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Extremal rings and quasiconformal mappings

S.-L. Qiu and M.K. VAMANAMURTHY
(Received December 12, 1995; Revised August 20, 1996)

Abstract. New functional inequalities are obtained for the capacities of Grotzsch and
Teichmiiller rings, and for complete elliptic integrals, thus solving two conjectures. These
results are applied to refine earlier estimates in quasiconformal Schwarz lemma and Mori’s

theorem.
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1. Introduction

Forn > 2, s> 1and t > 0, let Rgy(s) denote the Grotzsch ring in
R", whose complementary components are the closed unit ball B" and the
ray [s,00) along the x;-axis, and let Ry, (t) denote the Teichmiiller ring in
R", whose complementary components are the segment [—1,0] and the ray
[t,00) along the x-axis. The conformal capacities of R n(s) and Ry (1)
are denoted by

Yn(s) = cap Rgn(s), Tn(t) =cap Rrn(t), (1.1)

respectively. The modulus M, (r) of the Grétzsch ring R ,(1/7),0 < r < 1,
is defined by

My (r) = [wn-1/3(1/r)]/ "7, (1.2)

where w,_ is the (n — 1)-dimensional measure of the unit sphere S"~! in

R" [G], [V&], [Vul]. The capacities in are related [G, §18] by
() = 2" (s — 1), s> 1. (1.3)

For K > 0, define the increasing homeomorphism ¢k ,(r) from [0,1] onto
[0,1] by

@K,n(r) = 1/'77:1(K’Yn(1/r)) = Mn—l(aMn(r)) (1.4)

for r € (0,1), ¢xn(0) = ¢rn(l) =1 = 0, where a = KY(1=n) " These
functions arise in the study of quasiconformal mappings in R™ [AVV1]|-
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[AVVE], [AVT], [G], [LV], [Q1]-[Q4], [V&], [VV], [Vul], [Vu2].

As usual, for n = 2, we let

p(r) = Ma(r), 7(t) =72(t) and @k (r) = pka(r). (1.5)
It is well-known that u(r) has the explicit expression [LV, p. 60]
7 K'(r)
= — 1.6
/J’(T) 2 }C(T) ? ( )

where

K=K(r)= /W/Q(l — r2sin? )" 2dg,
0
K'=K'(r)=K(r"), (1.7)

r" = /1 —r? are complete elliptic integrals of the first kind [BF], ,
BB].

Let D and D’ be domains in R", and for K > 1, f : D — D' be
a K-quasiconformal mapping. The inner dilatation K;(f) and the outer

dilatation Ko(f) of f are defined by [Va],

M(f(T))

M(T)
M) Ko(f)

M(f(T))
respectively, where M (I") is the modulus of the curve family I'. The suprema
are taken over all curve families I in D such that M(T') and M(f(T)) are
not simultaneously 0 or co. Then 1 < K(f), Ko(f) < K.

Recently, many inequalities were obtained for the above—mentioned spe-
cial functions and several conjectures were raised [AVV3]-[AVV11], [QVV],
[VV]. Among these conjectures, the following appear in [AVV7] and [AVVY]:

(Cy) Foreach K € (1,00), the function f(r) = r~¥&K g (r) is convex on
(0,1).
(C2) 27(t) < 7(2t) + 7(v/2t) < 37(t), for all t € (0,00).
On the other hand, some of the function-theoretic applications of the

above-mentioned functions rely on the monotoneity and explicit estimates
of these functions. An example of such an explicit estimate is [W], [LV],

Ki(f) =sup = sup (1.8)

/K < (pK(T‘) < 41—1/K7,1/K’ (1.9)

for all K > 1 and r € (0, 1), from which the well-known explicit quasicon-
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formal Schwarz lemma follows, that is,
f(2)] < 4V VK (1.10)

for each K-quasiconformal mapping f of the unit disk B into itself with

f(0) =0 and for z € B. In [QVV, Theorem 1.5], the upper bound in
was improved to

o (r) < (147" UK UK, (1.11)

for € (0,1) and K > 1, where r’ = v/1 —r2, and hence, the inequality

was sharpened to
FE)] < (41— |22V (1.12)

for all z € B.
In this paper we obtain some new functional inequalities for p(r) and
To(t), prove conjecture (Cj), disprove conjecture (Ci), and sharpen the

upper bound for ¢g(r), by studying some properties of complete elliptic
integrals K(r), K'(r) in and those of the second kind

w/2
E=E(r) = / (1 —r2sin?2)2de, &' =€'(r) =),
0

for r € (0,1), where ' = +/1 —72. These inequalities lead to sharper
estimates in the quasiconformal Schwarz lemma and Mori’s theorem.
Throughout this paper, r’ denotes v/1 — 72, for r € [0, 1].
We now state some of the main results of this paper.

Theorem 1.14 Conjecture (Cy) is false.

Theorem 1.15 The function F(t) = [7(2t) + 7(v/2t)]/7(t) is strictly in-

creasing from (0,00) onto (3,3). In particular, for all t € (0, 00),

gf(t) < 7(20) + (V) < 37(1), (1.16)

so Congecture (Cy) is true.

Theorem 1.17 For n > 2, p € (0,00), let Cp(p) = p~ /4, if n =2, and
=p Y2 ifn>3. Then
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(1) For each t € (0,00),

Colp) < T:(Zt)) <1, if 1<p<oo (1.18)
1 < T:(Zt)) < Culp), if 0<p<l. (1.19)

(2) Forte (0,00) and p > 1,

(1+5) EnImat) < 7ao0) + 7l 1))
< (14 p" Y (). (1.20)
(3) For p>1 and t > p /=1,

Tn(pt) + 7 ((pt)77) = (14 Cu(p)) (1) (1.21)

Remark 1.22. For n = 2, [Theorem 1.17 (1) improves [AVVS8, Theorem 1.8
(3) and (4)].

Theorem 1.23 For r € (0,1), define the function g on [1,00) by
9(K) = ere(r)[(1 7" )+ /r] .

Then g is strictly decreasing from [1,00) onto (1, (1+7’ )], In particular,
for r € (0,1) and K > 1,

or(r) < (14 ¢ )AFTA=1/K) /K (1.24)

Theorem 1.25 For K > 1, let f be a K-quasiconformal automorphism
of the closed unit disk B with f(0) =
(a) For each z € B,

£(2)] < (14 u)H OB VK, (1.26)

where u = /1 — |z]?.
(b) For z1,2z9 € B, let v = (|z1] + |22])/2, w = |21 — 22]/(4v) and
t =2w. Then

|f(21) — f(22)]

0(21722)1—1/1('21 22‘1/K

64171/ K5 — 2| VK, (1.27)

IA A
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where C(z1, 22) = 4(1 4+ o' )" (1 + o/ ) /(T + ¢ )/2.
(©) For |a =|esl = 1,

81+ #7214 ORI 2]y — 1

<
S 161—1/K|Zl _ 22‘1/[(’

|f(21) - f(zz)\

where r = |z1 — z9|/4 and s = 2r.

2. Preliminary Results

To prove the main theorems stated in Section 1, we need some functional
inequalities for complete elliptic integrals. In this section, we study some
monotone properties of some functions defined in terms of complete elliptic
integrals, from which several functional inequalities follow. We apply these
results to derive sharp inequalities for the special functions u(r), 7,,(¢) and
K (r).

The following well known relations will be useful in our proofs [BF],
[He], [AVV10, Lemma 2.1].

K £-7C dE £-K

= - X _ 2.1
dr rr'2 7 dr r (2.1)
K8+K%—xﬁ:g, (2.2)
du 2 1
- - 2.3
dr 4 rr'2K2(r)’ (23)
0s _ L 758/2’62(3), (2.4)
or K rr'2K2%(r)
0 2
% = % SS, 2’C(8)’C/(8), (25)
where s = g (r),0<r < 1,0 < K < o0.
Lemma 2.6 For p > 1, t € (0,00), let © = /tP/(tP+ 1) and y =

Vt/(t+1). Then, as a function of t, f(t) = pK(y)K'(y) — K(z)K'(z) is

strictly increasing on (0, 1] and decreasing on [1,00), with

£((0,1)) = f([1,00)) = ((p ~ Dmlog2, (p — 1)K*(1/v2)].
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Proof.  Clearly, f(1/t) = f(t). Hence, it is enough to prove the result only
for t € (0,1], so that 0 < x <y < 1/4/2, with equalities if and only if t = 1.

Next, since
K(r) =log(4/r") + O(r' *logr’) (2.7)

as r tends to 1, it follows that f(07) = (p — 1)mlog2. Clearly, f(1) =
(= DK*(1/V2).

Now, differentiation gives

2 /2

dr  pxx’ dy yy
dt 2t 7 dt 2t

so that
tf'(t) = plh(y) — h(z)]

by [2.2), where h(r) = K'(r)[E(r) — r' 2K(r)]. Hence, f'(t) > 0 for t € (0,1)
by [AVV10, p. 539], yielding the result. ]
Corollary 2.8 (a) Forp > 1,t € (0,00), let x = /tP/(t? + 1) and
y = t/(t+1). Then fi(t) = pu(y)/u(zx) is strictly increasing from (0, o)
onto (1/p,p). In particular,

%u(fﬂ) < uw(y) < pu(z). (2.9)

(b) For each p > 1, the function fa(t) = 7(t)/7(tP) is strictly increas-
ing from (0,00) onto (1/p,p). In particular, for all t € (0,00),

%T(t) < 1(tP) < pr(t). (2.10)

Proof. (a) By I'Hospital’s Rule, f1(07) = 1/p and fi(o0) = p.
Next, by differentiation,

L2 (@)K ) () = (1),

™

where f is as in [Lemma 2.6, and the result follows.
(b) Put x=/tP/(tP+1) and y = \/t/(t + 1). Then fo(t) = f1(t) by
and [1.3]. Now the result follows from (a). []
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Corollary 2.11 Forr € (0,1), K € [1,00), p € [1,00) and ¢ = 2/p,

Pic(r) + @5 g (7 retre

The inequality is reversed if 0 < K <1, with equality iff p=1 or K = 1.

Proof. By [Corollary 2.8 (a), as a function of K, u(+/s¢/(s¢ + s'¢))/u(s),
where s = @ (), is strictly increasing on [1,00), and hence,

p ( " jcs,c>/u(8) > ( = iCT,L.)/u(?‘),

from which (2.12) follows.
The remaining conclusions are clear.

[

Lemma 2.13 Forp > 1 and t € (0,00), let x = /t/(t+1) and y
Vpt/(pt +1). Then, as a function of t, f(t) = K(y)K'(y) — K(z)K'(z) is

strictly increasing from (0, 00) onto (—% logp, Tlogp).

.T/Z r2

Proof.  Clearly, p(z/2')? = (y/y')?, % = ¥5— and ‘—% = . Hence,
differentiation and give
tf'(t) = h(y) — h(z) > 0 (2.14)

by [AVV10, p. 539], where h(r) = K'(r)[E(r) — 7/ 2K(r)]. This yields the

monotoneity of f.

By (2.7), f(0%) = —f(oc) = — % logp. =

Corollary 2.15 (a) For p>1,te€ (0,00), let x = /t/(t+1) and y =
vpt/(pt +1). Then gi(t) = u(y)/u(x) is strictly decreasing on (0,1/./p]
and increasing on [1/,/p,00) with g1(0%) = g;(cc) = 1. In particular, for
p>1landte(0,00), u* =1/(1+ /p),

with equality iff t =1/,/p.
(b) For each p > 1, the function go(t) = 7(pt)/7(t) is strictly decreas-
ing on (0,1//p] and increasing on [1/,/p,o0) with go(0%) = go(o0) = 1.
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In particular, for p > 1 and t € (0,00), u? = 1/(1 + VD),

. Ku)\* _ 7(pt)
< () <56

< 1, (2.17)

with equality iff t =1/,/p.
Proof. (a) The first inequality in follows from [AVV10, Theorem
2.2 (3)]. Next, since g1(t) = g1(1/(pt)) by the relation [LV]

p(r)u(r') = /4, (2.18)

we need only prove the result (a) for t € (0,1/,/p).
Differentiation and give

LUK @)K ()24, (1) = £(t) < F(1/p) =0,

s

where f is as in [Lemma 2.13|, yielding the monotoneity of g;.
By I'Hospital’s Rule, ¢;(0%") = g1(c0) = 1. The second and third
inequalities in follow.
The result (b) follows from (a) and the relations and [1.3). ]
In [QVV, Lemma 2.1|, it was shown that

g7"2IC(7")IC'(7‘) +logr < 2log(1+7"), (2.19)
m

for r € (0,1), from which the inequality (1.12) was established. For fur-
ther improvement of the inequality (1.12), we need to improve the estimate

219].

Lemma 2.20 Let m(r) = 2¢'2K(r)K'(r). Then there ezists a unique
ro € (sin55°,sinb56°) such that the function f(r) = m(r) + logr — (1 +
r')log(1 4 r') is strictly decreasing on (0,ro] and increasing on [ro,1). In
particular, for r € (0, 1),

—0.196 < f(rg) < f(r) <0, (2.21)
with equality off r = ry.

Proof. By differentiation,
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Let g1(r) = K(r) — £(r) and ga(r) = r2/7'. Then

r) _ 7
(r) 142

g
9

E(r),

N~ =~

which is strictly decreasing on (0, 1). Hence, the function fy(r) = r/[K(r) —
E(r)]/r? is strictly decreasing from (0,1) onto (0,7/4) by Monotone
I'Hospital’s Rule [AVV5, Lemma 2.2]. Hence, for r € [a,b] C (0,1),

K(b) - £(b)

Ai) < fola,b) = 1 +log(1 +a') — K/

Since f3(0,sin42°) = —0.057127. ..,
fi(r) <0 for r e (0,sin42°. (2.23)

Next, let f4(r) = r2fi(r). Then, fi(r) = %+ 2r' 4+ r2log(1 + ') —
%T’K(T)g,(r), by (2.2). By differentiation,

r?,fi(r) = 3 =3+ 2" log(1+1") + %K(T)S’(T)
— —5[E(ME(r) = K(r)€'(r) + r*K(r)K'(r)).

Clearly, 37" — 3 4 2r'log(1 4+ ') is decreasing on (0,1). Hence, by [QV,
Theorem 2.1 (7)], it follows that

T?,fi(r) > fs(a,b) = 3(b' — 1) +2b"log(1 +b')
4
+ —{(1 +a")K(a)€'(a) — £(a)€'(a) — ®K(a)K(a)},
for r € [a,b] C (0,1). By computation, we have

f5(sin73°,1) =0.102028..., f5(sin63°,sin73°) = 0.052752,
f5(sin 55°, sin 63°) = 0.0364292,  fs(sin 48°, sin 55°) = 0.018148,

and
fs5 (sin 42° sin 480) = 0.001202.

Hence, fj(r) > 0 for r € [sin42° 1), and f; is strictly increasing on
[sin 42°,1). Since f4(sin 55°) = —0.005950 < 0 and f4(sin 56°) = 0.002438 >
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0, f1 has a zero ry € (sin55°,sin 56°) such that

< 0, if O<T<T‘0,
Jalr (2.24)

>0, if <7<l

It follows from (2.23) and (2.24) that, on (0,1), f; has a unique zero rg
such that fi(r) < 0 for r € (0,79) and fi(r) > 0 for r € (rp,1). This yields
the piecewise monotoneity of f, so that the second and third inequalities in

(2.21) follow.
Finally, since m(r) 4+ logr is decreasing on (0, 1) [W], [AVV10, Lemma
4.2 (1)],

f(ro) > m(sin56°) + logsin 56° — (1 4 cos 55°) log(1 + cos 55°)
= —0.195968 > —0.196.

This yields the first inequality in [2.21). ]

Remark 2.25. By [Lemma 2.20, is is natural to ask whether the function
f(r) =m(r) +logr — (1 + 7" )log(1 +r') is convex on (0,1). The answer
to this question, however, is negative. As a matter of fact, differentiation
gives

7427a/

13 g1 /
=F = 1+ log(1 -
) = F(r) = 1+ log(1 4 1) — =T
4 11/ g/ 2 IC - g
+;T}C{<E+1—27") 7‘2 —8}
Clearly, F(0) = —oo and F(1) = 1. Hence, there exist r; and ry with
0 <7 <1y < 1such that f is concave on (0,71) and convex on (rg, 1).

3. Proofs of Main Results

In this section, making use of the lemmas established in Section 2, we
prove the theorems stated in Section 1.

3.1. Proof of Theorem 1.14. Let s = @k (r). Then, by (2.4),

Kf'(r) = lglr, ) = 1]f(r), (3.2)
KT;(J:;W = [Q(T’IQ - r—g—g — g(r,K) +1 (3.3)

fl(r’ K)7
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where

g(r,K) = {s'K(s)/(r'K(r))}?,
299 29(r K)
8r N ' 2IC(r)K! (r)
By I'Hospital’s Rule, we have
o KOIE () ~ K()E/(s)
K—1 K -1

= 2K (EWE ) — KrE ) +PROK @)} (34)

[K(r)€'(r) = K(s)€'(s)].

i L9 K)o 1 ' 2K2(r) — ¢ 2K2(s)
K—-1 K-1 ' 2KC2(r) K—1 K-1
= SR ()~ £, (35)
and
i LSS 56
Let fo(r,K) = T 2f1(r, K)/(K — 1) for K € (1,50) and fu(r,1) =

)
limg_.q fo(r, K). then, by (3.4)—(3.6), it follows that
(

fa(r,1) = r" 2K (n)[K(r) = £(r)] = E'(r)[E(r) — 7" *K(r)]
— P K(r)IK' (r) - €'(r)),

and hence, f3(1,1) = —7/2. Hence f cannot be convex on (0,1), when K
is close to 1.

On the other hand, it is clear that, when K = 2, f(r) = 2/(1 + r) is
convex on (0,1). [

3.7. Proof of Theorem 1.15. Set z? = 2t/(1 4 2t), r t/(1+t) and
y? = V2t/(1+V2t), withz,r,y > 0. Thenr = z/v/2 —;U2y =z/(z+x'),

dr rr! 2 dy yy' 2 (3.8)
de z2'?’ dr 2xx'? '

and
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by (1,2), [1.3). It is sufficient to prove that F is strictly increasing from
(0,1) onto (3/2,3).
By differentiation,
4 z(a'K' (r)K(z)K(y))

by virtue of and (3.8), where

K'(z)K(y) + K(2)K'(y)
K2(x) + 2K%(y)

Fy(z) = 2K(x)K(y) = K(r)K'(r).

Next, by [Lemma 2.6,
2K (y)K'(y) > mlog 2 + K(z)K' (2),
so that

()
K2(z) + 2K2(y)
where F3(z) = K(2)K'(z) — K(r)K'(r).
It is easy to verify that y < y/z. Hence

K(y) ’C(\/E) 4 4
ko) < K] < Vitz< V2, (3.11)

by [QV, Theorem 1.5] or [AVV11, Theorem 3.11]. On the other hand,

Fy(z) > F3(x)

7 log 2, (3.10)

Fs(z) > —Z—log 2, for O0<z<1, (3.12)

by Lemma 2.13|
From (3.11) and (3.12), it follows from (3.10) that
7 mlog 2
F: > ——log2
2] > B TR K
log 2 3—2v2
> —Elog2+ mlog2 _ | \[)Wlog2>0,

4 1+2v2  4(1+2V2)

for z € (0,1). Hence, Fj(z) > 0 for z € (0,1) by [3.9], yielding the
montoneity of F}.

Finally, we have the limiting values:

P(07) = R(07) = tig 2B B0 2
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F(o) = F(17) = lim <) 1 K(y)}

r—1- () K(z)
B [ oty
B xll— log(4/y') [H log(4/x’)] >
This completes the proof. []

3.13. Proof of [[heorem 1.17. (1) We need only prove the lower bound
n (1.18). For n > 3, this was proved in [AVV8, Theorem 1.8 (4)], while for
n = 2, it follows from .

(2) From the second inequality in [AVVS, Theorem 1.8 (1)] and the
monotoneity of 7,(t), it follows that

T (pt) + 70 (1)) < (14" ) 7a(pt) < (14 ") 7a(2).

Next, it follows from the first inequality in [AVVS8, Theorem 1.8 (1)] and
(1.18) that

T T 1/p 1 T l T

o)+ 7l 0)7) > (142 ) 7o) 2 (14 ) Culpirat)

For (3), we note that ¢ > (pt)!/? for ¢ > p!/(P=1). Hence, by (1.18),
Tn(pt) + Tn((pt)l/p) > Ta(pt) + Ta(t) > (1 + Cr(p)) ().

[]

3.14.  Proof of [heorem 1.23. Let s = ¢ (r). Making use of [2.5), we
get

KQQI(K) _ ES’QKQ(s)}C/(T)

gK) o« K(r)

+logr — (147" )log(1+7"), (3.15)

by logarithmic differentiation. Since s’ 2K?(s) is strictly decreasing in K on

[1,00) [AVV10, Theorem 2.2 (3)], it follows from (3.15) and Lemma 2.20
that

K?¢(K)/g(K) < m(r) + logr — (1 + 1) log(1 +7') < 0.
]

3.16. Proof of [[heorem 1.25. The result (a) follows from the inequality
(1.24) and the quasiconformal Schwarz lemma, namely [LV],

1f(2)] < vk (l2]). (3.17)
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The result (b) follows from [AVV6, Lemma 4.6] and (1.24), while part
(c) follows from part (b). ]

Remark 3.18. The inequality (1.24) enables one to improve some known

distortion results for quasiconformal mappings. [Theorem 1.25 is only one
such example.

Conjecture 3.19 Our computational work supports the validity of the
following conjecture:

For each p > 1, the function f(t) = [r(pt) + 7((pt)}/P)]/7(t) is strictly
increasing from (0,00) onto (14 1/p,p + 1).
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