
Hokkaido Mathematical Joumal Vol. 25 (1996) p. 97-106

On a super class of p-hyponormal operators

B.P. DUGGAL
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Abstract. Given an operator A on a Hilbert space \mathcal{H} , A is said to be p-hyponormal
(0<p\leq 1) if (AA^{\star})^{p}\leq(A^{\star}A)^{p} . The class H(p) of p-hyponormal operators has been
studied in a number of papers in the recent past. Let K(p) denote the class of operators
A for which ((AA^{\star})^{p}x, x)\leq||x||^{2(1-p)}(A^{\star}Ax, x)^{p} for all x\in H . Then H(p)\subset K(p) . In
this note we study the spectral properties of operators in K(p) , and show that a number
of the properties enjoyed by hyponormal operators carry over to K(p) . Our arguments
often lead to an alternative, sometimes simpler, proof of the results for H(p) .
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1. Introduction

We consider operators (i.e., bounded linear transformations) on a com-
plex Hilbert space 7{. The operator A is said to be p-hyponormal, 0<p\leq 1 ,
if (AA^{\star})^{p}\leq(A^{\star}A)^{p} . It is an easy consequence of the L\"owner inequality
that a p-hyponormal operator is q-hyponormal for all 0<q\leq p . In par-
ticular, a 1-hyponormal (or simply hyponormal) operator is p-hyponormal
for all 0<p<1 , and in studying p-hyponormal operators for a general
0<p<1 it is sufficient to consider 0<p \leq\frac{1}{2} . Semi-hyponormal (or,
\frac{1}{2} -hyponormal) operators were introduced by Xia [20], and p-hyponormal
operators for 0<p< \frac{1}{2} were first studied by Aluthge [1]. Recently there
have been a number of papers, especially by Muneo Cho et al. [2, 3, 4,
5, 6] and Masatoshi Fujii et al. [10, 11] , on p-hyponormal operators, their
spectral properties and their relationship to other classes of operators. Gen-
erally speaking p-hyponormal have properties very similar to hyponormal
operators [1, 2, 3, 4, 5, 6, 10, 20, 21].

Let H(p) denote the class of p-hyponormal operators, 0<p \leq\frac{1}{2} . Then
((AA^{\star})^{p}x, x)\leq((A^{\star}A)^{p}x, x)\leq||x||^{2(1-p)}(A^{\star}A.x, x)^{p} for all x\in H . Let
K(p) , 0<p \leq\frac{1}{2} , denote the class of operators A for which ((AA^{\star})^{p}x, x)\leq

||x||^{2(1-p)}(A^{\star}Ax, x)^{p} . Then H(p)\subset K(p) and the class K(p) is monotone
decreasing on p; also, operators A\in K(p) are paranormal, i.e., if A\in
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K(p) , then ||Ax||^{2}\leq||A^{2}x|| for all unit vectors x\in H[11 , Lemma 3 and
Theorem 4]. In this note we study spectral properties of operators A\in H(p)

by studying A\in K(p) , and show that many a property of hyponormal
operators is shared by operators in K(p) . On the way we give alternative
(sometimes simpler) proofs of some of the results for the class H(p) .

In the following we shall denote the spectrum, the point spectrum, the
approximate point spectrum and the essential spectrum of the operator A
by \sigma(A) , \sigma_{o}(A) , \sigma_{a}(A) and \sigma_{e}(A) , respectively. We say that the complex
number \alpha , \alpha\in C , is in the joint point spectrum \sigma_{jo}(A) (joint approximate
point spectrum \sigma_{ja}(A)) of A if there exists a unit vector x\in H (respectively,
a sequence of unit vectors x_{n}\in\gamma{ ) such that (A-\alpha)x=0 and (A^{\star}-\overline{\alpha})x=0

(respectively, (A-\alpha)x_{n}arrow 0 and (A^{\star}-\overline{\alpha})x_{n}arrow 0 as n -arrow\infty ). We shall
denote the kernel and the closure of the range of A by ker A and \overline{ranA} , and
the restriction of A to an invariant subspace M will be denoted by A|M . The
operator A will be said to be pure (= completely non-normal) if there exists
no reducing subspace M of A such that A|M is normal. Throughout the
following A will have the (unique) polar decomposition A=U|A| , |A|=
(A^{\star}A)^{\frac{1}{2}} , and the operator A_{p} will be defined by A_{p}=U|A|^{p} . We shall
denote the boundary of a set S by \partial S . Any other notation will be defined
as and when required.

It is my pleasure to thank Professors Muneo Cho and Masatoshi Fujii
for supplying me with copies of their pre-prints. My thanks are also due to
the referee for his many suggestions: the current title of the paper is due to
him.

2. Results

If A\in K(p) , then A is paranormal [11, Theorem 4]. Since paranormal
operators A are normaloid (i.e., ||A||=r(A) , where r(A) denotes the spec-
tral radius of A) and the inverse, whenever it exists, of a paranormal opera-
tor is again paranormal [12], r(A^{-1})=||A^{-1}|| . Also \sigma_{e}(A)=\sigma(A)-\sigma_{oo}(A) ,
where \sigma_{oo}(A) denotes the set of isolated eigen-values of A of finite multi-
plicity [9], and if \sigma(A) is countable, then A is normal [17].

As ’mentioned in the introduction, K(p) is monotone decreasing on
p(0<p \leq\frac{1}{2}) . Thus, where need be, there is no loss of generality in
assuming p=2^{-n} for some integer n\geq 1 . Recall that the eigen-values of
a p-hyponormal operator A are normal eigen-values, i.e., \sigma_{o}(A)=\sigma_{jo}(A)
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[1, 6, 21]. That a similar result is true for A\in K(p) is the content of the
following theorem.

Theorem 1 (cf. [21, Theorem 2.3] and [6, Theorem 4]) If A\in K(p) ,
then \sigma_{o}(A)=\sigma_{jo}(A) .

Proof. It is immediate from the definition of K(p) that if 0\in\sigma_{o}(A) , then
0 is a normal eigen-value of A . Let \alpha=re^{i\theta} , r\neq 0 , be an eigen-value of A

with a corresponding eigen-vector x . Then

||Ax||=||U|A|x||=|||A|x||=|||A|^{1-q}|A|^{q}x|| (0<q \leq\frac{1}{2})

\leq|||A|^{1+q}x||^{1-q}|||A|^{q}x||^{q}

(by the H\"older-McCarthy inequality [11])
=|||A|^{q}U^{\star}U|A|x||^{1-q}|||A|^{q}x||^{q}

=r^{1-q}|||A|^{q}U^{\star}x||^{1-q}|||A|^{q}x||^{q} .

Since A\in K(q) for all 0<q\leq p , the definition of K(p) implies

|||A|^{q}U^{\star}x||^{2}=(U|A|^{2q}U^{\star}x, x)\leq||x||^{2(1-q)}|||A|x||^{2q}

=||x||^{2(1-q)}||Ax||^{2q} .

Hence

||Ax||\leq r^{1-q}||x||^{(1-q)^{2}}||Ax||^{q(1-q)}|||A|^{q}x||^{q} ,

or,

||x||^{-(1-q)^{2}}||Ax||^{1-q(1-q)}\leq r^{1-q}|||A|^{q}x||^{q} .

Since Ax=re^{i\theta}x , this implies

r^{q^{2}}||x||^{q}\leq|||A|^{q}x||^{q} , or, r^{q}||x||\leq|||A|^{q}x|| .

Also, by the H\"older-McCarthy inequality,

|||A|^{q}x||^{2}=(|A|^{2q}x, x)\leq||x||^{2(1-q)}(|A|^{2}x, x)^{q}

=||x||^{2(1-q)}|||A|x||^{2q}=||x||^{2(1-q)}||Ax||^{2q}

=r^{2q}||x||^{2} .

Thus

|||A|^{q}x||=r^{q}||x||
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for all 0<q\leq p . Choosing q=p/2 (so that ( |A|^{p}x , x)=r^{p}||x||^{2} ) and q=p
(so that ( |A|^{2p}x , x)=r^{2p}||x||^{2} ), we have

0\leq|||A|^{p}x-r^{p}x||^{2}=(|A|^{2p}x, x)+r^{2p}||x||^{2}

-r^{p}(|A|^{p}x, x)-r^{p}(x, |A|^{p}x)\leq 0 ,

i.e. ,

|A|^{p}x=r^{p}x , (1)

Since there is no loss of generality in assuming p=2^{-n} for some integer
n\geq 1 , this implies

|A|x=rx

and (since Ax=U|A|x=re^{i\theta}x )

Ux=e^{i\theta}x . (2)

Hence \alpha\in\sigma_{jo}(A) , and the proof is complete. \square

Corollary 2 \alpha=re^{i\theta}\in\sigma_{o}(A) , A\in K(p) , if and only if r^{p}e^{i\theta}\in\sigma_{jo}(A_{p}) .

Proof. If \alpha\in\sigma_{o}(A) and x is an eigen-vector corresponding to \alpha , then (as
seen in (1) and (2) above) |A|^{p}x=r^{p}x and Ux=e^{i\theta}x . Hence \alpha\in\sigma_{jo}(A_{p}) .
If, on the other hand, \alpha\in\sigma_{jo}(A_{p}) and x is an eigen-vector corresponding to
\alpha , then |A|^{p}x=r^{p}x and Ux=e^{i\theta}x imply (as in the proof of the Theorem)
that \alpha\in\sigma_{o}(A) . \square

The operator A_{p}(=U|A|^{p}) plays an important role in the study of p-
hyponormal operators (see [1, 2, 3, 6]). The following theorem shows that
there is a deep relationship between the reducing subspaces of A\in K(p)

and A_{p} .

Theorem 3 An invariant subspace M of A\in K(p) reduces A if an only
if it reduces A_{p} .

Proof. It will suffice to consider p=2^{-n} for some integer n\geq 1 . Suppose
M reduces A_{p} . Then

U|A|^{p}M\subset M , |A|^{p}U^{\star}M\subset M and |A|^{2p}M\subset M

imply

|A|M\subset M and |A|^{p}M\subset M .
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Hence U|A|M=AM\subset M and |A|U^{\star}M=A^{\star}M\subset M , i.e. M reduces A .
The converse statement is similarly proved. \square

We prove next K(p) analogues of some well known results for hyponor-
mal operators [15, 16] ; H(p) analogues of some of these results appear in
[2], [5, Theorems 1, 2 and 3] and [6, Theorem 8].

Theorem 4 Let A\in K(p) . Then:
(i) \sigma_{a}(A)=\sigma_{ja}(A) , and \alpha=re^{i\theta}\in\sigma_{a}(A) if and only if there exists a

sequence of unit vectors x_{n} such that (|A|-r)x_{n}arrow 0 and (U-e^{i\theta})x_{n}arrow 0

as narrow\infty .
(ii) \alpha\in\sigma(A) and \overline{\alpha}\not\in\sigma_{o}(A^{\star})\Rightarrow|\alpha|\in\sigma_{e}(|A|)\cap\sigma_{e}(|A^{\star}|) .
(iii) \alpha\in\partial\sigma(A)\Rightarrow|\alpha|\in\sigma(|A|)\cap\sigma(|A^{\star}|) . If also A is pure and

(A-z)\in K(p) for all z\in C , then |\alpha|\in\sigma_{e}(|A|)\cap\sigma_{e}(|A^{\star}|) .

Proof (i) Using the Berberian extension technique [21, p. 15] to extend
A to an operator A^{o} on a Hilbert space H^{o} it is seen that A^{o}\in K(p) with
\sigma_{a}(A)=\sigma_{a}(A^{o})=\sigma_{o}(A^{o}) . By Theorem 1, \sigma_{o}(A^{o})=\sigma_{jo}(A^{o}) ; this implies
\sigma_{a}(A)=\sigma_{ja}(A) .

Now suppose that \alpha=re^{i\theta}\in\sigma_{a}(A) , r>0 . Then there exists a
sequence of unit vectors \{x_{n}\}\in H such that (A-\alpha)x_{n} –0 and ( A^{\star} -

\overline{\alpha})x_{n}arrow 0 as narrow\infty . Let u=[x_{n}] denote the equivalence class of \{x_{n}\} in
H^{o} . Then u is a unit vector such that A^{o}u=\alpha u and A^{o\star}u=\overline{\alpha}u . Thus
|A^{o}|^{2}u=|\alpha|^{2}u=r^{2}u ; Hence P(|A^{o}|^{2})u=P(r^{2})u for every polynomial P(z)
with P(0)=0. In particular, |A^{o}|u=ru . This, since U^{o}|A^{o}|u=re^{i\theta}u ,
implies Uu=e^{i\theta}u . Consequently, (|A|-r)x_{n}arrow 0 and (U-e^{i\theta})x_{n}arrow 0

as narrow\infty . Since the reverse implication is obviously true, the proof is
complete.

(ii) If \overline{\alpha}\not\in\sigma_{o}(A^{\star}) , then (since \sigma_{o}(A)=\sigma_{jo}(A) for A\in K(p) ) \alpha\not\in

\sigma_{o}(A) . This, since \sigma_{e}(A)=\sigma(A)-\sigma_{oo}(A)[9] , implies \alpha\in\sigma_{e}(A) and (so)
there exists a sequence of unit vectors x_{n} , x_{n} converges to 0 weakly, such
that (A-\alpha)x_{n}arrow 0 as narrow\infty . Let \alpha=re^{i\theta} . As in the proof of (i) above,
there exists a sequence of unit vectors x_{n} converging weakly to 0 such that

(|A|-r)x_{n}arrow 0 and (U-e^{i\theta})x_{n}arrow 0 as narrow\infty .

This implies r=|\alpha|\in\sigma_{e}(|A|)\cap\sigma_{e}(|A^{\star}|) . (Recall that |A^{\star}|=U|A|U^{\star}. )
(iii) If \alpha\in\partial\sigma(A)\subset\sigma_{a}(A) , then there exists a sequence of unit vectors

x_{n} such that (A-\alpha)x_{n} –0 as n – \infty . Let \alpha=re^{i\theta} Since \sigma_{a}(A)=
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\sigma_{ja}(A) , (|A|-r)x_{n} -, 0 and (U-e^{i\theta})x_{n} -0 as n - \infty . This implies
r=|\alpha|\in\sigma(|A|)\cap\sigma(|A^{\star}|) . Suppose now that (A-z)\in K(p) for all z\in C .
Then (A-z) is paranormal [11, Theorem 4], and so, since paranormal
operators are normaloid, normaloid (for all z\in C ). Consequently A is
convexoid [18; pp. 539, 542], and hence satisfies growth condition (G_{1}) (i.e.,
||(A-z)^{-1}|| \leq\frac{1}{d(z,conv\sigma(A))} , where d(z, conv\sigma(A)) denotes the distance of
z from the convex hull of \sigma(A) [ 18 ; p. 606] ) . Recall that if \alpha\in\partial\sigma(A) ,
then either \alpha\in\sigma_{e}(A) (indeed, \alpha is in the intersection of the left and the
right essential spectra of A) or \alpha is an isolated point of \sigma(A)[14] . Since
isolated points of the spectrum of an operator satisfying growth condition
(G_{1}) are eigen-values of the operator [18] and since \sigma_{o}(A)=\sigma_{jo}(A) , it
follows that if A is pure then \alpha\in\sigma_{e}(A) . This, as in part (ii) implies
|\alpha|\in\sigma_{e}(|A|)\cap\sigma_{e}(|A^{\star}|) .

We note here that if the operator A in Theorem 4(iii) is in K(p)\cap H(p) ,
then A_{p} being hyponormal satisfies the property that (A_{p}-z) is hyponormal
for all z\in C . Hyponormal operators satisfy growth condition (G_{1}) . Since
\alpha=re^{i\theta}\in\partial\sigma(A) implies r^{p}e^{i\theta}\in\partial\sigma(A_{p}) , r^{p}\in\sigma_{e}(|A_{p}|)\cap\sigma_{e}(|A_{p}^{\star}|)=

\sigma_{e}(|A|^{p})\cap\sigma_{e}(|A^{\star}|^{p}) . Hence r\in\sigma_{e}(|A|)\cap\sigma_{e}(|A^{\star}|) . (See also [5, Theorem
2].)

Let KU(p) denote the class of A\in K(p) for which U in the polar
decomposition A=U|A| is unitary. \square

Theorem 5 If A \in KU(p) is pure, then neither min \sigma(|A|) nor max \sigma

(|A|) is in \sigma_{oo}(|A|) .

Proof. Suppose \alpha= min \sigma(|A|)\in\sigma_{oo}(|A|) . Let M_{\alpha}=\{x\in\gamma{ :
|A|x=\alpha x\} . Since U is unitary, \sigma(|A|^{2p})=\sigma(U|A|^{2p}U^{\star}) and \alpha^{2p}=

min \sigma(U|A|^{2p}U^{\star}) . Letting x\in M_{\alpha} the definition of K(p) implies

((AA^{\star})^{p}x, x)=(U|A|^{2p}U^{\star}x, x)\leq||x||^{2(1-p)}(A^{\star}Ax, x)^{p}

Also, since \alpha^{2p}=\min\sigma(U|A|^{2p}U^{\star}) ,

\alpha^{2p}||x||^{2}\leq(U|A|^{2p}U^{\star}x, x) .

Hence

\alpha^{2p}||x||^{2}=(U|A|^{2p}U^{\star}x, x) , or, U|A|^{2p}U^{\star}x=\alpha^{2p}x .
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Thus

U|A|U^{\star}x=\alpha x , |A|U^{\star}x=\alpha U^{\star}x and U^{\star}M_{\alpha}\subset M_{\alpha} .

The subspace M_{\alpha} being finite dimensional there exist non-trivial y\in M_{\alpha}

and (0\neq)\beta\in C such that U^{\star}y=\beta y , and then U|A|y= \alpha Uy=\frac{\alpha}{\beta}y . Hence
\sigma_{o}(A)\neq\phi . Since \sigma_{o}(A)=\sigma_{jo}(A) and A is pure, we have a contradiction.
Consequently, \alpha\not\in\sigma_{oo}(|A|) . \square

Now let a= \max\sigma(|A|)\in\sigma_{oo}(|A|) , and let M_{a}=\{x\in H : |A|x=ax\} .
Then

a^{2p}= \max\sigma(|A|^{2p}) , (|A|^{2p}x, x)\leq a^{2p}||x||^{2}(x\in M_{a})

and

\sigma(|A|^{2})=\sigma(U^{\star}|A|^{2}U) .

The definition of K(p) implies

(|A|^{2p}x, x)\leq||x||^{2(1-p)}(U^{\star}|A|^{2}Ux, x)^{p}

for all x\in H . Hence, for x\in M_{a} ,

a^{2p}||x||^{2}=(|A|^{2p}x, x)\leq||x||^{2(1-p)}(U^{\star}|A|^{2}Ux, x)^{p}\leq a^{2p}||x||^{2} .

Thus

U^{\star}|A|^{2}Ux=a^{2}x .

Following an argument similar to that above this implies \sigma_{o}(A)=\sigma_{jo}(A)\neq

\phi-a contradiction. Hence a\not\in\sigma_{oo}(|A|) .
Given a pure hyponormal contraction A (on a separable Hilbert space

7{ ) with Hilbert-Schmidt class defect operator D_{A}=(1-A^{\star}A)^{\frac{1}{2}} , Takahashi
and Uchiyama [19] showed that A belongs to the class C_{10} of contractions.
That the same is true for p-hyponormal contractions has been proved in [8,
Theorems 1 and 2]. The following theorem extends this result to contrac-
tions A\in K(p) . We assume in the following that \prime H is separable.

Recall that a contraction A is said to be of the class

C_{0}.(C_{0}.) if ||A^{\star n}x||arrow 0

(resp., ||A^{n}x|| –0) as narrow\infty for all x\in H ;
C_{1}.(C_{1}.) if \inf_{n}||A^{\star n}x||
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(resp. \inf_{n}||A^{n}x|| ) >0 for all non-trivial x\in H ;

C_{\alpha\beta} , \alpha , \beta=0,1 , if A\in C_{\alpha} . \cap C_{\beta}. ;
C_{0} if there exists an inner function u such that u(A)=0

[13]. The contraction A is said to be c.n.u. ( = completely non-unitary)
if there exists no non-trivial reducing subspace M of A such that A|M is
unitary. If the c.n.u. contraction A\in C_{00} has Hilbert-Schmidt class defect
operator, then A\in C_{0}[19] . Every C_{0}. has contraction A with Hilbert-
Schmidt class defect operator has a triangulation

A=|\begin{array}{ll}A_{o} \star 0 A_{3}\end{array}| of type |\begin{array}{ll}C_{0} \star 0 C_{10}\end{array}| , (3)

and every C_{0} contraction A_{o} has a triangulation

|\begin{array}{ll}A_{1} \star 0 A_{2}\end{array}|

where \sigma(A_{1}) consists of a countable number of characteristic values in the
open unit disc V and \sigma(A_{2})\subset\partial D[13] .

Theorem 6 If the contraction A\in K(p) is pure and has Hilbert-Schmidt
class defect operator, then A\in C_{10} .

Proof. The hypothesis A\in K(p) implies A is paranormal. Since para-
normal contractions have C_{0}. c.n.u. part [7, Theorem 4], A\in C_{0}. and has a
triangulation (3). The restriction of a paranormal operator to an invariant
subspace being paranormal, A_{1} is paranormal, and so, since \sigma(A_{1}) is count-
able, normal [17] with \sigma(A_{1})=\sigma_{o}(A_{1}) . By Theorem 1, \sigma_{o}(A)=\sigma_{jo}(A) ;
hence, since A is pure, A_{1} acts on the trivial space and

A=|\begin{array}{ll}A_{2} \star 0 A_{3}\end{array}|

As stated above, \sigma(A_{2})\subset\partial D ; hence A_{2} is an invertible paranormal opera-
for with A_{2}^{-1} also paranormal [12, 18] . Paranormal operators are normaloid
[12]; hence r(A_{2})=r(A_{2}^{-1})=1 , which implies A_{2} is unitary. Since A is
pure, and so c.n.u., A_{2} acts on the trivial space. This implies A=A_{3}\in C_{10} .

\square
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