Hokkaido Mathematical Journal Vol. 25 (1996) p. 107-117

Symmetry problems for elliptic systems

Robert DALMASSO
(Received March 27, 1995)

Abstract. We consider some overdetermined boundary value problems for elliptic sys-
tems. Using the maximum principle and the technique of moving up planes perpendicular
to a fixed direction we show that if a solution exists, then the domain must be a ball and
the solution radially symmetric.
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1. Introduction

Recently Payne and Schaefer [7| considered several overdetermined
boundary value problems for the biharmonic operator. Among other things
they proved the following theorem.

Theorem A [7]. Let Q C R? be a bounded domain with C**¢ boundary
ON. Let u be a classical solution of the boundary value problem

Alu=1 inQ, (1.1)

u=Au=0 on ON. (1.2)
If

Ou _ ¢ (const.) on 00 (1.3)

5 = : .

(where v denotes the unit outer normal to 05) and ) is star-shaped with
respect to the origin, then §2 is a disk.

Payne and Schaefer conjectured that theorem A holds in R™ with n > 2
for more general domains. Our first purpose here is to prove this conjecture.
In fact we shall consider a more general situation than (1.1)—(1.2). We shall
prove the following theorem.

Theorem 1 Let Q C R™ (n > 2) be a bounded domain with C? boundary
0. Let f: R? — (0,00) and g : R? — R be two functions satisfying the
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following conditions :

(H1) Foreachv € R, u— f(u,v) (resp. u — g(u,v)) is nondecreasing
(resp. is nonincreasing);

(Hz2) Foreachu € R, v — f(u,v) (resp. v — g(u,v)) is nonincreasing
(resp. is strictly increasing);

(H3) g(u,0) =0 for u € R.
If (u,v) € C*(Q) x (C*(Q) N CY(Q)) satisfies the system of differential

equations

Au = g(u,v) in Q,
_ (1.4)
Av = f(u,v) in
and the boundary conditions (1.3) and
u=0 on 01, (1.5)
v =d(const.) <0 on 09, (1.6)

then  is a ball. If Q = {x € R™; [z — zo| < R} for some zo € R", then
u(x) = y(|lz — zo|), v(z) = 2(]z — zo|), ¥’ < 0 in (0, R] and 2’ > 0 in (0, R].

Our method of proof is based on the maximum principle and the tech-
nique of moving parallel planes used by Serrin [8] and Gidas, Ni and Niren-
berg (4] for second order equations and by the author [2], [3] for fourth order
equations.

We shall use repeatedly the maximum principle and the Hopf boundary
lemma which we recall. Let D C R™ be a domain and let v € C?(D) satisfy
the differential inequality Av > 0 in D.

Maximum Principle (Gilbarg and Trudinger p. 15). Ifv < M in
D and v= M at some point in D, then v= M in D.

Hopf Lemma (5] p. 33). Let P € 8D be such that :

(i) v is continuous at P;

(ii) v(z) < v(P) for all z € D;

(iii) There is a ball B in D with P € 6B.

Then the outer normal derivative of v at P, if it exists, satisfies the strict
inequality Ov(P)/dv > 0.

Finally we also recall a version of the Hopf lemma which applies to
domains with corners.
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Lemma S (Serrin [8] p. 308). Let D* C R" be a domain with C? boundary
and let T' be a plane containing the normal to 0D* at some point Q). Let D
be the portion of D* lying on some particular side of T.

Suppose that w is of class C? in D and satisfies

Aw <0 mn D,

while also w > 0 in D and w = 0 at Q. Let § denote any direction at
which enters D non tangentially. Then either

ow d%w

unless w =0 in D.

Our paper is organized as follows. In Section 2 we prove theorem 1. In
Section 3 we show that our result can be applied to a somewhat more general
boundary condition than (1.3) as in Serrin’s paper. Finally in Section 4 we
conclude with some remarks and we give a characterization of open balls in
R™ by means of an integral identity.

2. Proof of Theorem 1

As in , we use the procedure of moving up planes perpendicular to a
fixed direction and we briefly describe it.

Let v be a unit vector in R™ and let T denote the hyperplane v.x = A.
For A > 0 large the plane T5 does not intersect Q since Q is bounded. We
decrease A until Ty begins to intersect €2. From that moment on, the plane
T cuts off from 2 an open cap, ¥()\), the part of Q on the same side of
Ty as T5. Let ¥'()\) denote the reflection of ¥()) in the plane T). At the
beginning ¥'(A) C Q and as A decreases ¥'()\) C Q at least until one of the
following occurs : '
(i) X'(M\) becomes internally tangent to 02 at some point P not on T;
(ii) T) reaches a position at which it is orthogonal to 99 at some point

Q €T, NoK.

We denote by T), : v.x = A; the plane T when it first reaches a position
such that (i) or (ii) holds. Clearly ¥/(\1) C Q. Also we define \g to be the
first value of A for which T} intersects Q, that is

/\O:inf{j\<5\;T)\ﬂ§=(Z) for5\<)\<:\}.
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Finally, for A € [\, \g) and = € ¥'(\) we define z* to be the reflection of =
in the plane T).

We first show that (2 is symmetric about the plane T),. Since this is

true for an arbitrary direction, {2 must be simply connected. Then € must
be a ball.

Lemma 1  With the above notations, for all A € (A, Ag) and for all
z € 08(A)\T we have

v.Vu(z) <0 and  4.Vou(z) > 0.

Proof.  Since Av > 0in 2 and v = d on 852 the maximum principle implies
that v < d in 2 and then the Hopf lemma implies that g—g > 0 on 912, hence
7.Vu(z) > 0 for z € 05(A)\T) with A € (A1, A\g). We have v < d < 0 in Q.
Then (Hz) and (H3) imply that Au < 0 in . Since u = 0 on 0, in the
same way we have u > 0 in 2 and —2—’;— < 0 on 09, hence v.Vu(z) < 0 for
T c 82()\)\T)\ with A\ € ()\1, )\0) []

Let A € [A1, Ag) and define the functions
ur(z) = u(z?) and wvy(z) = v(z?) for z € X'(N).
We have

Auy = g(uy,vy) in Z'(N),
Avy = f(uy,vy) in T'(N),

with the boundary conditions
Uy =U, Uy =V on %' (A) N Ty,
Uy = 0, Uy = d on 82,()\)\'1')\,
M = ¢ on 8%/ M\ T

(here v denotes the unit outer normal to 8%'(A\)\Th). By virtue of lemma,
1, there exists n > 0 such that for A € (max(A1, Ao — ), Ao), we have

{ uy—u<0 in ¥'(A) and ~4.Vu<0 in X()\), (2.1)

vAy—v>0 in ¥'(A) and +4.Vu >0 in X(X).

Decrease A until a critical value g > A; is reached, beyond which (2.1) is
no longer true. Then (2.1) holds for A € (i, Ag) while for A = u we have by
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continuity

{ uy—u<0 in ¥(p) and 4.Vu<0 in X(u), (2.2)

v,—v>0 in¥(p) and 4.Vo>0 in X(u).

Suppose p > A1. (Hi), (H2) and (2.2) imply that A(v, —v) < 0 in X'(p).
Since v < d in 2, we have v, —v # 0 in ¥'(p). The maximum principle and
the Hopf lemma imply that

v,—v>0 in¥(y) and ¥.Vu>0 onT,NQ (2.3)

where the second inequality follows from the fact that v.V(v,—v) = —27.Vv
on T, N ). Now, using (H1), (H2), (2.2) and (2.3) we get A(u, —u) >0 in
¥/(u). Then the maximum principle and the Hopf lemma imply that

u, —u<0 inX(p) and 7.Vu<0 onT,NQ (2.4)

where the second inequality follows from the fact that v.V(u, — u) =
—27.Vu on T, N Q. (2.2), (2.3) and (2.4) show that (2.1) holds for A = p.

Using lemma 1, (2.1) with A = g, (2.3) and (2.4) we see that for some
e > 0 such that y — e > A\; we have

v.Vu <0 in X(u—e). (2.5)
and
v.Vu >0 in X(p—e¢). (2.6)

Thus our definition of 4 implies that either there is a strictly increasing
sequence (A;) with limj oo Aj = p (A; € (4 — €, u) Vj) such that for each j
there is a point z; € ¥'();) for which

uy (z5) —u(z;) 20 Vj (2.7)

or that there is a strictly increasing sequence (u;) with lim; o p; = p

(5 € (1 — €,1)Vj) such that for each j there is a point z; € ¥'(u;) for
which

vy (25) —v(z;) <0 Vg (2.8)

In the situation [2.7), a subsequence which we still call z; will converge
to some point x € ¥'(u); then u,(xr) — u(z) > 0. Since (2.1) holds for
A = p we must have z € 0%/ (un); If z € 0%/ (u)\T), then 0 = u,(z) < u(z),
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a contradiction. Therefore z € T,. The straight segment joining z; to
its symmetric about T}, belongs to {2 and by the theorem of the mean it
contains a point y; such that

v.Vu(y;) > 0.

Since lim;_ . y; = =, we obtain a contradiction to (2.5).

In the situation [2.8), a subsequence which we still call zj will converge
to some point z € ¥/(p); then v,(2z) — v(z) < 0. Since (2.1) holds for
A = p we must have z € 0¥/ (u); If z € OX'(u)\T, then d = v,(2) > v(2),
a contradiction. Therefore z € T,. The straight segment joining z; to
its symmetric about 7),; belongs to {2 and by the theorem of the mean it
contains a point t; such that

’y.V’U(tj) <0.

Since lim;_,o t; = 2, we obtain a contradiction to (2.6).
Thus we have proved that © = A; and that (2.1) holds for A € (A1, Ag).
By continuity we have

{ uy, —u <0 in¥(X\) and 4.Vu<0 in Z()\;), (2.9)
vy, —v >0  in¥(N\) and 4.Vv>0 in X(\).
Using (H1), (H2) and (2.9) we obtain

A(uy, —u) >0  in X'(Ap). (2.10)
The maximum principle implies that

uy, =u  in X'(\) (2.11)
or

Uy —u<0 in ¥'(\1). (2.12)

If (2.11) holds then w = 0 on 8%/(A;)\T), and, since u > 0 in 2, this
implies that X'(\;) coincides with that part of  on the same side of T}, as
¥'(A1); that is Q is symmetric about T),. Now we show that (2.12) cannot
hold. Indeed suppose first that we are in case (i), that is 3'(\1) is internally
tangent to 02 at some point P not on T),. Since (uy, — u)(P) = 0, (2.10),
(2.12) and the Hopf lemma imply that

0

5;(11,,\1 —u)(P) >0, (2.13)
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and this contradicts the fact that agil = % = c at P. In case (ii) Ty, is
orthogonal to 0f) at some point (). It now follows as in the proof given by
Serrin ([8] p. 307-308) that uy, —u has a zero of order two at Q and lemma
S gives a contradiction.

We have thus proved that (2 is symmetric about T),. Therefore, as
we have already seen, we can conclude that €2 is a ball. Now (2.11) shows
that u is symmetric about T),. Using the first equation in (1.4), (H2) and

(2.11) we find that v is also symmetric about T),. Since this is true for an

arbitrary direction we conclude that v and v are radially symmetric. The
other assertions of the theorem follow easily from (2.9) and lemma 1.

3. A different boundary condition

In this section we extend theorem 1 to a more general boundary con-
dition than (1.3). Let H denote the mean curvature of the boundary 92,
chosen so that H is positive when 0f2 is convex. We have

Theorem 2 Let Q C R™ (n > 2) be a bounded domain with C3 boundary
0Q. Let f and g be as in theorem 1. If (u,v) € C?(Q) x (C*(Q)NC(Q)) sat-
isfies the system of differential equations (1.4) and the boundary conditions
(1.5), (1.6) and

ou

— =c(H

5, = ()

where ¢ is a continuously differentiable nonincreasing function of H, then
the conclusions of theorem 1 remain valid.

Proof.  Since we use the same arguments as in the proof of theorem 1 we
only mention the modifications in the above discussion. []

still holds. Thus in the same way we arrive at the situation

(2.9)—(2.13). In case (i), as in Serrin’s paper ([8] p. 317) we show that

0

5, (Wn = w)(P) = c(H'(P)) = (H(P)) <0
where H'(P) is the mean curvature of 0%'(\1) at P and this contradicts
(2.13). Now, in case (ii) the arguments given by Serrin ([8] p. 317-318)
imply that uy, — u has a zero of order two at ) and lemma S gives a
contradiction.
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Remark 1. Note that the assumption 8Q € C? can be weakened (see [8]).

4. Concluding remarks

In this section we first examine the case where condition (1.6) is replaced
by v = d > 0 on 892. We begin with a theorem obtained in [3] (théoréme
3.1).

Theorem 3 Let Q C R" (n > 2) be a bounded domain with C? boundary
ON. Let f be as in theorem 1. Letu € CHQ)NC3(Q) satisfy the differential
equation

A%y = f(u, Au) in Q,

and the boundary conditions

u:%zo on 0f2,

Au = d(const.) on ON.
If u>01inQ, then Q is a ball. If @ = {x € R"; |z — zo| < R} for some
zo € R", then u(z) = y(|lx — zo|), ¥ < 0 in (0, R) and (Ay)’ > 0 in (0, R)].
Remark 2. Notice that u € C*() in [3], but it is enough to assume that
u € CHQ)NC3(Q).
Remark 3. We easily show that d > 0 in theorem 3 (see lemma 2.1 in [3]).

Remark 4. Assume that f = 1, 92 € C* and v € C*(Q). Then the
assumption u > 0 in 2 can be removed. Indeed this is just Bennett’s result

[1].
Remark 5. Clearly the above result can be extended to overdetermined
elliptic systems.

Now we shall examine the case where ¢ # 0 in (1.3).

Theorem 4 Let Q2 CR"™ (n > 2) be a bounded domain with C? boundary
Q. Let f and g be as in theorem 1. Let (u,v) € C%(Q) x (C?(Q) N CHQ))
satisfy the system of differential equations (1.4) and the boundary conditions
(1.5),

— =c(const.) <0 on Of) (4.1)
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and
v =d(const.) >0 on 0.

Ifu>01nQ, then Q is a ball. If @ = {z € R™; |z — 20| < R} for some
zo € R, then u(z) = y(|z — zo|), v(z) = 2(|]z — zo|), ¥’ < 0 in (0, R] and
Z' >0 in (0, R].

Proof. Since we make use of the same arguments as in the proofs of
theorem 1 and theorem 3 (see théoreme 3.1 in [3]), we shall be sketchy.
We first note that lemma 1 holds. Now using the notations of section 2
we arrive at the situation [2.7)-{2.8). In the situation [2.7), in the same
way we have uy(z) —u(z) > 0 and z € 9 (p). If z € 0%/ (u)\T,, we get
u(z) = —(uy—u)(x) <0. Since u > 0 in 2, we deduce that u(z) = 0. Using
(2.1) with A = u, (Hy), (H2) and the Hopf lemma we obtain

0

5, (U —u)(@) >0

(here v denotes the unit outer normal to %' (u)\7},). Since a—auf(a:) = c we
deduce that %(x) < ¢ < 0 and we get a contradiction with the fact that
u > 01in ). Therefore z € T,, and the proof is the same in this case. Also, in
the situation the proof is the same and we arrive at (2.10). (H;), (H2)
and (2.9) imply that A(vy, —v) <0 in ¥'(A1). Then, using the maximum
principle we get

vy —v=0  in X'()) (4.2)
or
vy, —v>0  in X'(X). (4.3)

If (4.2) holds then v = d on 8% (A\;)\T), and, since v < d in €, this implies
that 3'(A;) coincides with that part of Q on the same side of Ty, as ¥'(\1);
that is 2 is symmetric about T),. Now assume that (4.3) holds. Then,
using (H;)-(H3), (2.9) and (4.3) we obtain A(uy, —u) > 0 in X'(};), from
which we deduce (2.12). We show that (2.12) cannot hold and we get the
conclusion as in the proof of theorem 1. []

Remark 6. Clearly our method of proof cannot be used to treat the case
where the condition ¢ < 0 in (4.1) is replaced by ¢ > 0. On the other
hand theorem 4 can be extended to a somewhat more general condition
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than (4.1). With the notations of section 3, theorem 4 remains valid if we
replace (4.1) by

ou

— =c(H on 0f2

5, = )

where now c¢ is a continuously differentiable nonincreasing function of H
such that ¢ < 0.

Finally, just as in [1], and (7| we obtain a characterization of open
balls in R™ by means of an integral identity.

Theorem 5 IfQ CR” (n > 2) is a bounded domain with C**¢ boundary
0N and

/ Bdx = c¢| ABds (4.4)
Q onN

for some constant ¢ and for every B € C4(Q) such that A2B =0 and B =0
on 0L), then Q is a ball.

Proof. =~ We shall show that is equivalent to the following statement :

u € C4+¢(Q) satisfies the differential equation A%u =1 in Q
and the boundary conditions (1.3), (1.5) and Au = 0 on 0.

Then the theorem follows from theorem 1. ]

Suppose that v € C*t¢(Q) satisfies the above statement. Let B €
C*(Q) be a biharmonic function such that B = 0 on 8. Then, using
Green’s formula we get

5
/Bdm _ / BA%ude = | ABZds. (4.5)
Q Q onN

ov
Thus (1.3) implies [4.4).

Now suppose that holds. Let u € C**(Q) be the solution of
A%y =1 in Q satisfying (1.5) and Au = 0 on Q. Choose B € C*() such
that A2B =01in Q, B =0 on 09 and AB = %—%—conaﬁ. Then
implies that (1.3) is satisfied.
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