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Besov spaces on symmetric manifolds

Leszek SKRZYPCZAK1
(Received February 14, 1994; Revised November 15, 1995)

Abstract. We investigate the spaces of Besov type on symmetric manifolds of the

noncompact type. The paper is focused on finding the equivalent norms via the means
typical for harmonic analysis on these manifolds.
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The whole scale of Besov spaces B_{p,q}^{s}(X) on a Riemannian manifold
with bounded geometry was defined by H. Triebel in 1986. The definition is
of local nature. But in the case of symmetric manifolds of the non-compact
type one can use the Fourier analysis similar as in the Euclidean case. In
the paper we investigate the connection between the Besov spaces and the
Helgason-Fourier transform on symmetric manifolds of the non-compact
type for p=2. We focus on the problem of equivalent norms.

1. Preliminaries

1.1. Symmetric manifolds of the non-compact type
Let X=G/K be a Riemannian symmetric manifolds of the noncom-

pact type, i.e. G is a connected semi-simple Lie group with finite center
and K is a maximal compact subgroup of G . We list briefly the customary
notation associated with X and refer for example to [10] for more explicit
definitions. Let g and f denote Lie algebras of G and K respectively. Their
complexifications will be denoted by the subscript C. Let \mathfrak{p} be an orthogonal
complement of t in g with respect to the Killing form <, > . Then

g =t\oplus \mathfrak{p} (the Cartan decomposition). (1)

We assume that the Riemannian metric on X is generated by <, > .
Let a be a maximal abelian subspace of \mathfrak{p} and a^{\star} its dual. An element

\lambda\in a^{\star} is called a restricted root of g if \lambda\neq 0 and the corresponding root
space 9\lambda= {X\in g : [H, X]=\lambda(H)X , for all H\in a} is not trivial. The
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number m_{\lambda}=dimgA is called the multiplicity of \lambda . Let \Sigma_{+} denote the set
of positive roots on a fixed open Weyl chamber a_{+} . The direct sum \mathfrak{n} of the
corresponding roots subspaces is a nilpotent subalgebra of g and

g=t\oplus a\oplus \mathfrak{n} (the Iwasawa decomposition). (2)

The corresponding decompositions of the group G look as follows:

G=KA_{+}^{-}K . where A_{+}=\exp a_{+} , (3)
G=KAN, where A=\exp a , N=\exp \mathfrak{n} . (4)

If g\in G then we will write its Cartan and Iwasawa decomposition in the
following way:

g=k_{1} exp A(g)k_{2} , g=k(g) exp H(g)n(g) , (5)

where k(g)\in K , n(g)\in N , H(g)\in a , and A(g)\in a_{+} are uniquely deter-
mined.

Let M (resp. M’ ) denote the centralizer (resp. the normalizer) of A in
K . The factor group W=M’/M is called the Weyl group of X\tau It is finite
and acts on a as a group of linear transformations by the operators Ad_{G}(k) ,
k\in M’ The group W acts also on the set of Weyl chambers and this action
is free and transitive. We define an action of W on a by s\lambda(H)=\lambda(s^{-1}H) ,
s\in W and H\in a . The homogeneous manifold B=K/M=G/MAN is
called a boundary of X . We will denote the action of G on X by g\cdot x and
on B by g(b) . The point 0=eK is called the origin of Xt

The Killing form induces the Euclidean measures on A , a and a^{\star}\wedge Multi-
plying these measures by (2\pi)^{-l/2} , (l=\dim a) , we obtain invariant measures
da, dH , d\lambda . The Haar measures dm on M and dk on K are normalized
such that the total measure is 1. The Haar measures on G and N can be
normalized in such a way that

\int_{G}f(g)dg=\int_{K\cross A\cross N}f(kan)e^{2\rho(\log a)} dkdadn, (6)

\int_{G}f(g)dg=\int_{G/K}(\int_{K}f(gk)dk)dgK , (7)

where \rho=\frac{1}{2}\sum_{\lambda\in\Sigma_{+}}m_{\lambda}\lambda and log denotes the inverse of the map to exp : a \mapsto

A . Moreover the invariant measure db=dkM on B=K/M is normalized
by dkM(B)=1 , cf. [11, I\S 5].
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1.2. Helgason-Fourier transform and tempered distributions on
X

Let \pi : G – G/K be the natural projection and 0=\pi(K) . Let \delta_{K}

denote the distribution f – \int_{K}f(k)dk on G . For any f\in C_{o}^{\infty}(G) we

define the function f^{\#}\in C_{o}^{\infty}(G/K) by f^{\#}\circ\pi=f\star\delta_{K} , where \star denotes the

convolution on G. Now, for any distribution T\in D’(G/K) we can define a

distribution \tilde{T}\in D’(G) by \tilde{T}(f)=T(f^{\beta}) . If T is a function, then \tilde{T}=T\circ\pi .

If T_{1} and T_{2} are distributions on G/K , one of compact support, then their

“convolution” T_{1}\star T_{2} is the distribution defined by

(T_{1}\star T_{2})(f^{Q})=(\tilde{T}_{1}\star\tilde{T}_{2})(f) , (8)

cf. [11, II\S 5]. We have (T_{1}\star T_{2})^{\sim}=(\tilde{T}_{1}\star\tilde{T}_{2}) , so the operation \star satisfies the
associative law and T\star\delta_{o}=T where \delta_{o} denotes the Dirac distribution at 0 .

We put A(gK, kM)=-H(g^{-1}k) for gK\in X and kM\in B . Then

A(gx, g(b))=A(x, b)+A(g\cdot 0, g(b)) , x\in X , b\in B . (9)

The functions X\ni x\mapsto e^{\mu A(x,b)} , \mu\in a_{C}^{\star} , b\in B , are eigenfunctions of each
invariant differential operator on X i.e. the differential operators invariant
with respect to the action of G . In fact

D(e^{(i\lambda+\rho)A(x,b)})=\gamma(D)(i\lambda) e^{(i\lambda+\rho)A(x,b)} , \lambda\in a^{\star} , (10)

and D – \gamma(D) is an isomorphism of the algebra D(X) of invariant oper-
ators onto the algebra S(a^{\star})_{W} of W-invariant polynomials with complex
coefficients on a^{\star} The algebra S(a^{\star})_{W} is generated by l algebraically in-
dependent homogeneous elements p_{1} , \ldots , p_{l} and 1, l=\dim a . If d_{j} is the

degree of p_{j} , j=1 , \ldots , l , then \prod_{j=1}^{l}d_{j}=|W| (cf. [11, II.\S 4-5 and III.\S 3]).
If f\in C_{o}(X) is a continuous function with compact support then its

Helgason-Fourier transform Hf is defined by

(Hf)( \lambda, b)=\int_{X}f(x)e^{(-i\lambda+\rho)A(x,b)}dx , (11)

for all (\lambda, b)\in a^{\star}\cross B for which this integral converges absolutely. The

Helgason-Fourier transform Hf satisfies the identities

\int_{B}e^{(is\lambda+\rho)A(x,b)}Tlf(s\lambda, b)db=\int_{B}e^{(i\lambda+\rho)A(x,b)}Hf(\lambda, b)db , (12)
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s\in W . and is inverted by

f(x)=|W|^{-1} \int_{a^{\star}\cross B}\prime Hf(\lambda, b)e^{(i\lambda+\rho)A(x,b)}|c(\lambda)|^{-2}d\lambda db , (13)

where c(\lambda) is Harish-Chandra’s c-function and |W| is the order of W.
The map f – Hf extends to an isometry of L_{2}(X, dx) onto L_{2}(a_{+}^{\star}\cross

B , |c(\lambda)|^{-2}d\lambda db) (the Plancherel theorem; cf. [13]).
Using the integration formulae (6) and (7) it is not hard to see that

Hf(\lambda, kM)=\mathcal{F}(\mathcal{R}(\cdot, kM))(\lambda) , (14)

where \mathcal{R} is the Radon transform

\mathcal{R}f(H, kM)=e^{\rho(H)}\int_{N}f(k(\exp H)nK)dn(H\in a, k\in K) , (15)

and \mathcal{F} the classical Fourier transform on a

\mathcal{F}h(\lambda)=\int_{a}e^{-i\lambda(H)}h(H)dH(\lambda\in a^{\star}, H\in a) . (16)

The Radon transform maps C_{o}^{\infty}(X) injectively into C_{o}(a\cross K/M) . If the
function f is K-invariant then its Helgason-Fourier transform coincides with
the spherical Fourier transform and the Radon transform coincides with the
Abel transform i.e .

(Hf)( \lambda)=\int_{X}f(x)\varphi(-\lambda _{:} _{X})dx ,

A(f)(H)=e^{\rho(H)} \int_{N}f((\exp H)nK)dn , (17)

where

\varphi(\lambda : x)=\int_{K}e^{(-i\lambda+\rho)A(x,kM)}dk , \lambda\in a^{\star} , H\in a . (18)

Now we recall the definition of rapidly decreasing functions and tem-
pered distributions on X , which is due to Harish-Chandra. We put \sigma(g)=

||Y|| and –(-g)= \int_{K}e^{-\rho H(gk)}dk , g\in G , g=k exp Y , Y\in \mathfrak{p} . The Schwartz
space C(X) on X consists of C^{\infty} functions on X such that for any m\in N

and any left(right)-invariant differential operator D(D’) on G

\tau_{D,D’,m}(f)=\sup|((D’)Df)(g)|_{-}^{-}-(g)^{-1}(1+\sigma(g))^{m}<\infty . (19)

The semi-norms \tau_{D,D’,m} convert C(X) into a Frechet space (cf. [6]). It is
well known that C_{o}^{\infty}(X)\subset C(X)\subset L_{p}(X) , p\geq 2 (topological embeddings)
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and C_{o}^{\infty}(X) is dense in C(X) . A distribution on X is said to be tempered
if it can be extended to a continuous functional on C(X) . Since C_{o}^{\infty}(X) is
continuously included and dense in C(X) , the space of tempered distribution
C’(X) can be regarded as the dual space to C(X) . It should be clear that
every distribution with compact support is tempered and that L_{2}(X) is
continuously included in C’(X) .

The Helgason-Fourier transform maps C(X) onto a space Z(a^{\star}\cross B) of
all C^{\infty} function \psi on a^{\star}\cross B such that:

i) \psi satisfies the condition (12),
ii) for each differential operator D with constant coefficients on a^{\star} . each

invariant differential operator D’ on B and each m\in N

\eta_{m,D,D’}(\psi)= \sup |(D(D’\psi))(\lambda, kM)|(1+||\lambda||)^{m}<\infty .
(\lambda,kM)\in a^{\star}\cross B

The space Z(a^{\star}\cross B) equipped with the semi-norms \eta m,D,D’ is a Frechet
space. The transform H is a topological isomorphism of C(X) onto Z(a^{\star}\cross

B) . If f\in C’(X) is a tempered distribution on X then we define its
Helgason-Fourier transform by

(Hf)(\psi)=f(?\{_{o}\psi) , (20)

where \psi\in Z(a^{\star}\cross B) , and H_{o}\psi(\lambda, kM)=H\psi(-\lambda, kM) . The transform
\mathcal{H} is a topological isomorphism of C’(X) onto the space Z’(a^{\star}\cross B) dual to
Z(a\cross B) (both equipped with their weak topologies), cf. [6]. It follows from
(13) and the elementary estimates for |c(\lambda)| that if f is a suitable function on
X or a distribution with compact support then both definition of Helgason-
Fourier transform coincides provided that we identify a function h(\lambda, b) on
a^{\star}\cross B with the following element of Z’(a^{\star}\cross B) :

\psi\mapsto|W|^{-1}\int_{a\cross B}h(\lambda, b)\psi(\lambda, b)|c(\lambda)|^{-2}d\lambda db , \psi\in Z(a^{\star}\cross B)

It is known that if h\in C_{o}^{\infty}(X) is K invariant and f\in C(X) then
f\star h\in C(X) and H(f\star h)=Hf Hh (cf. [9]).

2. The spaces B_{q}^{s}(X)

First we describe resolutions of unity on a^{\star} suitable to our purpose. Let
B(0, r) denote the ball in a^{\star} with respect to the metric induce by the Killing
form centered at 0 and with radius r .
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Definition 1 Let \Phi be the collection of all systems \{\phi_{j}\}\subset Z(a^{\star}\cross B)

with the following properties:
(i) \phi_{j}(\lambda, b_{1})=\phi_{j}(\lambda, b_{2}) , for every b_{1} , b_{2}\in B , \lambda\in a , j=0,1,2 , . .
(ii) \phi_{j}(s \lambda, b)=\phi_{j}(\lambda, b) , for every b\in B , \lambda\in a , s\in W , j=

0,1,2 , . . ’

(iii) \phi_{j}(\lambda, b)=\phi(2^{-j}\lambda, b) , if j=1,2 , \ldots , \phi\in C^{\infty}(a^{\star}\cross B) ,
(iv) supp \phi_{0}\subset B(0,2)\cross B , supp \phi\subset[mathring]_{\frac{}{(B(0,2)\backslash B(0,1/2))}}\cross B ,
(v) \sum_{j=0}^{\infty}\phi_{j}(\lambda, b)=1 for every (\lambda, b)\in a\cross B .

Remark 1. The family \Phi is of course not empty. It is sufficient to take
the smooth function on a^{\star} radial with respect to the metric induced by the
Killing form and supported in \overline{(B(0,2)\backslash B(0,1/2))} .

For the given system of functions and for every multi-index \alpha there
exist a positive number c_{\alpha} such that

2^{|\alpha|}|D^{\alpha}\phi_{j}(\lambda)|\leq c_{\alpha} for all j=0,1,2 . and all \lambda\in a^{\star} .

Definition 2 Let \{\phi_{j}\}_{j=0}^{\infty}\in\Phi . Let -\infty<s<\infty and 0<q\leq\infty , then

B_{q}^{s}(X)=\{f\in C’(X) : ||f|B_{q}^{s}||

=( \sum_{j=0}^{\infty}2^{sjq}||H^{-1}\phi_{j}Hf|L_{2}(X)||^{q})^{1/q}<\infty\}

(usual modification if q=\infty ).

Remark 2. The above approach is not useful if we take the L_{p}-norm with
p\neq 2 in the above definition. If p<2 then H^{-1}\phi_{j}Hf\not\in L_{p}(X) for any
f\in C’(X) and every Fourier L_{p}-multiplier, p\neq 2 , is an analytical function
in certain tube neighborhood of a^{\star} in a_{C}^{\star} (cf. [2]).

Lemma 1 Let-\infty<s<\infty and 0<q\leq\infty .
(i) The definition of B_{q}^{s}(X) is independent of the chosen system

\{\phi_{j}\}\in\Phi .
(ii) The operator I_{\sigma,t}(f)=H^{-1}(t+|\rho|^{2}+|\lambda|^{2})^{\sigma/2}Hf , \sigma\in R , t>

-|\rho|^{2} is a topological isomorphism of B_{q}^{s}(X) onto B_{q}^{s-\sigma}(X) .

Proof The proof is standard therefore it is sketched only. Let \{\phi_{j}\} and
\{\psi_{j}\} be the systems belonging to \Phi . Then by the Plancherel formula

||f|B_{q}^{s}(X)||_{\phi}
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=( \sum_{j=0}^{\infty}2^{sjq}||\sum_{k=-1}^{1}\psi_{j+k}\phi_{j}Hf|L_{2}(a_{+}^{\star}\cross B, |c(\lambda)|^{-2}d\lambda db)||^{q})^{1/q}

\leq C||f|B_{q}^{s}(X)||\psi .

Thus the point (i) is proved. The second point follows similarly from the
estimate

C_{1}2^{j\sigma}\leq(t+|\rho|^{2}+|\lambda|^{2})^{\sigma/2}\leq C_{2}2^{j\sigma} .

if \lambda\in B(0,2^{j+1})\backslash B(0,2^{j-1}) .

\square

Proposition 1 Let -\infty<s<\infty , 0<q , q_{1} , q_{2}\leq\infty . Let H^{s}(X)=\{f\in

D’(X) : ||f|H^{s}(X)||=||(I-\triangle)^{s/2}f|L_{2}(X)||<\infty\} be the Bessel potential
space corresponding to the Laplace-Beltrami operator \triangle on X. Then

(i) B_{2}^{s}(X)=H^{s}(X) ,
(ii) ( the real interpolation) (B_{q_{1}^{1}}^{s}(X), B_{q_{2}^{2}}^{s}(X))_{\theta,q}=B_{q}^{s}(X) , 0<\theta<1 ,

s=\theta s_{1}+(1-\theta)s_{2} ,
(iii) C(X)\subset B_{q}^{s}(X)\subset C’(X) (topological embeddings). If q<\infty then

C(X) is dense in B_{q}^{s}(X) .

Proof. The point (i) follows for s=0 directly from the Plancherel the0-
rem. For s\neq 0 we can use Lemma 1. The above interpolation property can
be prove in the similar way to the Euclidean case therefore the calculations
are omitted (cf. [19, Th.2.4.2.]).

It is sufficient to prove the both embeddings with q=\infty because
B_{q}^{s}(X)\subset B_{\infty}^{s}(X) and B_{\infty}^{s}(X)\subset B_{q}^{s+t}(X) , t>0 . There exist the posi-
tive integers m and M such that |c(\lambda)|^{-2}<M(1+||\lambda||)^{m} for all \lambda\in a^{\star}

(cf. [21, Prop. 9.1.7.3]). Moreover, there is the constant m_{1} such that
2^{js}\phi_{j}(\lambda)\leq m_{1}(1+||\lambda||)^{2js} . Thus, for a sufficiently large integer k

||f|B_{\infty}^{s}(X)||\leq C||(1+||\lambda||)^{k}Hf|L_{\infty}(a_{+}^{\star}\cross B)||

\leq C\tau_{D,D’,l}(f) ,

since H^{-1} is an isomorphism of Z(a^{\star}\cross B) onto C(X) . The space C_{o}^{\infty}(X) is

known to be dense in H^{s}(X) therefore C(X) is dense in every B_{q}^{s}(X) , q<\infty ,

cf. [18]. It is also known that (H^{s}(X))’=H^{-s}(X) , (cf. [14]). By the duality
theorem for the real method of interpolation (B_{1}^{s}(X))’=B_{\infty}^{-s}(X) , s\in R .

But C(X) is contained and dense in B_{1}^{s}(X) . Hence B_{\infty}^{s}(X)\subset C’(X) for
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every s\in R . \square

Remark 3. It follows from the above proposition that our spaces B_{q}^{s}(X)

coincide with the spaces B_{2,q}^{s}(X) defined by Triebel in [18].
The following theorem will take the crucial part in the next section.

It is a simpler version of the theorem proved in the Euclidean case for full
scale B_{p,q}^{s}(R^{n}) by H. Triebel, cf. [15].

Theorem 1 Let 0<q\leq\infty and -\infty<s<\infty . Let s_{0} , s_{1}\in R , s_{o}<

s<s_{1} and s_{1}>0 . Let \phi_{0}\in C^{\infty}(a^{\star}) , \phi\in C^{\infty}(a^{\star}\backslash \{0\}) (both W-invariant)
satisfy the following conditions

|\phi_{0}(\lambda)|>0 if \lambda\in B(0,2) ,

|\phi(\lambda)|>0 if \lambda\in B(0,4)\backslash B(0, \frac{1}{4}) , (21)

\lambda\in a^{\star}\backslash B(0,1/2)\sup\frac{|\phi_{0}(\lambda)|}{|\lambda|^{s_{0}}}<\infty , \lambda\in a^{\star}\backslash B(0,1/2)\sup\frac{|\phi(\lambda)|}{|\lambda|^{s_{0}}}<\infty , (22)

\sup_{\lambda\in B(0,4)}\frac{|\phi(\lambda)|}{|\lambda|^{s_{1}}}<\infty (23)

Then the expressions

||H^{-1}\phi_{0}Hf|L_{2}(X)||

+( \int_{0}^{1}t^{-sq}||H^{-1}\phi(t\cdot)Hf|L_{2}(X)||^{q}\frac{dt}{t})1/q (24)

and

( \sum_{j=0}^{\infty}2^{sjq}||H^{-1}\phi_{j}Hf|L_{2}(X)||^{q})^{1/q}

where \phi_{j}(\lambda)=\phi(2^{-j}\lambda) , (25)

(modification if q=\infty ) are equivalent quasi-norms in B_{q}^{s}(X) .

Proof. The proof goes in the same way as Triebel’s proof. Since we work
with L_{2}-norms we can use the Plancherel theorem instead of the inequalities
of Plancherel-Poly’a-Nikol’skij type which were used in Euclidean setting.
We recall that the Plancherel measure is defined by |c(\lambda)|^{-2}d\lambda db and that
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Fourier-Helgason image of a distribution is invariant with respect to Weyl
group, cf. Section 1.2.. So, we sketch the main steps only and refer to [15]
for details. The norm of the space L_{2}(a_{+}^{\star}\cross B, |c(\lambda)|^{-2}d\lambda db) is denoted by
||\cdot|L_{2}(a_{+}^{\star}\cross B)|| . This makes formulae shorter.

First we prove (25). Let \{\psi_{m}\}_{m=0}^{\infty}\in\Phi , and \psi_{m}(\lambda)=\psi(2^{-m}\lambda) , m=
1,2 , . It will be convenient to put \psi_{m}=0 for m=-1, -2, . Then

2^{sj}||H^{-1}\phi_{j}Hf|L_{2}(X)||

\leq 2^{sj}||\sum_{l=-\infty}^{1}\psi_{j+l}\phi_{j}Hf|L_{2}(a_{+}^{\star}\cross B)||

+2^{sj}|| \sum_{l=2}^{\infty}\psi_{j+l}\phi_{j}Hf|L_{2}(a_{+}^{\star}\cross B)|| . (26)

Estimating the sum consisted of the first terms in (26) we get

( \sum_{j=0}^{\infty}2^{sj}||\sum_{l=-\infty}^{1}\psi_{j+l}\phi_{j}Hf|L_{2}(a_{+}^{\star}\cross B)||^{q})^{1/q}

\leq C||f|B_{q}^{s}(X)|| . (27)

In the similar way we can estimate the sum consisted of the second terms
in (26). We get the inequality similar to (27) with \sum_{l=2}^{\infty} instead of \sum_{l=-\infty}^{1} .
Thus the expression (25) can be estimate from above by C||f|B_{q}^{s}(X)|| .
The opposite inequality is clear since supp \psi_{j}\subset\{\lambda : \phi_{j}(\lambda)\neq 0\} .

It remains to prove the second equivalence. The above calculations with
\phi(\gamma\cdot) , 1\leq\gamma\leq 2 , instead of \phi give

( \sum_{j=1}^{\infty}2^{sjq}\sup_{1\leq\gamma\leq 2}||\phi_{j}(\gamma\cdot)Hf|L_{2}(a_{+}^{\star}\cross B)||^{q})^{1/q}

\leq C||f|B_{q}^{s}(X)|| . (28)

In consequence

||H^{-1}\phi_{0}Hf|L_{2}(X)||

+( \int_{0}^{1}t^{-sq}||H^{-1}\phi(t\cdot)Hf|L_{2}(X)||^{q}\frac{dt}{t})^{1/q}

\leq C||f|B_{q}^{s}(X)|| .
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On the other hand

|| \psi_{j}’Hf|L_{2}(a_{+}^{\star}\cross B)||\leq C\inf_{1\leq\gamma\leq 2}||\phi_{j}Hf|L_{2}(a_{+}^{\star}\cross B)||

because \phi(\gamma\lambda)\neq 0 if \lambda\in B(0,2)\backslash B(0, \frac{1}{2}) and 1\leq\gamma\leq 2 . So

\int_{0}^{1}t^{-sq}||H^{-1}\phi(t\cdot)Hf|L_{2}(X)||^{q}\frac{dt}{t}

\geq C\sum_{j=0}^{\infty}2^{sjq}\inf_{1\leq\gamma\leq 2}||H^{-1}\phi_{j}(\gamma\cdot)\mathcal{H}f|L_{2}(X)||^{q} .

This finishes the proof. \square

We end this section by proving simple mapping properties of invariant
differential operators.

Proposition 2 Let-\infty<s<\infty and 0<q<\infty . Let D be the invariant
differential operator on X

(i) If the order of D is equal to m then ||Df|B_{q}^{s-m}(X)||\leq C||f|

B_{q}^{s}(X)|| .
(ii) Let the degree of \gamma(D)=p equal 2m , m\in N . Let p_{2m} denote the

sum of monomials of maximal degree of p . Assume that there is
a constant C such that the inequality p_{2m}(\lambda)\geq C||\lambda|| holds for
every \lambda\in a^{\star} . Let h\in B_{q}^{s}(X) . If there is f \in\bigcup_{t\in R}B_{q}^{t}(X) such
that D(f)=h then f\in B_{q}^{s+2m}(X) .

Proof. The immediate proof of (i) is omitted. We prove the point (ii). The
polynomial p_{2m} belongs to S(a^{\star})_{W} because the generators of the algebra
are homogeneous polynomials. Let D_{1} and D_{2} be differential operators
such that \gamma(D_{1})=p_{2m} and D=D_{1}+D_{2} . Then the operators D_{1} , D_{2} are
invariant and (I+D_{1})f=h+(I-D_{2})f . The order of I-D_{2} is less or
equal to 2m-1 . There is t\in R such that f\in B_{q}^{t}(X) . We assume that
t<s+2m , otherwise there is nothing to prove. We have

||f|B_{q}^{t+1}(X)||\sim||(I-\triangle)^{m}f|B_{q}^{t+1-2m}(X)||

\leq C(\sum_{j=0}^{\infty}2^{(t-2m+1)jq}||\phi^{J}Hh|L_{2}(a^{\star}\cross B)||^{q})^{1/q}

+C( \sum_{j=0}^{\infty}2^{(t-2m+1)jq}||\phi^{J}H(I-D_{2})f|L_{2}(a^{\star}\cross B)||^{q})^{1/q}
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\leq C(||h|B_{q}^{s}(X)||+||f|B_{q}^{t}(X)|| .

The argument can be repeated as far as t<s+2m-1 . This proves the
point (ii). \square

3. Equivalent quasi-norms

In this section we introduce equivalent quasi-norm via the means char-
acteristic for harmonic analysis on symmetric spaces like Laplace-Beltrami
operator, spherical functions and root systems. In contrast to the means
used in Definition 2 there are no theoretical objections to generalize these
new means to p\neq 2 . The further investigations seems to be of interest.

3.1. Quasi-norms by non-euclidean local means
A distribution f on X is called to be K-invariant if f(\psi_{k})=f(\psi) for

every \psi\in C_{0}^{\infty}(X) and every k\in K , here \psi_{k}(x)=\psi(k^{-1} x) .

Lemma 2 Let h be a K-invariant distribution on X with compact support.
Then

(i) Hh can be extended to a W-invariant entire holomorphic function
on a_{C}^{\star} satisfying the following estimates:
there exist a constant R\geq 0 and the integer m\geq 0 such that

\sup_{\lambda\in a_{C}^{\star}}(1+||\lambda||)^{-m}

exp (-R||_{S}^{\alpha}\lambda||)|Hh|<\infty ,

(ii) if f\in C’(X) then f\star h\in C’(X) and H(f\star h)=\mathcal{H}hHf .

Proof. The point (i) is proved in [7]. Prom (i) and the definition of
Z(a^{\star}\cross B) it follows that \psi Hh \in Z(a^{\star}\cross B) provided that \psi\in Z(a^{\star}\cross B) and
that \psi_{n}Hh converges to \psi Hh in Z(a^{\star}\cross B) if \psi_{n} converges to \psi . Therefore
Hh \cdot Hf \in Z’(a^{\star}\cross B) . We have

(HhHf)( \psi)=|W|^{-1}\cross\int_{G}d\tilde{f}(g)\int_{G}\int_{a^{\star}\cross B}\psi(\lambda, b)e^{(-i\lambda+\rho)A(gK,b)}

.e^{(-i\lambda+\rho)A(yK,g^{-1}(b))}|c(\lambda)|^{-2}d\lambda dbd\tilde{h}(y)

=|W|^{-1} \int_{G}d\tilde{f}(g)\int_{G}\int_{a^{\star}\cross B}\psi(\lambda, b)

.e^{(-i\lambda+\rho)A(gyK,b)}|c(\lambda)|^{-2}d\lambda dbd\tilde{h}(y)
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= \int_{G}\int_{G}(\mathcal{H}_{o}^{-1}(gy)d\tilde{h}(y)d\tilde{f}(g)=(f\star h)(H_{o}^{-1}\psi) .

This proves the lemma. \square

Let \Omega(x, r) denote a geodesic ball centered at x\in X with radius r .

Theorem 2 Let \triangle be the Laplace-Beltrami operator on X and let
\Gamma=\triangle+|\rho|^{2} . Let k_{0} , k be K-invariant C^{\infty} -functions on X satisfying the
following conditions:

supp k_{0}\subset\Omega(0,1) , supp k\subset\Omega(0,1) , Hk_{0}(0)\neq 0Hk(0)\neq 0 . (29)

Let k^{N}=\Gamma^{N}k and \kappa^{N}=A(k^{N}) . Moreover, let k_{t}^{N}=t^{-l}A^{-1}(\kappa_{t}^{N}) , 0<t<
1, where \kappa_{t}^{N}(\lambda)=\kappa^{N}(t^{-1}\lambda) and l =\dim a .

If 0<q\leq\infty , -\infty<s<\infty and 2N>s , N\in N then

||f \star k_{0}|L_{2}(X)||+(\int_{0}^{1}t^{-sq}||f\star k_{t}^{N}|L_{2}(X)||^{q}\frac{dt}{t})^{1/q} (30)

is an equivalent norm in B_{q}^{s}(X) .

Proof Almost all follows immediately from Theorem 1. The Abel trans-
form A is an isomorphism of the space C_{0}^{\infty}(X)_{K} of K-invariant C^{\infty} -function
on X with compact support onto the space C_{0}^{\infty}(a)_{W} of W-invariant C^{\infty} -

function on a with compact support, (cf. [8]). Therefore the functions
k_{t}^{N} are well defined. They are C^{\infty} -functions with compact support and
supp k_{t}^{N}\subset\Omega(0, t) (the support conservation property –cf. [3]).

Let \phi=Hk^{N} and \phi_{0}=Hk_{0} . Then \phi and \phi_{0} are W-invariant entire
analytical functions of uniformly exponential type on a^{\star} (the Paley-Wiener
theorem for spherical Fourier transform–cf. [3] ) and \phi(\lambda)=|\lambda|^{2N}H(k)(\lambda) .
The functions \phi and \phi_{0} satisfy the conditions (21)-(23) with immaterial
changes. In particular there is a ball B(0,2\epsilon) in a^{\star} such that |\phi o(\lambda)|>0 if
\lambda\in B(0,2\epsilon) and |\phi(\lambda)|>0 if \lambda\in B(0,2\in) , \lambda\neq 0 . But Theorem 1 remains
true if we use the ball B(0, \epsilon) instead of B(0,2) in the assumptions of the
theorem cf. [15]. Moreover H^{-1}\phi(t\cdot)=k_{t}^{N} . Thus the theorem follows from
Theorem 1 and the above lemma. \square

3.2. Means via the spherical functions
A vector H is a regular element of a i.e. \lambda(H)\neq 0 for any \lambda\in\Sigma_{+} .
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Theorem 3 Let H_{0}\in a be regular. Let

\psi_{H_{0}}(\lambda)=\varphi ( -\lambda : exp H_{0} 0) -\varphi (0 : exp H_{0} 0), \lambda\in a^{\star}

Let 0<s<N and 0<q\leq\infty . T/ien the expression

||f|L_{2}(X)||+( \int_{0}^{1}t^{-sq}||H^{-1}\psi_{H_{0}}^{N}(t\cdot)Hf|L_{2}(X)||^{q}\frac{dt}{t})^{1/q} (31)

is an equivalent quasi-norm in B_{q}^{s}(X) .

Proof. The function \psi_{H_{0}} is an entire analytical function on a_{C}^{\star} and
\psi_{H_{0}}(0)=0 . It is not difficult to see that \psi_{H_{0}}(\lambda)\neq 0 if \lambda\neq 0 . In fact

\psi_{H_{0}}(\lambda)=\int_{K}e^{(-i\lambda+\rho)A(\exp H_{0},kM)}dk

- \int_{K}|e^{(-i\lambda+\rho)A(\exp H_{0},kM)}|dk .

But an integral of the continuous complex-valued function is equaled to the
integral of the absolute value of the function if and only if the function
is real-valued and nonnegative which is impossible for the function k\mapsto

e^{(-i\lambda+\rho)A(\exp H_{0},kM)} if \lambda\neq 0 because of the definition of \lambda A(\exp H_{0}, kM) .
Thus \psi_{H_{0}}^{N} satisfy the (21) of Theorem 1. Moreover it is known that there
exists the constant C>0 such that |\psi_{H_{0}}(\lambda)|<C\varphi (0 : exp H_{0} 0) if \lambda\in a^{\star}

(cf. [3]). Now the theorem follows from Theorem 1 with s_{0}=0 , s_{1}=N .
\phi_{0}=1 and \phi(\lambda)=\psi_{H_{0}}^{N}(\lambda) . \square

Now we try to give the local version of the last theorem. We defined a
distribution D_{H_{0}} by

D_{H_{0}}( \phi)=\int_{K}\phi (k exp H_{0}\cdot 0 ) -\phi(0)e^{\rho A(\exp H_{0}\cdot 0,kM)}dk .

If f is a suitable function on X then (f \star D_{H_{0}})(gK)=\int_{K}f(gk exp H_{0}

0)dk-f(gK)\varphi (0 : exp H_{0} 0) It should be clear that the distribution D_{H_{0}}

is K-invariant, supp D_{H_{0}}\subset\Omega(0, ||H_{0}||) and

(HD_{H_{0}})(\lambda)=\varphi ( \lambda : exp H_{0} 0) -\varphi (0 : exp H_{0}\cdot 0).

Now, we calculate T_{t}=H^{-1} (\lambda\mapsto\varphi(t\lambda : (\exp-H_{0}) 0)) . T_{t} is a K-
invariant distribution with compact support on X . It is known that there
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exists a function F_{0}\in L_{1}(a, dH) such that

\int_{K}f(H((\exp H_{0})k))dk

= \int_{a}f(H)F_{0}(H)dH , e^{-\rho}F_{0}\in L_{1}(a, dH) ,

cf. [11, Th.IV.10.11)]. So \varphi(\lambda, (\exp-H_{0}) 0)=\int_{a}e^{i\lambda(H)}e^{-\rho(H)}F_{0}(H)dH .
Let \psi\in C(X) be K-invariant and let a_{0}=\exp(-H_{0}) . Then

T_{t}(\psi)

=|W|^{-1}1_{a^{\star}}\varphi(t\lambda ^{:} ^{a_{0}} ^{0})H_{o}\psi(\lambda)|c(\lambda)|^{-2}d\lambda

=|W|^{-1} \int_{a^{\star}}t^{-l}\mathcal{F}_{o}(e^{-\rho(t^{-1}\cdot)}F_{0}(t^{-1}\cdot)\star A\psi)(\lambda)|c(\lambda)|^{-2}d\lambda

=|W|^{-1} \int_{a^{\star}}\mathcal{F}_{o}(\int_{K}e^{-\rho(H(a_{0}k))}A\psi(\cdot-tH(a_{0}k))dk)(\lambda)|c(\lambda)|^{-2}d\lambda

=|W|^{-1} \int_{a^{\star}}\int_{K}e^{-\rho H(a_{0}k)}e^{it\lambda H(a_{0}k)}H_{o}\psi(\lambda)dk|c(\lambda)|^{-2}d\lambda

= \int_{K}e^{(t-1)\rho H(a_{o}k)}\psi(\exp(-tH(a_{o}h))\cdot 0)dk .

T_{t} is a K-invariant distribution with compact support therefore for every
\psi\in C^{\infty}(X) we have T_{t}(\psi)=T_{t}(\psi^{\mathfrak{g}}) where \psi^{\beta}(x)=\int_{K}\psi(kx)dk . Let

D_{H_{0},t}( \psi)=\int_{K}e^{(t-1)\rho H(a_{o}k)}\psi^{\beta}(\exp(-tH(a_{o}h))0)dk

-\psi(0)\varphi (0 : exp H_{0} ).

\psi\in C^{\infty}(X) . Then D_{H_{0},t} is a K-invariant distribution with compact sup-
port, H(D_{H_{0},t})(\lambda)=\psi_{H_{0}}(t\lambda) . Thus we have proved the following corollary.

Corollary 1 Let 0<s<N and 0<q\leq\infty . Let D_{H_{0},t}^{N} denote the follow-
ing distribution D_{H_{0},t}^{N}=D_{H_{0},t}\star\cdot\cdot\star D_{H_{0},t} (N times). Then the expression

||f|L_{2}(X)||+( \int_{0}^{1}t^{-sq}||f\star D_{H_{0},t}^{N}|L_{2}(X)||^{q}\frac{dt}{t})^{1/q} (32)

is an equivalent quasi-norm in B_{q}^{s}(X) .

3.3. Means via the root systems
We recall that a positive restricted root \lambda\in\Sigma_{+} is called simple if it

can not be written \lambda=\alpha+\beta with \alpha , \beta\in\Sigma_{+} . Let S =\{\alpha_{1} . . ’
\alpha_{l}\} be the
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set of all simple restricted roots corresponding to the given Weyl chamber
a_{+} . Then l=\dim a, <\alpha_{i} , \alpha_{j}><0 for i\neq j , spanS =a^{\star} (cf. [11, VII\S 3]).
The action of the Weyl group on the set of the Weyl chambers is simple
transitive. Therefore each w\in W appoints the set S_{w} of simple roots. We
define the following functions:

\psi_{1}(\lambda)=\sum_{w\in W}e^{i<\lambda,\alpha_{w}>}-|W|
, where

\alpha_{w}=\sum_{\alpha\in S_{w}}\alpha
, (33)

\psi_{2}(\lambda)=\sum_{w\in W}\sum_{\alpha\in S_{w}}e^{i<\lambda,\alpha>}-l|W|
, \lambda\in a_{C}^{\star} . (34)

Both the functions are holomorphic on a^{\star} , bounded if \lambda\in a^{\star} and \psi_{1}(0)=

\psi_{2}(0)=0 . Moreover the functions are W-invariant since the Weyl group
is generated by orthogonal reflections with respect to hyperplanes in the
scalar product space (a, <, >) and any two sets S_{w_{1}} and S_{w_{2}} are conjugate
under the unique element of the Weyl group. We prove that there is a
neighborhood V_{j} of 0 such that \psi_{j}(\lambda)\neq 0 if \lambda\in V_{j}\backslash \{0\} , j=1,2 . We start
with the following elementary fact: if b_{k}\in R , k=1 , \ldots m then \sum_{k=1}^{m}e^{ib_{k}}=

m if and only if b_{k}\in 2\pi Z . Thus, \psi_{1}(\lambda)=0 if and only if <\lambda , \alpha_{w}>\in 2\pi Z

for every w\in W The map F:a^{\star}\ni\lambda\mapsto(<\lambda, \alpha_{w_{k}}>)_{k=1}^{m}\in R^{m} , m=|W| ,
is linear and continuous therefore the set V_{1}=F^{-1}(\{(a_{k}) : |a_{k}|<\pi , k=
1 , \ldots , m}) is an open neighborhood of 0 in a^{\star} . If \lambda\in V_{1} and \psi_{1}(\lambda)=0 then
|<\lambda , \alpha_{w}>|<\pi and <\lambda , \alpha_{w}>\in 2\pi Z . So <\lambda , \alpha_{w}>=0 for every w\in W

But the vectors \alpha_{w} span a^{\star} therefore \lambda=0 . The proof for \psi_{2} is the same.
The next theorem follows from the above consideration and Theorem

1.

Theorem 4 Let 0<s<N , 0<q\leq\infty and j=1,2 . Then the expres-
sions

||f|L_{2}(X)||+( \int_{0}^{1}t^{-sq}||H^{-1}\psi_{j}(t\cdot)Hf|L_{2}(X)||^{q}\frac{dt}{t})^{1/q} (35)

are equivalent quasi-norms in B_{q}^{s}(X) .

Let H_{w} be the unique element of a such that \alpha_{w}(H)=<H , H_{w}> ,
H\in a . If the Lie group G has only one conjugacy class of Cartan subgroups
then the function |c(\lambda)|^{-1} is a polynomial without constant term (cf. [11,
p.448]). For these symmetric spaces X=G/K we have the following local
version of the last theorem.
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Corollary 2 Let G have only one conjugacy class of Cartan subgroups.
Let D_{c} be the differential operator on A corresponding to polynomial |c(\lambda)|^{-2}

via the Euclidean Fourier transform. Let

D_{1,t}( \psi)=|W|\sum_{w\in W}D_{c}A\psi^{\beta}(-tH_{w})-\psi(0)
,

D_{2,t}( \psi)=|W|\sum_{w\in W}\sum_{\alpha\in S_{w}}D_{c}A\psi^{\beta}(-tH_{\alpha})-\psi(0)
.

and D_{j,t}^{N}=D_{j,t}\star\cdots\star D_{j,t} (N times), t\in(0,1) , N\in N . Then the expressions

||f|L_{2}(X)||+( \int_{0}^{1}t^{-sq}||f\star D_{j,t}^{N}|L_{2}(X)||^{q}\frac{dt}{t})^{1/q} , (36)

j=1,2 are equivalent quasi-norms in B_{q}^{s}(X) with 0<s<N , and 0<q<
\infty .

Proof. Let \psi\in C(X)_{K} . The inversion formula for the Helgason-Fourier
transform implies

(H^{-1}( \sum_{w\in W}e^{i<t\lambda,\alpha_{w}>}-|W|))(\psi)

=|W|^{-1} \sum_{w\in W}\int_{a^{\star}}(e^{i\lambda(tH_{w}-1)}(\mathcal{F}_{o}\circ A\psi)|c(\lambda)|^{-2}d\lambda

=|W|^{-1} \sum_{w\in W}D_{c}A\psi(-tH_{w})-\psi(0)
.

This and the above theorem prove the corollary for j=1 . The proof for
j=2 is similar. \square

References

[1] Anker J.-Ph., Handling the inverse of spherical Fourier transform. In: Harmonic
Analysis on Reductive Groups, ed. W.H. Baker and P. Sally, Birkh\"aser Basel and

Boston (1991), 51-56.
[2] Anker J.-Ph., L_{p}-Fourier multipliers on Riemannian symmetnc spaces of the non-

compact type. Ann. Math. 132 (1990), 597-628.
[3] Anker J.-Ph., The spherical Fourier transform of Rapidly decreasing functions. A

simple proof of a characterization due to Harish-Chandra, Helgason, Trombi, and
Varadarajan. J. Func. Anal. 96 (1991), 331-349.

[4] Aubin T., Nonlinear Analysis on Manifolds.Monge-Ampere Equations. Springer
Verlag, New York (1982).



Besov spaces on symmetric manifolds 247

[5] Aubin T., Espaces de Sobolev sur les van\’et\’es Riemanniennes. Bull. Sci. Math. 100
(1976), 149-173.

[6] Eguchi M., Asymptotic expansions of Eisenstein integrals and Fourier transform
on symmetric spaces. J. Funct. Anal. 34 (1979), 164-216.

[7] Equchi M., Hashizume M. and Okamoto K., The Paley-Wiener theorem for dis-
tributions on symmetnc spaces. Hiroshima Math. J. 3 (1973), 109-120.

[8] Gangolli R.A. and Varadarajan V.S., Harmonic analysis of spherical functions on
real reductive groups. Ergebnisse Math. Grenzgeb. 101, Springer-Verlag, ( 1988).

[9] Helgason S., A duality for symmetric spaces with applications to group represen-
tations. Adv. in MAth. 5 (1970), 1-154.

[10] Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces. Academic
Press, (1978).

[11] Helgason S., Groups and geometric analysis. Integral geometry, invariant differen-
tial operators, and spherical functions. Academic Press, (1984).

[12] Helgason S., The surjectivity of invariant differential operators on symmetric
spaces I. Ann. of Math. 98 (1973), 451-480.

[13] Skrzypczak L., Function spaces of Sobolev type on Riemannian symmetric mani-

folds. Forum Math. 3 (1991), 339-353.
[14] Strichartz R.S., Analysis of the Laplacian on a complete Riemannian manifold. J.

Func. Anal. 52 (1983), 48-79.
[15] Triebel H., Characterizations of Besov-Hardy-Sobolev spaces:a unified approach. J.

Approx. Th. 52 (1988), 162-203.
[16] Triebel H., Characterizations of function spaces on a complete Riemannian man-

ifold with bounded geometry. Math. Nach. 130 (1987), 321-346.
[17] Triebel H., How to measure smoothness of distributions on Riemannian symmetric

manifolds and Lie groups ? Zeitsch. Anal, ihre Andwend. 7 (1988), 471-480.
[18] Triebel H., Spaces of Besov-Hardy-Sobolev type on complete Riemannian mani-

folds. Arkiv Mat. 24 (1986), 300-337.
[19] Triebel H., Theory of Function Spaces. Birkh\"auser Verlag (1983).
[20] Triebel H., Theory of Function Spaces II. Birkh\"auser Verlag (1992).
[21] Warner G., Harmonic Analysis on Semi-Simple Lie Groups. Vol. I, II, Springer-

Verlag, (1972).

Faculty of Mathematics and
Computer Science
A. Mickiewicz University
ul. Matejki 48/49, 60-769
Poznan’, Poland
E-mail: lskrzyp@math.amu.edu.pl or

lskrzyp@plpuamll.bitnet


	1. Preliminaries
	1.1. Symmetric manifolds ...
	1.2. Helgason-Fourier ...

	2. The spaces B_{q}^{s}(X)
	Theorem 1 ...

	3. Equivalent quasi-norms
	3.1. Quasi-norms by non-euclidean ...
	Theorem 2 ...

	3.2. Means via the spherical ...
	Theorem 3 ...

	3.3. Means via the root ...
	Theorem 4 ...


	References

