\in G}\gamma(r, w)=|N_{\beta}|^{-1}\delta_{w,e}

;

(P3)
\sum_{r\in G}\gamma(rur^{-1}, \pi(r)w)\gamma(v, \pi(r)^{-1})=\delta_{u,v}\gamma_{(}u

, w) ;

(P4) \frac{1}{|N_{\beta}|^{2}}\sum_{r\in G}\gamma(rs^{-1}r^{-1}, \pi(r)w^{-1})\mu(\delta_{\pi(ur)^{-1}}, \delta_{\pi(vr)^{-1}})
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= \sum_{p\in G}\sum_{x,y\in G/N_{\beta}}\mu(\delta_{x}, \delta_{y})\gamma(up^{-1}u^{-1}, \pi(u)w^{-1}x^{-1})

\cross\gamma(vs^{-1}pv^{-1}, \pi(v)w^{-1}y^{-1}) ;

(P5) \sum_{x\in G/N_{\beta}}\eta 0(x)\overline{\gamma(s^{-1},wx)}=\frac{1}{|N_{\beta}|}\sum_{r\in G}\eta_{0}(\pi(r))\gamma(rsr^{-1}, \pi(r)w) ;

(P6)
\mu(\delta_{w}, \delta_{\pi(t)^{-1}})=\sum_{r\in G}\sum_{x\in G/N}\sum_{\pi(q)=w}\mu(\delta_{\pi(r)}, \delta_{x})\gamma(qtrq^{-1}, wx^{-1})

for all s , u , v\in G , w\in G/N_{\beta} and f\in C_{\beta}=\ell^{\infty}(G/N_{\beta}) .

We now concentrate attention to the support of the function \gamma in the
first variable. It will turn out that it has something to do with the spectrum
of the derived coaction \delta_{\beta} in the sense of Nakagami-Takesaki ([N-T]).

Let c=\{c(t)\}_{t\in G} be in Re1(/3). By the definition of p_{\beta} , we have c=c_{p_{\beta}}

with the notation in Section 1. Since p_{\beta}=|N_{\beta}|^{-1}\chi_{N_{\beta}} , we get

c(t)=c_{p_{\beta}}(t)

= \sum_{s\in G}c(ts)p_{\beta}(s^{-1})

= \frac{1}{|N_{\beta}|}\sum_{s\in N_{\beta}}c(ts) .

It follows that c(ts)=c(t) for any t\in G and s\in N_{\beta} . Since N_{\beta} is normal,
we may obtain the following lemma.

Lemma 3.13 Let c=\{c(t)\}_{t\in G} be in Re1(/3). We have c(rts)=c(t) for
any t\in G and r, s\in N_{\beta} .

In the next lemma, recall that the grading \{\Psi_{s}\}_{s\in G} in Re1(/3) which
determines the derived coaction is defined by \Psi_{s}(c)=\{\Phi_{tst^{-1}}(c(t))\}_{t\in G} for
any c=\{c(t)\}\in Re1(\beta) .

Lemma 3.14 Let G^{N_{\beta}} be the centralizer of N_{\beta} in G , i.e. , G^{N_{\beta}} be the set
of all elements g\in G satisfying sgs^{-1}=g for all s\in N_{\beta} . If t\not\in G^{N_{\beta}} , we
have \Psi_{t}=0 as a linear map.

Proof. Let g\in G . In view of the preceding lemma, we have \Psi_{g}(c)(ts)=

\Psi_{g}(c)(t) for any c\in Re1(\beta) , t\in G and s\in N_{\beta} . But a straightforward
calculation shows that the left-hand side of this identity equals \Psi_{sgs^{-1}}(c)(t) .
This implies that \Psi_{sgs^{-1}}=\Psi_{g} for all s\in N_{\beta} . Since \Psi_{u}\circ\Psi_{v}=\delta_{u,v}\Psi_{u} for
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u , v\in G , it follows that \Psi_{g}=0 if g\not\in G^{N_{\beta}} . \square

By Lemma 3.14, we find that the spectrum of the derived coaction \delta_{\beta}

(see \S 1 of Chap. IV of [N-T] for the definition of the spectrum of a coaction)
is contained in the normal subgroup G^{N_{\beta}} .

Corollary 3.15 With the notation introduced above, we have \gamma(t, w)=0

whenever t\not\in G^{N_{\beta}} .

Proof. This immediately follows from the definition of \gamma . \square

Before we close this section, we briefly examine the dependence of \gamma

on the choice of the element b=\{b(s)\}_{s\in G} in Re1(/3) with f_{b}=p_{\beta} and
\sum_{s\in G}b(s)=1 . So let c=\{c(s)\}_{s\in G} be another such a choice. Recall (see
Lemma 4.16 of [Y1] ) that, if \mu_{b} (resp. \mu_{c} ) is the 2-cocycle on C_{\beta} that arises
from b=\{b(s)\} (resp. c=\{c(s)\} ), then they are related to each other in
the following way:

\mu_{c}(f, g)=\sum_{t\in G}\mu_{b}(\overline{\eta}*f*\delta_{t^{-1}}, ^{\overline{\eta}*g*\delta_{t^{-1}}})\eta(t)
,

where \eta’=f_{b,c}\in C_{\beta} . Under the identification C_{\beta}\cong\ell^{\infty}(G/N_{\beta}) , this is
equivalent to

\mu_{c}(f, g)=\sum_{x\in G/N_{\beta}}\mu b(\overline{\eta_{c,b}}*f*\delta_{x^{-1,\overline{\eta c,b}}}*g*\delta_{x^{-1}})\eta_{c},b(x)

(f, g\in\ell^{\infty}(G/N_{\beta})) , (3.16)

where \eta c,b=|N|\pi_{*}^{-1}(f_{b,c}) with the previous notation. We would like to
obtain a result similar to the one as above for the function \gamma .

Lemma 3.17 In the situation described above, we denote by \gamma^{b} (resp.
\gamma^{c}) the function on G\cross G/N_{\beta} defifined by

\gamma^{b}(s, w)=f_{\Psi_{s}(b),b}(w) (resp. \gamma^{c} ( s , w)=f_{\Psi_{s}(c),c}(w) ).

Then they satisfy the identity

\gamma^{c}(s, w)=\frac{1}{|N|}\sum_{x\in G/N_{\beta}}\sum_{u\in G}\gamma^{b}(usu^{-1}, \pi(u)x^{-1})\overline{\eta_{c,b}}(\pi(u))\eta_{c,b}(xw)

for any s\in G and w\in G/N_{\beta} .

Proof. By (4.15) of [Y1], we have c=b_{\overline{f_{b,c}}} . The assertion now follows
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from a direct computation. \square

4. General theory on 2-cocycles and twisted crossed products

In this section, we shall give a new definition of a 2-cocycle on a com-
mutative Kac algebra. Then we shall discuss crossed products by coactions
twisted by 2-cocycles. The argument given here can be extended to the case
of general finite-dimensional Kac algebras (cf. [Y2]). We shall deal with that
case elsewhere in the future.

In the next definition, G is a finite group as usual. We always con-
sider that the algebra \ell^{\infty}(G) is equipped with the ordinary Kac algebraic
structure.

Definition 4.1 A 2-cocycle on \ell^{\infty}(G) is a bilinear form \mu on \ell^{\infty}(G)\otimes

\ell^{\infty}(G) such that
(C1) in the involutive Banach algebra \ell^{1}(G)\otimes\ell^{1}(G) , we have

\mu^{\#}*\mu=\mu*\mu^{\phi}=\epsilon_{G}\otimes\epsilon_{G} ,

where \epsilon_{G} , the counit of \ell^{\infty}(G) , is defined by \epsilon_{G}(f)=f(e) ;
(C2) \mu satisfies the cocycle condition, i.e., with the conventional sigma

notation,

\sum_{(f),(g)}\mu(f_{(1)}, g_{(1)})\mu(f_{(2)}g_{(2)}, h)

= \sum_{(g),(h)}\mu(g_{(1)}, h_{(1)})\mu(f, g_{(2)}h_{(2)})
(f, g, h\in\ell^{\infty}(G)) ;

(C3) \mu is normal in the sense of [BCM], i.e.,

\mu(f, 1)=\mu(1, f)=\epsilon_{G}(f) (f\in\ell^{\infty}(G)) ;

(C4) for any f, g\in\ell^{\infty}(G) , we have

\sum_{s,t,u,v\in G}\overline{\mu(\delta_{s},\delta_{t})}\mu(\delta_{v^{-1}u}, \delta_{u})f(v^{-1}st^{-1})g(t^{-1})=\mu(f, g) ;

(C5) for any f\in\ell^{\infty}(G) ,

\sum_{s\in G}\mu(f*\delta_{s}, \delta_{s})=\sum_{s\in G}\mu(f^{\vee}*\delta_{s}, \delta_{s})
.

We denote by Z^{2}(\ell^{\infty}(G)) the set of all 2-cocycles on \ell^{\infty}(G) . It is easy
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to check that \epsilon_{G}\otimes\epsilon_{G} also belongs to Z^{2}(\ell^{\infty}(G)) . We call this 2-cocycle the
trivial 2-c0cycle.

Given a bilinear form \mu on \ell^{\infty}(G)\otimes\ell^{\infty}(G) satisfying (C1)-(C3) of
Definition 4.1. Then, by [BCM], the equation

f \#\mu g=\sum_{(f),(g)}\mu(f_{(1)}, g_{(1)})f_{(2)}g_{(2)}
(f, g\in\ell^{\infty}(G))

defines a new (associative) product, called the twisted product by \mu , with 1
the identity with respect to this multiplication. We write \ell_{\mu}^{\infty}(G) for \ell^{\infty}(G)

with the twisted product. We would like to introduce an involution on
\ell_{\mu}^{\infty}(G) . First, for each f\in\ell_{\mu}^{\infty}(G) , we define an operator T_{f} on \ell^{2}(G) by

T_{f}g=f\#\mu g (g\in\ell^{2}(G)) .

It is easily checked that

T_{f}= \sum_{s,t\in G}\mu(f*\delta_{s^{-1}}, \delta_{t})\delta_{s}\lambda(t)^{*}

(4.2)

From this, it follows that f\in\ell_{\mu}^{\infty}(G)\mapsto T_{f}\in \mathcal{L}(\ell^{2}(G)) is an injective
homomorphism. It is obvious that this map is a homomorphism. To see that
it is injective, suppose that T_{f}=0 for some f\in\ell_{\mu}^{\infty}(G) . From (4.2) and the
fact that \{\delta_{s}\lambda(t)^{*}\}_{s,t\in G} forms a basis of \mathcal{L}(\ell^{2}(G)) , we obtain \mu(f*\delta_{s^{-1}}, \delta_{t})=

0 for all s , t\in G . Then, by (C3), we have \epsilon c(f*\delta_{s^{-1}})=0 , which is
equivalent to f=0. For the moment, we denote by D_{\mu} the subalgebra
\{T_{f} : f\in\ell_{\mu}^{\infty}(G)\} of \mathcal{L}(\ell^{2}(G)) . The following lemma is proven in [Y2]
in more general setting. We, however, exhibit its proof for the sake of
completeness.

Lemma 4.3 Retain the notation described above. Then the following
conditions are equivalent:

(a) the algebra D_{\mu} is self-adjoint;
(b) \mu satisfifies condition (C4).

If one of the conditions (a) and (b) occurs, then, for any f\in\ell_{\mu}^{\infty}(G) , we
have

T_{f}^{*}=T_{\eta_{0}*\overline{f}} ,

where \eta_{0} is a function on G defifined by \eta_{0}(t)=\sum_{s\in G}\overline{\mu(\delta_{t^{-1}s},\delta_{s})} .
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Proof. (a)\Rightarrow(b) : Let f\in\ell_{\mu}^{\infty}(G) . From identity (4.2),

T_{f}^{*}= \sum_{s,t\in G}\overline{\mu(f*\delta_{s^{-1}},\delta_{t})}\lambda(t)\delta_{s}

= \sum_{s,t\in G}\overline{\mu(f*\delta_{s^{-1}},\delta_{t})}\delta_{ts}\lambda(t)

= \sum_{s,t\in G}\overline{\mu(f*\delta_{s^{-1}t^{-1}},\delta_{t^{-1}})}\delta_{s}\lambda(t)^{*} (4.4)

Hence, if there exists an element h\in\ell_{\mu}^{\infty}(G) such that T_{f}^{*}=T_{h}= \sum_{s,t\in G}\mu

(h*\delta_{s^{-1}}, \delta_{t})\delta_{s}\lambda(t)^{*} , then we have

\overline{\mu(f*\delta_{s^{-1}t^{-1}},\delta_{t^{-1}})}=\mu(h*\delta_{s^{-1}}, \delta_{t}) (s, t\in G) .

By summing up both sides of the above identity with respect to t , we obtain,
by (C3),

h(s)= \sum_{t\in G}\overline{\mu(f*\delta_{s^{-1}t},\delta_{t})}
.

It is readily checked that \sum_{t\in G}\overline{\mu(f*\delta_{s^{-1}t},\delta_{t})}=\eta_{0}*\overline{f} with \eta_{0} occurring in
the assertion of this lemma. By substituting \eta_{0}*\overline{f} for f in (4.4), we have

T_{\eta 0*\overline{f}}^{*}= \sum_{s,t\in G}\overline{\mu(\eta_{0}*\overline{f}*\delta_{s^{-1}t^{-1}},\delta_{t^{-1}})}\delta_{s}\lambda(t)^{*}

This must be equal to T_{f}= \sum_{s,t\in G}\mu(f*\delta_{s^{-1}}, \delta_{t})\delta_{s}\lambda(t)^{*} From this, it
follows that we have

\mu(\eta_{0}*\overline{f}*\delta_{s^{-1}t^{-1}}, \delta_{t^{-1}})=\mu(f*\delta_{s^{-1}}, \delta_{t}) (s, t\in G) .

By letting s=e , we obtain

\mu(\eta_{0}*\overline{f}*\delta_{t^{-1}}, \delta_{t^{-1}})=\mu(f, \delta_{t}) . (4.5)

Suppose now that g\in\ell_{\mu}^{\infty}(G) . Then, from (4.5),

\mu(f, g)=\sum_{t\in G}g(t)\overline{\mu(\eta_{0}*\overline{f}*\delta_{t^{-1}},\delta_{t^{-1}})}

= \sum_{s,t\in G}g(t)\overline{(\eta_{0}*\overline{f})(st)}\overline{\mu(\delta_{s},\delta_{t^{-1}})}

= \sum_{r,s,t\in G}g(t)\overline{\eta_{0}(r)}f(r^{-1}st)\overline{\mu(\delta_{s},\delta_{t^{-1}})}
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= \sum_{r,s,t,u\in G}g(t)\mu(\delta_{r^{-1}u}, \delta_{u})f(r^{-1}st)\overline{\mu(\delta_{s},\delta_{t^{-1}})}
.

This shows that condition (C4) holds true.
(b)\Rightarrow(a) : The argument in the preceding paragraph shows that con-

dition (C4) (or, equivalently, identity (4.5)) is equivalent to the identity
T^{*}\eta 0*\overline{f}=T_{f} . Therefore the algebra D_{\mu} is self-adjoint. \square

Now we suppose that \mu further satisfies condition (C4). Then, for each
f\in\ell_{\mu}^{\infty}(G) , we set

f^{\star}=\eta_{0}*\overline{f}

with \eta_{0} the function defined in Lemma 4.3. In view of Lemma 4.3, this
defines an involution on \ell_{\mu}^{\infty}(G) . Hence D_{\mu} is a*-subalgebra of \mathcal{L}(\ell^{2}(G)) . It
is clear that the vector 1\in\ell^{2}(G) is a cyclic and separating vector for D_{\mu} ,
so that the functional \varphi_{0} on D_{\mu} defined by \varphi_{0}(T_{f})=(T_{f}1|1)=(f|1)

(f\in\ell_{\mu}^{\infty}(G)) is faithful. It is easily checked that \varphi_{0}(T_{g}^{*}T_{f})=(f|g) . This
implies that the Hilbert space L^{2}(\varphi_{0}) obtained from \varphi_{0} is isomorphic to
\ell^{2}(G) , and that the pair \{D_{\mu}, \ell^{2}(G)\} is a standard representation.

Lemma 4.6 With the notation as above, the following conditions are
equivalent:

(a) the conjugate-linear map J_{\mu} : f\in\ell^{2}(G)\mapsto f^{\star}\in\ell^{2}(G) is a

unitary involution, i.e. , \varphi_{0} is a trace;
(b) \mu also satisfifies condition (C5);

If
oneoftheaboveconditionsis(c)thefunction\eta_{0}defifinedinLemma4.3satisfified,thenwehave\eta_{0}*\eta_{0}=\delta_{e}satisfifies\eta^{\vee}\#=\eta_{0}.

.

Proof The equivalence of (b) and (c) is obvious.
(a)\Rightarrow(b) : Let f , g\in\ell^{2}(G) . By assumption and the definition of the

involution \star , we have

(f|g)=(g^{\star}|f^{\star})

=(\eta_{0}^{\beta}*\eta 0*\overline{g}|\overline{f}) .

From this, it follows that \eta_{0}^{\#}*\eta 0=\delta_{e} . In the meantime, the fact that
(\delta_{e}^{\star})^{\star}=\delta_{e} yields \eta_{0}*\overline{\eta_{0}}=\delta_{e} . Hence we conclude that \eta_{0}^{\phi}=\overline{\eta_{0}} . Thus
\eta_{\check{0}}=\eta_{0} .

(b)\Rightarrow(a) : By the preceding paragraph, we find that, if \eta_{0}^{\vee}=\eta_{0} , then we
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have \eta_{0}^{Q}*\eta_{0}=\delta_{e} , which implies that (f|g)=(g^{\star}|f^{\star}) for any f, g\in\ell^{2}(G) .
\square

Corollary 4.7 Let \mu be a 2-cocycle on \ell^{\infty}(G) , i.e. , \mu\in Z^{2}(\ell^{\infty}(G)) . Then
the equation

\tilde{\mu}(f, g)=\mu(g, f) (f, g\in\ell^{\infty}(G))

defifines a 2-cocycle \tilde{\mu} on \ell^{\infty}(G) . Moreover, we have D_{\overline{\mu}}=D_{\mu}’ .

Proof. It is easy to show that \tilde{\mu} satisfies conditions (C1)-(C3) .
For (C4), note first that f\# g\sim=g\# f . where \# and \sim\# are the twisted

products associated with \mu and \tilde{\mu} , respectively. Hence D - is exactly the set
of right multiplication operators by the elements of f\in\ell_{\mu}^{\infty}(G) , which is,
by Lemma 4.6, the commutant D_{\mu}’ of D_{\mu} . In particular, D - is self-adjoint.
Thus, from Lemma 4.3, \tilde{\mu} satisfies condition (C4).

For (C5), note that, from a direct computation, we have \tilde{\eta}_{0}=\eta_{\check{0}} .
where \tilde{\eta}_{0} is the function defined in Lemma 4.3 associated with \tilde{\mu} . In view
of Lemma 4.6, we obtain \tilde{\eta}_{0}=\eta_{0} . So we have \tilde{\eta}_{0^{\vee}}=\tilde{\eta}_{0} . \square

For the moment, let us return to such bilinear forms \mu=\mu_{\beta} as appeared
in [Y1] (see Section 1), namely, bilinear forms that arise from coactions of
finite groups on finite factors. So we consider the situation described in
Section 1: \beta is a coaction of G on a finite factor A with \tau the unique
faithful normal tracial state; p_{\beta} is the central projection in \ell^{1}(G) which
determines the inner part of \beta;\mu=\mu_{\beta} is the bilinear form on C_{\beta} , the
commutative Kac algebra dual to R(G)_{\lambda(p_{\beta})} and so on. As usual, we set

N_{\beta}=\{s\in G : \delta_{s}*p_{\beta}=p_{\beta}\} .

As in Section 3, we identify C_{\beta} with \ell^{\infty}(G/N_{\beta}) . So p_{\beta}=|N_{\beta}|^{-1}\delta_{e} , where
e is the identity of G/N_{\beta} . Let \pi : Garrow G/N_{\beta} denote the canonical
surjection. From Proposition 3.4, Lemma 3.5 and Theorem 3.6 of [Y1], we
find that \mu_{\beta} satisfies conditions (C1)-(C3) . We show below that condition
(C4) is also satisfied, so that \mu_{\beta} belongs to Z^{2}(\ell^{\infty}(G/N_{\beta})) .

Proposition 4.8 The bilinear form \mu_{\beta} belongs to Z^{2}(\ell^{\infty}(G/N_{\beta})) .

Proof. As remarked, it suffices to prove that \mu_{\beta} satisfies conditions (C4)
and (C5). Condition (C5) is satisfied, due to (2.6) and Lemma 4.6. For
(C4), let f , g be in \ell^{\infty}(G/N_{\beta}) . Recall that |N_{\beta}|\xi_{0}=\eta_{0} (see Lemma 3.12).
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Since \overline{f_{b,b^{*}}}=f_{b^{*},b} , we have

\sum_{x,y,z,w\in G/N_{\beta}}\overline{\mu_{\beta}(\delta_{x},\delta_{y})}\mu_{\beta}(\delta_{z^{-1}w}, \delta_{w})f(z^{-1}xy^{-1})g(y^{-1})

=|N_{\beta}| \sum_{yx,,z\in G/N_{\beta}}\overline{\mu_{\beta}(\delta_{x},\delta_{y})}f_{b,b^{*}}(z)f(z^{-1}xy^{-1})g(y^{-1})

=|N_{\beta}| \sum_{yx,\in G/N_{\beta}}\overline{\mu_{\beta}(\delta_{x},\delta_{y})}(f_{b^{*},b}*f*\delta_{y})(x)g(y^{-1})

=|N_{\beta}| \sum_{y\in G/N_{\beta}}\overline{\mu_{\beta}(f_{b^{*},b}*\overline{f}*\delta_{y},\delta_{y})}g(y^{-1})
.

We take a section \phi : G/N_{\beta}arrow G for \pi again. Then, by the definition of
\mu_{\beta} ,

\mu_{\beta}(f_{b^{*},b}*\overline{f}*\delta_{y}, \delta_{y})=\sum_{t\in G}\overline{\tau(b_{\delta_{y}0\pi}(t)b_{(f_{b^{*},b^{*}}\overline{f}*\delta_{y})0\pi}(t)b(t)^{*})}

= \sum_{t\in G}\tau(b(t\phi(y)^{-1})(b_{f_{b^{*},b}})_{(\overline{f}*\delta_{y})0\pi}(t)b(t)^{*})

= \sum_{t\in G}\tau(b(t\phi(y)^{-1})(b^{*})_{(\overline{f}*\delta_{y})0\pi}(t)b(t)^{*})

= \sum_{t\in G}\tau(b(t\phi(y)^{-1})(b_{f^{0\pi}})^{*}(t\phi(y)^{-1})b(t)^{*})

= \sum_{t\in G}\tau(b(t)b_{f^{0\pi}}(t\phi(y)^{-1})b(t\phi(y)^{-1})^{*})
.

The third identity is due to the fact that b_{f_{b^{*},c^{*}}}=c for any c\in Re1(\beta) (see
the proof of Lemma 4.5 of [Y1] ) . From the above calculation, it follows that

|N_{\beta}| \sum_{y\in G/N_{\beta}}\overline{\mu_{\beta}(f_{b^{*},b}*\overline{f}*\delta_{y},\delta_{y})}g(y^{-1})

=|N_{\beta}| \sum_{y\in G/N_{\beta}}\sum_{t\in G}\tau(b(t)b_{f^{0\pi}}(t\phi(y)^{-1})b(t\phi(y)^{-1})^{*})g(y^{-1})

= \sum_{t\in G}\sum_{y\in G/N_{\beta}}\sum_{s\in N_{\beta}}\tau(b(t)b_{f^{0\pi}}(t\phi(y)^{-1}s)\cdot b(t\phi(y)^{-1}s)^{*})

g(\pi(\phi(y)^{-1}s))
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= \sum_{t,u\in G}\tau
( b(t)b_{f\circ\pi} (tu)b(tu) * ) g(\pi(u))

= \sum_{t,u\in G}\tau(b(t)b_{f^{0\pi}}(u)b(u)^{*})g(\pi(t^{-1}u))

= \sum_{u\in G}\tau(b_{go\pi}(u)b_{f^{0\pi}}(u)b(u)^{*})

=\mu_{\beta}(f, g) .

Hence (C4) is satisfied. \square

In the remainder of this section, we discuss twisted crossed products
of von Neumann algebras by coactions. The main ingredients of twisted
crossed products by coactions are (1) an action \beta of the commutant Kac
algebra R(G)’ of the group algebra R(G) of a finite group G on a von
Neumann algebra A and (2) a 2-cocycle \mu in Z^{2}(\ell^{\infty}(G)) . One can think of
\beta as a coaction of the opposite group of G on A. Thus, if we wish to start
with a coaction of G , then we need to take a 2-cocycle of \ell^{\infty}(G^{\sigma}) , where
G^{\sigma}=G has the opposite multiplication. Given a system (A, G, \beta, \mu) as
above, we define the twisted crossed product, denoted by A\cross_{\beta,\mu}R(G)’ . to
be the von Neumann algebra generated by \beta(A) and C\otimes\{T_{f} : f\in\ell_{\mu}^{\infty}(G)\}

with the notation introduced in the present section. In what follows, we
shall deduce fundamental facts on twisted crossed products that will be
needed in the next section. So let us fix such a system (A, G, \beta, \mu) . Let
a\in A . Then \beta(a) has the form

\beta(a)=\sum_{s\in G}\Phi_{s}(a)\otimes\rho(s)
,

where \rho is the right regular representation of G . This defines a family
\{\Phi_{s}\}_{s\in G} of linear maps from A into itself, and determines the G-grading in
A associated with \beta . In other words, the family satisfies identities (CAO)-
(CA4) in Section 1.

Lemma 4.9 Let a\in A and f\in\ell_{\mu}^{\infty}(G) . Then we have

(1 \otimes T_{f})\beta(a)=\sum_{t\in G}\beta(\Phi_{t}(a))(1\otimes T_{f*\delta_{t}})
.

Proof. This follows from a direct computation, since we already know an
explicit form of T_{f} (see identity (4.2)). \square
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This lemma shows that the set of elements of the form \sum_{s\in G}\beta(c(s))(1\otimes

T_{\delta_{s}}) , where \{c(s)\}_{s\in G}\subseteq A , forms a \sigma-strongly*dense*-subalgebra of the
twisted crossed product A\cross_{\beta,\mu}R(G)’ . Following the idea of the proof of
Proposition 1.1 of [Y1], we shall prove that this set in fact coincides with the
twisted crossed product. For this purpose, let \omega_{0} denote the vector state
defined by the unit vector |G|^{-1/2} 1\in\ell^{2}(G):\omega_{0}(T)=|G|^{-1}(T 1 |1)

(T\in \mathcal{L}(\ell^{2}(G))) . Then E=idA\otimes\omega_{0} is a normal conditional expectation
from A\otimes \mathcal{L}(\ell^{2}(G)) onto A\cong A\otimes C. Since A\cross_{\beta,\mu}R(G)’ is contained in
A\otimes \mathcal{L}(\ell^{2}(G)) , it makes sense to restrict the map E to A\cross_{\beta,\mu}R(G)’ . We
still denote the restriction by E .

Lemma 4.10 Let X= \sum_{s\in G}\beta(c(s))(1\otimes T_{\delta_{s}}) be in A\cross_{\beta,\mu}R(G)’ . where
\{c(s)\}_{s\in G}\underline{\subseteq} A. Then

E(X)= \frac{1}{|G|}\sum_{s\in G}c(s) .

Proof. Note that X= \sum_{s,t\in G}\Phi_{s}(c(t))\otimes\rho(s)T_{\delta_{t}} . It is easy to see that
\omega_{0}(\rho(s)T_{\delta_{t}})=|G|^{-1} . Since \sum_{s\in G}\Phi_{s}(c(t))=c(t) (see identity (CA3), we
find that E(X)=|G|^{-1} \sum_{t\in G}c(t) . \square

Lemma 4.11 Let X be as in the preceding lemma. Then we have

c(t)=|G| \sum_{s\in G}\Phi_{s}\circ E((1\otimes T_{\delta_{ts}1}^{*})-X)

for any t\in G .

Proof. Let \eta_{0} be the function defined in Lemma 4.3. Since \delta_{u}\#\mu\delta_{v}=

\sum_{r\in G}\mu(\delta_{ur^{-1}}, \delta_{vr^{-1}})\delta_{r} for any u , v\in G , it follows that

( \delta_{t}^{\star}*\delta_{u})\#\mu\delta_{s}=\sum_{g\in G}\eta 0(gu^{-1}t^{-1})(\delta_{g}\#\mu\delta_{S})

= \sum_{g,h\in G}\eta_{0}(gu^{-1}t^{-1})\mu(\delta_{gh^{-1}}, \delta_{sh^{-1}})\delta_{h}
.

Hence, by Lemma 4.9, we obtain

(1\otimes T_{\delta_{t}}^{*})X

= \sum_{s\in G}(1\otimes T_{\delta^{A}t})\beta(c(s))(1\otimes T_{\delta_{s}})
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= \sum_{u,s\in G}\beta(\Phi_{u}(c(s)))(1\otimes T_{(\delta_{t}^{t}*\delta_{u})\#\mu\delta_{s}})

= \sum_{s,u,g,h\in G}\eta_{0}(gu^{-1}t^{-1})\mu(\delta_{gh^{-1}}, \delta_{sh^{-1}})\beta(\Phi_{u}(c(s)))(1\otimes T_{\delta_{h}})
.

From this, together with Lemma 4.10, it follows that

E((1\otimes T_{\delta_{t}}^{*})X)

= \frac{1}{|G|}\sum_{s,u,g,h\in G}\eta_{0}(gu^{-1}t^{-1})\mu(\delta_{gh^{-1}}, \delta_{sh^{-1}})\beta(\Phi_{u}(c(s)))

= \frac{1}{|G|}\sum_{s,u,g\in G}\eta_{0}(gu^{-1}t^{-1})\overline{\eta 0}(sg^{-1})\beta(\Phi_{u}(c(s)))

= \frac{1}{|G|}\sum_{s,u\in G}(\overline{\eta_{0}}*\eta_{0})(su^{-1}t^{-1})\Phi_{u}(c(s))

= \frac{1}{|G|}\sum_{u\in G}\Phi_{u}(c(tu)) .

The last identity is guranteed by the fact that \eta_{0}*\overline{\eta 0}=\delta_{e} , i.e., (\delta_{e}^{\star})^{\star}=\delta_{e} .
Applying the linear map \Phi_{s} to both sides of the above equality, we conclude
that

\Phi_{s}oE((1\otimes T_{\delta_{t}}^{*})X)=\frac{1}{|G|}\Phi_{s}(c(ts)) ( s, t\in G) .

Thus we have \Phi_{s}(c(t))=|G|\Phi_{s}\circ E((1\otimes T_{\delta_{ts}}^{*}-1)X) . Since c(t)= \sum_{s\in G}\Phi_{s}(c(t)) ,

we obtain the desired identity. \square

Lemma 4.12 We have

A \cross_{\beta,\mu}R(G)’=\{\sum_{s\in G}\beta(c(s))(1\otimes T_{\delta_{s}}) : \{c(s)\}_{s\in G}\subseteq A\} .

Proof. Let us denote by S the set on the right-hand side of the assertion,
which is, as noted, \sigma-strongly*dense in the twisted crossed product. Sup-
pose that X\in A\cross_{\beta,\mu}R(G)’ . Then there is a net \{X_{i}\} in S that converges
\sigma- strongly*toX . Each X_{i} has the form X_{i}= \sum_{s\in G}\beta(c(i, s))(1\otimes T_{\delta_{s}}) .
From Lemma 4.11, we find that

|G| \sum_{s\in G}\Phi_{s}\circ E((1\otimes T_{\delta_{ts}}^{*})-1X)
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=|G| \sum_{s\in G}\sigma- s^{*}-\lim_{i}\Phi_{s}\circ E((1\otimes T_{\delta_{ts}1}^{*})-X_{i})

= \sigma- s^{*}-\lim_{i}c(i, t) .

Hence, by setting c(t)=|G| \sum_{s\in G}\Phi_{s}\circ E((1\otimes T_{\delta_{ts}}^{*}-1)X)\in A , we get

X= \sigma- s^{*}-\lim_{i}\sum_{s\in G}\beta(c(i, s))(1\otimes T_{\delta_{s}})

= \sum_{s\in G}\beta(c(s))(1\otimes T_{\delta_{s}})
.

This shows that X belongs to S. \square

Corollary 4.13 Each element XofA\cross_{\beta,\mu}R(G)’ has a unique expression

X= \sum_{s\in G}\beta(c(s))(1\otimes T_{\delta_{s}})

for some c=\{c(s)\}_{s\in G}\subseteq A . In this case, we write X_{c} for X

Proof. The expression being unique immediately follows from Lemma 4.11.
\square

Proposition 4.14 The linear map E is a faithful normal conditional
expectation from the twisted crossed product A\cross_{\beta,\mu}R(G)’ onto A, where A
is identifified with \beta(A) via \beta .

Proof. Let a\in A . With the notation in Corollary 4.13, we have \beta(a)=

X_{c} , where c=\{c(s)\equiv a\}_{s\in G} . Hence, by Lemma 4.10, E(\beta(a))=a . This
shows that E is a normal conditional expectation. To prove that it is faith-
ful, we have only to note that, with X=X_{a} in the twisted crossed product,
where a=\{a(s)\}_{s\in G}\subseteq A , we have E(X_{a}X_{a}^{*})=|G|^{-1} \sum_{s\in G}a(s)a(s)^{*} The
verification of this identity is left to readers. \square

The next objective is to examine the relative commutant of \beta(A) in the
twisted crossed product. For this end, we consider the relative commutant
A^{c} of \beta(A) in the ordinary crossed product A\cross_{\beta}R(G)’ As we noted before
Lemma 4.9, A\cross_{\beta}R(G)’ can be viewed as the crossed product of A by the
coaction \beta of the opposite group of G . Hence, by [Y1] (see \S 1), A^{c} is in
bijective correspondence with the set Re1(/3) of all elements c=\{c(t)\}_{t\in G} ,
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where c(t)\in A , satisfying

xc(t)= \sum_{s\in G}c(s)\Phi_{s^{-1}t}(x)
(4.15)

for all x\in A , via the map c= \{c(t)\}\in Re1(\beta)\mapsto\sum_{s\in G}\beta(c(s))(1\otimes\delta_{s})\in

A^{c} . In the next lemma, we show that the relative commutant A^{c,\mu} of \beta(A)

in the twisted crossed product also can be identified with Re1(/3) by the
correspondence as above.

Lemma 4.16 Let X_{c}= \sum_{s\in G}\beta(c(s))(1\otimes T_{\delta_{s}}) be in the twisted crossed
product. Then X_{c} lies in the relative commutant A^{c,\mu} if and only if c=
\{c(s)\} belongs to Re1(/3).

Proof. Let x\in A . With the aid of Lemma 4.9, it can be easily checked
that

X_{c} \cdot\beta(x)=\sum_{t\in G}\beta(\sum_{s\in G}c(s)\Phi_{s^{-1}t}(x))(1\otimes T_{\delta_{t}})
.

Hence, by Corollary 4.13, the condition [X_{c}, \beta(x)]=0 is equivalent to
identity (4.15). So c=\{c(t)\} belongs to Re1(/3). \square

The following corollary is an immediate consequence of Lemma 4.16.

Corollary 4.17 If the action \beta is outer in the sense of [Y] , then \beta(A) has
the trivial relative commutant in the twisted crossed product A\cross_{\beta,\mu}R(G)’

We close this section with the following remark concerning 2-c0cycles
on \ell^{\infty}(G) .

Remark 4.18. If the group G in question is commutative, then a 2-c0cycle
on \ell^{\infty}(G) can be regarded, through the Fourier transform, as a 2-c0cycle
on the group \hat{G} , the dual of G , in the usual sense. Indeed, if \hat{\mu} is the
Fourier transform of a 2-cocycle \mu on \ell^{\infty}(G) (so \hat{\mu} is a bilinear form on
the group algebra of \hat{G} ), then, with \mu 0(p, q)=\hat{\mu}(\lambda(p), \lambda(q))(p, q\in\hat{G}) ,
we have that (i) (C1)\Leftrightarrow|\mu 0(p, q)|=1;(ii)(C2)\Leftrightarrow\mu 0(p, q)\mu 0(pq, r)=

\mu 0(p, qr)\mu_{0}(q, r);(iii)(C3)\Leftrightarrow\mu 0(e, p)=\mu 0(p, e)=1 with e the identity
of \underline{\hat{G}\cdot,(iv)(C}4 ) \Leftrightarrow\overline{\mu_{0}(p^{-1},pq)}\mu_{0}(p, p^{-1})=\mu_{0}(p, q);(C5)\Leftrightarrow\overline{\mu_{0}(p^{-1},p)}

=\mu_{0}(p, p^{-1}) . Hence conditions (C4) and (C5) automatically follow from
the other conditions in this case. The author does not know whether (C4)
or (C5) is always redundant in the noncommutative case.
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5. Models for finite group coactions

In [Y1] and Sections 3-4 of the present paper, we showed that every
coaction \beta of a finite group G on a finite factor A gives rise to a triple (N_{\beta} ,
\mu_{\beta} , \gamma_{\beta}):(i) a normal subgroup N_{\beta} of G which corresponds to the inner part
of \beta;(ii) a 2-cocycle \mu_{\beta} on \ell^{\infty}(G/N_{\beta}) so that the associated twisted algebra
\ell_{\mu_{\beta}}^{\infty}(G/N_{\beta}) is isomorphic to the relative commutant of \beta(A) in the crossed
product A\cross_{\beta}R(G);(iii) a function \gamma=\gamma_{\beta} on G\cross G/N_{\beta} that determines the
derived coaction \delta_{\beta} of G on \ell_{\mu_{\beta}}^{\infty}(G/N_{\beta}) . The goal of this section is to prove
the converse of this statement. More precisely, we shall show that, given
an abstract triple (N, \mu, \gamma) that satisfies suitable conditions, there exists
a coaction \beta=\beta_{(N,\mu,\gamma)} of G on the AFD factor of type II_{1} so that (N_{\beta} ,
\mu_{\beta} , \gamma_{\beta}) equals the given data (N, \mu, \gamma) . In this sense, coactions \beta_{(N,\mu,\gamma)}

may be considered as models for coactions of finite groups on the AFD II_{1}

factor.
Throughout this section, we fix a finite group G .

Definition 5.1 Let N be a normal subgroup of G . We define \mathcal{E}(G, N)

to be the set of all pairs c=(\mu, \gamma) in which
(1) \mu is a 2-cocycle on \ell^{\infty}(G/N) , i.e., \mu\in Z^{2}(\ell^{\infty}(G/N)) ;
(2) \gamma is a function on G\cross G/N satisfying conditions (P1)-(P6) and;
(3) \gamma(s, x)=0 for all x\in G/N and s\not\in G^{N} . where G^{N} is the

centralizer of N in G .
The results established in Sections 3 and 4 tell that, for any coaction

\beta of G on a finite factor, the pair (\mu_{\beta}, \gamma_{\beta}) belongs to \mathcal{E}(G, N_{\beta}) . We write
c(\beta)=(\mu_{\beta}, \gamma_{\beta}) in this case.

Lemma 5.2 Let N be a normal subgroup of G. If c=(\mu, \gamma) belongs to
\mathcal{E}(G, N) , then so does the pair \tilde{c}=(\tilde{\mu},\tilde{\gamma}) (see Corollary 4.7), where

\tilde{\mu}(f, g)=\mu(g, f) (f, g\in\ell^{\infty}(G/N)) ;
\tilde{\gamma}(s, x)=\gamma(s^{-1}, x) ( s\in G, x\in G/N) .

Clearly, we have c^{\sim\sim}=c .

Proof. We have already proven in Corollary 4.7 that \tilde{\mu} is a 2-cocycle on
\ell^{\infty}(G/N) . It is clear that \tilde{\gamma} satisfies condition (3) of Definition 5.1.

It remains to prove that \tilde{\gamma} satisfies (P1)-(P6) . Let us denote by \sim\# the
twisted product on \ell^{\infty}(G/N) associated with \tilde{\mu} . As noted in the proof of
Corollary 4.7, we have f\# g\sim=g\beta_{\mu}f for any f, g\in\ell^{\infty}(G/N) . Fix an element
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s\in G . For any f\in\ell^{\infty}(G/N) , we set

\Omega_{s}(f)(x)=\sum_{u\in G}\gamma(us^{-1}u^{-1}, \pi(u)x^{-1})f(\pi(u))
;

\tilde{\Omega}_{s}(f)(x)=\sum_{u\in G}\tilde{\gamma}(us^{-1}u^{-1}, \pi(u)x^{-1})f(\pi(u))
.

Recall that, with this notation, \gamma satisfies (P1)-(P6) if and only if \{\Omega_{s}\}

determines a coaction of G on \ell_{\mu}^{\infty}(G/N) which is inner, i.e., it satisfies
(1) \Omega_{s}(1)=\delta_{s,e}\cdot 1 ; (2) \sum_{s\in G}\Omega_{s}=id ; (3) \Omega_{s}\circ\Omega_{t}=\delta_{s,t}\Omega_{s} ; (4) \Omega_{s}(f^{\star})=

\Omega_{s^{-1}}(f)^{\star} ; (5) \Omega_{t}(f\# g)=\sum_{s\in G}\Omega_{s}(f)\beta\Omega_{s^{-1}t}(g) ; (6) f \#\delta_{\pi(t)^{-1}}=\sum_{s\in G}

\delta_{\pi(s)^{-1}}\#\Omega_{st^{-1}}(f) . Hence, in order to prove that \tilde{\gamma} satisfies conditions (P1)-
(P6), one only needs to show that \{\tilde{\Omega}_{s}\} too satisfies the above identities
(1)-(6) with respect to the product \tilde{\#} . But this can be done without diffi-
culty, once we know that \tilde{\Omega}_{s}=\Omega_{s^{-1}} . The details are left to readers as an
exercise. \square

In what follows, we fix a normal subgroup N of G and an element
c=(\mu, \gamma) of \mathcal{E}(G, N) . Set lJ =\tilde{\mu} and \phi=\tilde{\gamma} . Thus \tilde{c}=(\nu, \phi) . We take an
outer action \alpha of the commutant Kac algebra R(G)’ on the AFD factor \mathcal{R}

of type II_{1} . The existence of such an action is guaranteed, thanks to [L] or
to [Y]. As we remarked in the preceding section, \alpha can be regarded as an
outer coaction of the opposite group of G on \mathcal{R} . As usual, with \rho the right
regular representation of G , we write

\alpha(a)=\sum_{s\in G}\Phi_{s}^{\alpha}(a)\otimes\rho(s)
(a\in \mathcal{R}) .

Thus \{\Phi_{s}^{\alpha}\}_{s\in G} satisfies identities (CAO)-(CA4) . Next we take the unique
central projection q_{N} in R(G)’ so that the reduced Kac algebra R(G)_{qN}’ is
(isomorphic to) R(G/N)’ (see [E-S] for the conditions q_{N} satisfies). So we
have q_{N}=\rho(p_{N}) , where p_{N}=|N|^{-1}\chi_{N} . Then the equation

\theta(a)=\alpha(a)(1\otimes q_{N}) (a\in \mathcal{R})

defines an injective *-homomorphism from \mathcal{R} into \mathcal{R}\otimes R(G/N)’ . In fact,
it is easy to see that \theta is an action of R(G/N)’ on \mathcal{R} . We write

\theta(a)=\sum_{x\in G/N}\Phi_{x}^{\theta}(a)\otimes\rho_{G/N(X)}

(a\in \mathcal{R}) ,

where \rho_{G/N} of course stands for the right regular representation of G/N.
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With \pi : Garrow G/N the canonical surjection, we have

\Phi_{x}^{\theta}= \sum \Phi_{s}^{\alpha} (5.3)
\pi(s)=x

for any x\in G/N

Lemma 5.4 With the notation established so far, the action \theta is outer.

Proof. Suppose that X belongs to the relative commutant of \theta(\mathcal{R}) in
the crossed product \mathcal{R}\cross_{\theta}R(G/N)’ . Since \theta is a coaction of the opposite
group of G , it follows from Proposition 1.1 of [Y1] that X has the form
X= \sum_{x\in G/N}\theta(c(x))(1\otimes\delta_{x}) , where \{c(x)\}_{x\in G/N}\subseteq \mathcal{R} . Moreover,the fact
that X lies in the relative commutant implies that \{c(x)\} satisfies ac(x)=
\sum_{y\in G/N}c(y)\Phi_{y^{-1}x}^{\theta}(a) for all a\in \mathcal{R} (cf. (4.13)). Set d(t)=c(\pi(t))(t\in G) .
We assert that \{d(t)\}_{t\in G} belongs to Rel(a) with the notation in Section 4.
Indeed, if a\in \mathcal{R} , then, by (5.3),

\sum_{s\in G}d(s)\Phi_{s^{-1}t}^{\alpha}(s)=\sum_{y\in G/N}c(y)
\sum \Phi_{s^{-1}t}^{\alpha}(a)

\pi(s)=y

= \sum_{y\in G/N}c(y)\Phi_{y^{-1}\pi(t)}^{\theta}(a)

=ac(\pi(t))=ad(t) .

By assumption, d(t)=c\cdot 1 for some c\in C . Therefore, X=c\cdot 1 . \square

Now we consider the twisted crossed product Q=\mathcal{R}\cross_{\theta,\iota/}R(G/N)’

associated with \theta and the 2-cocycle \nu . In view of Corollary 4.15, Q is
a factor. Moreover, since it is an infinite-dimensional subfactor of \mathcal{R}\otimes

\mathcal{L}(\ell^{2}(G/N)) , which is AFD, Q is the AFD factor of type II_{1} , and thus
isomorphic to \mathcal{R} . Let \tau be the faithful normal tracial state on \mathcal{R} . By
Proposition 4.12, Q has a faithful normal conditional expectation E onto
\mathcal{R} . Then it is not difficult to see from the construction of E that \tilde{\tau}=\tau oE

is the unique faithful normal tracial state on Q.
Our objective is to construct a coaction of G on Q . For this, it suffices

to exhibit a family \{\Phi_{s}\}_{s\in G} of linear maps from Q into itself satisfying
(CAO)-(CA4) . Let X= \sum_{x\in G/N}\theta(c(x))(1\otimes T_{\delta_{x}}) be an arbitrary element
of Q . For each s\in G , we define a map \Phi_{s} by

\Phi_{s}(X)=\sum_{x\in G/N}\sum_{t,u\in G}\phi(us^{-1}tu^{-1}, \pi(u)x^{-1})
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\cross\theta(\Phi_{t}^{\alpha}(c(\pi(u))))(1\otimes T_{\delta_{x}}) . (5.5)

This is clearly a linear transformation on Q . If c(x)\equiv 1 , i.e., X=1 in the
above definition, then, by condition (PI), we have

\Phi_{s}(1)=\sum_{x\in G/N}\sum_{t,u\in G}\phi(us^{-1}tu^{-1}, \pi(u)x^{-1})\delta_{t,e}(1\otimes T_{\delta_{x}})

= \sum_{x\in G/N}\sum_{u\in G}\phi(us^{-1}u^{-1}, \pi(u)x^{-1})(1\otimes T_{\delta_{x}})

= \delta_{s,e}\sum_{x\in G/N}(1\otimes T_{\delta_{x}})=\delta_{s,e}

1 .

Thus \{\Phi_{s}\} satisfies (CA1). With X= \sum_{x\in G/N}\theta(c(x))(1\otimes T_{\delta_{x}}) in Q , from
(P2), we obtain

\sum_{s\in G}\Phi_{s}(X)

= \sum_{x\in G/N}\sum_{s,t,u\in G}\phi(us^{-1}tu^{-1}, \pi(u)x^{-1})\theta(\Phi_{t}^{\alpha}(c(\pi(u))))(1\otimes T_{\delta_{x}})

= \frac{1}{|N|}\sum_{x\in G/N}\sum_{t\in G}\sum_{\pi(u)=x}\theta(\Phi_{t}^{\alpha}(c(\pi(u))))(1\otimes T_{\delta_{x}})

= \sum_{x\in G/N}\sum_{t\in G}\theta(\Phi_{t}^{\alpha}(c(x)))(1\otimes T_{\delta_{x}})

= \sum_{x\in G/N}\theta(c(x))(1\otimes T_{\delta_{x}})=X
.

So \{\Phi_{s}\} satisfies (CA3). If u , v\in G , then, with X as above, condition (P3)
implies that

\Phi_{u}\circ\Phi_{v}(X)

= \sum_{s\in G/N}\sum_{s,t,g,h\in G}\phi(gu^{-1-1}hg, \pi(g)x^{-1})\phi(sv^{-1}ts^{-1}, \pi(s)\pi(g)^{-1})

\cross\theta(\Phi_{h}^{\alpha}\circ\Phi_{t}^{\alpha}(c(\pi(s))))(1\otimes T_{\delta_{x}})

= \sum_{s\in G/N}\sum_{s,t,g\in G}\phi(gu^{-1}tg^{-1}, \pi(g)x^{-1})\phi(sv^{-1}ts^{-1}, \pi(s)\pi(g)^{-1})

\cross\theta(\Phi_{t}^{\alpha}(c(\pi(s))))(1\otimes T_{\delta_{x}}) .
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In the meantime, from (P3), we find that

\sum_{g\in G}\phi(gu^{-1}tg^{-1}, \pi(g)x^{-1})\phi(sv^{-1}ts^{-1}, \pi(s)\pi(g)^{-1})

= \sum_{g\in G}\phi(gsu^{-1}ts^{-1}g^{-1}, \pi(g)\pi(s)x^{-1})\phi(sv^{-1}ts^{-1}, \pi(g)^{-1})

=\delta_{u,v}\phi(su^{-1}ts^{-1}, \pi(s)x^{-1}) .

From this, it follows that

\Phi_{u}0\Phi_{v}(X)

= \delta_{u,v}\sum_{s\in G/N}\sum_{s,t\in G}\phi(su^{-1}ts^{-1}, \pi(s)x^{-1})\theta(\Phi_{t}^{\alpha}(c(\pi(s))))(1\otimes T_{\delta_{x}})

=\delta_{u,v}\Phi_{u}(X) .

This shows that \{\Phi_{s}\} satisfies (CA1). Let X_{c}= \sum_{s\in G/N}\theta(c(x))(1\otimes T_{\delta_{x}})

and X_{d}= \sum_{s\in G/N}\theta(d(x))(1\otimes T_{\delta_{x}}) be arbitrary two elements of Q . Then,
with the aid of Lemma 4.7, a simple calculation shows that

X_{c}X_{d} (5.6)

= \sum_{x\in G/N}\theta(\sum_{y,z,w\in G/N}\nu(\delta_{ywx^{-1}}, \delta_{zx^{-1}})c(y)\Phi_{w}^{\theta}(d(z)))(1\otimes T_{\delta_{x}})
.

Thus we have

\Phi_{r}=\sum_{x\in G/N}^{(X_{c}X_{d})}\sum_{g,h\in G}\phi(gr^{-1-1}hg, \pi(g)x^{-1})

\cross\theta(\sum\nu(\delta_{yw\pi(g)^{-1}}y,z,w\in G/N , \delta_{z\pi(g)^{-1}})\Phi_{h}^{\alpha}(c(y)\Phi_{w}^{\theta}(d(z))))(1\otimes T_{\delta_{x}})

= \sum_{x,y,z,w\in G/N}\sum_{s,g,h\in G}\phi(gr^{-1-1}hg, \pi(g)x^{-1})

\cross\nu(\delta_{yw\pi(g)^{-1}}, \delta_{z\pi(g)^{-1}})\theta(\Phi_{s}^{\alpha}(c(y))\Phi_{s^{-1}h}^{\alpha}\circ\Phi_{w}^{\theta}(d(z)))(1\otimes T_{\delta_{x}})

= \sum_{x,y,z\in G/N}\sum_{s,g,h\in G}\phi(gr^{-1-1}hg, \pi(g)x^{-1})

\cross\nu(\delta_{y\pi(s^{-1}h)\pi(g)^{-1}}, \delta_{z\pi(g)^{-1}})\theta(\Phi_{s}^{\alpha}(c(y))\Phi_{s^{-1}h}^{\alpha}(d(z)))(1\otimes T_{\delta_{x}})

= \sum_{x,y,z\in G/N}\sum_{s,g,h\in G}\phi(gr^{-1-1}shg, \pi(g)x^{-1})
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\cross\nu(\delta_{y\pi(h)\pi(g)^{-1}}, \delta_{z\pi(g)^{-1}})\theta(\Phi_{s}^{\alpha}(c(y))\Phi_{h}^{\alpha}(d(z)))(1\otimes T_{\delta_{x}}) .

In the meantime, we want to compute \sum_{p\in G}\Phi_{p}(X_{c})\Phi_{p^{-1}r}(X_{d}) . With

e(u, x)= \sum_{s,t\in G}\phi(su^{-1}ts^{-1}, \pi(s)x^{-1})\Phi_{t}^{\alpha}(c(\pi(s)))

(u\in G, x\in G/N) ;

f(u, x)= \sum_{g,h\in G}\phi(gu^{-1-1}hg, \pi(g)x^{-1})\Phi_{h}^{\alpha}(d(\pi(g)))
,

equation (5.6) yields

\sum_{p\in G}\Phi_{p}(X_{c})\Phi_{p^{-1}r}(X_{d})

= \sum_{p\in G}\sum_{x\in G/N}\theta(_{y,z,w\in G/N}\sum\nu(\delta_{ywx^{-1}}, \delta_{zx}" 1)e(p, y)\Phi_{w}^{\theta}(f(p^{-1}r, z)))

\cross(1\otimes T_{\delta_{x}}) .

Since \Phi_{w}^{\theta}\circ\Phi_{h}^{\alpha}=\delta_{w,\pi(h)}\Phi_{h}^{\alpha} , we get

\sum_{p\in G}\Phi_{p}(X_{c})\Phi_{p^{-1}r}(X_{d})

= \sum_{p\in G}\sum_{x\in G/N}\theta(\sum_{y,z\in G/N}\nu(\delta_{y\pi(h)x^{-1}}, \delta_{zx^{-1}})

\cross\sum_{s,t\in G}\phi(sp^{-1}ts^{-1}, \pi(s)x^{-1})\Phi_{t}^{\alpha}(c(\pi(s)))

\cross\sum_{g,h\in G}\phi(gr^{-1-1}phg, \pi(g)x^{-1})\Phi_{h}^{\alpha}(d(\pi(g))))(1\otimes T_{\delta_{x}}) .

From condition (P4), one deduces that

\sum_{p\in G}\sum_{y,z\in G/N}\nu(\delta_{y\pi(h)x^{-1}}, \delta_{zx^{-1}})\phi(sp^{-1}ts^{-1}, \pi(s)x^{-1})

\cross\phi(gr^{-1-1}phg, \pi(g)x^{-1})

= \sum_{p\in G}\sum_{y,z\in G/N}\nu(\delta_{y}, \delta_{z})\phi
( (sh)(h^{-1-1}p th) (sh)^{-1} , \pi(sh)x^{-1}y^{-1} )

\cross\phi(gr^{-1-1}phg, \pi(g)x^{-1}z^{-1})

= \sum_{p\in G}\sum_{y,z\in G/N}\nu(\delta_{y}, \delta_{z})\phi((sh)p^{-1}(sh)^{-1}, \pi(sh)x^{-1}y^{-1})



Models for coactions of fifinite groups on the AFD factor of type II_{1} 369

\cross\phi(g(r^{-1}th)pg^{-1}, \pi(g)x^{-1}z^{-1})

= \frac{1}{|N|^{2}}\sum_{u\in G}\phi(ur^{-1}thu^{-1}, \pi(u)x^{-1})\nu(\delta_{\pi(shu)^{-1}}, \delta_{\pi(gu)^{-1}}) .

From this, it follows that

\sum_{p\in G}\Phi_{p}(X_{c})\Phi_{p^{-1_{\Gamma}}}(X_{d})

= \frac{1}{|N|^{2}}\sum_{x\in c/N}\sum\phi(ur^{-1}thu^{-1}, \pi(u)x^{-1})g,h,s,t,u\in G

\cross\nu(\delta_{\pi(shu)^{-1}}, \delta_{\pi(gu)^{-1}})\theta(\Phi_{t}^{\alpha}(c(\pi(s)))\Phi_{h}^{\alpha}(d(\pi(g))))(1\otimes T_{\delta_{x}})

= \sum_{x,y,z\in G/N}\sum_{h,t,u\in G}\phi(ur^{-1}thu^{-1}, \pi(u)x^{-1})

\cross\nu(\delta_{y\pi(hu)^{-1}}, \delta_{z\pi(u)^{-1}})\theta(\Phi_{t}^{\alpha}(c(y))\Phi_{h}^{\alpha}(d(z)))(1\otimes T_{\delta_{x}}) .

This shows that \Phi_{r}(X_{c}X_{d})=\sum_{p\in G}\Phi_{p}(X_{c})\Phi_{p^{-1}r}(X_{d}) , so that \{\Phi_{s\in G}\} sat-
isfies (CA4). Finally, with X_{c} as above, Lemma 4.7 implies that

X_{c}^{*}= \sum_{z\in G/N}\theta(\sum_{x,y\in G/N}\eta_{0}(zy^{-1}x^{-1})\Phi_{y}^{\theta}(c(x)^{*}))(1\otimes T_{\delta_{z}})
(5.7)

where \eta_{0}(x)=\sum_{y\in G/N}\overline{\nu(\delta_{x^{-1}y},\delta_{y})} (see Lemma 4.3). Hence

\Phi_{s^{-1}}(X_{c}^{*})=\sum_{z\in G/N}\sum_{t,u\in G}\phi(ustu^{-1}, \pi(u)z^{-1})

\cross\theta(\Phi_{t}^{\alpha}(\sum_{x,y\in G/N}\eta_{0}(\pi(u)y^{-1}x^{-1})\Phi_{y}^{\theta}(c(x)^{*})))(1\otimes T_{\delta_{z}})
.

Since \Phi_{t}^{\alpha}\circ\Phi_{y}^{\theta}=\delta_{\pi(t),y}\Phi_{t}^{\alpha} , we obtain

\Phi_{s^{-1}}(X_{c}^{*})=\sum_{x,z\in G/N}\sum_{t,u\in G}\phi(ustu^{-1}, \pi(u)z^{-1})\eta_{0}(\pi(u)\pi(t)^{-1}x^{-1})

\cross\theta(\Phi_{t}^{\alpha}(c(x)^{*}))(1\otimes T_{\delta_{z}})

= \frac{1}{|N|}\sum_{z\in G/N}\sum_{t,u,v\in G}\phi(ustu^{-1}, \pi(u)z^{-1})\eta_{0}(\pi(ut^{-1}v^{-1}))

\cross\theta(\Phi_{t}^{\alpha}(c(\pi(v))^{*}))(1\otimes T_{\delta_{z}}) .
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From identity (P5), it results that

\frac{1}{|N|}\sum_{u\in G}\phi(ustu^{-1}, \pi(u)z^{-1})\eta_{0}(\pi(ut^{-1}v^{-1}))

= \frac{1}{|N|}\sum_{u\in G}\phi(u(vtsv^{-1})u^{-1}, \pi(u)(\pi(vt)z^{-1}))\eta_{0}(\pi(u))

= \sum_{x\in G/N}\eta_{0}(x)\overline{\phi(vs^{-1}t^{-1}v^{-1},\pi(vt)z^{-1}x)}
.

Thus we have

\Phi_{s^{-1}}(X_{c}^{*})=\sum_{x,z\in G/N}\sum_{t,v\in G}\eta_{0}(x)\overline{\phi(vs^{-1}t^{-1}v^{-1},\pi(vt)z^{-1}x)}

\cross\theta(\Phi_{t}^{\alpha}(c(\pi(v))^{*}))(1\otimes T_{\delta_{z}}) .

Meanwhile, by applying (5.7) to \Phi_{s}(X_{c}) in place of X_{c} , we get

\Phi_{s}(X_{c})^{*}=\sum_{z\in G/N}\theta(\sum_{x,y\in G/N}\eta_{0}(zy^{-1}x^{-1})

\cross\Phi_{y}^{\theta}(\{\sum_{u,t\in G}\phi(us^{-1}tu^{-1}, \pi(u)x^{-1})

\cross\Phi_{t}^{\alpha}(c(\pi(u)))\}^{*}))(1\otimes T_{\delta_{z}})

= \sum_{x,y,z\in G/N}\sum_{u,t\in G}\eta_{0}(zy^{-1}x^{-1})\overline{\phi(us^{-1}tu^{-1},\pi(u)x^{-1})}

\cross\theta(\Phi_{y}^{\theta}\circ\Phi_{t^{-1}}^{\alpha}(c(\pi(u))^{*}))(1\otimes T_{\delta_{z}}) .

Since \Phi_{y}^{\theta}\circ\Phi_{t^{-1}}^{\alpha}=\delta_{y,\pi(t)^{-1}}\Phi_{t^{-1}}^{\alpha} , it follows that

\Phi_{s}(X_{c})^{*}=\sum_{x,z\in G/N}\sum_{u,t\in G}\eta_{0}(z\pi(t)x^{-1})\overline{\phi(us^{-1}tu^{-1},\pi(u)x^{-1})}

\cross\theta(\Phi_{t^{-1}}^{\alpha}(c(\pi(u))^{*}))(1\otimes T_{\delta_{z}})

= \sum_{x,z\in G/N}\sum_{u,t\in G}\eta 0(x^{-1})\overline{\phi(us^{-1}tu^{-1},\pi(ut^{-1})z^{-1}x^{-1})}

\cross\theta(\Phi_{t^{-1}}^{\alpha}(c(\pi(u))^{*}))(1\otimes T_{\delta_{z}})

= \sum_{x,z\in G/N}\sum_{u,t\in G}\eta_{0}(x)\overline{\phi(us^{-1}t^{-1}u^{-1},\pi(ut)z^{-1}x)}

\cross\theta(\Phi_{t}^{\alpha}(c(\pi(u))^{*}))(1\otimes T_{\delta_{z}}) ,

which proves that \{\Phi_{s}\} satisfies (CA2).
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We summarize the discussion in the preceding paragraph in the theorem
that follows.

Theorem 5.8 Let X= \sum_{x\in G/N}\theta(c(x))(1\otimes T_{\delta_{x}}) be in the twisted crossed
product Q=\mathcal{R}\cross_{\theta,\nu}R(G/N)’ . Then the equation

\Phi_{s}(X)=\sum_{x\in G/N}\sum_{t,u\in G}\phi(us^{-1}tu^{-1}, \pi(u)x^{-1})

\cross\theta(\Phi_{t}^{\alpha}(c(\pi(u))))(1\otimes T_{\delta_{x}}) (s\in G)

defifines a linear map \Phi_{s} from Q into itself so that the family \{\Phi_{s}\}_{s\in G} sat-
isfifies conditions (CAO)-(CA4) . Therefore, the equation

\beta(X)=\sum_{s\in G}\Phi_{s}(X)\otimes\lambda(s)
(X\in Q)

in turn defifines a coaction \beta of G on the AFD factor Q of type II_{1} .

Our next objective is to compute the inner part Int (\beta) of the coaction \beta

constructed above. This is, by definition, the same as explicitly describing
the central projection p_{\beta}(= \sum_{\chi\in Int(\beta)}\chi) of \ell^{1}(G) . Eventually, we shall
prove that \lambda(p_{\beta})=q_{N} . But we first show that \lambda(p_{\beta})\geq q_{N} , by proving
directly that the restriction of \beta to R(G/N) is inner, i.e., implemented by
a certain unitary V in Q\otimes R(G/N) . To do so, we need some auxiliary
results.

We define an operator V_{N} in Q\otimes R(G) by

V_{N}= \frac{1}{|N|}\sum_{s\in G}1\otimes T_{\delta_{\pi(s)}}\otimes\lambda(s) .

Then we have

V_{N}V_{N}^{*}= \frac{1}{|N|^{2}}\sum_{s,t\in G}1\otimes T_{\delta Q\pi\delta^{\star}}(s)_{\pi(t^{-1}s)}\otimes\lambda(t) .

In the meantime,

\sum_{s\in G}\delta_{\pi(s)}\#\delta_{\pi(t^{-1}s)}^{\star}=\sum_{s\in G}\sum_{w\in G/N}\eta_{0}(w\pi(s^{-1}t))(\delta_{\pi(s)}\#\delta_{w})

= \sum_{s\in G}\sum_{w\in G/N}\eta_{0}(w\pi(s^{-1}t))\nu(\delta_{\pi(s)z^{-1}}, \delta_{wz^{-1}})\delta_{z}
.
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From this, it follows that

V_{N}V_{N}^{*}

= \frac{1}{|N|^{2}}\sum_{s,t\in G}\sum_{w,z\in G/N}\eta_{0}(w\pi(s^{-1}t))\nu(\delta_{\pi(s)z^{-1}}, \delta_{wz^{-1}})\delta_{z}

= \frac{1}{|N|}\sum_{t\in G}\sum_{w,y,z\in G/N}\eta_{0}(wy^{-1}\pi(t))\nu(\delta_{yz^{-1}}, \delta_{wz^{-1}})(1\otimes T_{\delta_{z}}\otimes\lambda(t))

= \frac{1}{|N|}\sum_{t\in G}\sum_{w,y,z\in G/N}\eta_{0}(w)\nu(\delta_{yz^{-1}}, \delta_{w\pi(t)^{-1}yz^{-1}})(1\otimes T_{\delta_{z}}\otimes\lambda(t))

= \frac{1}{|N|}\sum_{t\in G}\sum_{w,y,z\in G/N}\eta_{0}(w)\nu(\delta_{\pi(t)w^{-1}y}, \delta_{y})(1\otimes T_{\delta_{z}}\otimes\lambda(t))

= \frac{1}{|N|}\sum_{t\in G}\sum_{w\in G/N}\eta_{0}(w)\overline{\eta_{0}}(w\pi(t)^{-1})(1\otimes 1\otimes\lambda(t)) .

Since \eta_{0}^{\beta}*\eta_{0}=\delta_{e} by Lemma 4.6, it results that

V_{N}V_{N}^{*}= \frac{1}{|N|}\sum_{t\in G}\delta_{e}(\pi(t)^{-1})(1\otimes 1\otimes\lambda(t))

= \frac{1}{|N|}\sum_{t\in N}(1\otimes 1\otimes\lambda(t))

=1\otimes 1\otimes q_{N} .

Since 1\otimes 1\otimes q_{N} is a central projection and Q\otimes R(G) is finite, it follows
that V_{N}^{*}V_{N}=1\otimes 1\otimes q_{N} . Thus V_{N} can be considered as a unitary in the
reduced algebra Q\otimes R(G)_{qN} . Moreover, we have

Proposition 5.9 The unitary V_{N} constructed above satisfifies
\beta(X)(1\otimes q_{N})=V_{N}^{*}(X\otimes 1)V_{N}

for any X\in Q . Therefore, the restriction of \beta to R(G)_{qN}\cong R(G/N) is
inner.

Proof By the discussion preceding this proposition, it suffices to show
that

V_{N}\beta(X)=(X\otimes 1)V_{N} ( X\in Q) .
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With c : G/Narrow \mathcal{R} , from Lemma 4.9, we have

V_{N}\beta(X_{c})

= \frac{1}{|N|}\sum_{x\in G/N}\sum_{r,s,t,u\in G}\phi(us^{-1}rtu^{-1}, \pi(u)x^{-1})

\cross(1\otimes T_{\delta_{\pi(r)}}\theta(\Phi_{t}^{\alpha}(c(\pi(u))))(1\otimes T_{\delta_{x}})\otimes\lambda(s)

= \frac{1}{|N|}\sum_{r,s,t,u\in G}\sum_{x,y\in G/N}\phi(us^{-1}rtu^{-1}, \pi(u)x^{-1}))

\cross\theta(\Phi_{y}^{\theta}\circ\Phi_{t}^{\alpha}(c(\pi(u))))(1\otimes T_{(\delta_{\pi(r)}*\delta_{y})\beta\delta_{x}})\otimes\lambda(s)

= \frac{1}{|N|}\sum_{r,s,t,u\in G}\sum_{x\in G/N}\phi(us^{-1}rtu^{-1}, \pi(u)x^{-1}))

\cross\theta(\Phi_{t}^{\alpha}(c(\pi(u))))(1\otimes T_{(\delta_{\pi(rt)}Q\delta_{x}})\otimes\lambda(s)

= \frac{1}{|N|}\sum_{r,s,t,u\in c}\sum\nu(\delta_{\pi(rt)y^{-1}}, \delta_{xy^{-1}})\phi(us^{-1}rtu^{-1}, \pi(u)x^{-1}))x,y\in c/N

\cross\theta(\Phi_{t}^{\alpha}(c(\pi(u))))(1\otimes T_{\delta_{y}})\otimes\lambda(s)

= \frac{1}{|N|}\sum_{r,s,t,u\in c}\sum\nu(\delta_{\pi(rt)y^{-1}}, \delta_{x})\phi(us^{-1}rtu^{-1}, \pi(u)y^{-1}x^{-1}))x,y\in G/N

\cross\theta(\Phi_{t}^{\alpha}(c(\pi(u))))(1\otimes T_{\delta_{y}})\otimes\lambda(s)

= \frac{1}{|N|^{2}}\sum_{r,s,t,u,v\in G}\sum_{x\in G/N}\nu(\delta_{\pi(rtv^{-1})}, \delta_{x})

\cross\phi(us^{-1}rtu^{-1}, \pi(uv^{-1})x^{-1}))

\cross\theta(\Phi_{t}^{\alpha}(c(\pi(u))))(1\otimes T_{\delta_{\pi(v)}})\otimes\lambda(s) .

Meanwhile, with the aid of (P6), we obtain

\sum_{r,t,u\in G}\sum_{x\in G/N}\nu(\delta_{\pi(rtv^{-1})}, \delta_{x})\phi(us^{-1}rtu^{-1}, \pi(uv^{-1})x^{-1}))

\cross\theta(\Phi_{t}^{\alpha}(c(\pi(u))))

= \sum_{r,t,u\in G}\sum_{x\in G/N}\nu(\delta_{\pi(rtv^{-1}}, \delta_{x})\phi(uvs^{-1}rtv^{-1}u^{-1}, \pi(u)x^{-1}))

\cross\theta(\Phi_{t}^{\alpha}(c(\pi(uv))))

= \sum_{r,t,u\in G}\sum_{x\in G/N}\nu(\delta_{\pi(r)}, \delta_{x})\phi(uvs^{-1}ru^{-1}, \pi(u)x^{-1}))
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\cross\theta(\Phi_{t}^{\alpha}(c(\pi(uv))))

= \sum_{r,u\in G}\sum_{x\in G/N}\nu(\delta_{\pi(r)}, \delta_{x})

\cross\phi(uvs^{-1}ru^{-1}, \pi(u)x^{-1}))\theta(c(\pi(uv)))

= \sum ( \sum \sum \sum \nu(\delta_{\pi(r)}, \delta_{x})

y\in G/Nr\in Gx\in G/N\pi(u)=y

\cross\phi(u(vs^{-1})ru^{-1}, yx^{-1})))\theta(c(y\pi(v)))

= \sum_{y\in G/N}\nu(\delta_{y}, \delta_{\pi(sv^{-1})}\theta(c(y\pi(v)))
.

Thus

V_{N}\beta(X_{c})

= \frac{1}{|N|^{2}}\sum_{s,v\in G}\sum_{y\in G/N}\nu(\delta_{y}, \delta_{\pi(sv^{-1})}\theta(c(y\pi(v)))

\cross(1\otimes T_{\delta_{\pi(v)}})\otimes\lambda(s)

= \frac{1}{|N|}\sum_{s\in G}\sum_{x,y\in G/N}\nu(\delta_{y}, \delta_{\pi(s)x^{-1}}\theta(c(yx))(1\otimes T_{\delta_{x}})\otimes\lambda(s)

= \frac{1}{|N|}\sum_{s\in G}\sum_{x,y\in G/N}\nu(\delta_{yx^{-1}}, \delta_{\pi(s)x^{-1}}\theta(c(y))(1\otimes T_{\delta_{x}})\otimes\lambda(s)

= \frac{1}{|N|}\sum_{s\in G}\sum_{x,y\in G/N}(\delta_{y}\#\delta_{\pi(s)})(x)\theta(c(y))(1\otimes T_{\delta_{x}})\otimes\lambda(s)

= \frac{1}{|N|}\sum_{s\in G}\sum_{y\in G/N}\theta(c(y))(1\otimes T_{\delta_{y}})(1\otimes T_{\delta_{\pi(s)}})\otimes\lambda(s)

=(X_{c}\otimes 1)V_{N} .

This completes the proof. \square

Corollary 5.10 Let \lambda(p_{\beta}) be the central projection in R(G) correspond-
ing to the inner part of the coaction \beta . Then we have q_{N}\leq\lambda(p_{\beta}) .

Proof This follows from Theorem 1.7 of [Y1]. \square

Corollary 5.11 The family b=\{b(s)\}_{s\in G} of elements in Q defifined by

b(s)= \frac{1}{|N|}(1\otimes T_{\delta_{\pi(s)^{-1}}})



Models for coactions of fifinite groups on the AFD factor of type II_{1} 375

belongs to Rel(\mbox{\boldmath $\beta$}). Moreover, we have

\sum_{s\in G}b(s)b(st)^{*}=p_{N}(t) 1

for any t\in G .

Proof. First note that V_{N}= \sum_{s\in G}b(s)\otimes\lambda(s)^{*} Thus the last assertion
is just a restatement of the identity V_{N}V_{N}^{*}=1\otimes 1\otimes q_{N} . The first assertion
results from the following general fact: \square

Lemma 5.12 Let \beta_{0} be a coaction of G on a von Neumann algebra A .
Suppose that \{c(s)\} is a family of elements in A. Defifine an operator T=
\sum_{s\in G}c(s)\otimes\lambda(s)^{*} in A\otimes R(G) . Then the family \{c(s)\} belongs to Re1(\beta_{0})

if and only if T satisfifies

T\beta_{0}(x)=(x\otimes 1)T

for all x\in A .

Proof. We write

\beta_{0}(x)=\sum_{s\in G}\Phi_{s}^{(0)}(x)\otimes\lambda(s)
.

With this notation, Re1(\beta_{0}) is, by definition, the set of all families \{a(s)\}_{s\in G}

in A satisfying xa(t)= \sum_{s\in G}a(s)\Phi_{st^{-1}}^{(0)}(x) for all x\in A . For x\in A , it is
easily verified that

T \beta_{0}(x)=\sum_{t\in G}(\sum_{s\in G}c(s)\Phi_{st}^{(0)}(x))\otimes\lambda(t) ;

(x \otimes 1)T=\sum_{t\in G}xc(t^{-1})\otimes\lambda(t)
.

From these identities, the assertion immediately follows. \square

In order to prove that the central projection q_{N} really coincides with
\lambda(p_{\beta}) , we need to examine the set Re1(/3) in more detail.

As before, for any function d:G/Narrow \mathcal{R} , we write

X_{d}= \sum_{x\in G/N}\theta(d(x))(1\otimes T_{\delta_{x}})\in Q
.
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In addition to this notation, for any function c:G\cross G/Narrow \mathcal{R} , we set

X_{c}(t)= \sum_{x\in G/N}\theta(c(t, x))(1\otimes T_{\delta_{x}})\in Q
.

Then, by the definition of Rel(\mbox{\boldmath $\beta$}), the family \{X_{c}(t)\}_{t\in G} belongs to Re1(/3)
if and only if it satisfies

X_{d}X_{c}(t)= \sum_{s\in G}X_{c}(s)\Phi_{st^{-1}}(X_{d})

for all d:G/Narrow \mathcal{R} . By a direct calculation, the above identity is proven
to be equivalent to

\sum_{x,y,z\in G/N}\nu(\delta_{xzw^{-1}}, \delta_{yw^{-1}})d(x)\Phi_{z}^{\theta}(c(t, y))

= \sum_{s,u,v\in G}\sum_{x,y\in G/N}\phi(uts^{-1}vu^{-1}, \pi(u)y^{-1})\nu(\delta_{x\pi(v)w^{-1}}, \delta_{yw^{-1}})

\cross c(s, x)\Phi_{v}^{\alpha}(d(\pi(u))) (5.13)

for all w\in G/N and d : G/Narrow \mathcal{R} . From this information, we shall
find out an explicit form of the function c(\cdot, ) . First, let us take d to be
a constant function, say, d(x)\equiv a for some a\in \mathcal{R} . Then, by (C3), the
left-hand side (LHS) of (5.13) equals a c(t, w) . In the meantime, by (PI)
and (C3), the right-hand side (RHS) of (5.13) is \sum_{v\in G}c(vt, w\pi(v)^{-1})\Phi_{v}^{\alpha}(a) .
Thus we get

a c(t, w)= \sum_{v\in G}c(vt, w\pi(v)^{-1})\Phi_{v}^{\alpha}(a)
(5.14)

For each w\in G/N , set c_{w}(t)=c(t^{-1}, w\pi(t)) . From (5.14),

ac_{w}(t)=ac(t^{-1}, w\pi(t))

= \sum_{s\in G}c(st^{-1}, w\pi(t)\pi(s)^{-1})\Phi_{s}^{\alpha}(a)

= \sum_{s\in G}c(s^{-1}, w\pi(s))\Phi_{s^{-1}t}^{\alpha}(a)

= \sum_{s\in G}c_{w}(s)\Phi_{s^{-1}t}^{\alpha}(a)
.

This shows that \{c_{w}(t)\}_{t\in G} belongs to Re1(/3) for each w\in G/N . Since \alpha

is outer, there exists a function \xi_{c} on G/N , depending upon c , such that
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c_{w}(t)=\xi_{c}(w) 1 for any t\in G . Thus we have

c(t, x)=\xi_{c}(x\pi(t)) ( t\in G, x\in G/N) . (5.15)

Returning to (5.13) with this identity, we obtain

\sum_{x,y\in G/N}\nu(\delta_{xw^{-1}}, \delta_{yw^{-1}})\xi_{c}(y\pi(t))d(x)

= \sum_{s,u,v\in G}\sum_{x,y\in G/N}\phi(uts^{-1}vu^{-1}, \pi(u)y^{-1})\iota/(\delta_{x\pi(v)w^{-1}}, \delta_{yw^{-1}})

\cross\xi_{c}(x\pi(s))\Phi_{v}^{\alpha}(d(\pi(u)))

= \sum_{s,u,v\in G}\sum_{x,y\in G/N}\phi(uts^{-1}vu^{-1}, \pi(u)y^{-1})\nu(\delta_{xw^{-1}}, \delta_{yw^{-1}})

\cross\xi_{c}(x\pi(v^{-1}s))\Phi_{v}^{\alpha}(d(\pi(u)))

= \sum_{s,u,v\in G}\sum_{x,y\in G/N}\phi(uts^{-1}u^{-1}, \pi(u)y^{-1})\nu(\delta_{xw^{-1}}, \delta_{yw^{-1}})

\cross\xi_{c}(x\pi(s))\Phi_{v}^{\alpha}(d(\pi(u)))

= \sum_{s,u\in G}\sum_{x,y\in G/N}\phi(uts^{-1}u^{-1}, \pi(u)y^{-1})\nu(\delta_{xw^{-1}}, \delta_{yw^{-1}})

\cross\xi_{c}(x\pi(s))d(\pi(u)) (5.16)

for any w\in G/N and d:G/Narrow \mathcal{R} . Let a\in \mathcal{R} . Applying the functional
\tau_{a} on \mathcal{R} defined by \tau_{a}(b)=\tau(ab) in equality (5.16), we get

\sum_{x,y\in G/N}\nu(\delta_{xw^{-1}}, \delta_{yw^{-1}})\xi_{c}(y\pi(t))\tau(ad(x))

= \sum_{s,u\in G}\sum_{x,y\in G/N}\phi(uts^{-1}u^{-1}, \pi(u)y^{-1})\nu(\delta_{xw^{-1}}, \delta_{yw^{-1}})

\cross\xi_{c}(x\pi(s))\tau(ad(\pi(u))) . (5.17)

Since the set of all functions g on G/N of the form g(x)=\tau(ad(x)) for
some a\in \mathcal{R} and d : G/Narrow \mathcal{R} coincides with \ell_{\nu}^{\infty}(G/N) , identity (5.17) is
equivalent to

\sum_{x,y\in G/N}\nu(\delta_{xw^{-1}}, \delta_{yw^{-1}})\xi_{c}(y\pi(t))f(x)

= \sum_{s,u\in G}\sum_{x,y\in G/N}\phi(uts^{-1}u^{-1}, \pi(u)y^{-1})\nu(\delta_{xw^{-1}}, \delta_{yw^{-1}})

\cross\xi_{c}(x\pi(s))f(\pi(u)) (5.18)
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for all f\in\ell_{\nu}^{\infty}(G/N) . To clarify the meaning of (5.18), we define a map \Omega_{s}

(s\in G) from \ell_{\iota/}^{\infty}(G/N) into itself by

\Omega_{s}(f)(x)=\sum_{u\in G}\phi(us^{-1}u^{-1}, \pi(u)x^{-1})f(\pi(u))
(x\in G/N) .

Then \{\Omega_{s}\}_{s\in G} determines a G-grading in \ell_{\nu}^{\infty}(G/N) (recall how we deduced
identities (P1)-(P5)) . Hence the equation

\delta(f)=\sum_{s\in G}\Omega_{s}(f)\otimes\lambda(s)
(f\in\ell_{\iota}\infty, (G/N))

defines a coaction \delta of G on \ell_{\iota}\infty, (G/N) . By the definition of \Phi_{s} , we easily see
that \Phi_{s}(1\otimes T_{f})=1\otimes T_{\Omega_{s}(f)} for any f\in\ell_{I}^{\infty}, (G/N) . Hence, the coaction \delta

is, in some sense, the restriction of \beta to C\otimes\{T_{f} : f\in\ell_{\nu}^{\infty}(G/N)\} . Having
said this, we go back to (5.18). First,

RHS of (5.18)
= \sum_{x,y\in G/N}(\delta_{x}\# I/\delta_{y})(w)(\xi_{c}*\delta_{\pi(t)^{-1}})(y)f(x)

=\{f\beta_{\iota\nearrow}(\xi_{c}*\delta_{\pi(t)^{-1}})\}(w) .

On the other hand,

RHS of (5.18)

= \sum_{s,u\in G}\sum_{x,y\in G/N}\phi(uts^{-1}u^{-1}, \pi(u)y^{-1})(\delta_{x}\beta_{\nu}\delta_{y})(w)

\cross(\xi_{c}*\delta_{\pi(s)^{-1}})(x)f(\pi(u))

= \sum_{s\in G}\sum_{x,y\in G/N}(\delta_{x}\# I/\delta_{y})(w)(\xi_{c}*\delta_{\pi(s)^{-1}})(x)\Omega_{st^{-1}}(f)(y)

= \sum_{s\in G}\{(\xi_{c}*\delta_{\pi(s)}-1)\# I/\Omega_{st^{-1}}(f)\}(w)
.

This means that the family \{\xi_{c}*\delta_{\pi(t)^{-1}}\}_{t\in G} belongs to Rel(\mbox{\boldmath $\delta$}).

We summarize the results in the preceding paragraph in the proposition
that follows.

Proposition 5.19 Let c : G\cross G/Narrow \mathcal{R} be an arbitrary \mathcal{R} -valued

function. Then the family \{X_{c}(t)\}_{t\in G} of elements in Q belongs to Re1(/3) if
and only if there exists a function \xi_{c} on G/N, depending upon c, such that
(i) c(t, x)=\xi_{c}(x\pi(t))1;(ii) the family \{\xi_{c}*\delta_{\pi(t)^{-1}}\}_{t\in G} lies in Rel(\mbox{\boldmath $\delta$}), i.e. ,
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it satisfifies
f\#\nu

( \xi_{c}*\delta_{\pi(t)^{-1}})=\sum_{s\in G}(\xi_{c}*\delta_{\pi(s)}-1)\#\mathcal{U}\Omega_{st^{-1}}(f)

for all f\in\ell_{\nu}^{\infty}(G/N) .

We are now in a position to prove, with the help of Proposition 5.19,
that the projection q_{N} equals \lambda(p_{\beta}) .

Theorem 5.20 The central projection q_{N} coincides with \lambda(p_{\beta}) , the From
jection which determines the inner part of \beta . Therefore, Int(/3) is the set of
all irreducilbe characters \chi of G such that \delta_{s}*\chi=\chi for all s\in N

Proof. By the definition of the inner part, there exists an \mathcal{R}-valued
function c : G\cross G/Narrow \mathcal{R} such that (i) \{X_{c}(t)\}_{t\in G} beings to Re1(/3);
(ii) \sum_{s\in G}X_{c}(s)X_{c}(st)^{*}=p_{\beta}(t) 1 for all t\in G . By Proposition 5.19,
there is a function \xi_{c} on G/N so that c(t, x)=\xi_{c}(x\pi(t)) . Hence we have
X_{c}(t)=1\otimes T_{\xi_{c}*\delta_{\pi(t)^{-1}}} . A simple computation shows that equation (ii) is
the same as

\sum_{s\in G}(\xi_{c}*\delta_{\pi(s)^{-1}})\# U(\xi_{c}*\delta_{\pi(st)^{-1}})^{\star}=p_{\beta}(t)
1. (5.21)

In the meantme, recalling that p_{N}=|N|^{-1}\chi_{N} , we have

\sum_{t\in G}(\xi_{c}*\delta_{\pi(st)^{-1}})^{\star}p_{N}(t^{-1}u)=\frac{1}{|N|}\sum_{t\in G}(\xi_{c}*\delta_{\pi(sut)^{-1}})^{\star}\chi_{N}(t^{-1})

= \frac{1}{|N|}\sum_{t\in N}(\xi_{c}*\delta_{\pi(sut)^{-1}})^{\star}

=(\xi_{c}*\delta_{\pi(su)^{-1}})^{\star}

From this, together with (5.21), it follows that

(p_{\beta}*p_{N})(u)
1= \sum_{t\in G}p_{\beta}(t)p_{N}(t^{-1}u)

1

= \sum_{s,t\in G}(\xi_{c}*\delta_{\pi(s)^{-1}})\# U(\xi_{c}*\delta_{\pi(st)^{-1}})^{\star}pN(t^{-1}u)

= \sum_{s\in G}(\xi_{C}*\delta_{\pi(s)^{-1}})\#\nu(\xi_{C}*\delta_{\pi(su)^{-1}})^{\star}=p_{\beta}(u)
1.

Thus p_{\beta}*p_{N}=p_{\beta} . This shows that \lambda(p_{\beta})\leq\lambda(p_{N})=q_{N} . In view of
Corollary 5.10, we conclude that \lambda(p_{\beta})=q_{N} . \square
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Our next goal is to describe the 2-cocycle \mu_{\beta} and the function \gamma_{\beta} 380
ciated with \beta .

We take the family b=\{b(s)=|N|^{-1}(1\otimes T_{\delta}

Q defined in Corollary 5.11. By Corollary 5.11
an^{\pi}(i_{Th}^{s)^{-1}}eorem5.20,wehave)\}_{s\in G}ofe1ementsin

\sum_{s\in G}b(s)b(st)^{*}=p_{\beta}(t) 1. We easily see that \sum_{s\in G}b(s)=1 . Hence this
family gives rise to \mu_{\beta} (see Section 1):

\mu_{\beta}(f, g)
1= \sum_{t\in G}b_{go\pi}(t)b_{f^{0\pi}}(t)b(t)^{*}

(f, g\in\ell^{\infty}(G/N)) .

It is readily checked that b_{ho\pi}(t)=1\otimes T_{h*\delta_{\pi(t)^{-1}}} for any h\in\ell^{\infty}(G/N) .
Thus

\mu_{\beta}(f, g) 1= \frac{1}{|N|}\sum_{t\in G}(1\otimes T_{(g*\delta_{\pi(t)^{-1}})\beta(f*\delta_{\pi(t)_{\pi(t)^{-1}}^{-1}}})\beta\delta^{\star}) .

Now we have

\frac{1}{|N|}\sum_{t\in G}(g*\delta_{\pi(t)^{-1}})\#(f*\delta_{\pi(t)^{-1}})\#\delta_{\pi(t)^{-1}}^{\star})

= \frac{1}{|N|},\sum_{t\in Gx,y},,\sum_{z\in G/N}g(x\pi(t))f(y\pi(t))\eta_{0}(z\pi(t))\delta_{x}xy,z,w,x_{1}\sum g(xw)f(yw)\eta_{0}(zw)\nu(\delta_{xx_{1}^{-1}}x_{2}\in G/N’ \#\delta_{y}\#\delta_{z}\delta_{yx_{1}^{-1}})

x\nu(\delta_{x_{1}x_{2}^{-1}}, \delta_{zx_{2}^{-1}})\delta_{x_{2}}

= \sum_{x,y,z,w,x_{1},x_{2}\in G/N}g(w)f(yx^{-1}w)\eta_{0}(zx^{-1}w)\nu(\delta_{xx_{1}^{-1}}, \delta_{yx_{1}^{-1}})

\cross\nu(\delta_{x_{1}x_{2}^{-1}}, \delta_{zx_{2}^{-1}})\delta_{x_{2}}

= \sum_{x,y,z,w,x_{1},x_{2}\in G/N}g(w)f(yx^{-1}w)\eta_{0}(zx^{-1}w)\nu(\delta_{x_{1}^{-1}}, \delta_{yx^{-1}x_{1}^{-1}})

\cross\nu(\delta_{x_{1}x_{2}^{-1}}, \delta_{zx^{-1}x_{2}^{-1}})\delta_{x_{2}x}

= \sum_{x,y,z,w,x_{1},x_{2}\in G/N}g(w)f(yw)\eta_{0}(zw)\nu(\delta_{x_{1}^{-1}}, \delta_{yx_{1}^{-1}})

\cross\nu(\delta_{x_{1}x_{2}^{-1}}, \delta_{zx_{2}^{-1}})\delta_{x_{2}x}

= \sum_{y,z,w,x_{1},x_{2}\in G/N}g(w)f(yw)\eta_{0}(zw)\nu(\delta_{x_{1}^{-1}}, \delta_{yx_{1}^{-1}})

\cross\nu(\delta_{x_{1}x_{2}^{-1}}, \delta_{zx_{2}^{-1}}) 1



Models for coactions of fifinite groups on the AFD factor of type II_{1} 381

= \sum_{y,z,w,x_{1}\in G/N}g(w)f(yw)\eta_{0}(zw)\nu(\delta_{x_{1}^{-1}}, \delta_{yx_{1}^{-1}})\overline{\eta_{0}}(zx_{1}^{-1})
1

= \sum_{y,w,x_{1}\in G/N}g(w)f(yw)(\eta_{0}*\overline{\eta 0})(w^{-1}x_{1}^{-1})\nu(\delta_{x_{1}^{-1}}, \delta_{yx_{1}^{-1}})
1

= \sum_{y,w\in G/N}g(w)f(yw)\nu(\delta_{w}, \delta_{yw})
1

=\nu(g, f) 1=\mu(f, g) 1.

The second last equality is due to Lemma 4.6. The computation shows that
we have \mu_{\beta} coincides with the originally given 2-cocycle \mu .

To compute the function \gamma_{\beta} , we first note that \gamma_{\beta}(s, x)=0 whenever
s\not\in G^{N} by Corollary 3.15. Moreover, by condition (3) of Definition 5.1,
we have \gamma(s, x)=0 if s\not\in G^{N} Thus \gamma_{\beta}(s, x)=\gamma(s, x) if s\not\in G^{N} and
x\in G/N . It remains to treat the case where s\in G^{N} For this, we need to
describe the element \Psi_{s}(b) in detail. Let s\in G^{N}\tau By definition, we have
\Psi_{s}(b)(t)=\Phi_{tst^{-1}}(b(t)) . With the notation established in the discussion
preceding Proposition 5.19, we obtain \Psi_{s}(b)(t)=|N|^{-1}(1\otimes T_{\Omega_{tst^{-1}}(\delta_{\pi(t)^{-1}})}) .
In the meantime, we have

\Omega_{tst^{-1}}(\delta_{\pi(t)^{-1}})=\sum_{u\in G}\phi(uts^{-1}t^{-1}u^{-1}, \pi(u)x^{-1})\delta_{\pi(t)^{-1}}(\pi(u))

= \sum_{\pi(u)=\pi(t)^{-1}}\phi(uts^{-1}t^{-1}u^{-1}, \pi(u)x^{-1})

= \sum_{h\in N}\phi(hs^{-1}h^{-1}, \pi(t)^{-1}x^{-1})

=|N|\phi(s^{-1}, \pi(t)^{-1}x^{-1}) .

The second last equality is due to the fact that \{ ut:\pi(u)=\pi(t)^{-1}\}=N

for each t\in G . Hence we obtain

\Psi_{s}(b)(t)=\sum_{x\in G/N}\phi(s^{-1}, \pi(t)^{-1}x^{-1})(1\otimes T_{\delta_{x}})
.

Fom this, with g\in G , we have

\gamma_{\beta}(s, \pi(g)) 1
=f_{\Psi_{s}(b),b}(\pi(g)) 1

= \sum_{r\in G}\Psi_{s}(b)(r)b(rg)^{*}
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= \frac{1}{|N|}\sum_{r\in G}\sum_{x\in G/N}\phi(s^{-1}, \pi(r)^{-1}x^{-1})(1\otimes T_{\delta_{I}\#\delta^{\star}})\pi(rg)^{-1}

= \sum_{x,y\in G/N}\phi(s^{-1}, y^{-1}x^{-1})(1\otimes T_{\delta_{I}\beta\delta^{\star}})\pi(g)^{-1}y^{-1}

= \sum_{x,y,z,w\in G/N}\phi(s^{-1}, y^{-1}x^{-1})\eta_{0}(zy\pi(g))\nu(\delta_{xw^{-1}}, \delta_{zw^{-1}})(1\otimes T_{\delta_{w}})

= \sum_{x,y,z,w\in G/N}\phi(s^{-1}, y^{-1}x^{-1})\eta 0(zy\pi(g))

\cross\nu(\delta_{w^{-1}}, \delta_{zx^{-1}w^{-1}})(1\otimes T_{\delta_{wx}})

= \sum_{x,y,z,w\in G/N}\phi(s^{-1}, y^{-1}x^{-1})\eta_{0}(zxy\pi(g))

\cross\nu(\delta_{w^{-1}}, \delta_{zw^{-1}})(1\otimes T_{\delta_{wx}})

= \sum_{x,y,z,w\in G/N}\phi(s^{-1}, y^{-1})\eta 0(zy\pi(g))\nu(\delta_{w^{-1}}, \delta_{zw^{-1}})(1\otimes T_{\delta_{wx}})

= \sum_{y,z,w\in G/N}\phi(s^{-1}, y^{-1})\eta_{0}(zy\pi(g))\nu(\delta_{w^{-1}}, \delta_{zw^{-1}})
1

= \sum_{y,z\in G/N}\phi(s^{-1}, y^{-1})\eta_{0}(zy\pi(g))\overline{\eta 0}(z)
1

= \sum_{y\in G/N}\phi(s^{-1}, y^{-1})(\eta_{0}^{\beta}*\eta 0)(y\pi(g))
1

=\phi(s^{-1}, \pi(g))=\gamma(s, \pi(g)) .

This proves that \gamma_{\beta} equals the function \gamma which we started with.
We now summarize the results obtained in the preceding discussion in

the next theorem, which is our main theorem of this paper.

Theorem 5.22 Let N be a normal subgroup of G. For any element
c=(\mu, \gamma) in \mathcal{E}(G, N) , there exists a coaction \beta=\beta_{(N,\mu,\gamma)} of G on the AFD

factor of type II_{1} such that (i) N=N_{\beta};(ii)c=c(\beta) .

6. Some equivalence relation on \mathcal{E}(G, N)

In the preceding section, we introduced the set \mathcal{E}(G, N) for each normal
subgroup N of G , which, in some sense, provides a “model” for the coactions
of G on the AFD factor of type II_{1} . We saw that each coaction \beta of G

on a finite factor A gives rise to an element c(\beta)=(\mu_{\beta}, \gamma_{\beta}) in \mathcal{E}(G, N_{\beta}) .
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There is, however, some ambiguity in the notation c(\beta) , since, as (3.16)
and Lemma 3.17 suggest, both \mu_{\beta} and \gamma_{\beta} heavily depend on the choice of
the element b=\{b(s)\}_{s\in G} of Re1(/3) satisfying f_{b}=p_{\beta} and \sum_{s\in G}b(s)=1 .
In order to circumvent this situation, we shall introduce an equivalence
relation on \mathcal{E}(G, N) in general so that equivalence classes can make sense
as an invariant. The equivalence relation we need is suggested in equation
(3.16) and Lemma 3.17. As before, G is a finite group in what follows.

Definition 6.1 (1) Suppose that \mu , \nu are two 2-cocycles on \ell^{\infty}(G) , i.e.,
\mu , \nu \in Z^{2}(\ell^{\infty}(G)) . We say that \mu is cohomologous to j/ , denoted by \mu\sim\nu ,

if there is a function \eta on G such that
(i) \eta*\#\eta=\eta*\eta\#=\delta_{e} , \sum_{s\in G}\eta(s)=1 ;
(ii) we have

lJ(f, g)= \sum_{s\in G}\mu(\overline{\eta}*f*\delta_{s^{-1}}
,
^{\overline{\eta}*g*\delta_{s^{-1}})\eta(S)}

for any f, g\in\ell^{\infty}(G) . The function \eta is called a connecting function (be-
tween \mu and \nu ).

(2) Recall that the bilinear form \epsilon_{G}\otimes\epsilon_{G} , where \epsilon_{G} is the counit of
G , was called the trivial 2-cocycle. Any 2-cocycle that is cohomologous to
the trivial one is said to be a coboundary.

It can be readily verified that the relation\sim defifined above is an equiv-
alence relation on Z^{2}(\ell^{\infty}(G)) . The definition is of course motivated by the
ordinary group cohomology theory. The author does not know whether
Z^{2}(\ell^{\infty}(G)) can be equipped with a suitable group structure so that the set
of coboundaries forms a normal subgroup in such a way that it generates
the equivalence relation\sim just introduced.

Definition 6.2 Let N be a normal subgroup of G . We say that an
element c_{1}=(\mu_{1}, \gamma_{1}) of \mathcal{E}(G, N) is equivalent to another element c_{2}=

(\mu_{2}, \gamma_{2}) if
(1) \mu_{1} is cohomologous to \mu_{2} with a function \eta on G/N a connecting

function between them;
(2) the following identity holds true:

\gamma_{2}(s, w)=\frac{1}{|N|}\sum_{x\in G/N}\sum_{u\in G}\gamma_{1}(usu^{-1}, \pi(u)x^{-1})\overline{\eta}(\pi(u))\eta(xw)

for any f, g\in\ell^{\infty}(G/N) , s\in G and w\in G/N . In this case, we write



384 T. Yamanouchi

c_{1}\sim c_{2} . The function \eta is still called a connecting function.

It is a routine to check that this relation\sim is in fact an equivalence
relation in \mathcal{E}(G, N) . The equivalence class of an element c of \mathcal{E}(G, N) shall
be denoted by [c] . Then, by (3.16) and Lemma 3.17, the equivalence class
[c(\beta)] does not depend on the choice of the element b=\{b(s)\} for any
coaction \beta . We denote the class by \Lambda(\beta) . It is then easy to see that \Lambda(\beta)

is a conjugacy invariant for coactions of G .
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