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Positive values of inhomogeneous indefinite ternary
quadratic forms of type (2,1)
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Abstract. Let \Gamma_{2,1}^{(k)} denote the k^{th} successive inhomogeneous minima for positive values
of real indefinite ternary quadratic forms of type (2,1) . Earlier the first four minima for
the class of zero forms were obtained. Here it is proved that for all the forms, whether
zero or non zero, \Gamma_{2,1}^{(2)}=8/3 . All the critical forms have also been obtained.
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1. Introduction

Let Q(x_{1}, x_{2}, \ldots, x_{n}) be a real indefinite quadratic form in n variables
of determinant D\neq 0 and of type (r, n-r) . Let \Gamma_{r,n-r} denote the infimum
of all numbers \Gamma>0 such that for any real numbers c_{1} , c_{2} , . , c_{n} there exist
integers x_{1} , x_{2} , . . ’ x_{n} satisfying

0<Q(x_{1}+c_{1}, x_{2}+c_{2}, . . ’ x_{n}+c_{n})\leq(\Gamma|D|)^{1/n} . (1.1)

The values of \Gamma_{r,n-r} are known for various n . See for reference Aggarwal and
Gupta [1]. Let \Gamma_{r,n-r}^{(k)} denote the k^{th} successive inhomogeneous minimum
for positive values of indefinite quadratic forms of type (r, n-r) . Bambah
et al [2] proved that \Gamma_{2,3}^{(2)}=16 . Dumir and Sehmi [5, 6] obtained \Gamma_{r+1,r}^{(2)}

for all r\geq 2 . For incommensurable forms (forms that are not multiple of
rational forms) (1.1) is true with arbitrary small constant by a result of
Watson [13] and Oppenheim’s conjecture proved by Margulis [10]. Rational
forms in n\geq 5 variables are zero forms by Meyer’s Theorem. Ternary and
quaternary forms are not necessarily zero forms. So Dumir and Sehmi [5, 6]

just needed to consider zero forms. Raka [9] obtained the first four minima
for ternary forms of the type (2, 1) for the class of zero forms. For zero
forms there is a standard method using a result of Macbeath [8].
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In this paper we prove \Gamma_{2,1}^{(2)}=8/3 for all forms. We apply a different
method using the work of Barnes and Swinnerton Dyer, which contained a
mistake. For a complete and elaborate proof of their work see Grover and
Raka [7]. For ternary and quaternary forms our method is more powerful
than the ones used earlier. In another paper [12] we will prove that \Gamma_{3,1}^{(2)}=4 ,
giving a correct proof of a result of R. Rieger.

Definition We say that (x, y, z)\equiv(x_{0}, y_{0}, z_{0}) (mod 1) if and only if
x-x_{0} , y-y_{0} , z-z_{0} are integers.

Thus the statement that given any real numbers x_{0} , y_{0} , z_{0} there exist
integers x , y , z satisfying

\alpha<Q(x+x_{0}, y+y_{0}, z+z_{0})<\beta

is equivalent to saying that there exist (x, y, z)\equiv(x_{0}, y_{0}, z_{0}) (mod 1) satis-
fying

\alpha<Q(x, y, z)<\beta .

Here we prove:

Theorem 1 Let Q(x, y, z) be a real indefinite quadratic form of type (2, 1)

and determinant D<0 . Then for any real numbers x_{0} , y_{0} , z_{0} , there exist
(x, y, z)\equiv(x_{0}, y_{0}, z_{0}) (mod 1) such that

0<Q(x, y, z)<(8|D|/3)^{1/3} (1.2)

except for the forms Q_{\sim}\rho Q_{i} , i=1,2,3 , \rho>0 ; further for Q_{i} , (1.2) is solv-
able unless (x_{0}, y_{0}, z_{0})\equiv(x_{0}^{(i)}, y_{0}^{(i)}, z_{0}^{(i\cdot)}) (mod 1) where Q_{i} and (x_{0}^{(i)}, y_{0}^{(i)}, z_{0}^{(i)})

are given in the following table:

321i|2xy+y^{2}+yz+3z^{2}(x+ \frac{1}{2}y)y+z^{2}xy+z^{2}Q_{i} |\begin{array}{ll}(x_{0}^{(i)}, y_{0}^{(i)},z_{0}^{(i)}) (0,0,0) ( ) ( )\end{array}|
\Gamma(Q_{i})8/344

where \Gamma(Q_{i}) is the positive inhomogeneous minimum of Q_{i} .

Note that Q_{i} , i=1,2 , 3 are all inequivalent and are zero forms.
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2. Some Lemmas and general Reduction

Lemma 1 Let Q(x, y, z) be as in Theorem 1. Then there exist integers
x, y , z such that

0<Q(x, y, z)\leq(9|D|/4)^{1/3} (2.1)

except for the form Q_{\sim}\rho Q_{1}=\rho(xy+z^{2}) .
This is a result of Oppenheim [11].

Lemma 2 Let \alpha , \beta , \gamma be real numbers with \gamma>1 . Let p be an integer
such that p<\gamma\leq p+1 . Then given any real number x_{0} , there exist x\equiv x_{0}

(mod 1) such that

0<(x+\alpha)^{2}+\beta<\gamma (2.2)

provided that

-p^{2}/4<\beta<\gamma-1/4 .

This follows from Lemma 6 of Dumir [4].

Lemma 3 Let \varphi(y, z) be an indefinite binary quadratic form of discrim-
inant \triangle . Let lJ be any positive real number. Then for any real number y_{0} ,
z_{0} , there exist (y, z)\equiv(y_{0}, z_{0}) (mod 1) satisfying

-\triangle/4u<\varphi(y, z)<\nu\triangle/4 .

This is Theorem 1 of Blaney [3].

For a matrix V , we use the same symbol V to denote the transformation
defined by the matrix V

Lemma 4 Let U be a 2 \cross 2 unimodular matrix of infinite order and \mathcal{R}

be a bounded set in \mathbb{R}^{2} . Let \mathcal{R} have the property

U(\mathcal{R})\cap(\mathcal{R}+A)\neq\emptyset for some A\in \mathbb{Z}^{2}

but

U(\mathcal{R})\cap(\mathcal{R}+\beta)=\emptyset
\forall B\in \mathbb{Z}^{2} , B\neq A .

If P is a point such that for each integer n positive or negative, U^{n}(P) is
congruent (mod 1) to a point of \mathcal{R} , then P is the unique fixed point of \mathcal{R}

given by U(P)-A=P .
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This is a result of Cassels stated as Lemma 18 in Raka [9].

If Q is an incommensurable form in n\geq 3 variables, it takes arbitrary
small values by a result of Margulis [10]. For such a form the inequality
(1.1) is true for arbitrary small \Gamma by Watson [13]. So we can assume that
Q is a multiple of a rational form and hence a multiple of an integral form.
Dividing (1.2) throughout by that multiple, if necessary, we can suppose
that Q is an integral form.

Let

M=M(Q)= \inf Q(x, y, z) (2.3)

x , y , z\in \mathbb{Z}

Q(x, y, z)>0 .

By Lemma 1,

0<M\leq(9|D|/4)^{1/3}

except for the form Q_{\sim}\rho Q_{1} , \rho>0 .

Lemma 5 If Q_{\sim}\rho Q_{1}=\rho(x^{2}+yz) , \rho>0 then (1.2) is solvable in
(x, y, z)\equiv(x_{0}, y_{0}, z_{0}) (mod 1) except when (x_{0}, y_{0}, z_{0})\equiv(0,0,0) (mod 1).

Proof. Because of homogeneity we can suppose that \rho=1 . Let d=
(8|D|/3)^{1/3}=(2/3)^{1/3} .

If y_{0} or z_{0} is not congruent to 0 (mod 1), say without loss of generality
y0\not\equiv 0 (mod 1), choose y\equiv y0 (mod 1) such that 0<|y|\leq 1/2 , x\equiv x_{0}

(mod 1) arbitrarily and z\equiv z_{0} (mod 1) such that:

0<x^{2}+yz\leq|y|\leq 1/2<d .

Therefore let (y0, z_{0})\equiv(0,0) (mod 1). Take y=z=0, and choose x\equiv x_{0}

(mod 1) such that 0\leq|x|\leq 1/2 . Then

0\leq x^{2}+yz\leq 1/4<d .

Thus (1.2) is solvable unless x_{0}\equiv 0 (mod 1). \square

Let now Q \oint\rho Q_{1} . Since the set {Q(x, y, z) : x , y , z\in \mathbb{Z} , Q(x, y, z)>
0\} consists of positive integers, the infimum M is attained at some point
(x_{1}, y_{1}, z_{1}) with gcd(x_{1}, y_{1}, z_{1})=1 . i.e.

Q(x_{1}, y_{1}, z_{1})=M\leq(9|D|/4)^{1/3}
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Applying a suitable unimodular transformation we can suppose that

Q(1,0,0)=M

and write

Q(x, y, z)=M\{x+hy+gz)^{2}+\varphi(y, z)\} (2.4)

where |h|\leq 1/2 , |g|\leq 1/2 and \varphi(y, z) is a rational indefinite binary
quadratic form of discriminant

\triangle^{2}=4|D|M^{-3}\geq 16/9 . (using (2.4))

Also by definition of M, we have for all integers x , y , z either Q(x, y, z)\leq 0

or Q(x, y, z)\geq M .
Because of homogeneity, it suffices to prove.

Theorem A Let Q(x, y, z)=(x+hy+gz)^{2}+\varphi(y, z) , where \varphi(y, z) is
an indefinite binary quadratic form of discriminant

\triangle^{2}=4|D|\geq 16/9 (2.5)

and

-1/2<h\leq 1/2 , -1/2<g\leq 1/2 . (2.6)

Suppose for integers x , y , z we have

either Q(x, y, z)\leq 0 or Q(x, y, z)\geq 1 . (2.7)

Let

d=(8|D|/3)^{1/3} . (2.8)

Then either there exist (x, y, z)\equiv(x_{0}, y_{0}, z_{0}) (mod 1) satisfying

0<Q(x, y, z)<d (2.9)

or Q_{\sim}\rho Q_{i} . Further for Q_{i} , (2.9) is solvable unless (x_{0}, y_{0}, z_{0}) \equiv

(x_{0}^{(i)}, y_{0}^{(i)}, z_{0}^{(i)}) (mod 1), i=1,2,3, where Q_{i} and (x_{0}^{(i)}, y_{0}^{(i)}, z_{0}^{(i)}) are as listed
in Theorem 1.

Lemma 6 Let Q(x, y, z) be as defined in Theorem A. Then for integers
y , z we have either

\varphi(y, z)=0 or \varphi(y, z)\leq-1/4 or \varphi(y, z)\geq 3/4 . (2.10)
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The proof is similar to that of Lemma 8 of Dumir [4].

From (2.5) and (2.8) we get d\geq(32/27)^{1/3}>1 . Let n be an integer
(\geq 1) such that n<d\leq n+1 . If there exist (y, z)\equiv(y_{0}, z_{0}) (mod 1), such
that

-n^{2}/4<\varphi(y, z)<d-1/4 (2.11)

then by Lemma 2, there exists x\equiv x_{0} (mod 1) satisfying (2.9).

Lemma 7 If n\geq 2 , then (2.11) and hence (2.9) is solvable in (x, y, z)\equiv

(x_{0}, y_{0}, z_{0}) (mod 1).

Proof. Apply Lemma 3, with lJ =\triangle/n^{2} to get

-n^{2}/4=-\triangle/4\nu<\varphi(y, z)<\nu\triangle/4=\triangle^{2}/4n^{2} .

Then (2.11) will be satisfied if

\triangle^{2}/(4d-1)=3d^{3}/2(4d-1)<n^{2} .

This is easily seen to be true for d\leq n+1 and n\geq 2 . \square

Lemma 8 Let n=1 , so that (32/27)^{1/3}\leq d\leq 2 . Suppose (2.11) i.e .

-1/4<\varphi(y, z)<d-1/4

has no solution in (y, z)\equiv(y_{0}, z_{0}) (mod 1), then we have

\varphi_{\sim}\rho\varphi_{4}=\rho(y^{2}-2z^{2}) , or \varphi_{\sim}\rho\varphi_{5}=\rho(3y^{2}+11z^{2}+18yz) ,

\rho>0 , and (y_{0}, z_{0})\equiv(1/2,1/2) (mod 1).

3. Proof of Lemma 8

Let \mathcal{L} be the inhomogeneous lattice associated with 4\varphi(y, z) with de-
terminant \triangle(\mathcal{L})=4\triangle . i.e. \mathcal{L} is given by the set of points

\xi=\alpha y+\beta z , \eta=\gamma y+\delta z

where (y, z) run through all numbers congruent to (y_{0}, z_{0}) (mod 1), and
4\varphi(y, z)=(\alpha y+\beta z)(\gamma y+\delta z) . We say that \mathcal{L} is admissible for the region
R_{m} : - 1\leq\xi\eta\leq m , if it has no point in the interior of R_{m} . To prove
Lemma 8, it is enough to prove that if \mathcal{L} is admissible for the region R_{m}

with m=4d-1 , then \mathcal{L} must correspond to the special forms \varphi_{4} and \varphi_{5} .
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Barnes and Swinnerton Dyer have developed a general theory to ob-
tain the critical determinant of R_{m} i.e. the lower bound of \triangle(\mathcal{L}) over all
R_{m}-admissible lattices \mathcal{L} . For this see Grover and Raka [7]. For any inh0-
mogeneous lattice \mathcal{L} of determinant \triangle(\mathcal{L}) with no points on the c0-0rdinate
axis, there corresponds a chain of divided cells and a sequence of non-zero
integral pairs (h_{n}, k_{n}) for -\infty<n<\infty;h_{n} and k_{n} having the same sign.
The condition that the chain does not break off is simply that \mathcal{L} has no
lattice vector parallel to a co-0rdinate axis. Set a_{n+1}=h_{n}+k_{n} for all n ,
so that |a_{n+1}|\geq 2 . If h_{n}=k_{n}>0 for each n , the lattice \mathcal{L} is called a
symmetrical lattice, otherwise nonsymmetrical. For a symmetrical lattice,
it follows that a_{n}\geq 4 for arbitrarily large values of |n| for n of each sign.

Let [b_{1}, b_{2}, b_{3}, \ldots] denote the continued fraction

1
b_{1}- 1

b_{2}-b_{3}-

where b_{i} ’s are integral and |b_{i}|\geq 2 .
We need the following Lemmas 9-12 due to Barnes and Swinnerton

Dyer stated as Lemmas 1, 2, 3&5 in Grover and Raka [7].

Lemma 9 Let b_{i}>0 for all i and b_{i}\geq 4 for some arbitrary large i , then

[b_{1}, b_{2}, . , b_{n}, b_{n+1}, \cdots]<[b_{1}, b_{2}, \ldots, b_{n}, b_{n+1}’, \ldots] (3.2)

provided that b_{n+1}<b_{n+1}’ . In particular

[b_{1}, b_{2}, \ldots, b_{n}-1]<[b_{1}, b_{2}, . , b_{n}, .]<[b_{1}, b_{2}, \ldots , b_{n}] (3.2)

Lemma 10 Let \{a_{n}\}_{-\infty}^{\infty} be a sequence associated to a symmetrical lattice
\mathcal{L} . Let

\theta_{n}=[a_{n}, a_{n-1}, a_{n-2}, \ldots] , \phi_{n}=[a_{n+1}, a_{n+2}, \ldots] (3.3)

so that \theta_{n}>1 , \phi_{n}>1 by Lemma 9 above. Then the lattice \mathcal{L} is given by
the set of points (\xi, \eta)

\xi=\alpha_{n}(y-1/2)+\beta_{n}(z-1/2) ,
\eta=\gamma_{n}(y-1/2)+\delta_{n}(z-1/2) (3.4)

where \delta_{n}/\gamma_{n}=\phi_{n} and \alpha_{n}/\beta_{n}=\theta_{n} and y , z are integers. The quadratic
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form associated with \mathcal{L} is given by

\frac{\triangle(\mathcal{L})}{\theta_{n}\phi_{n}-1}[(\theta_{n}y+z)(y+\phi_{n}z)] ,

(y_{0}, z_{0})\equiv(1/2,1/2) (modi). (3.5)

Lemma 11 A symmetrical lattice \mathcal{L} is admissible for R_{m} if and only if
the inequalities

\frac{\triangle}{m}\geq\frac{4(\theta_{n}\phi_{n}-1)}{(\theta_{n}+1)(\phi_{n}+1)}=\triangle_{n}^{+} (3.6)

and

\triangle\geq\frac{4(\theta_{n}\phi_{n}-1)}{(\theta_{n}-1)(\phi_{n}-1)}=\triangle_{n}^{-} , hold for all n . (3.7)

Lemma 12 If 0<L<2(k+1) and for any n

\triangle_{n}^{+}\leq L/k , \triangle_{n}^{-}\leq L

then

\frac{L(\theta_{n}-1)-4}{L(\theta_{n}-1)-4\theta_{n}}\leq\phi_{n}\leq\frac{4+(L/k)(\theta_{n}+1)}{4\theta_{n}-(L/k)(\theta_{n}+1)} (3.8)

and

| \theta_{n}-\frac{2(k-1)}{2(k+1)-L}|\leq\frac{\sqrt{L^{2}-16k}}{2(k+1)-L} . (3.9)

These inequalities also hold if \theta_{n} and \phi_{n} are interchanged.

Lemma 13 Let \mathcal{L} be a non-symmetrical lattice of det \triangle(\mathcal{L}) , which is
admissible for R_{m} , 3<m\leq 7 . Then

\triangle(\mathcal{L})\geq(1.8251)(m+1) . (3.10)

This follows from Lemma 8 of Grover and Raka [7].

Lemma 14 Let \{a_{n}\}_{-\infty}^{\infty} be a sequence associated with a symmetrical
lattice, where a_{n} ’s take value among 2, 4, 6, 8 or 10 only. Suppose

\triangle_{n}^{-}\leq 8\sqrt{3}=L (say) (3.11)
\triangle_{n}^{+}\leq 8\sqrt{3}/7=L/k (say) for all n . (3.12)
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Then the sequence satisfies the following:

if a_{r}\geq 4 for some r , then a_{r+1}=a_{r-1}=2 . (3.13)

if a_{r}=a_{r-1}=2 for some r , then a_{r+1}\geq 6 and a_{r-2}\geq 6 . (3.14)

Proof. Let a_{r}\geq 4 . Suppose if possible a_{r+1}\geq 4 , then \theta_{r}>3 , \phi_{r}>3 ,
\triangle_{r}^{+} being an increasing function of \theta_{r} and \phi_{r} gives \triangle_{r}^{+}\geq 2>L/k ;a
contradiction to (3.12). Hence a_{r+1}=2 . Similarly by symmetry a_{r-1}=2 .

If a_{r}=a_{r-1}=2 for some r , then by (3.1) and (3.13),

\theta_{r}=[a_{r}, a_{r-1}, . .]\leq[2,2, 10]\cross\cross=\sqrt{20}-3 .

(The crosses denote the infinite repetition)
(3.8) gives

\phi_{r}\geq\frac{L(\theta_{r}-1)-4}{L(\theta_{r}-1)-4\theta_{r}}>3.88

which implies that a_{r+1}\geq 4 . But if a_{r+1}=4 , then using (3.1) and (3.13)

\phi_{r}=[a_{r+1}, a_{r+2}, . .]\leq[4,2, 10]\cross\cross=\sqrt{20}-1 .

\theta_{r}=[a_{r}, a_{r-1}, \ldots]\leq[2,2, 10]\cross\cross=\sqrt{20}-3 .

then \triangle_{r}^{-} being a decreasing function of \theta_{r} and \phi_{r} we have

\triangle_{r}^{-}\geq\frac{4((\sqrt{20}-1)(\sqrt{20}-3)-1)}{(\sqrt{20}-2)(\sqrt{20}-4)}>14.09>L

a contradiction to (3.11). Therefore we must have a_{r+1}\geq 6 . Similarly by
symmetry a_{r-2}\geq 6 . \square

Lemma 15 Let \mathcal{L} be the inhomogeneous lattice of determinant \triangle(\mathcal{L})=

4\triangle , associated with 4\varphi(y, z) where (y, z) run over all numbers congruent to
(y_{0}, z_{0}) (mod 1) and \varphi(y, z) is as given in Theorem A. Then either \mathcal{L} is not
admissible for the region R_{m} , m=4d-1 or \mathcal{L} corresponds to quadratic

forms \varphi_{4} and \varphi_{5} .

Proof. Since 1<d\leq 2,3<m=4d-1\leq 7 .

Case I : \mathcal{L} is non symmetrical. One can easily check here that for d\leq 2 ,

\triangle(\mathcal{L})=4\triangle=4(3d^{3}/2)^{1/2}<(1.8251)(4d)=(1.8251)(m+1) .
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Therefore by Lemma 13, \mathcal{L} is not admissible for R_{m} .

Case II : \mathcal{L} is a symmetrical lattice. Let \mathcal{L} be admissible for R_{m} , then
by Lemma 11,

max (m\triangle_{n}^{+}, \triangle_{n}^{-})\leq\triangle(\mathcal{L})=4\triangle for all n .

Let

\triangle_{n}^{+}\leq\frac{4\triangle}{m}=\frac{4(3d^{3}/2)^{1/2}}{4d-1}\leq 8\sqrt{3}/7=L/k

and

\triangle_{n}^{-}\leq 4\triangle=4(3d^{3}/2)^{1/2}\leq 8\sqrt{3}=L .

Then hypothesis of Lemma 12 is satisfied with k=7. Working up to 4
places of decimals we get from (3.9)

|\theta_{n}-5.598|<4.1726 .

This gives 1.4<\theta_{n}<9.78 .
Since \theta_{n}<a_{n}<\theta_{n}+1 , we must have a_{n}=2,4,6,8 or 10. Now by

Lemma 14, the sequence \{a_{n}\} satisfies (3.13) or (3.14). The quadratic form
\varphi(y, z) associated with the symmetric lattice \mathcal{L} is given by (from Lemma 10)

\varphi(y, z)=\frac{\triangle}{\theta_{n}\phi_{n}-1}[\theta_{n}y+\phi_{n}2z^{2}+(\theta_{n}\phi_{n}+1)yz]

Subcase (I): If in the sequence \{a_{n}\} , no two 2’s are consecutive, then by
(3.13) it must be of the form

. . 2, a_{-2},2 , a_{0},2 , a_{2} . where a_{2r}\geq 4 for all r .

If a_{2r}\geq 6 for some r , then by (3.1)

\theta_{2r}\geq[6,2, 4]\cross\cross=4+\sqrt{2}

\phi_{2r}\geq[2, 4]\cross\cross=(2+\sqrt{2})/2

then

0< \varphi(0,1)=\frac{\triangle\phi_{2r}}{\theta_{2r}\phi_{2r}-1}\leq\frac{\sqrt{12}(2+\sqrt{2})/2}{(4+\sqrt{2})(2+\sqrt{2})/2-1}
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= \frac{\sqrt{12}(2+\sqrt{2})}{8+6\sqrt{2}}<\frac{3}{4}

as

\triangle=(\frac{3}{2}d^{3})^{1/2}\leq\sqrt{12} for d\leq 2 .

This contradicts (2.10).

Therefore a_{2r}=4 for all r . Then the sequence \{a_{n}\} is \{2, 4\}\cross\cross and the
quadratic form associated to it is

\rho(y^{2}+2z^{2}+4yz)\sim\rho(y^{2}-2z^{2})=\rho\varphi_{4} ;

(y_{0}, z_{0}) \equiv(\frac{1}{2} , \frac{1}{2}) (mod 1).

Subcase (II): Let two 2’s be consecutive in the sequence say a_{r-1}=a_{r}=2

for some r . If a_{r+1}\geq 8 , then \phi_{r}>7 and \theta_{r}>1 already, so

0< \varphi(1,0)=\frac{\triangle\theta_{r}}{\theta_{r}\phi_{r}-1}\leq\frac{\sqrt{12}}{6}<\frac{3}{4} ,

a contradiction to (2.10). Therefore we must have a_{r+1}=6 , by (3.14).
Similarly by symmetry a_{r-2}=6 . Now a_{r+2}=2 by (3.13); but if a_{r+3}\neq 2 ,
we will have

\phi_{r}=[a_{r+1}, a_{r+2}, a_{r+3}, \ldots]\geq[6, 2,4, 2, 2, 6]\cross\cross

= \frac{221+38\sqrt{48}}{41+7\sqrt{48}}>5.4 ,

\theta_{r}=[a_{r}, a_{r-1}, a_{r-2}, \ldots]\geq[2, 2,6]\cross\cross=\frac{9+\sqrt{48}}{11}>1.4 ,

and then

0< \varphi(1,0)=\frac{\triangle\theta_{r}}{\theta_{r}\phi_{r}-1}\leq\frac{\sqrt{12}(1.4)}{(5.4)(1.4)-1}<3/4

a contradiction to (2.10). Therefore we must have a_{r+3}=2 . But then two
consecutive 2’s must be followed by a 6, and repeating the argument we

must have \{a_{n}\}=(2, 2,6)\cross\cross . The quadratic form associated to it is

\varphi(y, z)=\rho(3y^{2}+11z^{2}+18yz)=\rho\varphi_{5} ;
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(y_{0}, z_{0})\equiv(1/2,1/2) (mod 1);

where \rho^{2}=|D|/48=d^{3}/128 . If d<2 , that is if \rho<1/4 , we have

0<\varphi(1,0)=3\rho<3/4 .

This gives a contradiction to (2.10). Therefore for \rho\varphi_{5} we must have d=2.
This proves Lemma 15 and hence Lemma 8. \square

4. The Critical Forms

Lemma 16 If \varphi=\rho\varphi_{5}=\rho(3y2+11z^{2}+18yz) , (y_{0}, z_{0}) \equiv(\frac{1}{2}, \frac{1}{2}) (mod 1),

d=2, then (2.9) is solvable unless Q_{\sim}Q_{3} and (x_{0}, y_{0}, z_{0})_{\sim}( \frac{1}{2},0,0) (mod 1).

Proof. Here \varphi_{\sim}\rho(3y^{2}-16z^{2}) , (y_{0}, z_{0})_{\sim}(0, \frac{1}{2}) (mod 1). Since \triangle=\sqrt{12} ,
we get \rho=1/4 . Let without loss of generality

Q(x, y, z)=(x+hy+gz)^{22}+ \frac{1}{4}(3y-16z^{2}) .

Take y=0, z=1/2 and choose x\equiv x_{0} (mod 1) such that 1\leq|x+g/2|\leq

3/2 , so that

0=1-1\leq Q(x, y, z)\leq 9/4-1<2 .

Therefore (2.9) is solvable unless

x_{0}+g/2\equiv 0 (mod 1). (4.3)

Similarly taking y=0, z=-1/2 , (2.9) is solvable unless

x_{0}-g/2\equiv 0 (mod 1). (4.3)

From (4.1), (4.2) and (2.6) we get

g=0 and x_{0}\equiv 0 (mod 1). (4.3)

Therefore, if (2.9) is not solvable, we have

Q(x, y, z)=(x+hy)^{2}+ \frac{1}{4}(3y^{2}-16z^{2}) .

Take x=1 , y=1 , z=1/2 and using (2.6) we get

0= \frac{1}{A}-\frac{1}{A}<Q(x, y, z)=(1+h)^{2}-\frac{1}{\Lambda}\leq\frac{9}{\Lambda}-\frac{1}{\Lambda}=2
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So (2.9) is solvable unless h=1/2 . Therefore

Q(x, y, z)=(x+ \frac{1}{2}y)^{2}+\frac{1}{4}(3^{2}y-16z^{2})

=x^{2}+xy+y^{2}-4z_{\sim}^{2}2xy+y^{2}+yz+3z^{2}

by means of the unimodular transformation

xarrow-2x+3z , yarrow 2x+y-z , zarrow-x+z .

Also then (x_{0}, y_{0}, z_{0})_{\sim}(1/2,0,0) (mod 1). \square

Lemma 17 If \varphi=\rho\varphi_{4}=\rho(y^{2}-2z^{2}) , (y_{0}, z_{0}) \equiv(\frac{1}{2}, \frac{1}{2}) (mod 1), d\leq 2

then (2.9) is solvable unless

Q_{\sim}2Q_{2} , (x_{0}, y_{0}, z_{0})_{\sim}( \frac{1}{2},0,0) (mod 1).

Proof. If \rho<1 , take y=1/2 , z=1/2 , so that

- \frac{1}{4}<\varphi(y, z)=\rho(-\frac{1}{4})<0<d-\frac{1}{4} .

Therefore (2.11) and hence (2.9) has a solution. Let now \rho=\triangle/\sqrt{8}\geq 1 .
This gives d^{3}\geq 16/3 . If (2.9) has no solution, we must have for all integers
p , q , r

eitherorQ(p+x0,q+1/2,r+1/2)Q(p+x_{0},q+1/2,r+1/2)\geq d\leq 0

.
\} (4.4)

Take q=r=0 and choose an integer p such that

1/2\leq\alpha=|p+x_{0}+h/2+g/2|\leq 1 . (4.5)

Then from (4.4) we must have

either \alpha^{2}\geq d+\rho/4\geq(16/3)^{1/3}+1/4>1.9971

or \alpha^{2}\leq\rho/4=\triangle/4\sqrt{8}\leq\sqrt{12}/4\sqrt{8}<0.3062

i.e. either \alpha>1.4131 or \alpha<0.5534 . From (4.5) we must have

0.446<p+x_{0}+h/2+g/2<0.5534 (mod 1)
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i.e .

1/2-0.0534<x_{0}+h/2+g/2<1/2+0.534 (mod 1). (4.6)

Similarly taking (q, r)=(-1,0) and (0, -1) , we must have

1/2-0.0534<x_{0}-h/2+g/2<1/2+0.0534 (mod 1). (4.7)

1/2-0.0534<x_{0}+h/2-g/2<1/2+0.0534 (mod 1). (4.8)

Subtracting (4.7) and (4.8) respectively from (4.6) we get

-0.1068<h , g<0.1068 (mod 1). (4.9)

Since from (2.6), |h|\leq 1/2 , |g|\leq 1/2 , we have

P=(h, g)\in \mathcal{R} , where \mathcal{R} is the region given by
\mathcal{R}=\{(x, y)\in \mathbb{R}^{2} : -0.1068<x , y<0.1068\} .

Let A=(0,0) , U=(\begin{array}{ll}3 42 3\end{array}) be an automorph of \varphi_{4} . Then

U(\mathcal{R})\subseteq\{\begin{array}{llllll}(x,y)\in \mathbb{R}^{2} .. -0.75< x <0.75 -0.56< y <0.56\end{array}\}

Clearly U(\mathcal{R})\cap \mathcal{R}+B=\emptyset for all B\in \mathbb{Z}^{2} , B\neq A .
Now for all integers n positive or negative, the unimodular transforma-

tion (\begin{array}{ll}1 00 U^{n}\end{array}) transforms Q into

Q(x, y, z)=(x+h_{n}y+g_{n}z)^{2}+\rho(y^{2}-2z^{2}) .

The above argument shows that if (2.9) has no solution then U^{n}(P)=

(h_{n}, g_{n}) must also satisfy (4.9) and hence must be congruent to a point of
\mathcal{R} (mod 1). Therefore by Lemma 4, we must have U(P)-A=P, which
gives h=0, g=0, since U(P)=(3h+4g, 2h+3g) . Thus Q(x, y, z)=
x^{2}+\rho(y^{2}-2z^{2}) and

\frac{1}{2}-0.0534<x_{0}<\frac{1}{2}+0.0534 (mod 1). (4.10)

If 1<\rho<9/8 , then

0<Q(3,0,2)=9-8\rho<1 .

This contradicts (2.7).
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If 9/8\leq\rho=\triangle\sqrt{8}\leq\sqrt{3}/2 , take y=1/2 , z=3/2 and choose x\equiv x_{0}

(mod 1) such that 5/2-0.0534<x<5/2+0.0534 so that

0<(2.4466)^{2}- \frac{17}{4}\sqrt{\frac{3}{2}}<Q

=x^{2}- \frac{17}{4}\rho\leq(2.5534)^{2}-\frac{17}{4} \frac{9}{8}<d .

Thus if (2.9) has no solution, we must have \rho=1 .
Now if x_{0}\not\equiv 1/2 (mod 1), choose x such that \frac{1}{2}<|x|\leq 1 , take y=1/2 ,

z=1/2 , so that 0<Q=x^{2}-1/4\leq 1-1/4<d . Thus for (2.9) to have
no solution we must have

Q=x^{2}+y^{2}-2z^{2} , (x_{0}, y_{0}, z_{0}) \equiv(\frac{1}{2}, \frac{1}{2} , \frac{1}{2}) (mod 1)

\sim^{2Q_{2}}=2[(x+\frac{1}{2}y)y+z^{2}]

by means of transformation

xarrow x+2z , yarrow x+y , zarrow x+z .

Also then (x_{0}, y_{0}, z_{0})_{\sim}( \frac{1}{2} , 0, 0) (mod 1). This completes the proof of the

theorem. \square
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