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Positive values of inhomogeneous indefinite ternary
quadratic forms of type (2,1)
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Abstract. Let Fgl’? denote the kP successive inhomogeneous minima for positive values
of real indefinite ternary quadratic forms of type (2,1). Earlier the first four minima for
the class of zero forms were obtained. Here it is proved that for all the forms, whether
Zero or non zero, Fg?i = 8/3. All the critical forms have also been obtained.
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1. Introduction

Let Q(z1,x2,...,x,) be a real indefinite quadratic form in n variables
of determinant D # 0 and of type (r,n—r7). Let I';,,_, denote the infimum
of all numbers I' > 0 such that for any real numbers ¢y, co, .. ., ¢, there exist
integers x1, x2, ..., T, satisfying

0< Q(z1+c1,Ta+C2,...,Tn+cn) < (C|D))V™ (1.1)

The values of Iy, are known for various n. See for reference Aggarwal and

Gupta [1]. Let F,(fg_r denote the k™ successive inhomogeneous minimum

for positive values of indefinite quadratic forms of type (r,n — r). Bambah

et al [2] proved that I‘% = 16. Dumir and Sehmi [5, 6] obtained I‘gﬁl’r
for all r > 2. For incommensurable forms (forms that are not multiple of
rational forms) is true with arbitrary small constant by a result of
Watson and Oppenheim’s conjecture proved by Margulis . Rational
forms in n > 5 variables are zero forms by Meyer’s Theorem. Ternary and
quaternary forms are not necessarily zero forms. So Dumir and Sehmi [5, 6]
just needed to consider zero forms. Raka @ obtained the first four minima
for ternary forms of the type (2,1) for the class of zero forms. For zero

forms there is a standard method using a result of Macbeath .

!Research supported by C.S.I.R., India is gratefully acknowledged.
1991 Mathematics Subject Classification : 11E20.



216 M. Raka and U. Rani

In this paper we prove I‘g) = 8/3 for all forms. We apply a different

method using the work of Barnes and Swinnerton Dyer, which contained a
mistake. For a complete and elaborate proof of their work see Grover and
Raka [7]. For ternary and quaternary forms our method is more powerful
than the ones used earlier. In another paper we will prove that ng =4,
giving a correct proof of a result of R. Rieger.

Definition We say that (z,y,2) = (z0,¥0,20) (mod 1) if and only if
x — Xg, Y — Yo, 2 — 2o are integers.

Thus the statement that given any real numbers zg, yo, 2o there exist
integers x, y, z satisfying

a<Q(x+:c0,y—l—yo,z+zo) <B

is equivalent to saying that there exist (z,y, z) = (o, Yo, 20) (mod 1) satis-
fying

a < Q(z,y,2) <B.
Here we prove:

Theorem 1 Let Q(z,y, z) be a real indefinite quadratic form of type (2,1)
and determinant D < 0. Then for any real numbers xg, yo, 2o, there exist
(z,y,2) = (x0, Yo, 20) (mod 1) such that

0 < Q(z,y,2) < (8/D|/3)/? (1.2)

except for the forms Q ~ pQ;, 1 = 1,2,3, p > 0; further for Q;, (1.2) is solv-
able unless (xg, yo, z0) = ( g),y(()l), z(()z')) (mod 1) where Q; and (a:g),y(()z), z(()z))
are given in the following table:

i Qi (=), 5,28") | (@)
1 Ty + 22 (0,0,0) 4
1 ) 1
— -,0,0 4
? (“23’)“” (2’ ’ )
1
3| 2zy + 9% + yz + 322 (5,0,0) 8/3

where I['(Q;) is the positive inhomogeneous minimum of Q;.

Note that Q;, i = 1,2, 3 are all inequivalent and are zero forms.
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2. Some Lemmas and general Reduction

Lemma 1 Let Q(x,y,z) be as in Theorem 1. Then there exist integers
x, Yy, z such that

0 < Q(z,y,2) < (9D|/4)"? (2.1)

except for the form Q . pQ1 = p(xy + 2%).
This is a result of Oppenheim [11].

Lemma 2 Let o, 8, v be real numbers with v > 1. Let p be an integer

such that p < v < p+1. Then given any real number xo, there exist T = xg
(mod 1) such that

0<(z+a)l+8<y (2.2)
provided that

—p*/a< B<y—1/4.
This follows from Lemma 6 of Dumir [4].

Lemma 3 Let p(y,2) be an indefinite binary quadratic form of discrim-
inant A. Let v be any positive real number. Then for any real number yo,
2o, there exist (y, z) = (Yo, 20) (mod 1) satisfying

—A/4v < o(y,z) < vA/4.
This is Theorem 1 of Blaney [3].

For a matrix V, we use the same symbol V' to denote the transformation
defined by the matrix V.

Lemma 4 Let U be a 2 x 2 unimodular matriz of infinite order and R
be a bounded set in R?. Let R have the property

UR)N(R+A)#0  for some A€ Z?
but
UR)N(R+B)=0 VBe€Z? B#A

If P is a point such that for each integer n positwe or negative, U"(P) is
congruent (mod 1) to a point of R, then P is the unique fized point of R
given by U(P) — A= P.
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This is a result of Cassels stated as Lemma 18 in Raka [9).

If Q is an incommensurable form in n > 3 variables, it takes arbitrary
small values by a result of Margulis . For such a form the inequality
is true for arbitrary small I' by Watson [13]. So we can assume that
@ is a multiple of a rational form and hence a multiple of an integral form.
Dividing throughout by that multiple, if necessary, we can suppose
that @ is an integral form.

Let
M= M(Q) = infQ(z,y, 2) (2.3)
r,Y,=2 € Z
Q(z,y,2) > 0.
By Lemma 1,

0 < M < (9|D|/4)/3
except for the form Q < pQ1, p > 0.

Lemma 5 If Q.pQ1 = p(x® + yz), p > 0 then (1.2) is solvable in
(x,y,2) = (x0,Y0,20) (mod 1) except when (zg, yo, 20) = (0,0,0) (mod 1).

Proof. Because of homogeneity we can suppose that p = 1. Let d =
(8ID|/3)1/% = (2/3)'/°.

If yo or zp is not congruent to 0 (mod 1), say without loss of generality
yo Z 0 (mod 1), choose y = yp (mod 1) such that 0 < |y| < 1/2, z = =
(mod 1) arbitrarily and z = zy (mod 1) such that:

0<z?+yz<l|y <1/2<d.

Therefore let (yo, 20) = (0,0) (mod 1). Take y = z = 0, and choose z = xg
(mod 1) such that 0 < |z| < 1/2. Then ’

O§x2~|—yz§1/4<d.
Thus is solvable unless zg = 0 (mod 1). ]

Let now Q # pQ@;. Since the set {Q(z,y,2) : z,y,2 € Z, Q(z,y,z) >
0} consists of positive integers, the infimum M is attained at some point
(xz1,y1,21) with ged(z1,y1,21) = 1. ie.

Q(z1,y1,21) = M < (9|D|/4)'/?
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Applying a suitable unimodular transformation we can suppose that

Q(1,0,0) =M
and write
Q(z,y,2) = M{z + hy + gz)* + ¢(y, 2)} (2.4)

where |h| < 1/2, |g| < 1/2 and ¢(y,z) is a rational indefinite binary
quadratic form of discriminant

A% =4|D|M3>16/9.  (using [2.4))

Also by definition of M, we have for all integers z, y, z either Q(z,y,2) <0
or Q(z,y,z) > M.
Because of homogeneity, it suffices to prove.

Theorem A Let Q(z,y,2) = (z + hy + g2)? + p(y, 2), where p(y, 2) is
an indefinite binary quadratic form of discriminant

A% =4|D| > 16/9 (2.5)
and

~1/2<h<1/2, —1/2<g<1/2. (2.6)
Suppose for integers x, y, z we have

either Q(z,y,2) <0 or Q(z,y,z) > 1. (2.7)
Let

d = (8|D|/3)'/3. (2.8)
Then either there exist (x,y, z) = (xo, Yo, 20) (mod 1) satisfying

0< Q(z,y,2) <d (2.9)

or Q~pQi. Further for Q;, (2.9) is solvable unless (xg,yo0,20) =
(a:(()l),y(()z), z(()l)) (mod 1), ¢ = 1,2,3, where Q; and (x(()z),y(()l),z(()l)) are as listed
in Theorem 1.

Lemma 6 Let Q(z,y,z) be as defined in Theorem A. Then for integers
Yy, z we have either

p(y,2) =0 or ¢(y,2) < —1/4 or ¢(y,2) > 3/4. (2.10)
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The proof is similar to that of Lemma 8 of Dumir [4].

From and we get d > (32/27)'/3 > 1. Let n be an integer
(> 1) such that n < d < n+ 1. If there exist (y, z) = (yo, 20) (mod 1), such
that

—n?/4< o(y,2) <d—1/4 (2.11)
then by Lemma 2, there exists z = z¢ (mod 1) satisfying [2.9).

Lemma 7 If n > 2, then (2.11) and hence (2.9) is solvable in (z,y, z) =
(%0, %0, 20) (mod 1).

Proof.  Apply Lemma 3, with v = A/n? to get
—n?/4=—-A/4v < (y,z) < VA4 = A?/4n?.
Then will be satisfied if
A%/(4d — 1) = 3d*/2(4d — 1) < n®.
This is easily seen to be true ford <n+ 1 and n > 2. L]
Lemma 8 Let n =1, so that (32/27)Y/3 < d < 2. Suppose (2.11) i.e.
—1/4 < p(y,z) <d—1/4
has no solution in (y,z) = (yo, 20) (mod 1), then we have
@~ pps = p(y® —22%), or @ pps=p(3y* + 112° + 18yz),
p >0, and (yo, z0) = (1/2,1/2) (mod 1).

3. Proof of Lemma 8

Let £ be the inhomogeneous lattice associated with 4¢(y, z) with de-
terminant A(L) = 4A. i.e. £ is given by the set of points

E=o0y+ Bz, n=1y+oz

where (y, z) run through all numbers congruent to (yo, 20) (mod 1), and
4p(y,z) = (ay + Bz)(yy + 6z). We say that L is admissible for the region
R, : =1 < &n < m, if it has no point in the interior of R,. To prove
Lemma 8, it is enough to prove that if £ is admissible for the region R,,
with m = 4d — 1, then £ must correspond to the special forms ¢4 and s.
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Barnes and Swinnerton Dyer have developed a general theory to ob-
tain the critical determinant of R,, i.e. the lower bound of A(L) over all
R,,-admissible lattices £. For this see Grover and Raka . For any inho-
mogeneous lattice £ of determinant A(L£) with no points on the co-ordinate
axis, there corresponds a chain of divided cells and a sequence of non-zero
integral pairs (hp, ky) for —oo < n < 00; hy, and k, having the same sign.
The condition that the chain does not break off is simply that £ has no
lattice vector parallel to a co-ordinate axis. Set ap+1 = hn + k,, for all n,
so that |a,t1| > 2. If hy, = k, > 0 for each n, the lattice £ is called a
symmetrical lattice, otherwise nonsymmetrical. For a symmetrical lattice,
it follows that a, > 4 for arbitrarily large values of |n| for n of each sign.

Let [b1, by, bs, . ..] denote the continued fraction

1
b1 —

where b;’s are integral and |b;| > 2.
We need the following Lemmas 9-12 due to Barnes and Swinnerton
Dyer stated as Lemmas 1, 2, 3 & 5 in Grover and Raka [7].

Lemma 9 Let b; > 0 for alli and b; > 4 for some arbitrary large i, then
[bl, ba,...,bn, bn+1, . ] < [bl, by, ..., by, b;H—l? .. ] (31)
provided that bpy1 < b, . In particular

[bl,bg,...,bn—l] < [bl,bz,...,bn,...] < [bl,bg,...,bn] (3.2)

Lemma 10 Let {a,}>, be a sequence associated to a symmetrical lattice

L. Let

0, = [an, Qp—1,0n-2, - - -]7 Gn = [an+1a an+2,-- ] (3.3)

so that 0, > 1, ¢, > 1 by Lemma 9 above. Then the lattice L is given by
the set of points (£,m)

£ =oan(y —1/2) + Bn(z — 1/2),
n= Wn(y - 1/2) + On(z — 1/2) (3'4)

where 6, /Y, = én and an /By = 60, and y, z are integers. The quadratic
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form associated with L is given by

gﬁéﬁ_)—l[(@ny +2)(y + ¢n2));
(vo,20) = (1/2,1/2) (mod1). (3.5)

Lemma 11 A symmetrical lattice £ is admissible for R, if and only if
the inequalities
A 4(0ndp, — 1)

mZ Ot Dont D) An (3.6)

and

4(9n¢n — 1)
2 - D@n—1)

B>

= A, , hold for all n. (3.7)

Lemma 12 If 0< L <2(k+1) and for any n
Ay <L/k, A, <L

then
L6, —1)—4 4+ (L/k) (O + 1)
L6, —1) =46, = %" < 1, — (L/k)(6n + 1) (38)
and
2b—1) | _ VIZ-16k 39)

" 2k+1)—L| T 2k+1)-L
These inequalities also hold if 0,, and ¢, are interchanged.

Lemma 13 Let L be a non-symmetrical lattice of det A(L), which is
admissible for R,,, 3 <m < 7. Then

A(L) > (1.8251)(m + 1). (3.10)
This follows from Lemma 8 of Grover and Raka [7].

Lemma 14  Let {a,}>, be a sequence associated with a symmetrical
lattice, where a,’s take value among 2, 4, 6, 8 or 10 only. Suppose

A7 <8/3=L (say) (3.11)
At <8V3/7T=L/k (say) for all n. (3.12)
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Then the sequence satisfies the following:

if ar > 4 for some r, then ar41 = ar—1 = 2. (3.13)

if ar = ayr_1 = 2 for some r, then ar+1 > 6 and a,_y > 6. (3.14)

Proof.  Let a, > 4. Suppose if possible ar41 > 4, then 0, > 3, ¢r > 3,
AT being an increasing function of 6, and ¢, gives At > 2 > L/k; a
contradiction to (3.12). Hence a,4+1 = 2. Similarly by symmetry a,_; = 2.
If ar = ar—; = 2 for some 7, then by (3.1) and (3.13),
X X
0, = [ar, ar_1,...] < [2,2,10] = V20 — 3.

(The crosses denote the infinite repetition)

gives
L6 —1)—4

. >
br 2 L(6, — 1) — 49,
which implies that a,,1 > 4. But if a,4; = 4, then using (3.1) and (3.13)

> 3.88

0, = [ar, ar_1,...] <[2,2,10] = V20 — 3.
then A being a decreasing function of 6, and ¢, we have
A- > (V20 - 1)(vV20-3) — 1)
"7 (V20-2)(v20 - 4)

a contradiction to (3.11). Therefore we must have a,;1 > 6. Similarly by
symmetry a,_s > 6. ]

>14.09 > L

Lemma 15 Let L be the inhomogeneous lattice of determinant A(L) =
4A, associated with 4¢(y, z) where (y, z) run over all numbers congruent to
(30, 20) (mod 1) and ¢(y, z) is as given in Theorem A. Then either L is not
admissible for the region Ry, m = 4d — 1 or L corresponds to quadratic
forms @4 and ps.

Proof. Sincel <d<2,3<m=4d-1<7.
Case I: L is non symmetrical. One can easily check here that for d < 2,

A(L) = 4A = 4(3d%/2)/? < (1.8251) (4d) = (1.8251)(m + 1).
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Therefore by Lemma 13, £ is not admissible for R,,.

Case II: L is a symmetrical lattice. Let £ be admissible for R,,, then
by Lemma 11,

max(mA, AY) < A(L) = 4A for all n.
Let

J4a 4(3d%/2)1/2

<8V3/7T=LJ/k
" T m 4d—-1 — v3/ /

and
AT <4A =4(3d%/2)Y/? <8V3=L.

Then hypothesis of is satisfied with k = 7. Working up to 4
places of decimals we get from

|0, — 5.598| < 4.1726.

This gives 1.4 < 6,, < 9.78.

Since 6, < a, < 6, + 1, we must have a, = 2,4,6,8 or 10. Now by
Lemma 14|, the sequence {a,} satisfies (3.13) or (3.14). The quadratic form
¢(y, z) associated with the symmetric lattice £ is given by (from Lemma 10)

Py, z) = [Onzf + ¢n2® + (Ondn + 1)yz] :

9n¢n —1

Subcase (I): If in the sequence {a,}, no two 2’s are consecutive, then by
(3.13) it must be of the form

...2,a-9,2,a9,2,az... where ag, > 4 for all r.

If agr > 6 for some r, then by (3.1)

then

Ay V12-(2+v/2)/2
0<p(01) = g7 < 4+v2)(2+Vv2)/2-1




Values of inhomogeneous forms 225

_ V122+v?2) 3
8462 4

3 .\1/2
A=<§d3> <V12 for d<2.

This contradicts (2.10).

X X
Therefore ag, = 4 for all . Then the sequence {a,} is {2,4} and the
quadratic form associated to it is

p(y® + 222 + dyz) ~ p(y” — 22°) = pya;
11
(Yo, 20) = (— —) (mod 1).

2’2

Subcase (II): Let two 2’s be consecutive in the sequence say a,—1 = a, = 2
for some r. If a,41 > 8, then ¢, > 7 and 6, > 1 already, so
A6, Vv12 3

0< (1,0) = < °
<pLO)=go—7 5 <y

a contradiction to (2.10). Therefore we must have a,41 = 6, by (3.14).
Similarly by symmetry a,_o = 6. Now a,+2 = 2 by (3.13); but if ar43 # 2,
we will have

X X
d)r = [(J,H_l, Ar42,Qr43, .. ] > [6, 2, 4, 2, 2, 6]
221+3
+ 38v/48 - 54,
41+ 7./48

X X 9+ /48
0, = [ar, ar_1,0r—2,...] > [2,2,6] = —+1—1— > 14,

and then

A6 _ V12 - (1.4)
0rdr —1 ~ (5.4)(1.4) — 1

0< p(1,0) = < 3/4

a contradiction to (2.10). Therefore we must have a,+3 = 2. But then two
consecutive 2’s must be followed by a 6, and repeating the argument we

X X
must have {a,} = (2,2, 6). The quadratic form associated to it is

o(y, z) = p(3y* + 112° + 18yz) = pys;
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(0, 20) = (1/2,1/2)  (mod 1);
where p? = |D|/48 = d3/128. If d < 2, that is if p < 1/4, we have
0 < p(1,0) =3p < 3/4.

This gives a contradiction to (2.10). Therefore for pps we must have d = 2.
This proves and hence Lemma 8. ]

4. The Critical Forms

Lemma 16 Ifp = pps = p(3y?+1122+18y2), (yo, 20) = (
d = 2, then is solvable unless Q ~ Q3 and (xo, Yo, 20) ~ (%,

) (mod 1),

L1
202
0,0) (mod 1).

Proof.  Here ¢~ p(3y® — 1622), (o, 20) ~ (O, %) (mod 1). Since A = /12,
we get p = 1/4. Let without loss of generality

1
Q(z,y,2) = (z + hy + g2)* + £(3y” - 162%).

Take y = 0, z = 1/2 and choose z = z¢ (mod 1) such that 1 < |z + g/2| <
3/2, so that

0=1-1<Q(z,y,2) <9/4—1<2.
Therefore is solvable unless

zo+9/2=0 (mod 1). (4.1)
Similarly taking y =0, z = —1/2, is solvable unless

zo—g/2=0 (mod 1). (4.2)
From (4.1), (4.2) and we get
g=0 and zp=0 (mod 1). (4.3)

Therefore, if is not solvable, we have
1
Q(x,y,2) = (¢ + hy)* + £ (3y” — 162%).
Take z =1,y =1, 2 = 1/2 and using we get

1 1 1 9 1
0==—->< =(1+hP--<Z-2-=2

[1oN
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So [(2.9) is solvable unless h = 1/2. Therefore

Qz,y,2) = <w + %y)Q + 3(3312 —162%)
= x2+:cy+y2 — 42% 2zy + y* + yz + 322
by means of the unimodular transformation
x— —2x+3z, y—2x4+y—2 z— —z+2.

Also then (g, yo,20) ~ (1/2,0,0) (mod 1). []

Lemma 17 If ¢ = pps = ply® — 222), (y0,%0) = (},3) (mod 1), d < 2
then 1s solvable unless

QN2Q27($07y0,ZO)N (%,0,0) (mOd ].)

Proof. If p<1,takey=1/2, z=1/2, so that

1

1 1
—= —p(-=)<0<d--.
4<<,0(y,2) p( 4)< <d-7

Therefore and hence has a solution. Let now p = A/v/8 > 1.
This gives d® > 16/3. If has no solution, we must have for all integers

p,qr

either Q(p+ zo,q+1/2,7+1/2)>d (4.4)

or  Q(p+zo,q+1/2,m+1/2)<0. '
Take ¢ = r = 0 and choose an integer p such that

1/2<a=|p+zo+h/2+9g/2| <1. (4.5)

Then from we must have

either o? > d+ p/4 > (16/3)Y/3 +1/4 > 1.9971
or a? < p/4=NA/4v/8 < V12/44/8 < 0.3062

i.e. either o > 1.4131 or a < 0.5534. From we must have

0.446 < p+ zo + h/2+ g/2 < 0.5534 (mod 1)
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Le.

1/2 00534 < wo+h/2+g/2 < 1/2+0534 (mod 1).  (4.6)
Similarly taking (¢,7) = (—1,0) and (0, —1), we must have

1/2 - 0.0534 < 29 — h/2 + g/2 < 1/2+0.0534 (mod 1).  (4.7)

1/2 —0.0534 < o+ h/2 — g/2 < 1/2 +0.0534 (mod 1).
Subtracting (4.7) and (4.8) respectively from (4.6) we get

—0.1068 < h, g < 0.1068 (mod 1). (4.9)
Since from [2.6), |h| < 1/2, |g| < 1/2, we have

P = (h,g) € R, where R is the region given by

R = {(sc,y) cR%: —0.1068 < z,y < 0.1068}.

Let A=(0,0),U = (3 4) be an automorph of ¢4. Then

2 3

U(R)C{ (z,y) eR?: —0.75 <z < 0.75 }

—0.56 < y < 0.56
Clearly U(R)NR + B =0 for all B € Z2, B # A.

Now for all integers n positive or negative, the unimodular transforma-

1 0
i .
ion ( 0 U") transforms @ into

Q(z,y,2) = (z + hay + gn2)? + p(y? — 222).

The above argument shows that if has no solution then U™(P) =
(hn, gn) must also satisfy (4.9) and hence must be congruent to a point of

R (mod 1). Therefore by Lemma 4, we must have U(P) — A = P, which
gives h = 0, g = 0, since U(P) = (3h + 4g,2h + 3g). Thus Q(z,y,z) =
x? + p(y? — 222) and

1 1
5 — 00534 <o < - +0.0534  (mod 1), (4.10)

If 1 < p <9/8, then
0<Q(3,0,2)=9-8p< 1.
This contradicts (2.7).
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If 9/8 < p = AV8 < /3/2, take y = 1/2, z = 3/2 and choose = = z
(mod 1) such that 5/2 — 0.0534 < z < 5/2 4 0.0534 so that

0 < (2.4466)> ——\f <Q
17 9

. < (2.5534 <d.
=2 = P Y -73
Thus if has no solution, we must have p = 1.
Now if 29 # 1/2 (mod 1), choose z such that 3 < |z| < 1, take y = 1/2,
z=1/2,s0that 0 < Q =22 —-1/4<1-1/4 <d. Thus for to have
no solution we must have

111
Q=x2+y2—2z2, (o, Yo, 20) = (§,§,§> (mod 1)

~2Q2 =2 Kﬂc+ %y) y—l—z2]

by means of transformation
r—zx+22, y—z+y, z—T+z.

Also then (zg, Yo, 20) ~ (%,0,0) (mod 1). This completes the proof of the
theorem. [
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