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The Schrodinger operator with random vector potentials

Kazuaki NAKANE
(Received March 14, 1994; Revised July 24, 1995)

Abstract. We consider a non-Gaussian probability measure on (S’(R%; R%), B(S'(R?;
Rd)) whose characteristic functional is given by Lévy-Khinchine formula. We construct
a one parameter semi-group whose generator is expressed by “(0 —i4)?”, A € S’ (Rd;
R?) formally. It is also shown that the generator is self-adjoint.
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1. Introduction

Nonlinear electromagnetism is a theory of generalized random fields in
four dimensional Euclidean space-time obtained by solving a system of cou-
pled stochastic partial differential equations [AHK1, 2, AHKI, AIK1]. The
fields are homogeneous with respect to the Euclidean group. It has been
shown in [I, AIK3] that the fields have the sharp global Markov property.
In [AIK2], relativistic time ordered functions are constructed in the model.
The theory includes the usual theory of electromagnetic fields as a special
case. As other special cases, it describes a class of models where the fields
confine charges in Wilson’s sense, and it has mild ultraviolet behavior [Ta/.
Recently, in , they consider a coupled theory of the confining nonlinear
electromagnetic field and a charged scalar field within the quenched approx-
imation. And they consider the propagator of matter field in approxima-
tion. The propagator is the expectation value of the resolvent kernel of the
Schrodinger operator with the vector potential of the electromagnetic field.
They define it as an element of LP(S'(R%; R%), 1) where p is the probability
measure which characterizes the nonlinear electromagnetic field. And they
examined the asymptotic behavior of the propagator and showed that the
correlation length is zero. However, they did not define the operator.

In this paper we consider the semi-group with random vector potential
formally represented by et/2(0-i4)* op L2(RY),d > 3, A € S'(R%: RY). The
word “formally” reflects the fact we have not given a simultaneous definition

of the operator et/2(9=i4)* for every A in the support of the measure p on
P y
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S'(R% RY). We define the semi-group on L?(R?) p-almost surely and show
it is a strongly continuous symmetric contraction semi-group. Then there
exists a generator of the semigroup that is self-adjoint. And we can show
this operator is gauge covariant.

In section 2, we give the definition of the measure p. In section 3 we
shall show that measure p has the property of ergodicity. In section 4 we
shall show some lemmas which are needed in the following sections. In
section 5 we define the semi-group e/ 2(0-14)* op L?(R%) p-almost surely,
which is measurable in the sense of [CL]. We shall show that the semi-group
is a strongly-continuous symmetric contraction semi-group p-almost surely
A € S'(R%;RY) (We call it a semi-group process). Then, we can define
the self-adjoint operator “(0 —iA)?” u-almost surely as the generator of the
semi-group. In section 6 we shall show for A € Llloc(Rd), e et/20—iA)? =ik _
et/20-i(A+0N)* || almost surely. That is to say, (9—iA)? is gauge covariant.
In section 7 we shall note a property of the spectrum of the generator.

2. Notations

In this paper we assume that d > 3. Let u be the Borel probability
measure on S’'(R%; R?), the dual of the Schwartz space S(R%; R9) of all R?
valued rapidly decreasing C* functions on R?, characterized by

L/(Rd;Rd) ez'(f,A)d,u(A) = exp (— /Rd zb(Sf(a:))d:c), (2.1)

in the sense of Minlos’ theorem (see e.g. [GV]). Here f = (fo, fi,...fa—1) €
S(R%RY), and Sf is defined by

d—1
IR [ Sonle =) fo(w)dy, (22)

with I'(d/2)z, —y
. i -1 _ 14 14
Sov(z —y) = 0.(-A) (z,y) = ord/2 lx — yld’

- I'(d/2) zj — y;

) _ — _A.(_ 1 — J J

SJO(J: y) - 8]( A) (xay) 271_(1/2 |33—y|d’
d—1

Sij(z —y) = (6500 + Y aijek)(—A) 7 (z,y),
k=1
T(d/2) (w0 — yo)8ij + Sz dijk (Tk — Yk)
2md/2 |z — yl|d
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for £ = (zg, +,24-1), 0 < v <d—-1and 1 <14, j <d-—1. Here;
is Kronecker’s delta and a;j; is a real constant. 1 is a function on R4,
represented by the Lévy-Khinchine formula

P(A) = /Rd (1 — A 4 fj L;Z) dv(a) + —;—(A,AA), (2.4)

where A is a non-negative definite d x d matrix and v is a measure on R¢
such that v({0}) = 0, Jgra(Ja* A 1)dv(a) < .
In this paper we assume that ¢ satisfies the following conditions:

(A.1): The function 9 is continuous, non-negative and bounded, i.e. there
exists a constant cg such that

0< 9 < co (2.5)
(A.2): There exist constants ¢; > 0 and d—f—l < n < 2 such that
[N <elA”,  for Al <1 (2.6)

The conditions (A.1) (A.2) are slightly weak compared with those in
[AT].
Remark 2.1.  Under (A.1), A must be 0 in the representation [2.4).

Remark 2.2. The function ¢ which satisfies these conditions may grow as
|A|" for large |A|; i.e. there exists a constant ¢ > 0,

PY(A) < A", for e R% (2.7)

We give here two examples of 1) which satisfies the above conditions for
the case d = 4.

Ezample 2.3. The function

) e RY,

A"
Qp()‘) = 1+ |)\|77

satisfies (A.1), (A.2).

Ezample 2.4. Let a = (ag,o') = (ag, a1,a9,a3) € R*. The function ¥
which is defined by the equation with the matrix A = 0 and measure
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v(a) = 8(ao)v/ (o),

H(lo/| - 1)
dl//(a”) = |al|—3+nda',

where do/ is the Lebesgue measure on R3 and H is the Heviside function

satisfies (A.1), (A.2).

The proofs are in [Tal.
Let I : R — [0,1] be a C§° function such that

1
1a |S| S DR)
I(s) = :
07 |S| Z a)
2
and set
17 Isl S I — 17
Li(s)=1q I(ls|=1+1), I-1<]s| <],
0, |s| > 1, for 1€ N.

Then the function

pe(T

duzud ]‘[ ( ) (e > 0) (2.8)

L' v=0

satisfies

pe € D(Rd), supppe C {:c c R¢ | |z| = (Z| vl )1/2 \/_ }7

v=0
/ pe(z)dz = 1, pe 2 0,
Rd
and hence
lin%) pe =6, in S'(R%), (2.9)
£E—
where || - ||;1 is the norm of L'(RY,dz) with Lebesgue measure dz and

D(RY) is a family of C* functions with compact support. The function

d—1
= H Il(:cl/)a
v=0
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satisfies
w € D(RY), 0<w <1,
and
w11 as [ — oo.
For each A € S'(R%; R%), we define A™ (n € N) by
A7 (z) = wp(z)(p1/n(T — ), Av), v=0,1,2,...,d—1. (2.10)
Obviously A" € D(R%; R?) and
lim A"=A4, in S'(R%4RY). (2.11)

n—oo

Theorem 2.5 (Feynman-Kac-It6) Let A € D(R%R?). For any f €
D(RY),

d—1 4
20=4 f(z) = B[f(z +b(t)) exp(~i Y /O Au(z + b(s))dby(s)
v=0

A=l
_51;) /0 By Ay(z +b(s))ds)],  (212)

where E denotes the expectation with respect to a d dimensional standard
Brownian motion (C([0,00); R%) B(C([0,); R%)), {b(s)}se[O,oo))
{fg}se[O,oo)’ P)'

Proof.  See [Si]. ]

The operators {e/20=i4)*} 55 on L2(R%) form a strongly continuous
symmetric contraction semi-group. (See [Si], [F]).

Lemma 2.6 For anyt >0, f € D(R? x R%) and = € R?, we can take a
suitable version of [J f(x + b(s),-)db,(s) such that

/O t flz +b(s),-)db,(s) € D(RY),  P-a.s. (2.13)

and

([ 54560, )b (s), ) = [ (5t b(s), ), b ),
P-a.s. (2.14)
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holds for every ¢ € D'(R?), 0 < v < d—1. The equality

t

</0tg(ac + b(s),-)ds, p) = /0 (g(x +b(s),-), p)ds, P-a.s. (2.15)

also holds for any g € D(R? x RY), and ¢ € D'(RY).

Proof. ~ We can show this lemma in the same way as in [AT Lemma 2]. So
we omit here the proof. []

3. Ergodicity

In this section, we shall show the probability measure p on (S'(R%; R%),
B(S'(R% RY))) defined in section 2 has the ergodic property. Here we as-
sume that ¢ is a function on R, represented by the Lévy-Khinchine for-
mula (2.3) and satisfies the condition (A). We define the transformations
{0:}.ere on S'(R%R?) by

0. A= A(-—z2), AecSR%LRY).
It is obvious that
0o = Identity, 6,00, =0,,, =,y€c R

In the following, we shall show the family of transformations {6,},crq is
a family of measure preserving transformations on S’(R%; R%) and it is an
ergodic family.

Lemma 3.1 {6,},cre s a family of measure preserving transformations

on §'(R%RY); ie.
w(B) =pu(6.B),  BeB(S'R4RY).
Proof.  To show this lemma, it is sufficient that the characteristic func-

tional defined by is invariant under this transformation. By the defi-
nition of the characteristic functional,

(f,0,A)du = exp 1(f(-+2),A)d
g, 2 40 Ay xp i(f(- + ), A)dn

/S’(Rd;Rd)
exp (— /Rd o(Sf(x+ z))da:)

— exp (- [ w85 @)ir)
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= e 'L ,A d .
/S,(Rd;Rd) xp i(f, A)dp

[]

Moreover, we can show that {6,},cgq is an ergodic family.

Theorem 3.2 The family of measure preserving transformations
{0.},cre on S'(R%RY) is an ergodic family.

'To show this theorem, we shall show the measure u satisfies the mixing
property. Before the proof of Theorem 3.2, we shall show two lemmas.

Lemma 3.3 Suppose that V is a finite dimensional vector space over
R and A is a C-module functions of S'(R% V) generated by {¥&);¢ €
DR V)}. Then A is a C-algebra. If p is a probability measure on
S'(R% V) then A is dense in L2(S'(R% V), ).

Proof. ~ We can show this lemma by slightly modifying the proof of Theo-
rem 4.1 [Hi|. []

Lemma 3.4 Suppose that V is a finite dimensional vector space over R
and ¢ : V — R is a continuous function such that p(A) = O(|A|") as A — 0
for some n € [1,00). If f,g : RY — V are continuous functions vanishing
at oo and |f|",|g|" are integrable with respect to the Lebesque measure, then

Jm [ o(f@+y)+e@)dy=[ o)y + [ elow)dy

Proof.  Because of the assumption, ¢(f(z + ) + g(-)), ¢(f(z + -)) and
©(g(-)) are integrable. For any £ > 0, there exists N > 0 such that for any
xz € R,

/ e (o) 9(0)) —o (1)~ elo(w)ldy < <,
(BN(0)UBN(-x))¢

where By(-) is a closed ball with radius N and center -. We take z suffi-

ciently large and we can assume that By (0) N By(—z) = 0. We have

/ [P(f (@ +9) + 9(0)) — @ (2 + 1)) — w(9(v))ldy
(Bn(0)UBN(—2))

— / lp(flz +y) +9(y) — e(f(z +y) — e(g(y))ldy
Bn(0)
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R . o(f(z+y)+9() —e(flz+y)) —»lg(y)ldy
S(ergwgo lo(f(z +y)l + jemax )Iso(g(y))l)VolBN(O)
L . lo(f (= +y) +9(y) — wlg(y))ldy
+ BN(_m)Iso(f(x+y)+g(y))—w(f(w+y))ldy- (3.1)
Then we get
(3.1) = (yé?ga}fo [o(f(z +y)) + rgixo)lcp( 9(y — ))|)Vol By (0)

[ Jelf ) +90) - elov))ldy
Bn(0)
+ lp(f(y) +9(y — 2)) — o(f(v)Idy. (3.2)

Bn(0)

By the assumption of ¢, f and g, we have

max |o(f(z+y)+9g(y)) — (g(y))| — 0,

y€BN (0)
max |p(f(y) +9(y —2)) —e(f(¥))| = 0,  as |z] — oo
y€BN(0)
So we can conclude that tends to 0 as x — oo. ]

Proof of MTheorem 3.2.  We only show, for any &1, & € D(R%; RY),

lim ei<§1+92‘$2">du
zZ—00 Sl(Rd;Rd)

e'€2) dy. (3.3)

/ e < ")du
S'(R4R9) §'(R4R9)
We have

i<£1+92€2a'>d“ = ex (-—/ S + 62 d$>
/S/(I}d;Rd) ¢ P Rd 90( (gl 62))
ei<£1">du = eX|) — SO S é dl
/S'(Rd;Rd) ( / i ( ( 1)) )

/S’(Rd;Rd)e Tk = exP( /Rd S0<S(§2))alw)'

Since S(¢;1) and S(&3) are continuous and vanishing at oo, |S(£&1)|”7 and
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|S(&2)|7 are integrable, then, by [Lemma 3.4, we get (3.3). O

4. Preliminaries

In this section, we will prove some important lemmas. For any to > 0,
we set 7 = (0,tp]. We set for any t € T,

T f(z) = /20747 f(g)

d—1 .t
— Elf(e+b(0) exp(—i Y. [ Alla +b(s)dbi(s)
v=0

L d-1
_ % 3 /0 8,A™(z + b(s))ds)], for f € D(RY), (4.1)

v=0
where A” € D(R%; R9) in (2.10).

Lemma 4.1 Foranyd > 2 andT > 0, we set

—|z|?
F(s,x) = |z>¢ (2T — 25) 2 exp (2_@%) . (4.2)

Then f(s,z) is a solution of the partial differential equation

of 1.,
5+ oA =0, (4.3)

at (s,z) € (—o0,T) % Rd\{O}. Moreover, f(t,x) > f(t,y) & |z| < |y| for
each t <T.

Proof.  We can show this by a direct calculation. L]
Lemma 4.2 Let0<t<T and e > 0. Then, for any d > 2,

E[Vol({z | ir[%)ft] b(s) — 2| < e})] < e?2- K(d,t,T,e), (4.4)
se|0,
where

T

742, opd/2 T (@920
K(d,t,T,e) = Td/2+1)° ' T(d/2) (T—t>

82 52
“PloaT— 21/
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Proof. Lete>0and 0 <t < T. We define a stopping time 7.(a) by
T.(a) = inf{s € [0,00) | |b(s) + a| =€} At
for a € R¥\{0} and ¢ < |a|. Let X(s) be the process
X(s) = bl A e@) +a = [ Lugr,@db(w) +a
By Lemma 4.1, the process f(s A 7-(a), X(s)) is a martingale. In fact
f(s A1e(a), X(S))
£(0,0) + Z / vt L a (u, X (u))dX, (w)

[ Lol (0, X () + 547 (u, X ()

d—1 sAre(a)
=500+ Y [T 2L x @i, w.

v=0

And by the Doob martingale inequality, we have
Pl{w| inf |X(s,w)| <e}]
s€(0,t]

< Pl{w] sup f(s Ame(a), X(s,w))

s€[0,t]
2
> g2 2T —25)(=4)/2 -
>e sgl[(l)g{( 5)! } exp 2(T_t)}]

g2

<e d— 2'(3%1[%)5]{(2]1 25)(4 d)/z}exp 2(T_t)E[f(t/\Te(a),X(t,w))]

2

_ _d— (4—d)/2
= 2T—2
2 Srg[%{( s) } exp 2T 1)

= <i>d~ (27)(d=4/2 max{(ZT 25)(4=9/2}

|a| s€[0,]

2 la|?
exp (2(T—t) — ZT) . (4.5)

The estimate (4.5) leads to

E[£(0, X(0,w))]

B[Vol{z | inf, [b(s) ~ 2| <)}
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_ /Rd Pliw| jnf [b(s) ~ 2| < }]dz

= /Rd X{lzl<e} + X{|z|>e} PHw | sél[lof’t] |b(s) — 2| < e}]dz

™

d/2 o /)42
smsu/g (—) (27)44/2 max {(2T—2s)4~9/2}

r s€(0,t]

g2 r2\ 2?2 d-1,
exp | = — — — T T
Plor—e) ~ 2T ) T(d/2)
7Td/2 d 27Td/2

__ " d=2 (o (d—4) /2 (4—d)/2
Faz D @y GO max (T2

52 82
.T. _
P (Q(T—t) 5T )

where X is the indicator function of the set K. We readily conclude (4.4).
[]

For each f € D(R?) and z € R it is obvious that TtA’nf(a:) is
B(S'(RY; Rd)) measurable [AT]. By using Lemma 2.5, we have forany t € T,

(@) = T f (@) = T f(2) 1726 ey

< /S o, IS +000)

X |1 — exp{—1 Z/ — AT)db,(s)

v=0

o
>3 /0 (B, AT — 8, AT)ds) }||2dy
v=0

2
O

d-1 4
x 2{1 - cos(§)< /0 Frun (@ + b(s), )by ()

+ /Ot %gm,n;V(x +b(s),-)ds, Ay)) Hdp,

where

fm,n(a’"y) = wm(m)pl/m(x - y) - wn(x)pl/n(m - y)
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o0
8_.’13,,fm’n(x’ y)-

By and Fubini’s theorem, we have

Imnw(T,y) =

Fr,m(z) < 2E[|f(z +b(t))*(1 ~ exp(—/Rd Ymn(t, 2, 7)d2))], (4.6)

where

Ymalt, z,x) = Z/db / dvS.,(z2—v) fm n(z+b(s),v)
+ - Z/ ds de (z— v)gm,n;,,(:v-i—b(s),v)).

Lemma 4.3 For each z € R%, Elexp (— [ra ¥mn(t, 2,2)d2)] converges to
1 uniformly int € T as m,n — oo.

Proof. By Jensen’s inequality,
0 < E[1 —exp(— /Rd Vmn(t, 2, z)d2)]

< 1—exp (_E[/Rd 1/)m,'n(ta z)"D) dz])

So it is sufficient to show that

Gmpn(z) =supE[| tYma(t,z,z)dz] >0 as n,m — co.

teT R4
Put
V(t,z +b,e)={zeR?| 1r[%)ft] |z + b(s) — 2| < e}, (4.7)
s€
then by (A)
Gmn(z) < sup E| Ym.n(t, 2,x) dz]
teT V(t,z+b,e)
+ sup E| Ymn(t, 2,T) dz2]

teT Ve(t,z+b,e)
< supcoE[VolV (t,z + b, ¢)]
teT

+ sup E| Ymn(t, 2, ) dz]
teT Ve(t,z+be)
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= coE[VolV (tg,z + b,¢)]

+sup E| Ymnl(t, 2, ) dz], (4.8)
teT  JVe(tztbe)

because V'(¢,z + b,¢) is increasing in ¢. By Lemma 4.2, the first term of
is dominated as follows:

Rd
< €72 K(d,to, to + 1,¢).

E[VolV (tg,x + b,e)] = Pl{w | 1[nf |z + b(s) — 2| < e}]dz

We shall show in the following the second term tends to 0 as n,m — oo for

arbitrary but fixed € > 0. We may assume that n and m are so large that
1/n,1/m < e/v/d hold. By (2.6), we have

sup E| Ymn(t, z,x) dz]
teT Ve(t,z+b,e)

d d—-1 t
<supc E| ch(t,z+b,€)(z)dz(z | Z/O db,(s)
j=1 v=0

teT

/ d’USJV fm n( (S) U)
1 Z / ds [0Sz~ 0)gm @+ ) ) 2. (49

Since the following inequality

d d-1
E( 1Y aj(w) 1)) < E[@Y a,)"
j=1 v= Jwv
< dn/2(z E[ajz- n/2 < d? Z n/2

2 v

holds for real a;,’s, which is a consequence of Jensen’s inequality (recall
n/2 <1). We get

sup E|[ Ymn(t, z,x) dz]
teT  JVe(tatbe)

< supd"/?¢; Z/ dz(E[Xve(t,atbe)(2)
teT - d

|/db / dvS;y(z — V) fnm(z + b(s),v)
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1 t
+ 5‘/0 ds R d’USjy(Z - 'U)gm,n;z/(x + b(s)>v) IQ])TI/Q,

< supd"?c / dz(2E\Xve(t.orbe) (2
_tE}; 1% R ( [XV (t, +b,)()

t
| /0 db, /Rd dvSjy (2 — v) fmm(z + b(s),v)(s) [*]
T %E [Xve(t,ztbe)(2)

t
| /0 ds Rd dejV(z - U)gm,n;y(w + b(S), ’U) IZ])’r}/2

= supd"?c / dz(2E[X|z—»>e (2
Sup 1%; o BB X256 (2)

t/\'rg(x—z) )
‘/0 / dejl/ fmn($+b( ),v) |”]

1
+ —E[Xlw——z[>€(z)

tATe(z—2)
[ s [ duSiue = 0)gmma (@ + b(s),0) P
n/2 tATe(z—2)
=supd’“c / dz(2F / db, (s
teg 1%; R4 ( H 0

[y 80Xa15:(2)S3 = = 0) (2 4+ b(s),0)
1 tATe (z—2)

+2E / ds
2 0

/Rd dUX\w—z|>e(Z)Sjy(z — v)gm’n;y(g; + b(s), v) |2Dn/2

tATe(T—2)
= supd"/?¢; Z dz 2E[/ ds
teT 0

‘ R dUX|m—z|>€(z)Sjl/(z - v)fm,n(w + b(S), U) |2]

1 tATe (z—2)
—E|| / ds
0

o @Xla—21>¢(2) 8w (2 = V)gmnip (2 + B(s), V) 72
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to
< d"?¢ / dz ZE/ ds
<ol | dCE |

| Xe(oa4(2)Si0z = 0) (e +b(s),v)

1 to
+ iE[tO/O ds | R deVC(s,x—i—b,s) (z)
S50z = 0)gma (2 + b(5), 0) [2])7/2 (4.10)

Since supp p1 /n, SUpp p1/m C {z € R | |2 < £},

| [ A0Vt (2)Siuz = ) e + b(s),0) |

1
<c2 sup (ch b (Z)——‘)
|z-+b(s)—v|<e/2 (s.2+be) |z — v|d—1

< H(z +b(s), 2), (4.11)

and
| - dvxve(s,atbe)(2)Sju(z = V) gmnu (T + b(s),v) |

1
< e sup (ch b (Z)——_>
|z+b(s)—v|<e/2 (o2 +be) |z — v|d-1

+ (e (@0 —=)
C3 sup Xve z T g

(o-b(s)—v|<e /2 Ve(s,x+bie) Y1z — v|d-1
< H(z +b(s), 2),

hold, where

(4.12)

4

) le+yl<
—_— €T R
|Z|d__17 y 47

with constants cg, c3 and C;. Also, by the definition of f, », and gm n.,
| R4 dUXVC(s,m+b,6)(Z)SjV(Z - U)fm,’n(x + b(s)) U) ‘—> 0

| ra dvXve(s,z4be)(2)Sju (2 — V)gmmy (x + b(s),v) |— 0,

as m,n — o0
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hold. Thus if we show
to
/ E| / H2(z + b(s), 2)ds|"/?dz < oo, (4.13)
R 0

then we have by Lebesgue’s dominated convergence theorem that the second
term of converges to 0 as n,m — oo, because the left hand sides of

(4.11) and (4.12) tend to 0 as m,n — oco. Finally we shall show (4.13).
Since

Plsupo -+ () 2 1] < 2aexp (1 (ll/a — 1el)2).

se€T
we have
E[Hz(a: + b(s), z)] = E[Hz(a: + b(s), z);sup |z + b(s)| > |zl]
seT
+ E[Hz(a: + b(s), z);sup |z 4+ b(s)| < u
C2(Plsup |z +b(s)| > ’——'1 F(1A —1——» (414)
¢ seT - | |2(d_1) ’ '

the right hand side in is integrable. ]

Lemma 4.4 For eacht € T, f € D(R?), {J}A’nf}flozl is a Cauchy se-
quence in L2(S'(R%; RY) x R4, u x dx), where dz denotes the Lebesque mea-
sure in R%. Moreover, this convergence is uniform int € T,

A, A,
sup 1T f = T fll o (ReR4xRey = 0 as m,n — oo.
€
Proof. Since TtA’n f(x) is continuous with respect to z € R, TtA’" f is
B(S'(R% R%) x RY) measurable.
By (4.6) and Fubini’s theorem,

A, Am
”Tt nf - Tt f”i2(3/(Rd;Rd)de)

= - an,n(m)dm
<2 [ Blfa+bO)I{L-exp(= [ bmnlt,5)d)}ds
=2 [ Bl o) (1 - exp(- /R mnlt, 7, ) dz))}]da
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w2 [ B+ b~ exp(= [ Ymalt,70)d=)}da,

(4.15)

where By (0) is a closed ball with radius k& and center 0. The second term
of (4.15) is dominated as follows:

/Bk(o>c E[|f(z +b(t))[*{1 — exp(~ /Rd Ymn(t, 2, x) dz)}|dz,
= /;k(o)c E[l{infOSsgt |$+b(8)|§r}|f($ + b(t))lz

{1 — exp(— /R mn(t, z,7) dz))d

< M? /B o P{{w]| inf |z +b(s)| < r}ldz, (4.16)

0<s<to
where r > 0 and M > 0 are constants such that

suppf C {|z| < r}, rrflgiXIfl <M.

Since P[{w | info<s<t, |# + b(s)| < r}] is integrable with respect to dz in
R¢, the second term of (4.15) converges to 0 uniformly in t € 7 and m,n
as k — oo.

Next, the first term of (4.15) is dominated as follows: For any k > 0,

sup ./Bk(o) E[|f(z +b(t))]?(1 — exp(— /Rd Ymn(t, z,x)dz))]dx

teT

< M2/ sup E[1 — exp(—/ Ymn(t, 2, x) dz)|dz. (4.17)
By (0) teT R4

By Lemma 4.3, the integrand in the right hand side of (4.17) tends to 0 as
n, m — oo. Since Bg(0) is compact, we have by the bounded convergence
theorem that (4.17) converges to 0 as n, m — oo. ]

5. Construction of the Generator

First of all, we introduce a notion of a semi-group process. Let (2, F, P)
be a probability space. Let X be a Hilbert space. We denote the space of
all continuous endomorphism of X by £(X).

Definition 5.1 If an L£(X)-valued continuous process {T}}:>(o satisfies
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that

P({T}}t>0 is a (strongly continuous)

symmetric contraction semi-group) = 1,

we call it a (strongly continuous) semi-group process on X with respect to
P.

Remark 5.2. In this case, by contractivity and symmetricity, {T3}:>0 is a
self-adjoint semi-group P-a.s.

In this section, we shall construct a semi-group process on Lz(Rd) whose
generator is formally expressed as “(0 — i4)%” and show it is self-adjoint.
First, let us consider the problem in a general setting.

Theorem 5.3 Let {I'}+>0(n = 1,2,---) be strongly continuous semi-
group processes. If there exists a countable dense subset D of X such that
forany f€D,e>0andT >0,

hm sup P(|TVf —T{" fllx >€)=0. (5.1)

Then there exists a strongly continuous semi-group process {1 }+>0 such that

lim sup P(|T}'f —Tifllx >¢)=0 for f e X. (5.2)
7 telo,T)

Proof. ~ Without loss of generality, we may assume that for any w € {2,
{T{*(w)}¢>0 is a strongly continuous symmetric contraction semi-group for
any n € N. By (5.1) and diagonal method, we can select a subsequence
{nk}22, such that, for each f € D,

n n 1
Z sup P(IT/*f = T/ fllx > 35) <

PR
o<i<i 2k

except for a finite number of k’s which may depend on f. We set,

n mn ].
Appg = {IT*f — T fllx > 2—k}.

By using Borel-Cantelli’s lemma, P(liminfx o0 A, ; f) =1, for f € D. For
any w € liminfy_,oo A%, ¢, {T{"* f}$2, is a Cauchy sequence in X. Since D
is contained in X densely and Card(D) = Ry, for any f € X, {T;"* f}$2, is
a Cauchy sequence in X. We denote the limit of {T;* f}22, by T;f. It is
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obvious that T} is a linear operator and ||73|| < 1. Then we have
P(T/* f — Tif in X, forfeX)=1 (5.3)
In the following, we shall construct semi-group process {7} }+>0. [

Step 1 (strong continuity)

Let {t,}52; C QN[0,1] be a decreasing sequence which converges to 0.
Then

P(Jim |1T,,f ~ flx =0,  for feX)=1 (5.4)
holds.

Proof.  Because {I}*}+>0 are contraction semi-groups and (5.3), we can
show that || T3 f||x < ||fl|x P-a.s for any ¢ > 0. For any k € N, f € D,
|T;*™ f — fllx is an increasing function with respect to ¢t > 0. In fact, by the
spectrum representation of the self-adjoint operator,

T f = 1 = [ (= e g, (5:5)

(1 — e7**)2? is an increasing function of ¢, then we can show this.
Since ||T:f — f||x is the limit of the sequence of the increasing functions
NI f — fllx, IT:f — fllx is also increasing. For any € > 0 and m € N,

P(lim || T, f - fllx > &) < P(|T,,. f = fllx > ¢)
< P(IT5 f = T fllx > €/2) + P(ITE f = fllx > €/2). (5.6)

By the definition of T; f, for any T' > 1,

sup P(|Tf - Tifllx > ¢)
teQn[0,T)

= sup P(lim |[T]}*f -T/™"f|lx > ¢€)
teQn[o, 7] k—oo
< sup lim inf P(ITPS — TP fllx > <)
teQN[0,T) —0
<lim inf sup P(|T7f—T"*fllx > ¢). (5.7)
k—00 teQnio,T]
Then, the first term of (5.6) can be arbitrarily small independently of t €
QN [0,T], the second term tends to 0 as m — oco. Since D is contained in

X densely and Card (D) = Ny, we have (5.4). []
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Now we set

U={weQ:T*f > T;f in X, forfeX} (5.8)

Q={we®: Im T/ flx=0, forfeX} (59
and

Ql = ﬂtEQﬂ[O,oo)QthO' (510)

We readily see P(2;) = 1.

Remark 5.4. ) does not depend on the decreasing sequence {t,}2 ;, be-
cause ||T;f — f||x is increasing with respect to ¢t > 0.

Step 2  (semi-group property)
For any w € 1, t € QN [0, c0),

TsoT, =Ty oTs = Tyys. (5.11)

Proof. For any f € X,

|Ts o Tt f — T4t f |l x
S| TsoTof = T* o Tifllx + ITS* o Tof — Tg* o T fllx
+T5* o Ti* f — T fllx + 1 T8 F — Ths fllx- (5.12)
The third term of the right-hand side of is 0, because of the semi-
group property of {T;*}+>0. By (5.8), the first and fourth terms tend to 0
as k — oo. Finally, for the second term, we have
T 0 Tof ~ T3 o TP llx < [T |Tf — 7 flx
< ITef - T7* flix-
Then we get (5.11). [

Step 3 (construction)

For any s € [0,00), we take {s,} C QN [0,00) such that s, | s. By the
semi-group property, contraction property and Step 1, we can show that for
any f € X, {Ts, f}°2, is a Cauchy sequence in X. Therefore we define the
operator {T;}+>0 as follows.

For w e ) and f € X,

T.f = lim T, f. (5.13)
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Then for any w € §24, {7} }+>0 is a strongly continuous symmetric contraction
semi-group. In fact, for any w € 4, by Step 1 and the definition of {T3}+>0,

T.,f - f as t—0 in X. (5.14)

Hence the semi-group {Ti}:+>0 is strongly continuous. By the definition
of {T;}+>0, it is contractive. Because {T}"*};>¢ is symmetric and T;* —
T; strongly, it is obvious that {T:}:>0 is a symmetric semi-group. Since
{T{** }+>0 and {Ti}+>0 are strongly continuous, we have (5.2) by easily.
Then we can conclude this theorem.

Remark 5.5. By (5.14), we may denote

Qoz{wEQ:%ir%||’1}f~f||X:O, for f € X}. (5.15)

In our case, {T,:A’”}tzo(n =1,2,--) A € S'(R% R?) are strongly contin-
uous semi-group processes on L?(R?). By Lemma 4.4, we can easily check
they satisfy the condition of [I’heorem 5.3. Therefore there is a strongly
continuous symmetric contraction semi-group {TtA}tZO for p-almost surely.
Hence there exists a positive self-adjoint operator G4 for p-almost surely
which generates the semi-group {T*}:>0.

6. Gauge Covariance

Our purpose in this section is to show the gauge covariance of the
generator G4. For any A € L} (R%), we set

loc

A"(z) = wn(z){p1/n(z =), A)-

Lemma 6.1 Let A € L} (R%). For any f € L2(R?), we have

loc
e f—erf in L*(RY) (6.1)
e f - e f in L2(RY).

Proof. We only show here (6.1). For any f € D(R?), we have
e f — eiAfH%?(Rd) = ||f — €i()‘_)‘n)f”%2(Rd)

_ ¢ 211 _ _\n
= 2/Rd|f| |1 — cos(A — A™)|dz
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< 2M2/I y |1 — cos(A — A")|dxz, (6.3)

where M, r are constants such that M = sup|f|, suppf C {|z|] < r}.
Because of the inequality |1 — cosz| < |z|, we have

< 2M2/ A — A"|dz
| <r
< 2M2/ 11 = wn(z)| - [Ndz
lz|<r

o [ A= (o1 Nl (64

The last term of (6.4) tends to 0 as n — oo, because of the definition of w,
and \ € Lloc(Rd).

Since e**" and e'* are contraction operators on L?(R%) and D(RY) is
dense in L?(RY), " f is L? convergent to e* f for any f € L%(R%). ]

Theorem 6.2 Let A € L} (R%). We have
p(eXTA =N f L, ATAIF L2(RY)
for f € L*(R%) =1, (6.5)

where e e~ and e are multiplication operators on L?(R%).

Proof.  Let Q) be the subset of &'(R% R?) which was defined in (5.10)
and let {ng}72, be an associated subsequence with Q. For any A € €
and f € L?(RY),

) n A _
Hez/\TtA z/\f 1)\ k nk A"k f“LQ(Rd)

< ”ei)\TtAe—z/\f _ ezk"k TtA _Mf”LZ(Rd)
+ e TR — AT e f oy

+ Hez'/\"k TtA»nke—i)\f _ Ak TA M o —IA"k f”L2(Rd)

< ||ei>‘TtAe—iAf — e TtAe_Mf”L?(Rd)
+ | Te™ f — T™ e f| 1o (R
+ e f — e £l L2 Ra)- (6.6)

By using Lemma 6.1, the first and third terms in (6.6) tend to 0 as
k — oo. By (5,8) the second term in (6.6) also tends to 0 as k — oo.

[]
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We shall define
(A+0N)"(x) = A™(z) + wn(z){p1/n( = -), OA).

Then we have, by the definition of the semi-groups {Y}A’n}tzo and
(TATON™M o, for any A € S'(R%GRY), f € LA(RY) and T > 0,

Hei)\nTtA,ne—i)\"f . Crt(A+8)‘),nf|lL2(Rd) —0 as N — 0. (67)

Moreover this convergence is uniform in ¢ € [0,7]. Since {TtA’n}tZO and
{TtA}tzo are strongly continuous semi-group processes, we have for any T' >
0, the convergence is also uniform in ¢ € [0,T]. Then we can obtain,
for any f € D(R%),e>0and T > 0,

. A+0A\n A+0A,m
lm_ sup p(ITANF = T gy > €)= 0. (68)

m,n—>00 te [O,T]

By [Theorem 5.3, we have a strongly continuous symmetric semi-group pro-
cess {TAT92} ;50 as the limit of {T;A+a>"n}t20. We denote its generator by
Gatox- (6.7) implies that the semi-group process {T; ATOMY o coincides with
the semi-group process {eMTtAe_iA}tZO. Thus, the following theorem holds.

Theorem 6.3 Let A € L} (R?). We have

“(eiAgAe—i)\ — gA+8/\) -1,

7. The Spectra of the Generator

This section deals with the study of spectra of G4, A € S’'(R%RY).
Let {0,},cre be an ergodic family of measure preserving transformations
defined in section 3. Let {7,},cg« be an unitary operator

nf=f(-2 fel’®R)
We define {T?**};50 as follows. For any f € L?(R%),
To:Af = lim Té=A™ ¢ in L*(RY).

Lemma 7.1 For any z € R?, there exists a semi-group process {fl’sz}tzo
w-almost surely. Moreover for any t > 0, we have

TthA = T:TtATz, (7.1)
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where T

Proof. For any f € L*(R%) and t € QN [0, 00),

1s an adjoint operator of T,.

0.An 0. A, xrpA, xnA,n
1T 5™ f =T 5™ flleray = 12T ™ o f~T T fll ey
= |TtA’nszf—TtA’anzf||L2(Rd). (7.2)
By (5.3), the right hand side of (7.2) converges to 0 as k,l — co. Then we

get {Tte"A’n’c f}22, is a Cauchy sequence in L?(R?) p-almost surely, because
{TtA’nk f}22, is a Cauchy sequence. And we have

. * » 6.A,
T4 f — 3T 7. fl2mey < NTPAF = T 4™ fll o may
0,An *A,n
+ T f = T e fll 2 mey
*nA,n *
+ 1T 7 f — 2T fll 2 ey

The second term is 0. The first and third terms tend to 0 as k to infinity.
For any t > 0, TP# was defined by (5.13), then we obtain (7.1). []

Let 0(A), opp(A), 04c(A) and o4.(A) be the spectrum, point spectrum,
absolutely continuous spectrum and singular continuous spectrum of G4
respectively.

Theorem 7.2 There exist closed subsets o, opp, 04 and o5 of R such
that 0=0(A), opp = 0pp(A), Tac = 0ac(A) and osc = 05.(A) for almost
u-surely.

Proof. Let E(A, A), A € B(R?), be the resolution of the identity of the
operator G4 and let

E('v A) = EPP(" A) + Eac(" A) + ESC(" A)
be its Lebesgue decomposition. By [Lemma. 7.1, we have
E#(’ A) = T:E#(, A)TZ7

where # = pp,ac and sc. Then there exists a closed subset o4 of R such
that topological support of Ex(-,A) is oy for p-almost surely. (cf. [C]
Proposition V.2.4). ]
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