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About finite solvable groups with exactly four p-regular
conjugacy classes
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Abstract. Let G be a finite solvable group and p a prime \neq 2 . The purpose of this
note is to give the structure of finite solvable groups with exactly four p-regular conjugacy
classes.
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1. Introduction

In [5], [6] and [7] Ninomiya describes the groups with exactly three
p-regular classes. If F is a splitting field for G of characteristic p then, as
well-known by Brauer, the number of non-isomorphic simple FG modules is
equal to the number of p-regulare classes. Throughout this paper G denotes
a finite group and p a prime \neq 2 . The purpose of this note is to give the
structure of finite solvable groups with exactly four p-regular classes. With
A\propto B we denote the semidirect product of a normal subgroup B with
a subgroup A . All other notations are standard and can be found, for
example, in [3].

Main Theorem Let G be a solvable group with exactly four p-regular
conjugacy classes, O_{p}(G)=1 and p\neq 2 . Then one of the following cases
occurs :
A) If G is not p-nilpotent then G\cong S_{4} and p=3 .
B) If G is p-nilpotent then G is one of the following types

1. The group G is one of the p’ groups
a) G is the cyclic group Z_{4} of order 4.
b) G\cong Z_{2}\cross Z_{2} .
c) G is the alternating group A_{4} of degree 4, p\neq 3 .
d) G is the dihedral group of order 10, p\neq 5 .

2. O_{p’}(G) is elementary abelian of order 2^{n} and one of the following
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statements for O_{p’}(G) and a Sylow p-subgroup P of G holds.
a) O_{p’}(G) is a minimal normal subgroup, n=4 and G=Z_{5}\propto

O_{p’}(G) , p=5 .
b) O_{p’}(G)\cong Z_{2}\cross N , where N is elementary abelian of order

p+1 , p is a Mersenne prime, P is of order p and operates
transitively on N\backslash 1 .

c) G\cong(Z_{p}\propto N)x(Z_{p}\propto N) , where N is elementary abelian
of order p+1 , p is a Mersenne prime, and Z_{p} operates tran-
sitively on N\backslash 1 .

d) O_{p’}(G) is a minimal normal subgroup, n=6 and P is a

Sylow 3-group of GL(6,2) , which acts naturally on O_{p’}(G) .
3. O_{p’}(G)\cong A(n, \theta) is a Suzuki 2-group of order 2^{2n} and \theta acts fixed

point freely, G=P\propto A(n, \theta) , with |P|=p .
4. G=SL(2,3)\propto N , where N is an elementary abelian group of

order 25 and SL(2,3) operates transitively on N\backslash 1 , p=3 .
5. G=(P\cross Z_{2})\propto N , where P is a cyclic p-group, Z_{2} the cyclic

group of order 2, and (P\cross Z_{2}) has two orbits on N\backslash 1 . For the
order |N|=q^{a} , and |P|=p^{c} we have q^{a}-1=4pc . and if a>1
then q=5 and a is a prime.

6. G=Z_{15}\propto N , p=5 , N is elementary abelian of order 16 and
Z_{15} operates as a Singer cycle on N .

Conversly any of these groups has exactly four p-regular classes.

2. Preliminary results

Lemma 1 If G is a solvable group with exactly four p-regular classes then
the number of distinct prime divisors in the order of G is smaller than four.
Proof. Let G be a counter example and p, r, s , t primes dividing the order
of G . Let H be a \{r, s, t\} -Hall group. Then H contains only elements of
prime order. This is a contradiction to [2] Theorem 3. \square

Lemma 2 ([4] 2.7 Lemma p. 424). Suppose that q^{m}-1=r^{v} , where q , r
are primes and m , v are positive integers. Then either
a) q=2 and v=1 or
b) r=2 and m=1 or
c) q^{m}=9 and r^{v}=8 .
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Lemma 3 Let M be a set, on which G operates transitively and Na
normal subgroup of G. Then all orbits of N on M have the same length.

Proof. Let A_{i} , A_{j} be two orbits of N on M and a_{i}\in A_{i} , a_{j}\in A_{j} .
Then there is g\in G with a_{i}g=a_{j} . We show x – xg is a bijection from
A_{i} on A_{j} . Obviously there is n\in N with x=a_{i}n . Therefore we have
xg=a_{i}ng=a_{i}gg^{-1}ng=a_{j}n^{g}=a_{j}n_{1} for n_{1}\in N\triangleleft G and so

xg\in A_{j,\square },\cdot

Clearly xarrow xg^{-1} is the converse morphism.

Lemma 4 Let R be a Sylow r-subgroup of a solvable group G. If all
elements of R\backslash 1 are conjugate in G then R is abelian.

Proof. Let G be a minimal counterexample and M be a minimal normal
subgroup of G . If M is r-group then M=R. This is a contradiction. Hence
M is a r’-group. Now RM/M is a Sylow r subgroup of G/M . Obviously
G/M is a counterexample of smaller order. \square

Lemma 5 Let G be a solvable group with exactly two p-regular conjugacy
classes in O_{p’}(G) and O_{p}(G)=1 . Then the Sylow p subgroup P is cyclic
and the p-length of G is 1.

Proof. O_{p’}(G) is a minimal normal subgroup and therefore abelian. More-
over G/O_{p’}(G) operates transitively on O_{p’}(G)\backslash 1 . By Lemma 3 the or-
bits of O_{p’}(G)\backslash 1 under O_{p}(G/O_{p’}(G))=O_{p’p}(G)/O_{p’}(G) have the same
length. This length is obviously different from 1. By [4] 3.4. Lemma p. 268
O_{p’p}(G)/O_{p’}(G) is cyclic. Hence the p-length of G is 1, which is seen by the
constrained property. \square

Lemma 6 Let G be a solvable group with exactly four p-regulare conju-
gacy classes and O_{p}(G)=1 . Then the p-length of G is 1.

Proof. Let G be a counter example. By Lemma 5 O_{p’}(G) contains three
conjugacy classes. Let q(\neq p) be a prime divisor of the order of G and Q a
Sylow q-subgroup of G . Now we have two cases. \square

1. Let O_{p’}(G) be a q-group.
If 3 distinct primes p , q , r divides the order of G then there is exactly

one conjugacy class with elements of order r . Let R be a Sylow r-subgroup
and 1\neq x\in R . Lemma 4 implies that R is abelian. Then by the Lemma
of Burnside all elements of order r in R are conjugated under N=N_{G}(R) .
The number of elements is obviously |N : C_{N}(x)|=p^{v} for a suitable natural
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number v . Moreover RQ is a Frobenius group. Therefore the order of R is
r . Hence we have p^{v}+1=r , which contradicts Lemma 2.

Therefore the order of G is divisible by the primes p , q only. We set
|Q|=q^{b} and |O_{p’}(G)|=q^{d} . Obviously O_{p’}(G) contains Z(Q) and
q^{d}=1+p^{s}+q^{i}p^{t} for suitable s , i and t . Moreover all p’ -elements outside
O_{p’}(G) are conjugated. Hence G/O_{p’p}(G) contains exactly two p’ -classes.
Consequently q^{b-d}-1 is a p-power. By Lemma 2 q^{b-d}-1=p and q=2 ,
i.e. G is a \{2, p\} -group and the order of O_{2}(G) is 2^{d} .

1.1. First let O_{2}(G) be a non-minimal normal subgroup and 1\neq N<

O_{2}(G) a G-normal subgroup. Let the order of N be 2^{c} . Then all elements
of N\backslash 1 are conjugated. Hence 1+p^{s}=2^{c} or 2^{c}=2^{it}p+1 . Obviously the
second case is impossible. By Lemma 2 we have p=2^{c} –1 and s=1 .
The equation 2^{d}=1+p+2^{it}p forces i=c, t=1 and d=2c. By [3]
VI.6.5 Lemma S. 690 C_{G}(O_{2}(G)/\Phi(O_{2}(G)))\leq O_{2}(G) holds. Therefore a
Sylow p-subgroup P has a faithful representation on O_{2}(G)/\Phi(O_{2}(G)) and is
consequently isomorphic to a subgroup of GL(n, 2) with 1\leq n\leq 2c . Clearly
|GL(n, 2)|=(2^{n}-1)(2^{n}-2)\ldots(2^{n}-2^{n-1}) and c|m if p=(2^{c}-1)|(2^{m}-1) .
Hence the order of P is smaller than p^{3} and the p-length of G is one.

1.2. Now let O_{2}(G) be now a minimal normal subgroup of G . Then it
is the unique minimal normal subgroup of G . Therefore any homomorphic
image of G has at most 2-length one, but G has 2-length two. By [3] VI 6.9
Hilfssatz S. 693 O_{2}(G) has a complement M\cong G/O_{2}(G) in G . Obviously
M contains exactly two p-regular conjugacy classes, namely the 1-class and
a class with elements of order two. Hence all 2-elements outside O_{2}(G) have
order 2 and so a Sylow 2-subgroup Q of G has exponent two. Then Q is
abelian and therefore the 2-length of G is one. Since O_{p}(G)=1 , this case
is impossible.

2. Let the order of O_{p’}(G) be divisible by exactly two distinct primes.
Then we have a minimal normal subgroup N and a subgroup U, such that
UN=O_{p’}(G) and U\cap N=1 . By the Frattini argument N_{G}(U)O_{p’}(G)=

G . Since O_{p’}(G) is a Frobenius group, we have N_{O_{p},(G)}(U)=U . Hence
N_{G}(U)/U\cong G/O_{p’}(G) and N_{G}(U) operates transitively on U\backslash 1 . By Lemma
3 all orbits of U\backslash 1 under O_{p}(N_{G}(U)/U)\cong O_{p’p}(G)/O_{p’}(G) have the same
length. By [4] 3.4 Lemma p. 268 O_{p’p}(G)/O_{p’}(G) is cyclic. It follows
l_{p}(G)=1 .

Remark. In a similar way we can show, that l_{p}(G)=1 if G has at most
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four p-regular conjugacy classes.

Lemma 7 Let p, q be distinct primes and a , c be natural numbers such
that a>1 , p\neq 2 and q^{a}-1=4p^{c} . Then q=5 and a is a prime.

Proof. Obviously q is odd. We consider the equation modulo 8. Now
it is easy to see that a is odd. Let a=i j with a prime j and i\geq 1 .
We have q^{a}-1=(q^{i}-1)(q^{i(j-1)}+\ldots+q^{i}+1) with q^{i}-1=4pk and
p^{l}=q^{i(j-1)}+\ldots+q^{i}+1 for certain natural numbers k , l . Then p^{l}=

(4pk+1)^{j-1}+\ldots+(4pk+1)+1=A(p^{k})^{2}+j(j-1)2p^{k}+j for a natural
number A. It is easy to see that only k=0, q=5 and i=1 is possible.

\square

Remark. Some arguments of this proof are taken from the proof of Lemma
4.3 in [6]. We conjecture that furthermore holds c=1 .

3. Proof of the Main Theorem

In the proof we consider several cases. Let p , q and, if necessary, r
be the primes dividing the order of G , and P, Q , R the Sylow subgroups,
respectively.

1. Let O_{p’}(G) only contain two classes.
Let the order of O_{p’}(G) be a power of q , say q^{d} . First we will show

that all p’-elements have prime power order. Suppose there is an element
of order qr in G . Then we have outside of O_{p’}(G) only p’ element of order
qr and r . In particular then O_{p’}(G)=Q . By Lemma 6 H=R\propto P is a
q’-Hall group of G . Hence N_{G}(R)=C_{G}(R) . Since all elements of R\backslash 1 are
conjugate in G , the order of R is two and r=2 by Burnside. Let R=<a> .
Since G has elements of order g2 , there is u\in O_{p’}(G)\backslash 1 , which commutes
with a . Therefore C_{G}(u)\geq RQ and further |G : C_{G}(u)| is a p-power.
Since all nontrivial elements of O_{p’}(G) are conjugate, we get p^{t}=q^{d}-1 for
a suitable t . Now by Lemma 2 we have the contradiction p=2 or q=2 .

By Lemma 5 P is cyclic. Set \overline{G}=G/O_{p’}(G) . Then C_{\overline{G}}(\overline{P})\leq\overline{P} , and so
\overline{G}/O_{p}(\overline{G}) is isomorphically contained in Aut(P) . Hence \overline{G}/O_{p}(\overline{G}) is cyclic,
and then it is a r group or a g-group.

1.1. Let G/O_{p’p}(G) be a r-group.
Let H be a p’-Hall group. Then H is a Frobenius group and R is cyclic.

Since R\cong G/O_{p’p}(G) contains exactly three conjugacy classes, |R|=3 .
On the other hand R operates fixed point freely on P and Q\cong O_{p’}(G) .
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Therefore R operates fixed point freely on O_{p’p}(G) . By the Theorem of
Thompson O_{p’p}(G) is nilpotent. This is a contradiction.

1.2. Let G/O_{p’p}(G) be a g-group.
Let Q be a Sylow q-subgroup and x\in Z(Q) . By the Lemma of Hall

and Higman [3] 6.5 Lemma S. 690 x\in O_{p’}(G) . If q^{d} is the order of O_{p’}(G) ,
we have q^{d}-1=p and q=2 in view of Lemma 2. By Lemma 5 P is
cyclic of order p . Outside O_{p’}(G) there are exactly two p’ classes and at
most three consequently in T:=G/PO_{p’}(G) . Hence T/Z(T) contain at
most two classes. Therefore |T/Z(T)|\leq 2 and |Z(T)|\leq 2 . Consequently |

T|=2 and G is an abnilpotent group with index system (2^{d}, p, 2) . Moreover
p=2^{d}-1 so that p is a Mersenne prime and d a prime. By [8] 4.2 Theorem,
2 |d . Hence d=2 and G\cong S_{4} . Obviously S_{4} satisfy our assumptions.

2. Let O_{p’}(G) only contain three classes.
Obviously there are exactly two p-regulare conjugacy classes in

G/O_{p’p}(G) . By Lemma 6 G/O_{p’p}(G) has order 2.
2.1. Let O_{p’}(G) be a q-group and the order of G divisible by three

distinct primes.
Then |R|=2 and R operates non-trivially on P . Now let <a>=R

and az an involution with z\in P . By [1] 45.1 D=<a , az>is a dihedral
group and also a Frobenius group. By the Lemma of Hall and Higman D
operates faithfully on O_{p’}(G) . But then there is an involution of D , which
centralizes an element 1\neq v\in O_{p’}(G) . Hence we have an element of order
2q . This is a contradiction.

2.2. Let O_{p’}(G) be a q-group and the order of G divisible by two
distinct primes.

We set |G : N_{G}(Q)|=p^{i} and |O_{p’}(G)|=2^{d} . Then there are p^{i}|Q|

- (p^{i} –1 ) |O_{p’}(G)|p-regular elements in G . Hence in the unique class
outside O_{p’}(G) there are exactly p^{i}(|Q|-|O_{p’}(G)|)=p^{i}2^{d} elements. On
the other hand C_{G}(x)\supseteq<x , Z(Q)>forx\in Q\backslash O_{p’}(G).BecauseZ(Q)\cap

O_{p’}(G)\neq 1 , we have |C_{G}(x)|\geq 4.Therefore the 2-power dividing |G :
C_{G}(x)| is at most 2^{d-1} . This is a contradiction to |G:C_{G}(x)|=p^{i}2^{d} .

2.3. Let the order of O_{p’}(G) be divisible by two distinct primes.
Then O_{p’}(G) is a Frobenius group. Let Q_{1} be the kernel and its order

q^{a} , and let R_{1} be the complement and its order r . If r=2=|G/O_{p’p}(G)| ,
the Sylow p-subgroup P operates trivially on R_{1} . Hence G/PQ_{1} contains at
most three conjugacy classes, but its order is four. This is a contradiction.
Therefore q=2=|G/O_{p’p}(G)| . Now Q_{1} is the unique minimal normal
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subgroup of G . Consequently any homomorph image of G has 2-length one,
but the 2-length of G is two. By [3] VI 6.9 Hilfssatz S.693 Q_{1} has a comple-
ment in G . Hence any non-trivial 2-element has order two. Consequently
the Sylow 2-subgroup of G is abelian. This is a contradiction to l_{2}(G)=2 .

3. Let G be p-nilpotent.
3.1. Let the order of a certain element of O_{p’}(G) be divisible by r and

q .
Let N be a minimal normal subgroup of G . Then N is a Sylow sub-

group. It may be assumed that N=Q. Therefore O_{p’}(G)=RQ for an
elementary abelian Sylow r subgroup R. If O_{r}(G)\neq 1 then O_{r}(G)=R and
O_{p’}(G) is abelian. Hence, if O_{p’}(G) is not abelian, R operate faithfully on
Q and PR operates transitvely on Q\backslash 1 . If R operates irreducibly on Q , by
the Lemma of Schur R is cyclic and thus the stabalizer of any element of
Q\backslash 1 in R is 1. Assume R operates reducibly on Q . By Lemma 3 all orbits
of Q\backslash 1 have the same length. By [4] Theorem 3.1 b p. 266 the stabalizer of
any element of Q\backslash 1 in R is 1. Hence, if O_{p’}(G) is not abelian, O_{p’}(G) is a
Frobenius group in contradiction to the assumption 3.1. Therefore O_{p’}(G)

is abelian. Obviously Q and R are normal subgroups of G . Let q^{c} and r^{d}

denote their orders, respectively. Moreover we choose non-trivial elements
x\in Q and y\in R . Then |G : C_{G}(x)|=p^{a} , |G : C_{G}(y)|=p^{b} and therefore
q^{c}-1=p^{a} , r^{d}-1=p^{b} . This is a contradiction to p\neq 2 .

3.2. Let the order of all elements of O_{p’}(G) be a prime power and
O_{p’}(G) not a g-group.

By [2] O_{p’}(G) is a Frobenius group or a 3-step group. In the second
case we have a principal series O_{p’}(G)>N_{1}>N_{2}>1 , where O_{p’}(G)/N_{1}

and N_{2} are 2-groups and N_{1}/N_{2} is a q-group. Obviously N_{2} is the unique

minimal normal subgroup of G and l_{2}(G)=2 . Therefore any homomorphic
image of G has at most 2-length one. By [3] VI 6.9 Hilfssatz S.693 N_{2} has a
complement in G . Hence all elements of R\backslash 1 are of order 2. Consequently
R is abelian contradictly, l_{2}(G)=2 .

Now let O_{p’}(G)=QR be a Frobenius group with complement Q and
kernel R. Then Q is cyclic or a quaternion group. In the second case
the order of Q is 8. Moreover G/R contains exactly three p-regular conju-
gacy classes. Let xR\in G/R be an element of order four. Then |G/R :
C_{G/R}(xR)|=2pb=6 and hence p=3. Obviously the representation \sigma of
P\propto Q\cong G/R on R is irreducible. Its degree is a , if |R|=r^{a} . By Clifford
\sigma|_{Q} decomposes into irreducible parts of the same degree. The faithful
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irreducible representation of a quaternion group has degree two or four (see
[9] Hilfssatz 11). Therefore the degree a is even, say a=2c. Since P\propto Q

operates transitively on R\backslash 1,3^{d}8=r^{a}-1=(r^{c}-1)(r^{c}+1) . It is easy to
see that this equation has the unique solution r=5 , c=1 , d=1 . Since P
operates faithfully on R and GL(2,5) has the order 480, the order of P is
3. This is case B4) of the Main Theorem.

Now let Q be cyclic. Then G/R contains two or three p-regulare con-
jugacy classes. In the first case because of p\neq 2 , |Q|=2 and so Q inverts
all elements of R . Hence R is abelian and PQ has two orbits in R\backslash 1 . This
implies r^{n}-1=2p^{a}+2pb for certain positive integers n , a , b . Obviously R
is a minimal normal subgroup. Assume first a\neq b . Then P is not cyclic
and irreducible on R. By [4] VIII 3.3 Lemma p. 268 we have a direct prod-
uct R=R_{1}\otimes R_{2}\otimes\ldots\otimes R_{p} , where P permutes the R_{i} ’s transitivelly. Now
the elements r_{1} , r_{1}^{-1} , r_{1}r_{2} , (r_{1}r_{2})^{-1} , r_{1}r_{2}r_{3} , (r_{1}r_{2}r_{3})^{-1} , \ldots

r_{i}\in R_{i} belong to
distinct conjugacy classes. This is a contradiction.

Now let a=b. By [4] 3.4 Lemma p. 268 P is cyclic of order p^{a} . These
are case B5) and Bld) of the Main Theorem.

If G/R contains exactly three p-regulare conjugacy classes, we have
q-1=2p^{b} for a natural number b . Then R is an elementary abelian 2-gr0up.
Moreover PQ permutes the set of non-identity elements of R transitively.
Let F be the Fitting subgroup of PQ . Then each Sylow subgroup of F is
normal in PQ and permutes the set of non-identity elements of R in orbits of
equal length by Lemma 3. By [4] 3.4 Lemma p. 268 the Sylow subgroups and
hence F are cyclic. Let p^{d}q be the order of F and |R|-1=2^{n}-1=p^{c}q .
In view of the proof of 3.5 Theorem p. 269 in [4] we have 2^{n}-1 |p^{d}qn .
Therefore n=p^{c-d} and if c-d\geq 1,2^{n}-1=(2^{p}-1)t=p^{c}q . By Fermat’s
Theorem q=2^{p}-1=2pb+1 and thus p^{b}=2^{p-1} –1. By Lemma 2 we
have b=1 and therefore p=3 and q=7. Hence 3^{c}7=2^{n}-1 and n is
even. This is a contradiction. Consequently c=d. Then F=PQ since
PQ operate faithfully. Hence Q is a group of order three. Therefore n is
even and as a consequence P\cong Z_{5} or P\cong 1 . These are case B6) and Blc)
of the Main Theorem.

3.3.1. Let O_{p’}(G) be a non-abelian q group Q .
Either Z(Q) or Q/Z(Q) contains exactly two conjugacy classes. There-

fore q^{d}=1+p^{e} and q=2, e=0 or e=1 by Lemma 2. Hence Z(Q)
contain exactly two conjugacy classes and |Z(Q)|=1+p or 2, with a
Mersenne prime p. If Q_{1}:=Q/Z(Q) has three classes Q_{1} is non-abelian
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because of 2^{i}\neq 1+p^{a}+p^{b} . Therefore |Q_{1}|=|Z(Q_{1})|+2^{cd}p and
|Z(Q_{1})|=1+p or 2. It is easy to see that also |Q_{1}/Z(Q_{1})|=1+p

or 2. Let UrZ(Q_{1}):=preimage(Z(Q_{1})) in G . We consider two cases.
a) Let |Z(Q_{1})|=2 .
Hence |Q_{1}/Z(Q_{1})|=1+p , because Q_{1} is not abelian. Moreover Q_{1} has

elements of order 4. Since Q_{1} contains exactly three classes, all elements
of Q_{1}\backslash Z(Q_{1}) are conjugated. Therefore Q_{1} has exactly orle involution.
Hence Q_{1} is the quaternion group of order 8 and p=3. Moreover we
have outside UrZ(Q_{1}) exactly |Q|-|UrZ(Q_{1})|=2p|Z(Q)| elements.
Therefore |C_{Q}(x)|=1+p=4 for x\in Q\backslash UrZ(Q_{1}) . On the other hand
Z(Q)\cap<x>=1 and x is of order 4. This is a contradiction.

b) Let |Z(Q_{1})|=1+p .
If |Q_{1} : Z(Q_{1})|=2 , then we have outside UrZ(Q_{1}) exactly (1 +

p)|Z(Q)| conjugate elements. On the other hand |C_{Q}(x)|\geq 4 for
x\in Q\backslash UrZ(Q_{1}) . This is a contradiction. Therefore |Q_{1} : Z(Q_{1})|=1+p .

Now we have in G/Z(Q) outside Z(Q_{1}) exactly (1+p)p conjugate elements.
But |C_{Q_{1}}(x)|>1+p for x\in Q_{1}\backslash Z(Q_{1}) is a contradiction.

Therefore Q_{1} contains exactly two classes and is elementary abelian.
Hence \Phi(Q)\leq Z(Q) and since Z(Q) is minimal, \Phi(Q)=Z(Q) . Therefore
Z(Q)\backslash 1 is the set of involutions of Q , which are all conjugate in G . By [3] III
3.19 Satz S.275 we see that |A(Q)| divides 2^{2n}(2^{n}-1)(2^{n}-2)\ldots(2^{n}-2^{n-1})

and the Sylow p-subgroup has order p . Let |Q|=2^{2n}=1+p+2^{n-1}p+2^{n-1}p

be the equation of the partition of Q into G-classes. Therefore Q is a Suzuki
2-group of type A(n, \theta) (see: [4] VIII 7). In view of this equation and the
centralizer of an element of order 4 in A(n, \theta) it is easy to see that \theta acts
fixed point freely. Moreover it is clear that conversely groups of the type
B3) of the Main Theorem have exactly four p-regulare classes.

3.3.2 Let O_{p’}(G) be a abelian q group Q .
Since |Q|=q^{n}=1+p^{a}+p^{b}+p^{c} for suitable a , b and c , it follows q=2 .

If \Phi(Q)>1 then \Phi(Q) and Q/\Phi(Q) have order 2 or 1 +p and contain
exactly two conjugacy classes. By [3] III 3.19 Satz S.275 |Q/\Phi(Q)|=2 and

P=1 or |Q/\Phi(Q)|=1+p and |P|=p . If P=1 we have case Bla).

Now letP be cyclic of order p . Hence the numbers a , b , c are 0 or 1. It is
easy to check that a=0, b=c=1 and |Q|=2(1+p) . Because Q has
more then one involution, we have exactly one conjugacy class of elements
of order 4. On the other hand a cyclic group of order 4 has two elements
of order 4. Therefore there is a even number of elements of order 4 in Q .
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This is a contradiction. Hence \Phi(Q)=1 and Q is elementary abelian.
If Q is irreducible and P is not cyclic, by [4] VIII 3.3 Lemma p. 268 we
have a direct product Q=Q_{1}\otimes Q_{2}\otimes\ldots\otimes Q_{p} , where P permutes the Q_{i} ’s.
Now the elements q_{1} , q_{1}q_{2} , q_{1}q_{2}q_{3} , \ldots q_{i}\in Q_{i} belong to distinct conjugacy
classes. Hence p=3 and the number of elements in the class of q_{1} is
3(|Q_{1}|-1)=3^{a} . Therefore |Q_{1}|=4 and the order of Q is 64. According
to the partition of Q into G-classes we have the equation 64=1+9+27+27.
Moreover P is a subgroup of GL(6,2) . The only 3-subgroups of GL(6,2)
with this property are the Sylow 3-subgroups. This is case B2.d) If Q is
irreducible and P is cyclic, the stabilizer of any non-identity element of Q
is 1. Hence 2^{n}-1=3pa and therefore n is even, p^{a}=5 , Q has order 16.
This is case B2.a) of the Main Theorem.

If Q is reducible, one easily checks that the cases Bl.b)-Bl.d) occur.

References

[1] Aschbacher M., Finite group theory. Cambrige UP (1986).
[2] Bannuscher W. and Tiedt G., On a theorem of Deaconescu. Rostocker Math. Kolloq.

47 (1994), S. 23-26.
[3] Huppert B., Endliche Gruppen. Berlin-Heidelberg-New York, Springer-Verlag

(1968).
[4] Huppert B. and Blackburn N., Finite groups II, Berlin-Heidelberg-New York-Tokyo,

Springer-Verlag (1982).
[5] Ninomiya Y., Finite groups with exactly three p-regular classes. Arch. Math. 57

(1991), 105-108.
[6] Ninomiya Y., Structure of p-solvable groups with three p-regular classes. Canad. J.

Math. 43 (1991), 559-579.
[7] Ninomiya Y., Correction to: Stmcture of p-solvable groups with three p-regular

classes. Canad. J. Math. 45 (1993), 626.
[8] Pazderski G., Solvable abnilpotent groups. Math. Nachr. 117 (1984), 305-321.
[9] Pazderski G., \"Uber lineare aufi\"osbare Gruppen. Math. Nachr. 45 (1970), S. 1-68.

Fachbereich Mathematik
Universit\"at Rostock
Universit\"atsplatz 1
D18051 Rostock, Germany
E-mail: gunter@obelix.math.uni-rostock.de


	1. Introduction
	2. Preliminary results
	3. Proof of the Main Theorem
	References

