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On a super class of p-hyponormal operators

B.P. DuccAL
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Abstract. Given an operator A on a Hilbert space H, A is said to be p-hyponormal
(0 <p<1)if (AA*)P < (A*A)P. The class H(p) of p-hyponormal operators has been
studied in a number of papers in the recent past. Let K(p) denote the class of operators
A for which ((AA*)Pz,z) < ||z|2(1=P) (A* Az, z)P for all z € H. Then H(p) C K(p). In
this note we study the spectral properties of operators in K(p), and show that a number
of the properties enjoyed by hyponormal operators carry over to K(p). Our arguments
often lead to an alternative, sometimes simpler, proof of the results for H(p).
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1. Introduction

We consider operators (i.e., bounded linear transformations) on a com-
plex Hilbert space H. The operator A is said to be p-hyponormal, 0 < p < 1,
if (AA*)P < (A*A)P. Tt is an easy consequence of the Lowner inequality
that a p-hyponormal operator is ¢-hyponormal for all 0 < ¢ < p. In par-
ticular, a 1-hyponormal (or simply hyponormal) operator is p-hyponormal
for all 0 < p < 1, and in studying p-hyponormal operators for a general
0 < p < 1 it is sufficient to consider 0 < p < 1. Semi-hyponormal (or,

2
%-hyponormal) operators were introduced by Xia , and p-hyponormal

operators for 0 < p < % were first studied by Aluthge [1]. Recently there
have been a number of papers, especially by Muneo Cho et al. [2, 3, 4,
5, 6] and Masatoshi Fujii et al. [10, 11], on p-hyponormal operators, their
spectral properties and their relationship to other classes of operators. Gen-
erally speaking p-hyponormal have properties very similar to hyponormal
operators [1, 2, 3, 4, 5, 6, 10, 20, 21].

Let H(p) denote the class of p-hyponormal operators, 0 < p < —é— Then
((AA*Pz,z) < ((A*A)Pr,z) < ||z||?TP)(A*Az,z)P for all z € H. Let
K(p),0<p< %, denote the class of operators A for which ((4A*)Pz,z) <
|z|22=P) (A*Az,z)P. Then H(p) C K(p) and the class K(p) is monotone

decreasing on p; also, operators A € K(p) are paranormal, i.e., if A €
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K(p), then ||Az||* < ||A2%z]| for all unit vectors z € H [11, Lemma 3 and
Theorem 4]. In this note we study spectral properties of operators A € H(p)
by studying A € K(p), and show that many a property of hyponormal
operators is shared by operators in K (p). On the way we give alternative
(sometimes simpler) proofs of some of the results for the class H(p).

In the following we shall denote the spectrum, the point spectrum, the
approximate point spectrum and the essential spectrum of the operator A
by 0(A),0,(A),04(A) and o.(A), respectively. We say that the complex
number a,a € C, is in the joint point spectrum o;,(A) (joint approximate
point spectrum o4(A)) of A if there exists a unit vector x € H (respectively,
a sequence of unit vectors x, € H) such that (A—a)z =0and (A*—a)z =0
(respectively, (A — o)z, — 0 and (A* — &)z, — 0 as n — oo0). We shall
denote the kernel and the closure of the range of A by ker A and ranA, and
the restriction of A to an invariant subspace M will be denoted by A|M.The
operator A will be said to be pure (= completely non-normal) if there exists
no reducing subspace M of A such that A|M is normal. Throughout the
following A will have the (unique) polar decomposition A = U|A4|, |4| =
(A*A)%, and the operator A, will be defined by A, = U|A|P. We shall
denote the boundary of a set S by dS. Any other notation will be defined
as and when required.

It is my pleasure to thank Professors Muneo Cho and Masatoshi Fujii
for supplying me with copies of their pre-prints. My thanks are also due to
the referee for his many suggestions: the current title of the paper is due to
him.

2. Results

If A€ K(p), then A is paranormal [11, Theorem 4]. Since paranormal
operators A are normaloid (i.e., ||A|| = r(A), where r(A) denotes the spec-
tral radius of A) and the inverse, whenever it exists, of a paranormal opera-
tor is again paranormal [12], 7(A™1) = ||A7!||. Also 6.(A4) = 0(A)—00(A),
where 0,,(A) denotes the set of isolated eigen-values of A of finite multi-
plicity [9], and if o(A) is countable, then A is normal [17].

As ‘mentioned in the introduction, K(p) is monotone decreasing on
p(0 < p < %) Thus, where need be, there is no loss of generality in
assuming p = 2~ for some integer n > 1. Recall that the eigen-values of
a p-hyponormal operator A are normal eigen-values, i.e., 0,(A) = 0;0(A)
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[1, 6, 21]. That a similar result is true for A € K(p) is the content of the
following theorem.

Theorem 1 (cf. [21, Theorem 2.3] and [6, Theorem 4]) If A € K(p),
then o,(A) = 0j0(A).

Proof. It is immediate from the definition of K(p) that if 0 € 0,(A), then
0 is a normal eigen-value of A. Let a = re®, r # 0, be an eigen-value of A
with a corresponding eigen-vector x. Then

| Az]|

014l = ll4le = 141 -olape] (0<q< )
< A9 9 Al

(by the Holder-McCarthy inequality [11])
I|A[U*U| Ale||*~9|| Al%]|
= r Al | Al ]|,

Since A € K(q) for all 0 < ¢ < p, the definition of K(p) implies
I1A1T*2|)? = (UIAPU* 2, 2) < |l2]*09)|| Al

= [|l2]*1 9 Az||*2.

Hence

| Az < r'=9)a] 9% Az||?0 =D || A 9],
or,

2l == Az =909 < ) A0
Since Az = rex, this implies

r®||zl|? < [|A%])%, or, r|lz]| < [||Al%a].
Also, by the Holder-McCarthy inequality,

llAlz|? = (A2, 2) < ||2]*~9(| 4]z, )1
= [|l=]?*= 9| Ale]* = |l2]|* )| Az |

= r||z||?.
Thus
[|A|%z]| = r9||z||
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for all 0 < q < p. Choosing ¢ = p/2 (so that (|A[Pz,z) = rP||z||?) and ¢ = p
(so that (|A|*z,z) = r?P||z||?), we have

0 < [|APz —rPz||* = (|A]Pz, ) + 2|
—rP(lAfPz, ) — (2, |A]Pz) <0,
le.,
|AlPz = rPr, (1)

Since there is no loss of generality in assuming p = 27" for some integer
n > 1, this implies

|Alz = rz
and (since Az = U|A|z = re'z)

Uz =e®z. (2)
Hence a € 0,(A), and the proof is complete. []
Corollary 2 o =re? € 0,(A), A€ K(p), if and only if rPe' € Tjo(Ap).

Proof. If a € 0,(A) and z is an eigen-vector corresponding to «a, then (as
seen in (1) and (2) above) |A|Pz = rPz and Uz = ez. Hence a € 0;,(4,).
If, on the other hand, a € 0;,(A4;,) and z is an eigen-vector corresponding to
a, then |A|Pz = rPz and Uz = %z imply (as in the proof of the Theorem)
that a € 0,(A). ]

The operator A,(= U|A|P) plays an important role in the study of p-
hyponormal operators (see [1, 2, 3, 6]). The following theorem shows that

there is a deep relationship between the reducing subspaces of A € K (p)
and Ap.

Theorem 3 An invariant subspace M of A € K(p) reduces A if an only
if it reduces Ayp.

Proof. It will suffice to consider p = 27" for some integer n > 1. Suppose
M reduces A,. Then

U|APM C M, |APU*M C M and |A|**M Cc M
imply
|A|JM C M and |A|PM C M.



On a super class of p-hyponormal operators 101

Hence U|A|M = AM C M and |A[U*M = A*M C M, i.e. M reduces A.

The converse statement is similarly proved. ]

We prove next K (p) analogues of some well known results for hyponor-
mal operators [15, 16]; H(p) analogues of some of these results appear in
[2], [5, Theorems 1, 2 and 3] and [6, Theorem 8.

Theorem 4 Let A€ K(p). Then :

(1) 0a(A) =0j,(A), and a = re? € a,(A) if and only if there exists a
sequence of unit vectors x, such that (|A| — )z, — 0 and (U — e®¥)z,, — 0
as n — oo.

(ii)) a€o(A) and & € 0,(A*) = |a| € oc(|A]) Noe(|A*]).

(ili) a € 00(A) = |a| € o(JA]) No(|A*|). If also A is pure and
(A—z) € K(p) for all z € C, then |a| € o.(|A]) N oe(|A*]).

Proof. (i) Using the Berberian extension technique [21, p. 15] to extend
A to an operator A° on a Hilbert space H? it is seen that A° € K (p) with
0a(A) = 04(A°) = 0,(A°). By Theorem 1, 0,(A°) = 0,,(A°); this implies
0.(A) = 0j4(A).

Now suppose that a = re? ¢ 04.(A), 7 > 0. Then there exists a
sequence of unit vectors {z,} € H such that (A — a)z, — 0 and (4* —
a)r, — 0 as n — co. Let u = [z,] denote the equivalence class of {z,,} in
H°. Then u is a unit vector such that A°s = au and A”*u = au. Thus
|A°?u = |a|?*u = r?u; hence P(|A°|?)u = P(r?)u for every polynomial P(z)
with P(0) = 0. In particular, |A°|u = ru. This, since U°|A%u = re?u,
implies Uu = e®®u. Consequently, (|A| — r)z, — 0 and (U — )z, — 0
as n — o0o. Since the reverse implication is obviously true, the proof is
complete.

(ii) If & & 0,(A*), then (since 0o(A) = 0j,(A) for A € K(p))a ¢
0o(A). This, since 0.(A) = 0(A) — 0,,(A) [9], implies & € 0.(A) and (so0)
there exists a sequence of unit vectors z,,x, converges to 0 weakly, such
that (A — o)z, — 0 as n — 0o0. Let a = re?. As in the proof of (i) above,
there exists a sequence of unit vectors z,, converging weakly to 0 such that

(JA] = r)zy, — 0 and (U — )z, — 0 as n — .
This implies 7 = |a| € 0¢(|A]) N oe(|A*|). (Recall that |A*| = U|A|U*.)

(ili) Ifa € 00(A) C 04(A), then there exists a sequence of unit vectors
T, such that (A —a)z, — 0 as n — co. Let a = re®?. Since o,(4) =
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oja(A), (Al = 7)zn, — 0 and (U — %)z, — 0 as n — oo. This implies
r = |a| € o(|A]) No(]A*]). Suppose now that (A — z) € K(p) for all z € C.
Then (A — z) is paranormal [11, Theorem 4|, and so, since paranormal
operators are normaloid, normaloid (for all z € C). Consequently A is
convexoid [18; pp. 539, 542], and hence satisfies growth condition (G;) (i.e.,
(A —2)7Y < m’ where d(z,convo(A)) denotes the distance of
z from the convex hull of o(A) [18; p. 606]). Recall that if a € do(A),
then either a € 0.(A) (indeed, « is in the intersection of the left and the
right essential spectra of A) or a is an isolated point of o(A) [14]. Since
isolated points of the spectrum of an operator satisfying growth condition
(G1) are eigen-values of the operator and since 0,(A) = 0j,(A4), it
follows that if A is pure then a € o.(A). This, as in part (ii) implies
o] € o (|Al) N 0 (| 4%)).

We note here that if the operator A in Theorem 4(iii) is in K (p) N H(p),
then A, being hyponormal satisfies the property that (A, —z) is hyponormal
for all z € C. Hyponormal operators satisfy growth condition (G;). Since
a = re? € 9o(A) implies rPe?? € do(A,), ™P € 0.(|4p]) N oe(|45]) =
oe(|AIP) N oe(|A*|P). Hence r € o.(|A|) Noe(|A*|). (See also [5, Theorem
2].)

Let KU(p) denote the class of A € K(p) for which U in the polar
decomposition A = U|A| is unitary. ]

Theorem 5 If A € KU(p) is pure, then neither mino(|A|) nor maxo
(1A]) 75 in 000 (|A]).

Proof. Suppose a = mino(|A]) € 0e(|4]). Let My, = {z € H :
|Alz = az}. Since U is unitary, o(|A|??) = o(U|A[*U*) and o? =
min o (U|A|?U*). Letting x € M, the definition of K(p) implies
(A4%Pz,2) = (U] APU*2, 2) < 2207 (4% Az, 2)P
Also, since a®? = min o (U|A|?*U*),
o”||z||* < (UIAPU*z, ).

Hence

o ||z||? = (U|A|*PU*z, z), or, U|A|*PU*z = o*Pu.
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Thus
UlAlU*z = az, |A|U*z = aU*z and U*M, C M,,.

The subspace M, being finite dimensional there exist non-trivial y € M,
and (0 #)8 € C such that U*y = By, and then U|A|y = aUy = %y. Hence
0o(A) # ¢. Since 0,(A) = 0j,(A) and A is pure, we have a contradiction.
Consequently, a & 0,,(]4]). [

Now let a = maxo(|A|) € 0,0(|A|]), and let M, = {z € H : |A|z = ax}.
Then

a® = maxa(|A|?), (|4A|%*z, ) < a?||z||? (z € M,)
and
a(|4°) = o(U*|APD).
The definition of K(p) implies
(|A[Pz, 2) < ||=|**P) (U*|APUz, z)P
for all x € H. Hence, for z € M,,
®||z]|* = (|AfPz, 2) < |2 P (U AUz, z) < o®||z|%,
Thus
U*|A|*Uz = o®z.

Following an argument similar to that above this implies 0,(A4) = 0;,(A) #
¢ — a contradiction. Hence a & g,,(|A|).

Given a pure hyponormal contraction A (on a separable Hilbert space
H) with Hilbert-Schmidt class defect operator D4 = (1 —A*A)%, Takahashi
and Uchiyama showed that A belongs to the class Cqg of contractions.
That the same is true for p-hyponormal contractions has been proved in [8,
Theorems 1 and 2]. The following theorem extends this result to contrac-
tions A € K(p). We assume in the following that H is separable.

Recall that a contraction A is said to be of the class

C.O(Co.) if ||A*n1:|| — 0
(resp., ||[A"z|| — 0) as n — oo for all z € H;
C1(Cr.) if inf | A* x|
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(resp. inf ||A"z||) > 0 for all non-trivial =z € H;
Cag,oz,ﬁ =0,1,if Ae Cy.NClyg;

Cy if there exists an inner function u such that u(A4) =0

[13]. The contraction A is said to be c.n.u. ( = completely non-unitary)
if there exists no non-trivial reducing subspace M of A such that A|M is
unitary. If the c.n.u. contraction A € Cyy has Hilbert-Schmidt class defect
operator, then A € Cjy [19]. Every C, has contraction A with Hilbert-
Schmidt class defect operator has a triangulation

A, *
0 Aj

CO *
0 Cio

A= of type

: (3)

and every Cy contraction A, has a triangulation

)

A1 *
0 A,

where o(A;) consists of a countable number of characteristic values in the
open unit disc D and o(A3) C 9D [13].

Theorem 6 If the contraction A € K(p) is pure and has Hilbert-Schmidt
class defect operator, then A € Chy.

Proof.  The hypothesis A € K(p) implies A is paranormal. Since para-
normal contractions have C c.n.u. part [7, Theorem 4], A € C.y and has a
triangulation (3). The restriction of a paranormal operator to an invariant
subspace being paranormal, A; is paranormal, and so, since o(A;) is count-
able, normal with 0(A1) = 0,(A1). By [Theorem 1, 0,(A4) = 0j0(A);

hence, since A is pure, A; acts on the trivial space and

A2 *
0 As

.

Az}

As stated above, 0(As) C 0D; hence A, is an invertible paranormal opera-
tor, with A5 ! also paranormal [12, 18]. Paranormal operators are normaloid
[12]; hence 7(Ag) = (A5 1) = 1, which implies A, is unitary. Since A is
pure, and so c.n.u., A acts on the trivial space. This implies A = A3 € Cjp.

]
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