About finite solvable groups with exactly four p-regular conjugacy classes

Gunter Tiedt

(Received August 3, 1994; Revised September 8, 1995)

Abstract

Let G be a finite solvable group and p a prime $\neq 2$. The purpose of this note is to give the structure of finite solvable groups with exactly four p-regular conjugacy classes.

Key words: finite solvable group, p-regular conjugacy class, p-length, p-nilpotent, structure of group.

1. Introduction

In [5], [6] and [7] Ninomiya describes the groups with exactly three p-regular classes. If F is a splitting field for G of characteristic p then, as well-known by Brauer, the number of non-isomorphic simple $F G$ modules is equal to the number of p-regulare classes. Throughout this paper G denotes a finite group and p a prime $\neq 2$. The purpose of this note is to give the structure of finite solvable groups with exactly four p-regular classes. With $A \propto B$ we denote the semidirect product of a normal subgroup B with a subgroup A. All other notations are standard and can be found, for example, in [3].

Main Theorem Let G be a solvable group with exactly four p-regular conjugacy classes, $O_{p}(G)=1$ and $p \neq 2$. Then one of the following cases occurs :
A) If G is not p-nilpotent then $G \cong S_{4}$ and $p=3$.
B) If G is p-nilpotent then G is one of the following types

1. The group G is one of the p^{\prime}-groups
a) G is the cyclic group Z_{4} of order 4 .
b) $G \cong Z_{2} \times Z_{2}$.
c) G is the alternating group A_{4} of degree $4, p \neq 3$.
d) G is the dihedral group of order $10, p \neq 5$.
2. $\quad O_{p^{\prime}}(G)$ is elementary abelian of order 2^{n} and one of the following

[^0]statements for $O_{p^{\prime}}(G)$ and a Sylow p-subgroup P of G holds.
a) $O_{p^{\prime}}(G)$ is a minimal normal subgroup, $n=4$ and $G=Z_{5} \propto$ $O_{p^{\prime}}(G), p=5$.
b) $O_{p^{\prime}}(G) \cong Z_{2} \times N$, where N is elementary abelian of order $p+1, p$ is a Mersenne prime, P is of order p and operates transitively on $N \backslash 1$.
c) $G \cong\left(Z_{p} \propto N\right) \times\left(Z_{p} \propto N\right)$, where N is elementary abelian of order $p+1, p$ is a Mersenne prime, and Z_{p} operates transitively on $N \backslash 1$.
d) $O_{p^{\prime}}(G)$ is a minimal normal subgroup, $n=6$ and P is a Sylow 3-group of $G L(6,2)$, which acts naturally on $O_{p^{\prime}}(G)$.
3. $\quad O_{p^{\prime}}(G) \cong A(n, \theta)$ is a Suzuki 2-group of order $2^{2 n}$ and θ acts fixed point freely, $G=P \propto A(n, \theta)$, with $|P|=p$.
4. $G=S L(2,3) \propto N$, where N is an elementary abelian group of order 25 and $S L(2,3)$ operates transitively on $N \backslash 1, p=3$.
5. $G=\left(P \times Z_{2}\right) \propto N$, where P is a cyclic p-group, Z_{2} the cyclic group of order 2, and $\left(P \times Z_{2}\right)$ has two orbits on $N \backslash 1$. For the order $|N|=q^{a}$, and $|P|=p^{c}$ we have $q^{a}-1=4 p^{c}$, and if $a>1$ then $q=5$ and a is a prime.
6. $\quad G=Z_{15} \propto N, p=5, N$ is elementary abelian of order 16 and Z_{15} operates as a Singer cycle on N.

Conversly any of these groups has exactly four p-regular classes.

2. Preliminary results

Lemma 1 If G is a solvable group with exactly four p-regular classes then the number of distinct prime divisors in the order of G is smaller than four.

Proof. Let G be a counter example and p, r, s, t primes dividing the order of G. Let H be a $\{r, s, t\}$-Hall group. Then H contains only elements of prime order. This is a contradiction to [2] Theorem 3.

Lemma 2 ([4] 2.7 Lemma p. 424). Suppose that $q^{m}-1=r^{v}$, where q, r are primes and m, v are positive integers. Then either
a) $q=2$ and $v=1$ or
b) $r=2$ and $m=1$ or
c) $q^{m}=9$ and $r^{v}=8$.

Lemma 3 Let M be a set, on which G operates transitively and $N a$ normal subgroup of G. Then all orbits of N on M have the same length.

Proof. Let A_{i}, A_{j} be two orbits of N on M and $a_{i} \in A_{i}, a_{j} \in A_{j}$. Then there is $g \in G$ with $a_{i} g=a_{j}$. We show $x \mapsto x g$ is a bijection from A_{i} on A_{j}. Obviously there is $n \in N$ with $x=a_{i} n$. Therefore we have $x g=a_{i} n g=a_{i} g g^{-1} n g=a_{j} n^{g}=a_{j} n_{1}$ for $n_{1} \in N \triangleleft G$ and so $x g \in A_{j}$. Clearly $x \rightarrow x g^{-1}$ is the converse morphism.

Lemma 4 Let R be a Sylow r-subgroup of a solvable group G. If all elements of $R \backslash 1$ are conjugate in G then R is abelian.

Proof. Let G be a minimal counterexample and M be a minimal normal subgroup of G. If M is r-group then $M=R$. This is a contradiction. Hence M is a r^{\prime}-group. Now $R M / M$ is a Sylow r-subgroup of G / M. Obviously G / M is a counterexample of smaller order.

Lemma 5 Let G be a solvable group with exactly two p-regular conjugacy classes in $O_{p^{\prime}}(G)$ and $O_{p}(G)=1$. Then the Sylow p-subgroup P is cyclic and the p-length of G is 1 .

Proof. $\quad O_{p^{\prime}}(G)$ is a minimal normal subgroup and therefore abelian. Moreover $G / O_{p^{\prime}}(G)$ operates transitively on $O_{p^{\prime}}(G) \backslash 1$. By Lemma 3 the orbits of $O_{p^{\prime}}(G) \backslash 1$ under $O_{p}\left(G / O_{p^{\prime}}(G)\right)=O_{p^{\prime} p}(G) / O_{p^{\prime}}(G)$ have the same length. This length is obviously different from 1. By [4] 3.4. Lemma p. 268 $O_{p^{\prime} p}(G) / O_{p^{\prime}}(G)$ is cyclic. Hence the p-length of G is 1 , which is seen by the constrained property.

Lemma 6 Let G be a solvable group with exactly four p-regulare conjugacy classes and $O_{p}(G)=1$. Then the p-length of G is 1 .

Proof. Let G be a counter example. By Lemma $5 O_{p^{\prime}}(G)$ contains three conjugacy classes. Let $q(\neq p)$ be a prime divisor of the order of G and Q a Sylow q-subgroup of G. Now we have two cases.

1. Let $O_{p^{\prime}}(G)$ be a q-group.

If 3 distinct primes p, q, r divides the order of G then there is exactly one conjugacy class with elements of order r. Let R be a Sylow r-subgroup and $1 \neq x \in R$. Lemma 4 implies that R is abelian. Then by the Lemma of Burnside all elements of order r in R are conjugated under $N=N_{G}(R)$. The number of elements is obviously $\left|N: C_{N}(x)\right|=p^{v}$ for a suitable natural
number v. Moreover $R Q$ is a Frobenius group. Therefore the order of R is r. Hence we have $p^{v}+1=r$, which contradicts Lemma 2.

Therefore the order of G is divisible by the primes p, q only. We set $|Q|=q^{b}$ and $\left|O_{p^{\prime}}(G)\right|=q^{d}$. Obviously $O_{p^{\prime}}(G)$ contains $Z(Q)$ and $q^{d}=1+p^{s}+q^{i} p^{t}$ for suitable s, i and t. Moreover all p^{\prime}-elements outside $O_{p^{\prime}}(G)$ are conjugated. Hence $G / O_{p^{\prime} p}(G)$ contains exactly two p^{\prime}-classes. Consequently $q^{b-d}-1$ is a p-power. By Lemma 2 $q^{b-d}-1=p$ and $q=2$, i.e. G is a $\{2, p\}$-group and the order of $O_{2}(G)$ is 2^{d}.
1.1. First let $O_{2}(G)$ be a non-minimal normal subgroup and $1 \neq N<$ $O_{2}(G)$ a G-normal subgroup. Let the order of N be 2^{c}. Then all elements of $N \backslash 1$ are conjugated. Hence $1+p^{s}=2^{c}$ or $2^{c}=2^{i} p^{t}+1$. Obviously the second case is impossible. By Lemma 2 we have $p=2^{c}-1$ and $s=1$. The equation $2^{d}=1+p+2^{i} p^{t}$ forces $i=c, t=1$ and $d=2 c$. By [3] VI.6.5 Lemma S. $690 C_{G}\left(O_{2}(G) / \Phi\left(O_{2}(G)\right)\right) \leq O_{2}(G)$ holds. Therefore a Sylow p-subgroup P has a faithful representation on $O_{2}(G) / \Phi\left(O_{2}(G)\right)$ and is consequently isomorphic to a subgroup of $G L(n, 2)$ with $1 \leq n \leq 2 c$. Clearly $|G L(n, 2)|=\left(2^{n}-1\right)\left(2^{n}-2\right) \ldots\left(2^{n}-2^{n-1}\right)$ and $c \mid m$ if $p=\left(2^{c}-1\right) \mid\left(2^{m}-1\right)$. Hence the order of P is smaller than p^{3} and the p-length of G is one.
1.2. Now let $O_{2}(G)$ be now a minimal normal subgroup of G. Then it is the unique minimal normal subgroup of G. Therefore any homomorphic image of G has at most 2-length one, but G has 2-length two. By [3] VI 6.9 Hilfssatz S. $693 O_{2}(G)$ has a complement $M \cong G / O_{2}(G)$ in G. Obviously M contains exactly two p-regular conjugacy classes, namely the 1-class and a class with elements of order two. Hence all 2-elements outside $O_{2}(G)$ have order 2 and so a Sylow 2-subgroup Q of G has exponent two. Then Q is abelian and therefore the 2-length of G is one. Since $O_{p}(G)=1$, this case is impossible.
2. Let the order of $O_{p^{\prime}}(G)$ be divisible by exactly two distinct primes. Then we have a minimal normal subgroup N and a subgroup U, such that $U N=O_{p^{\prime}}(G)$ and $U \bigcap N=1$. By the Frattini argument $N_{G}(U) O_{p^{\prime}}(G)=$ G. Since $O_{p^{\prime}}(G)$ is a Frobenius group, we have $N_{O_{p^{\prime}}(G)}(U)=U$. Hence $N_{G}(U) / U \cong G / O_{p^{\prime}}(G)$ and $N_{G}(U)$ operates transitively on $U \backslash 1$. By Lemma 3 all orbits of $U \backslash 1$ under $O_{p}\left(N_{G}(U) / U\right) \cong O_{p^{\prime} p}(G) / O_{p^{\prime}}(G)$ have the same length. By [4] 3.4 Lemma p. $268 O_{p^{\prime} p}(G) / O_{p^{\prime}}(G)$ is cyclic. It follows $l_{p}(G)=1$.
Remark. In a similar way we can show, that $l_{p}(G)=1$ if G has at most
four p-regular conjugacy classes.
Lemma 7 Let p, q be distinct primes and a, c be natural numbers such that $a>1, p \neq 2$ and $q^{a}-1=4 p^{c}$. Then $q=5$ and a is a prime.

Proof. Obviously q is odd. We consider the equation modulo 8. Now it is easy to see that a is odd. Let $a=i \cdot j$ with a prime j and $i \geq 1$. We have $q^{a}-1=\left(q^{i}-1\right)\left(q^{i(j-1)}+\ldots+q^{i}+1\right)$ with $q^{i}-1=4 p^{k}$ and $p^{l}=q^{i(j-1)}+\ldots+q^{i}+1$ for certain natural numbers k, l. Then $p^{l}=$ $\left(4 p^{k}+1\right)^{j-1}+\ldots+\left(4 p^{k}+1\right)+1=A\left(p^{k}\right)^{2}+j(j-1) 2 p^{k}+j$ for a natural number A. It is easy to see that only $k=0, q=5$ and $i=1$ is possible.

Remark. Some arguments of this proof are taken from the proof of Lemma 4.3 in [6]. We conjecture that furthermore holds $c=1$.

3. Proof of the Main Theorem

In the proof we consider several cases. Let p, q and, if necessary, r be the primes dividing the order of G, and P, Q, R the Sylow subgroups, respectively.

1. Let $O_{p^{\prime}}(G)$ only contain two classes.

Let the order of $O_{p^{\prime}}(G)$ be a power of q, say q^{d}. First we will show that all p^{\prime}-elements have prime power order. Suppose there is an element of order $q r$ in G. Then we have outside of $O_{p^{\prime}}(G)$ only p^{\prime}-elements of order $q r$ and r. In particular then $O_{p^{\prime}}(G)=Q$. By Lemma $6 H=R \propto P$ is a q^{\prime}-Hall group of G. Hence $N_{G}(R)=C_{G}(R)$. Since all elements of $R \backslash 1$ are conjugate in G, the order of R is two and $r=2$ by Burnside. Let $R=\langle a\rangle$. Since G has elements of order $q 2$, there is $u \in O_{p^{\prime}}(G) \backslash 1$, which commutes with a. Therefore $C_{G}(u) \geq R Q$ and further $\left|G: C_{G}(u)\right|$ is a p-power. Since all nontrivial elements of $O_{p^{\prime}}(G)$ are conjugate, we get $p^{t}=q^{d}-1$ for a suitable t. Now by Lemma 2 we have the contradiction $p=2$ or $q=2$.

By Lemma $5 P$ is cyclic. Set $\bar{G}=G / O_{p^{\prime}}(G)$. Then $C_{\bar{G}}(\bar{P}) \leq \bar{P}$, and so $\bar{G} / O_{p}(\bar{G})$ is isomorphically contained in $\operatorname{Aut}(P)$. Hence $\bar{G} / O_{p}(\bar{G})$ is cyclic, and then it is a r-group or a q-group.
1.1. Let $G / O_{p^{\prime} p}(G)$ be a r-group.

Let H be a p^{\prime}-Hall group. Then H is a Frobenius group and R is cyclic. Since $R \cong G / O_{p^{\prime} p}(G)$ contains exactly three conjugacy classes, $|R|=3$. On the other hand R operates fixed point freely on P and $Q \cong O_{p^{\prime}}(G)$.

Therefore R operates fixed point freely on $O_{p^{\prime} p}(G)$. By the Theorem of Thompson $O_{p^{\prime} p}(G)$ is nilpotent. This is a contradiction.
1.2. Let $G / O_{p^{\prime} p}(G)$ be a q-group.

Let Q be a Sylow q-subgroup and $x \in Z(Q)$. By the Lemma of Hall and Higman [3] 6.5 Lemma S. $690 x \in O_{p^{\prime}}(G)$. If q^{d} is the order of $O_{p^{\prime}}(G)$, we have $q^{d}-1=p$ and $q=2$ in view of Lemma 2. By Lemma $5 P$ is cyclic of order p. Outside $O_{p^{\prime}}(G)$ there are exactly two p^{\prime}-classes and at most three consequently in $T:=G / P O_{p^{\prime}}(G)$. Hence $T / Z(T)$ contain at most two classes. Therefore $|T / Z(T)| \leq 2$ and $|Z(T)| \leq 2$. Consequently \mid $T \mid=2$ and G is an abnilpotent group with index system $\left(2^{d}, p, 2\right)$. Moreover $p=2^{d}-1$ so that p is a Mersenne prime and d a prime. By [8] 4.2 Theorem, $2 \mid d$. Hence $d=2$ and $G \cong S_{4}$. Obviously S_{4} satisfy our assumptions.
2. Let $O_{p^{\prime}}(G)$ only contain three classes.

Obviously there are exactly two p-regulare conjugacy classes in $G / O_{p^{\prime} p}(G)$. By Lemma $6 G / O_{p^{\prime} p}(G)$ has order 2.
2.1. Let $O_{p^{\prime}}(G)$ be a q-group and the order of G divisible by three distinct primes.

Then $|R|=2$ and R operates non-trivially on P. Now let $\langle a\rangle=R$ and $a z$ an involution with $z \in P$. By [1] $45.1 D=<a, a z>$ is a dihedral group and also a Frobenius group. By the Lemma of Hall and Higman D operates faithfully on $O_{p^{\prime}}(G)$. But then there is an involution of D, which centralizes an element $1 \neq v \in O_{p^{\prime}}(G)$. Hence we have an element of order $2 q$. This is a contradiction.
2.2. Let $O_{p^{\prime}}(G)$ be a q-group and the order of G divisible by two distinct primes.

We set $\left|G: N_{G}(Q)\right|=p^{i}$ and $\left|O_{p^{\prime}}(G)\right|=2^{d}$. Then there are $p^{i}|Q|$ $-\left(p^{i}-1\right)\left|O_{p^{\prime}}(G)\right| p$-regular elements in G. Hence in the unique class outside $O_{p^{\prime}}(G)$ there are exactly $p^{i}\left(|Q|-\left|O_{p^{\prime}}(G)\right|\right)=p^{i} 2^{d}$ elements. On the other hand $C_{G}(x) \supseteq<x, Z(Q)>$ for $x \in Q \backslash O_{p^{\prime}}(G)$.Because $Z(Q) \cap$ $O_{p^{\prime}}(G) \neq 1$, we have $\left|C_{G}(x)\right| \geq 4$.Therefore the 2-power dividing $\mid G$: $C_{G}(x) \mid$ is at most 2^{d-1}. This is a contradiction to $\left|G: C_{G}(x)\right|=p^{i} 2^{d}$.
2.3. Let the order of $O_{p^{\prime}}(G)$ be divisible by two distinct primes.

Then $O_{p^{\prime}}(G)$ is a Frobenius group. Let Q_{1} be the kernel and its order q^{a}, and let R_{1} be the complement and its order r. If $r=2=\left|G / O_{p^{\prime} p}(G)\right|$, the Sylow p-subgroup P operates trivially on R_{1}. Hence $G / P Q_{1}$ contains at most three conjugacy classes, but its order is four. This is a contradiction. Therefore $q=2=\left|G / O_{p^{\prime} p}(G)\right|$. Now Q_{1} is the unique minimal normal
subgroup of G. Consequently any homomorph image of G has 2-length one, but the 2-length of G is two. By [3] VI 6.9 Hilfssatz $\mathrm{S} .693 Q_{1}$ has a complement in G. Hence any non-trivial 2-element has order two. Consequently the Sylow 2-subgroup of G is abelian. This is a contradiction to $l_{2}(G)=2$.
3. Let G be p-nilpotent.
3.1. Let the order of a certain element of $O_{p^{\prime}}(G)$ be divisible by r and q.

Let N be a minimal normal subgroup of G. Then N is a Sylow subgroup. It may be assumed that $N=Q$. Therefore $O_{p^{\prime}}(G)=R Q$ for an elementary abelian Sylow r-subgroup R. If $O_{r}(G) \neq 1$ then $O_{r}(G)=R$ and $O_{p^{\prime}}(G)$ is abelian. Hence, if $O_{p^{\prime}}(G)$ is not abelian, R operate faithfully on Q and $P R$ operates transitvely on $Q \backslash 1$. If R operates irreducibly on Q, by the Lemma of Schur R is cyclic and thus the stabalizer of any element of $Q \backslash 1$ in R is 1 . Assume R operates reducibly on Q. By Lemma 3 all orbits of $Q \backslash 1$ have the same length. By [4] Theorem 3.1 b p. 266 the stabalizer of any element of $Q \backslash 1$ in R is 1 . Hence, if $O_{p^{\prime}}(G)$ is not abelian, $O_{p^{\prime}}(G)$ is a Frobenius group in contradiction to the assumption 3.1. Therefore $O_{p^{\prime}}(G)$ is abelian. Obviously Q and R are normal subgroups of G. Let q^{c} and r^{d} denote their orders, respectively. Moreover we choose non-trivial elements $x \in Q$ and $y \in R$. Then $\left|G: C_{G}(x)\right|=p^{a},\left|G: C_{G}(y)\right|=p^{b}$ and therefore $q^{c}-1=p^{a}, r^{d}-1=p^{b}$. This is a contradiction to $p \neq 2$.
3.2. Let the order of all elements of $O_{p^{\prime}}(G)$ be a prime power and $O_{p^{\prime}}(G)$ not a q-group.

By [2] $O_{p^{\prime}}(G)$ is a Frobenius group or a 3-step group. In the second case we have a principal series $O_{p^{\prime}}(G)>N_{1}>N_{2}>1$, where $O_{p^{\prime}}(G) / N_{1}$ and N_{2} are 2-groups and N_{1} / N_{2} is a q-group. Obviously N_{2} is the unique minimal normal subgroup of G and $l_{2}(G)=2$. Therefore any homomorphic image of G has at most 2-length one. By [3] VI 6.9 Hilfssatz S. $693 N_{2}$ has a complement in G. Hence all elements of $R \backslash 1$ are of order 2. Consequently R is abelian contradictly, $l_{2}(G)=2$.

Now let $O_{p^{\prime}}(G)=Q R$ be a Frobenius group with complement Q and kernel R. Then Q is cyclic or a quaternion group. In the second case the order of Q is 8 . Moreover G / R contains exactly three p-regular conjugacy classes. Let $x R \in G / R$ be an element of order four. Then $\mid G / R$: $C_{G / R}(x R) \mid=2 p^{b}=6$ and hence $p=3$. Obviously the representation σ of $P \propto Q \cong G / R$ on R is irreducible. Its degree is a, if $|R|=r^{a}$. By Clifford $\left.\sigma\right|_{Q}$ decomposes into irreducible parts of the same degree. The faithful
irreducible representation of a quaternion group has degree two or four (see [9] Hilfssatz 11). Therefore the degree a is even, say $a=2 c$. Since $P \propto Q$ operates transitively on $R \backslash 1,3^{d} 8=r^{a}-1=\left(r^{c}-1\right)\left(r^{c}+1\right)$. It is easy to see that this equation has the unique solution $r=5, c=1, d=1$. Since P operates faithfully on R and $G L(2,5)$ has the order 480 , the order of P is 3. This is case B4) of the Main Theorem.

Now let Q be cyclic. Then G / R contains two or three p-regulare conjugacy classes. In the first case because of $p \neq 2,|Q|=2$ and so Q inverts all elements of R. Hence R is abelian and $P Q$ has two orbits in $R \backslash 1$. This implies $r^{n}-1=2 p^{a}+2 p^{b}$ for certain positive integers n, a, b. Obviously R is a minimal normal subgroup. Assume first $a \neq b$. Then P is not cyclic and irreducible on R. By [4] VIII 3.3 Lemma p. 268 we have a direct product $R=R_{1} \otimes R_{2} \otimes \ldots \otimes R_{p}$, where P permutes the R_{i} 's transitivelly. Now the elements $r_{1}, r_{1}^{-1}, r_{1} r_{2},\left(r_{1} r_{2}\right)^{-1}, r_{1} r_{2} r_{3},\left(r_{1} r_{2} r_{3}\right)^{-1}, \ldots r_{i} \in R_{i}$ belong to distinct conjugacy classes. This is a contradiction.

Now let $a=b$. By [4] 3.4 Lemma p. $268 P$ is cyclic of order p^{a}. These are case B5) and B1d) of the Main Theorem.

If G / R contains exactly three p-regulare conjugacy classes, we have $q-1=2 p^{b}$ for a natural number b. Then R is an elementary abelian 2-group. Moreover $P Q$ permutes the set of non-identity elements of R transitively. Let F be the Fitting subgroup of $P Q$. Then each Sylow subgroup of F is normal in $P Q$ and permutes the set of non-identity elements of R in orbits of equal length by Lemma 3. By [4] 3.4 Lemma p. 268 the Sylow subgroups and hence F are cyclic. Let $p^{d} q$ be the order of F and $|R|-1=2^{n}-1=p^{c} q$. In view of the proof of 3.5 Theorem p. 269 in [4] we have $2^{n}-1 \mid p^{d} q n$. Therefore $n=p^{c-d}$ and if $c-d \geq 1,2^{n}-1=\left(2^{p}-1\right) t=p^{c} q$. By Fermat's Theorem $q=2^{p}-1=2 p^{b}+1$ and thus $p^{b}=2^{p-1}-1$. By Lemma 2 we have $b=1$ and therefore $p=3$ and $q=7$. Hence $3^{c} 7=2^{n}-1$ and n is even. This is a contradiction. Consequently $c=d$. Then $F=P Q$ since $P Q$ operate faithfully. Hence Q is a group of order three. Therefore n is even and as a consequence $P \cong Z_{5}$ or $P \cong 1$. These are case B6) and B1c) of the Main Theorem.
3.3.1. Let $O_{p^{\prime}}(G)$ be a non-abelian q-group Q.

Either $Z(Q)$ or $Q / Z(Q)$ contains exactly two conjugacy classes. Therefore $q^{d}=1+p^{e}$ and $q=2, e=0$ or $e=1$ by Lemma 2. Hence $Z(Q)$ contain exactly two conjugacy classes and $|Z(Q)|=1+p$ or 2 , with a Mersenne prime p. If $Q_{1}:=Q / Z(Q)$ has three classes Q_{1} is non-abelian
because of $2^{i} \neq 1+p^{a}+p^{b}$. Therefore $\left|Q_{1}\right|=\left|Z\left(Q_{1}\right)\right|+2^{c} p^{d}$ and $\left|Z\left(Q_{1}\right)\right|=1+p$ or 2 . It is easy to see that also $\left|Q_{1} / Z\left(Q_{1}\right)\right|=1+p$ or 2 . Let $\operatorname{Ur} Z\left(Q_{1}\right):=\operatorname{preimage}\left(Z\left(Q_{1}\right)\right)$ in G. We consider two cases.
a) Let $\left|Z\left(Q_{1}\right)\right|=2$.

Hence $\left|Q_{1} / Z\left(Q_{1}\right)\right|=1+p$, because Q_{1} is not abelian. Moreover Q_{1} has elements of order 4 . Since Q_{1} contains exactly three classes, all elements of $Q_{1} \backslash Z\left(Q_{1}\right)$ are conjugated. Therefore Q_{1} has exactly one involution. Hence Q_{1} is the quaternion group of order 8 and $p=3$. Moreover we have outside $\operatorname{Ur} Z\left(Q_{1}\right)$ exactly $|Q|-\left|\operatorname{Ur} Z\left(Q_{1}\right)\right|=2 p|Z(Q)|$ elements. Therefore $\left|C_{Q}(x)\right|=1+p=4$ for $x \in Q \backslash U r Z\left(Q_{1}\right)$. On the other hand $Z(Q) \cap<x>=1$ and x is of order 4 . This is a contradiction.
b) Let $\left|Z\left(Q_{1}\right)\right|=1+p$.

If $\left|Q_{1}: Z\left(Q_{1}\right)\right|=2$, then we have outside $\operatorname{Ur} Z\left(Q_{1}\right)$ exactly $(1+$ $p)|Z(Q)|$ conjugate elements. On the other hand $\left|C_{Q}(x)\right| \geq 4$ for $x \in Q \backslash U r Z\left(Q_{1}\right)$. This is a contradiction. Therefore $\left|Q_{1}: Z\left(Q_{1}\right)\right|=1+p$. Now we have in $G / Z(Q)$ outside $Z\left(Q_{1}\right)$ exactly $(1+p) p$ conjugate elements. But $\left|C_{Q_{1}}(x)\right|>1+p$ for $x \in Q_{1} \backslash Z\left(Q_{1}\right)$ is a contradiction.

Therefore Q_{1} contains exactly two classes and is elementary abelian. Hence $\Phi(Q) \leq Z(Q)$ and since $Z(Q)$ is minimal, $\Phi(Q)=Z(Q)$. Therefore $Z(Q) \backslash 1$ is the set of involutions of Q, which are all conjugate in G. By [3] III 3.19 Satz S. 275 we see that $|A(Q)|$ divides $2^{2 n}\left(2^{n}-1\right)\left(2^{n}-2\right) \ldots\left(2^{n}-2^{n-1}\right)$ and the Sylow p-subgroup has order p. Let $|Q|=2^{2 n}=1+p+2^{n-1} p+2^{n-1} p$ be the equation of the partition of Q into G-classes. Therefore Q is a Suzuki 2-group of type $A(n, \theta)$ (see: [4] VIII 7). In view of this equation and the centralizer of an element of order 4 in $A(n, \theta)$ it is easy to see that θ acts fixed point freely. Moreover it is clear that conversely groups of the type B3) of the Main Theorem have exactly four p-regulare classes.
3.3.2 Let $O_{p^{\prime}}(G)$ be a abelian q-group Q.

Since $|Q|=q^{n}=1+p^{a}+p^{b}+p^{c}$ for suitable a, b and c, it follows $q=2$. If $\Phi(Q)>1$ then $\Phi(Q)$ and $Q / \Phi(Q)$ have order 2 or $1+p$ and contain exactly two conjugacy classes. By [3] III 3.19 Satz $\mathrm{S} .275|Q / \Phi(Q)|=2$ and $P=1$ or $|Q / \Phi(Q)|=1+p$ and $|P|=p$. If $P=1$ we have case B1a). Now let P be cyclic of order p. Hence the numbers a, b, c are 0 or 1 . It is easy to check that $a=0, b=c=1$ and $|Q|=2(1+p)$. Because Q has more then one involution, we have exactly one conjugacy class of elements of order 4 . On the other hand a cyclic group of order 4 has two elements of order 4. Therefore there is a even number of elements of order 4 in Q.

This is a contradiction. Hence $\Phi(Q)=1$ and Q is elementary abelian. If Q is irreducible and P is not cyclic, by [4] VIII 3.3 Lemma p. 268 we have a direct product $Q=Q_{1} \otimes Q_{2} \otimes \ldots \otimes Q_{p}$, where P permutes the Q_{i} 's. Now the elements $q_{1}, q_{1} q_{2}, q_{1} q_{2} q_{3}, \ldots q_{i} \in Q_{i}$ belong to distinct conjugacy classes. Hence $p=3$ and the number of elements in the class of q_{1} is $3\left(\left|Q_{1}\right|-1\right)=3^{a}$. Therefore $\left|Q_{1}\right|=4$ and the order of Q is 64 . According to the partition of Q into G-classes we have the equation $64=1+9+27+27$. Moreover P is a subgroup of $G L(6,2)$. The only 3 -subgroups of $G L(6,2)$ with this property are the Sylow 3 -subgroups. This is case B2.d) If Q is irreducible and P is cyclic, the stabilizer of any non-identity element of Q is 1 . Hence $2^{n}-1=3 p^{a}$ and therefore n is even, $p^{a}=5, Q$ has order 16 . This is case B2.a) of the Main Theorem.

If Q is reducible, one easily checks that the cases B1.b)-B1.d) occur.

References

[1] Aschbacher M., Finite group theory. Cambrige UP (1986).
[2] Bannuscher W. and Tiedt G., On a theorem of Deaconescu. Rostocker Math. Kolloq. 47 (1994), S. 23-26.
[3] Huppert B., Endliche Gruppen. Berlin-Heidelberg-New York, Springer-Verlag (1968).
[4] Huppert B. and Blackburn N., Finite groups II, Berlin-Heidelberg-New York-Tokyo, Springer-Verlag (1982).
[5] Ninomiya Y., Finite groups with exactly three p-regular classes. Arch. Math. 57 (1991), 105-108.
[6] Ninomiya Y., Structure of p-solvable groups with three p-regular classes. Canad. J. Math. 43 (1991), 559-579.
[7] Ninomiya Y., Correction to: Structure of p-solvable groups with three p-regular classes. Canad. J. Math. 45 (1993), 626.
[8] Pazderski G., Solvable abnilpotent groups. Math. Nachr. 117 (1984), 305-321.
[9] Pazderski G., Über lineare auflösbare Gruppen. Math. Nachr. 45 (1970), S. 1-68.
Fachbereich Mathematik
Universität Rostock
Universitätsplatz 1
D18051 Rostock, Germany
E-mail: gunter@obelix.math.uni-rostock.de

[^0]: 1991 Mathematics Subject Classification : 20D10, 20D20.

