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Regularly varying correlation functions
and KMO-Langevin equations

Akihiko Inoue
(Received October 5, 1995; Revised April 9, 1996)

Abstract. We study a variant of Okabe’s first KMO-Langevin equation. After es-
tablishing unique existence of a stationary solution, we precisely describe the long-time
behavior of the correlation function R of the solution. In particular, the behavior such
as R(t)\sim ct^{-1} as tarrow\infty is characterized by using \Pi-variation. Correlation functions
regularly varying with index p\in[-1,0) are characterized in terms of outer functions.

Key words: first KMO-Langevin equation, stationary process, reflection positivity, corre-
lation function, outer function, regular variation, \Pi-variation, stationary random distri-
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1. Introduction

In [04], Okabe introduced the linear stochastic delay equation

\dot{X}(t)=-\beta X(t)-\int_{-\infty}^{t}\gamma(t-s)\dot{X}(s)ds+\alpha\dot{B}(t) . (1.1)

This equation is called a first KMO-Langevin equation. Here, \alpha and \beta

are positive numbers, \dot{B} is a Gaussian white noise, and the kernel function
\gamma : (0, \infty)arrow[0, \infty) has a representation of the form

\gamma(t)=\int_{0}^{\infty}e^{-t\lambda}d\rho(\lambda) (t>0) , (1.2)

where \rho is a Borel measure on (0, \infty) such that

\int_{0}^{\infty}\frac{1}{\lambda+1}d\rho(\lambda)<\infty . (1.3)

The key feature of equation (1.1) is that it describes the time evolution
of a stationary Gaussian process X with reflection positivity: the correlation
function R of X , which is defined by R(t):=E[X(t)X(0)] , takes the form

R(t)= \int_{0}^{\infty}e^{-|t|\lambda}d\sigma(\lambda) (t\in \mathbb{R}) , (1.4)
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where \sigma is a bounded Borel measure on (0, \infty) . If the triple (\alpha, \beta, \rho) in
(1.1) with (1.2) varies satisfying \alpha>0 , \beta>0 and (1.3), then the measure
\sigma ranges over all non-zero bounded Borel measures on (0, \infty) such that
m_{-1}(\sigma)<\infty , m_{1}(\sigma)<\infty . Here we write m_{k}(\sigma) for the k-th moment of \sigma :

m_{k}( \sigma):=\int_{0}^{\infty}\lambda^{k}d\sigma(\lambda) (k\in \mathbb{Z}) .

Let D be the diffusion coefficient of X :

D:= \int_{0}^{\infty}R(t)dt .

Since m_{-1}(\sigma) is equal to D , we have D<\infty for the equation (1.1). For
details, see [O4].

For equation (1.1), the long-time behavior of R was considered by [O6],
and subsequently by [I1] and [OI]. Thus, for q\in(0, \infty) and l slowly varying
at infinity,

R(t)\sim t^{-(1+q)}l(t)\alpha^{2}\beta^{-3}q (tarrow\infty) (1.5)

if and only if

\gamma(t)\sim t^{-q}l(t) (tarrow\infty) . (1.6)

Functions 1/ (1+|t| )^{1+q}(0<q<\infty) are examples of such R.
Now choosing \sigma suitably in (1.4), we obtain non-negative definite func-

tions R such that, for 0<p\leq 1 and l slowly varying at infinity,

R(t)\sim t^{-p}l(t) (t arrow\infty) . (1.7)

The prototype of such functions is R(t)=1/(1+|t|)^{p} , 0<p\leq 1 . No
stationary Gaussian process X satisfying (1.7) with 0 <p<1 can be
described by equation (1.1) because D=\infty for such X . The case p=1
is delicate, and requires separate treatments. Early in [O3], Okabe showed
that [\alpha, \beta, \gamma] -Langevin equations, which had been introduced by [O1], also
describe a class of reflection positive, stationary Gaussian processes with
D=\infty ; they describe the class m_{2}(\sigma)<\infty . Thus the question arises of
extending the class of first KMO-Langevin equations (1.1) of [O4] to include
the case D=\infty , and also of characterizing the asymptotic behavior (1.7)
with 0<p\leq 1 in terms of the quantities in the equations. As already
suggested by [O2] and [12], the desired extension of [O4] turns out to be
given by admitting the value \beta=0 in equation (1.1).
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Concerning [O2] and [12], we comment briefly on Okabe’s theory of
second KMO-Langevin equations. They are linear stochastic delay equa-
tions similar to (1.1) but, instead of \dot{B} , they have a Kubo noise. The
need to consider Kubo noise comes from a physical requirement – the
fluctuation-dissipation theorem. In [O4], Okabe introduced second KMO-
Langevin equations for reflection positive, stationary Gaussian processes
with D<\infty , motivated by the equation describing a non-Markovian effect,
known as the Alder- Wainwright effect ([AW], [OoKU]). In [O5], he also
developed the theory without assuming reflection positivity. The relevant
part of [O2] – an analogue of [O5, Theorem 5.1] for \beta=0 – suggested
an extension of the class of second KMO-Langevin equations of [O5], to
include the case \lim_{\epsilonarrow 0+}|\int_{0}^{\infty}e^{-\epsilon t}R(t)dt|=\infty . The results of [I2] may be
regarded as realizing this possibility at the cost of restricting the class of
X to reflection positive ones. The point of [I2] is the construction of Kubo
noise with ired causality condition.

Now we state the contents of the present paper. As suggested above,
we consider the following variant of Okabe’s first KMO-Langevin equation
(1.1):

\dot{X}(t)=-\int_{-\infty}^{t}\gamma(t-s)\dot{X}(s)ds+\alpha\dot{B}(t) , (1.8)

where \alpha>0,\dot{B} is a Gaussian white noise, and \gamma : (0, \infty) – (0, \infty) is a
function of the form (1.2). We also call equation (1.8) a first KMO-Langevin
equation.

For equation (1.8), the measure \rho in (1.2) is assumed to be in a subset
C of the class (1.3). The subset C is defined in a rather indirect way but
a simple criterion for \rho to be in C is given in terms of the asymptotic
behavior of \gamma . For example, for \rho such that \gamma(t)=t^{-p} , \rho is in C if and only
if 0<p<1/2 . We remark that, for (1.1), we may take \gamma(t)=t^{-p} with
0<p<1 .

For \alpha>0 , \rho\in C and Gaussian white noise \dot{B} , under an appropriate
causality condition, there exists a unique stationary random distribution X
satisfying (1.8). The solution X is a reflection positive, stationary Gaussian
process such that m_{-1}(\sigma)=\infty , m_{1}(\sigma)<\infty ; in particular, D=\infty . Con-
versely, any such X is a solution of (1.8) for some \alpha>0 , \rho\in C , and \dot{B} ; in
fact, as \dot{B} , we may take the derivative of the canonical Brownian motion of
X .
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The arguments to prove the results above are more or less similar to
those of [O1], [O3], [O4] and [12], whence owe the basic ideas to Okabe.
However the method to prove uniqueness of solutions deserves comment
here. In [O4, Theorem 4.2], the uniqueness of a solution of the equation
(1.1) was shown in a rather small class – the class of reflection positive,
stationary Gaussian processes such that m_{-1}(\sigma)<\infty , m_{1}(\sigma)<\infty . In this
paper, we develop a projection method which enables us to prove uniqueness
of solutions in a larger class –the class of stationary random distributions.
This applies to both (1.1) and (1.8).

Our main interest is in the characterization of the asymptotic behavior
(1.7) with 0<p\leq 1 in terms of \alpha and \gamma in the equation (1.8). This is
the counterpart of the results of [O6] and [I1] stated above but the situa-
tion of the present paper requires harder analysis. The difficulty is in the
characterization of (1.7) with 0<p\leq 1 in terms of outer functions. The
arguments of [O6] and [I1] do not apply any more. To overcome this hurdle,
we use the relation between the asymptotic behavior of spectral densities
and that of outer functions. This relation has its own interest, apart from
the application to equation (1.8). We also need an essentially new technique
-\Pi-variation – to deal with the boundary case p=1 . See [I3] for the
usefulness of \Pi-variation in the study of stationary processes.

We write \mathcal{R}_{0} for the class of functions slowly varying at infinity: the
class of positive measurable f , defined on some neighborhood of infinity,
such that, for any \lambda>0 ,

\lim_{xarrow\infty}f(\lambda x)/f(x)=1 .

For l\in \mathcal{R}_{0} such that \int^{\infty}l(s)ds/s<\infty , we write

\overline{l}(t)=\int_{t}^{\infty}l(s)ds/s .

Then \overline{l} is also slowly varying. For l\in \mathcal{R}_{0} such that \int^{\infty}l(s)ds/s=\infty , we
set

\overline{l}(t)=\int_{M}^{t}l(s)ds/s (t\geq M) ,

where we choose M so large that l is locally integrable on [M, \infty) . Then \overline{l}

is also slowly varying. For l\in \mathcal{R}_{0} , the class \Pi_{l} is the set of measurable f
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satisfying, for all \lambda>0 ,

\lim_{xarrow\infty}\{f(\lambda x)-f(x)\}/l(x)=c\log\lambda ,

for some constant c called the l-index of f . See Bingham, Goldie and Teugels
[BGT] for details. We write B(\cdot, \cdot) for the beta function.

Now we are ready to state our main results.

Theorem 1.1 Let X be the solution of (3.6) with (3.7), and let R be the
correlation function of X

(1) Let l\in \mathcal{R}_{0} and 0<q<1/2 . Then \gamma(t)\sim t^{-q}l(t) as tarrow\infty if
and only if

R(t)\sim t^{-(1-2q)}l(t)^{-2}B(q, 1-2q)\pi^{-2}\alpha^{2}\sin^{2}(q\pi) (tarrow\infty) .

(2) Let l\in \mathcal{R}_{0} such that \int^{\infty}l(s)^{-2}ds/s<\infty . Then \gamma(t)\sim t^{-1/2}l(t)

as t – \infty if and only if R\in\Pi_{l_{1}} with index -1, where l_{1}(t)=
l(t)^{-2}\alpha^{2}\pi^{-2} .

(3) Let l\in \mathcal{R}_{0} such that \int^{\infty}l(s)ds/s<\infty . Then \gamma\in\Pi_{l} with index
-1 if and only if R(t)\sim t^{-1}l(t)\overline{l}(t)^{-3}\alpha^{2} as tarrow\infty .

For the meaning of ‘solution’, see \S 3, in particular, Theorem 3.4. We
only remark that equation (3.6) is the precise form of (1.1), and that (3.7) is
a causality condition associated with it. We can also state Theorem 1.1 (3)
in the following way:

Theorem 1.1 (3)’ Let l\in \mathcal{R}_{0} such that \int^{\infty}l(s)ds/s=\infty . We write
l_{1}(t)=l(t)\{2\overline{l}(t)\}^{-3/2} . Then R(t)\sim t^{-1}l(t)\alpha^{2} as t – \infty if and only if
\gamma\in\Pi_{l_{1}} with index-1. In particular, R(t)\sim t^{-1}\alpha^{2} as tarrow\infty if and only if
\gamma\in\Pi_{l} with index -1, where l(t)=(2 log t)^{-3/2} .

The last assertion illustrates the usefulness of II-variation.
We remark that the asymptotic behavior such as (1.7) with p=1 can

also occur for equation (1.1). Naturally the question arises of obtaining the
analogue of Theorem 1.1 (3) for equation (1.1), to supplement the results
of [O6] and [II].

Theorem 1.2 Let X be the solution of (3.9), and let R be the correlation
function of X. Let l\in \mathcal{R}_{0} such that \int^{\infty}l(s)ds/s<\infty . Then \gamma\in\Pi_{l} with
index-1 if and only if R(t)\sim t^{-1}l(t)\alpha^{2}\beta^{-3} as tarrow\infty .

The equation (3.9) is the precise form of (1.1) in the sense of the present
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paper. One may take as X the solution of (1.1) in the sense of [O4], too.
In \S 2, we develop a projection method. Basic facts on equation (1.8)

are given in \S 3; we also give a refinement of [O4, Theorem 4.2] concerning
the uniqueness of a solution of (1.1). Sections 4, 5 and 6 are mainly devoted
to the proof of Theorem 1.1. In \S 4, we characterize (1.7) with 0<p<1
in terms of outer functions. In \S 5, we consider the same problem for the
boundary cases p=0,1 . We complete the proof of Theorem 1.1 in \S 6.

2. Projection method

We denote by H the Hibert space of \mathbb{C}-valued random variables, de-
fined on a probability space (\Omega, \mathcal{F}, P) , with zero expectation and finite
variance: (f, g)=E[f\overline{g}] , ||f||=(f, f)^{1/2} . By D(\mathbb{R}) we denote the space
of all \phi\in C^{\infty}(\mathbb{R}) with compact support, endowed with the usual topology.
A random distribution is a linear and continous map from D(\mathbb{R}) to H. A
random ditribution X is stationary if (X(\tau_{h}\phi), X(\tau_{h}\psi))=(X(\phi), X(\psi))

for all \phi , \psi\in D(\mathbb{R}) and h\in \mathbb{R} , where \tau_{h}\phi(t)=\phi(t+h) . We write S for
the class of stationary random distributions. A \mathbb{C}-valued, mean-continuous,
stochastic process X= (X(t) : t\in \mathbb{R}) with zero expectation and finite vari-
ance is simply called a process. For X\in S we denote by \mu x the spectral
measure of X:(X( \phi), X(\psi))=\int_{-\infty}^{\infty}\hat{\phi}(\xi)\overline{\hat{\psi}(\xi)}d\mu x(\xi) , where \hat{\phi} is the Fourier
transform of \phi:\hat{\phi}(\xi)=\int_{-\infty}^{\infty}e^{-it\xi}\phi(t)dt . Let S_{k} be the class of X\in S such
that \int_{-\infty}^{\infty}(1+\xi^{2})^{-k}d\mu_{X}(\xi)<\infty . Then we have S= \bigcup_{k=0}^{\infty}S_{k} . The class
S_{0} coincides with the class of stationary processes. Any X\in S has the fol-
lowing spectral representation: X( \phi)=\int_{-\infty}^{\infty}\hat{\phi}(\xi)dZ_{X}(\xi) , where Z_{X} is the
associated random measure. We write DX for the derivative of a random
distribution X:DX(\phi)=-X(\dot{\phi}) . We refer to Ito [It] and Yaglom [Y] for
details.

Let X and Y be random distributions. Then X is said to be stationarily
correlated with Y if (X(\tau_{h}\phi), Y(\tau_{h}\psi))=(X(\phi), Y(\psi)) for all \phi , \psi\in D(\mathbb{R})

and h\in \mathbb{R} ; this is equivalent to (X(t+s), Y(s))=(X(t), Y(0)) for all t , s\in

\mathbb{R} if X and Y are both processes. We denote by M(Y) the closed linear hull
of \{Y(\phi) : \phi\in D(\mathbb{R})\} in H . Then we have M(Y)= \{\int_{-\infty}^{\infty}g(\xi)dZ_{Y}(\xi) : g\in

L^{2}(\mu_{Y})\} . We define a random distribution P_{Y}X by P_{Y}X(\phi)=p_{Y}(X(\phi)) ,
where p_{Y} is the orthogonal projection of H to M(Y) . Clearly P_{Y}X is
equivalent to the process (p_{Y}(X(t)) : t\in \mathbb{R}) if X is a process. Note that
the operator P_{Y} commutes with D: PyDX= DPyX.
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Our projection method is based on the following theorem.

Theorem 2.1 Let Y\in S , and let X\in S such that X\in S_{k} , k\geq 0 .
Assume that X is stationarily correlated with Y Then there exists g\in
L^{2}((1+\xi^{2})^{-k}\mu_{Y}) such that P_{Y}X( \phi)=\int_{-\infty}^{\infty}\hat{\phi}(\xi)g(\xi)dZ_{Y}(\xi) for \phi\in D(\mathbb{R}) .
In particular, P_{Y}X\in S .

Proof. For simplicity we abbreviate P_{Y}X as X’ . First we assume X\in

S_{0} and Y\in S_{0} . Then there exists g\in L^{2}(\mu_{Y}) such that X’(0) =
\int_{-\infty}^{\infty}g(\xi)dZ_{Y}(\xi) . Let (U_{t} : t\in \mathbb{R}) be the one-parameter group of unitary
operators on M(Y) generated by U_{t}Y(s)=Y(t+s) . Then for t , s\in \mathbb{R} ,

(U_{t}X’(0), Y(s))=(X’(0), U_{-t}Y(s))

=(X’(0), Y(s-t))=(X’(t), Y(s)) ,

so that U_{t}X’(0)=X’(t) . Therefore X’(t)= \int_{-\infty}^{\infty}e^{-it\xi}g(\xi)dZ_{Y}(\xi) , as de-
sired.

Next we prove the theorem for general X and Y For M>0 , we
write e_{M}(t)=\exp(t) for t\in[-M, 0] , and =0 otherwise. Let e_{M}^{n} be the
n-times convolution of e_{M} with itself. For l\in \mathbb{N}\cup\{0\} such that Y\in S_{l} ,
we write Y_{l}( \phi)=\lim_{Marrow\infty}Y(e_{M}^{l}*\phi) . Then the limit exists, and is equal to
\int_{-\infty}^{\infty}\hat{\phi}(\xi)(1-i\xi)^{-l}dZ_{Y}(\xi) ; in particular, Y_{l} is a stationary process with spec-
tral measure (1+\xi^{2})^{-l}\mu_{Y} . Clearly (1+D)^{l}Y_{l}=Y , so that M(Y_{l})=M(Y) .
We also write X_{k}( \phi)=\lim_{Marrow\infty}X(e_{M}^{k}*\phi) . Then similarly we have X’=
P_{Y}(1+D)^{k}X_{k}=(1+D)^{k}P_{Y}X_{k} . It is easy to show that X_{k} is stationarily
correlated with Y_{l} . Then by the case of S_{0} there exists f\in L^{2}((1+\xi^{2})^{-l}\mu_{Y})

such that P_{Y}X_{k}( \phi)=\int_{-\infty}^{\infty}\hat{\phi}(\xi)f(\xi)(1-i\xi)^{-l}dZ_{Y}(\xi) , whence by operating
(1+D)^{k} we obtain X’( \phi)=\int_{-\infty}^{\infty}\hat{\phi}(\xi)f(\xi)(1-i\xi)^{k-l}dZ_{Y}(\xi) ; the theorem
follows with g(\xi)=f(\xi)(1-i\xi)^{k-l} . \square

Remark 2.2. The author learned Theorem 2.1, in the case of S_{0} , from Hida,
Maruyama and Nisio [HiMN].

Now we turn to the convolution which appears in (1.8). We set

M= { \rho : \rho is a Borel measure on (0, \infty ) satisfying (1.3)}.

For \rho\in M , we write

K_{\rho}(t):= \chi_{(0,\infty)}(t)\int_{0}^{\infty}e^{-t\lambda}d\rho(\lambda) (t\in \mathbb{R}) ,
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F_{\rho}( \zeta):=\int_{0}^{\infty}\frac{1}{\lambda-i\zeta}d\rho(\lambda) (Im \zeta\geq 0 ).

Proposition 2.3 Let \rho\in M and let X\in S . Then for \phi\in D(\mathbb{R}) ,

Marrow\infty 1.i.m. \int_{0}^{M}K_{\rho}(s)DX(\tau_{s}\phi)ds=-\int_{-\infty}^{\infty}i\xi F_{\rho}(\xi)\hat{\phi}(\xi)dZ_{X}(\xi) .

The integral on the left hand side is an H-valued Bochner integral; in
fact we have

|| \int_{0}^{M}K_{\rho}(s)DX(\tau_{s}\phi)ds||\leq||\chi_{(0,M)}K_{\rho}||_{1} ||DX(\phi)|| .

The proof of Proposition 2.3 is almost the same as that of [12, Proposition
5.1]. We only note that the integral on the right converges by the estimate

| \xi F_{\rho}(\xi)|\leq\int_{0}^{1}d\rho(\lambda)+|\xi|\int_{1}^{\infty}\frac{1}{\lambda}d\rho(\lambda)

\leq(1+\xi^{2})^{1/2}\int_{0}^{\infty}\frac{2}{1+\lambda}d\rho(\lambda) .

For \rho\in M and X\in S we define K_{\rho}*DX\in S by

(K_{\rho}*DX)(\phi)=Marrow\infty 1.i.m. \int_{0}^{M}K_{\rho}(s)DX(\tau_{s}\phi)ds (\phi\in D(\mathbb{R})) .

Lemma 2.4 If \rho\in M and X\in S , Then X is stationarily correlated with
DX+K_{\rho}*DX

Proof. By Proposition 2.3, we have Y( \phi)=\int_{-\infty}^{\infty}\hat{\phi}(\xi)\{-i\xi-i\xi F_{\rho}(\xi)\}dZ_{X}(\xi) ;
the lemma follows immediately. \square

Lemma 2.5 If \rho\in M and X\in S , Then X is a solution of DX+K_{\rho}*

DX=0 if and only if X=a with some a\in H .

Proof. For \phi\in D(\mathbb{R}) ,

||(DX+K_{\rho}*DX)( \phi)||^{2}=\int_{-\infty}^{\infty}|\hat{\phi}(\xi)\xi\{1+F_{\rho}(\xi)\}|^{2}d\mu x(\xi)

\geq\int_{-\infty}^{\infty}|\hat{\phi}(\xi)|^{2}\xi^{2}d\mu x(\xi) ,

where we used the estimate {\rm Re}\{1+F_{\rho}(\xi)\}\geq 1 . Thus DX+K_{\rho}*DX=0
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if and only if supp \mu_{X}=\{0\} . Hence the lemma follows. \square

3. First KMO-Langevin equations

By B we denote a one-dimensional Brownian motion (B(t) : t\in \mathbb{R})

such that B(0)=0 , which we simply call a Brownian motion. Then DB\in

S . For t\in \mathbb{R} and Y\in S we denote by M_{t}(Y) the closed linear hull of
{Y(\phi) : \phi\in D(\mathbb{R}) , supp \phi\subset(-\infty, t] } in H . Let X= (X(t) : t\in \mathbb{R}) be
a real stationary process: X is a real, mean-continuous, weakly stationary
process with zero expectation. We write R for the correlation function
of X:R(t):=E[X(t)X(0)] . Suppose that X is purely non-deterministic:
\bigcap_{t\in \mathbb{R}}M_{t}(X)=\{0\} . Then X has a spectral density \triangle of Hardy class: R(t)=
\int_{-\infty}^{\infty}e^{-it\xi}\triangle(\xi)d\xi , (1+\xi^{2})^{-1}\log\triangle(\xi)\in L^{1}(\mathbb{R}) . We write h for the outer
function of X :

h( \zeta):=\exp\{\frac{1}{2\pi i}\int_{-\infty}^{\infty}\frac{1+\xi\zeta}{\xi-\zeta} \frac{1og\triangle(\xi)}{l+\xi^{2}}d\xi\} (Im \zeta>0 ).

We write E for the canonical representation kernel of X:E:=\hat{h} , where \hat{h}

is the Fourier transform of h(\cdot):=1.i.m.h(\eta\downarrow 0^{\cdot}+i\eta)\in L^{2}(\mathbb{R}) . We have

h( \zeta)=\frac{1}{2\pi}\int_{0}^{\infty}e^{i\zeta t}E(t)dt (Im \zeta>0 ), (3.1)

R(t)= \frac{1}{2\pi}\int_{0}^{\infty}E(|t|+s)E(s)ds (t\in \mathbb{R}) . (3.2)

If X is Gaussian, then there exists a unique B , called the canonical Brownian
motion of X , such that, for t\in \mathbb{R} , X(t)=(2 \pi)^{-1/2}\int_{-\infty}^{t}E(t-s)dB(s) . It
satisfies M_{t}(X)=M_{t}(DB) for any t\in \mathbb{R} . For details, see [O4, \S 2] and the
reference cited there.

From [I2], we recall some facts which we need in this section. We remark
that these facts originated in Okabe’s work ([O1], [O3], [O4]). The point of
[I2] is the use of an extension of [O7, Theorem A] in the arguments. Now
consider the following condition

\int_{0}^{\infty}\int_{0}^{\infty}\frac{1}{\lambda+\lambda},d_{lJ}(\lambda)d\nu(\lambda’)<\infty . (3.3)

We set

\Sigma= { \sigma : \sigma is a non-zero bounded Borel measure on (0, \infty )},
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\Sigma^{1}=\{\sigma\in\Sigma : m_{-1}(\sigma)=\infty\} ,
\Sigma^{10}=\{\sigma\in\Sigma : m_{-1}(\sigma)=\infty, m_{1}(\sigma)<\infty\} ,

N= { \nu : \nu is a non-zero Borel measure on (0, \infty ) satisfying (3.3)},
N^{1}=\{\nu\in N : m_{-1}(\nu)=\infty\} ,
N^{10}=\{\nu\in N _{:} _{m_{-1}(\nu)}=\infty, m_{0}(\nu)<\infty\} .

For lJ \in N , we define \sigma\in\Sigma by

d \sigma(\lambda)=\frac{1}{2\pi}\{\int_{0}^{\infty}\frac{1}{\lambda+\lambda’}d_{lJ}(\lambda’)\}d\nu(\lambda) . (3.4)

By direct calculations, m_{-1}(\sigma)=m_{-1}(\nu)^{2}/(4\pi) and m_{1}(\sigma)=m_{0}(\nu)^{2}/(4\pi) .
Hence by [12, Theorem 2.5] we obtain the following theorem.

Theorem 3.1 For \nu\in N^{1} let T(\nu)\in\Sigma^{1} be the measure \sigma defined by
(3.4). Then the map \nu\mapsto T(i/) becomes a bijection from N^{1} onto \Sigma^{1} . More-
over we have T(N^{10})=\Sigma^{10} .

For \sigma\in\Sigma , we write

R_{\sigma}(t) := \int_{0}^{\infty}e^{-|t|\lambda}d\sigma(\lambda) (t\in \mathbb{R}) .

Any real stationary process X such that R=R_{\sigma} , \sigma\in\Sigma , is purely non-
deterministic. By [12, Theorem 2.6], we obtain the following theorem.

Theorem 3.2 For \sigma\in\Sigma^{1} , let X be a real stationary process such that
R=R_{\sigma} . Then for lJ =T^{-1}(\sigma)\in N^{1} we have E=K_{l/} , h=(2\pi)^{-1}F_{1J} .

We write

M^{1}=\{\mu\in M : m_{-1}(\mu)=\infty\} .

We consider the following relation between lJ and (\alpha, \rho) :

F_{\nu}(()\{-i(-i\zeta F_{\rho}(()\}=(2\pi)^{1/2}\alpha (Im ( >0) . (3.5)

Theorem 3.3 ([12]). For any lJ \in\Sigma^{1} , t/iere exists a unique pair (\alpha, \rho)\in

(0, \infty)\cross M^{1} satisfying (3.5). If we write L(\nu) for the pair (\alpha, \rho) , then the
map lJ \mapsto L(\nu) becomes a bijection from \Sigma^{1} onto (0, \infty) \cross M^{1} .

Let T and L be as above. Since N^{10}= { \nu\in\Sigma^{1} : lJ satisfying (3.3)}\subset
\Sigma^{1} , the image L(N^{10}) forms a subset of (0, \infty) \cross M^{1} . For c>0 , \nu\in N^{10}
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and (\alpha, \rho)=L(\nu) , it follows from (3.5) that L(c\nu)=(c\alpha, \rho) . Hence we can
define a subset C of M^{1} by

L(N^{10})=(0, \infty)\cross C .

Clearly the restriction of L to N^{10} gives a bijection from N^{10} onto (0, \infty)\cross C .
We put the following interpretation

DX=-K_{\rho}*DX+\alpha DB (3.6)

on the first KMO-Langevin equation (1.8), where \alpha>0 , \rho\in C , and B is
a Brownian motion. We are concerned with a solution X\in S of (3.6) with
causality condition

M(X)\subset M(DB) . (3.7)

If X\in S is a solution of (3.6), then M(DB)\subset M(X) . Hence (3.6) plus
(3.7) implies M(X)=M(DB) .

For lJ \in N^{10} and Brownian motion B , we define a real stationary Gaus-
sian process X= (X(t) : t\in \mathbb{R}) by

X(t)=(2 \pi)^{-1/2}\int_{-\infty}^{t}K_{lJ}(t-s)dB(s) (t\in \mathbb{R}) . (3.8)

Since K_{\nu}\in L^{2}(\mathbb{R}) , the integral on the right-hand side converges. For \sigma=

T(\nu)\in\Sigma^{10} , we have R=R_{\sigma} , whence it follows from Theorem 3.2 that E=
K_{\mathfrak{l}J} and h=(2\pi)^{-1}F_{l/} . By the uniqueness, B coincides with the canonical
Brownian motion of X By using the spectral representation DB(\phi)=
\int_{-\infty}^{\infty}\hat{\phi}(\xi)dZ_{DB}(\xi) , we have X( \phi)=(2\pi)^{-1/2}\int_{-\infty}^{\infty}\hat{\phi}(\xi)F_{lJ}(\xi)dZ_{DB}(\xi) .

Now we are ready to show the unique existence of a solution for (3.6)
with (3.7).

Theorem 3.4 For \alpha>0 , \rho\in C and Brownian motion B , there exists a
unique solution X\in S of equation (3.6) with (3.7). In fact X is the real
stationary Gaussian process given by (3.8) with lJ =L^{-1}(\alpha, \rho)\in N^{10} .

Proof Suppose that X\in S is a solution of (3.6) with (3.7). Then
P_{DB}X=X and, by Lemma 2.4, X is stationarily correlated with DB .
Thus, by Theorem 2.1, X( \phi)=\int_{-\infty}^{\infty}\hat{\phi}(\xi)g(\xi)dZ_{DB}(\xi) with some g\in L^{2}((1+

\xi^{2})^{-k}d\xi) , k\in \mathbb{N}\cup\{0\} . By Proposition 2.3,

0=||DX(\phi)+(K_{\rho}*DX)(\phi)-\alpha DB(\phi)||^{2}
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= \frac{1}{2\pi}\int_{-\infty}^{\infty}|\hat{\phi}(\xi)|^{2} |\{-i\xi-i\xi F_{\rho}(\xi)\}g(\xi)-\alpha|^{2}d\xi ,

so that g(\xi)=\alpha\{-i\xi-i\xi F_{\rho}(\xi)\}^{-1}=(2\pi)^{-1/2}F_{\nu}(\xi) with \nu=L^{-1}(\alpha, \rho) .
Hence X is equal to the stationary Gaussian process given by (3.8). \square

Remark 3.5. Let \alpha>0 and \rho\in M . If m_{-1}(\rho)<\infty , then there is no
solution X\in S of (3.6) with (3.7). If \rho\in M^{1}\backslash C , then there is a unique
solution X\in S of (3.6) with (3.7) but it is not a process. Therefore there
exists a stationary process X which satisfies (3.6) and (3.7) if and only if
\rho\in C . Since these facts are not used in this paper, we omit the proof.

The definition of C is rather indirect. So we give the following simple
criteria for \rho\in M to be in C .

Theorem 3.6 Let l\in \mathcal{R}_{0} , \rho\in M and \gamma=K_{\rho} .
(1) If \int^{\infty}l(s)ds/s<\infty and \gamma\in\Pi_{l} with index-1, then \rho\in C .
(2) If \gamma(t)\sim t^{-q}l(t) as tarrow\infty for q\in(0,1/2) , then \rho\in C .
(3) Suppose that \gamma(t)\sim t^{-1/2}l(t) as tarrow\infty . Then \rho\in C holds if and

only if \int^{\infty}l(s)^{-2}ds/s<\infty .
(4) If \gamma(t)\sim t^{-q}l(t) as tarrow\infty for q\in(1/2, \infty) , then \rho\not\in C .

The proof of Theorem 3.6 will be given in section 6.

Example 3.7. For 0<q<1 and \rho=\lambda^{q-1}d\lambda/\Gamma(q)\in M . we have K_{\rho}(t)=

t^{-q} for t>0 . Hence, by Theorem 3.6, \rho\in C if and only if 0<q<1/2 .

The next theorem follows easily from Theorem 3.4.

Theorem 3.8 Let X be the solution of Theorem 3.4. We define lJ \in N^{10}

and \sigma\in\Sigma^{10} by lJ =L^{-1}(\alpha, \rho) and \sigma=T(l/) , respectively. Then
(1) B is the canonical Brownian motion of X,\cdot

(2) R=R_{\sigma} , h= \frac{1}{2\pi}F_{\mathfrak{l}J} , E=K_{\nu} ; in particular

\int_{0}^{\infty}R(t)dt=\int_{0}^{\infty}E(t)dt=\infty ;

(3) h(iy)= \frac{\alpha}{(2\pi)^{1/2}} \frac{1}{y+y\int_{0}^{\infty}e^{-yt}K_{\rho}(t)dt} for y>0 .

If we are given X first, then we have the following theorem.

Theorem 3.9 For \sigma\in\Sigma^{10} , let X be a stationary Gaussian process such
that R=R_{\sigma} . Then for (\alpha, \rho)=L(T^{-1}(\sigma))\in(0, \infty)\cross C and the canonical
Brownian motion B of X , X is a solution of (3.6) with (3.7).
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Proof. By Theorem 3.2, X is in the form (3.8) with lJ =T^{-1}(\sigma) . There-
fore the theorem follows immediately from Theorem 3.4. \square

If we omit the condition (3.7), then the uniqueness of a solution does
not hold. More precisely we have the following theorem.

Theorem 3.10 Let X be the solution of Theorem 3.4. Then Y\in S is a

solution of (3.6) if and only if Y=X+a, where a is an arbitrary element
of H perpendicular to M(DB) .

Proof. Suppose that Y\in S is a solution of (3.6). We set Y_{1}=P_{DB}Y

Then, by Lemma 2.4 and Theorem 2.1, we have Y_{1}\in S . Now P_{DB}(K_{\rho}*

DY)=K_{\rho}*DY_{1} because

\{P_{DB}(K_{\rho}*DY)\}(\phi)

=p_{DB}(1.i.mMarrow\infty. \int_{0}^{M}K_{\rho}(s)DY(\tau_{s}\phi)ds)

=
Marrow\infty 1.i.m. \int_{0}^{M}K_{\rho}(s)DY_{1}(\tau_{s}\phi)ds=(K_{\rho}*DY_{1})(\phi) .

Therefore Y_{1} is also a solution of (3.6), and so by Theorem 3.4 is equal to
X We set Y_{2}=Y-Y_{1} . Then it is easy to show that Y_{2}\in S . Since Y and
Y_{1} are both solutions of (3.6), Y_{2} satisfies DY_{2}+K_{\rho}*DY_{2}=0 . Therefore,
by Lemma 2.5, Y_{2}=a with a\perp M(DB) . \square

In the theorem above, X+a is purely non-deterministic if and only if
a=0. Hence we have the following corollary.

Corollary 3.11 A purely non-deterministic solution X\in S of (3.6) is
unique, and is equal to the solution of (3.6) with (3.7).

Now we turn to the original first KMO-Langevin equation (1.1). In
[O4, Theorem 4.2], Okabe showed the unique existence of a solution for
(1.1) in the class of reflection positive, stationary Gaussian processes such
that m_{-1}(\sigma)<\infty , m_{1}(\sigma)<\infty . If we put the following interpretation

DX=-\beta X-K_{\rho}*DX+\alpha DB (3.8)

on equation (1.1), then we are naturally led to the question of showing the
uniqueness of a solution in a larger class –the class S . Here is a refinement
of [O4, Theorem 4.2].
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Theorem 3.12 For \alpha>0 , \beta>0 , \rho\in M and Brownian motion B , (3.9)
has a unique solution X\in S .

The solution of Theorem 3.12 is equal to the solution of [04, Theorem
4.2], whence it is a reflection positive, stationary Gaussian process such
that m_{-1}(\sigma)<\infty , m_{1}(\sigma)<\infty . We remark that, in contrast with (3.6),
the uniqueness of a solution for equation (3.9) follows without the causality
condition (3.7). The proof of Theorem 3.12 is almost the same as that of
Theorem 3.10. We only note that the following lemma plays the same role
as Lemma 2.5.

Lemma 3.13 If \beta>0 , \rho\in M and X\in S , then X is a solution of
DX+\beta X+K_{\rho}*DX=0 if and only if X=0 .

4. Characterization by outer functions

We start the proof of Theorem 1.1. The goal of this section is the
following theorem, which characterizes correlation functions satisfying (1.7)
with 0<p<1 in terms of outer functions.

Theorem 4.1 Let 0<p<1 , l\in \mathcal{R}_{0} , X be a real, purely nondeterminis-
tic, stationary process. Suppose that the canonical representation kernel E
of X is non-increasing on (0, \infty) . Then the following are equivalent:

R(t)\sim t^{-p}l(t) (tarrow\infty) , (4.1)

h(iy)\sim\{y^{-(1-p)}l(1/y)\Gamma(1-p)\pi^{-1}\sin(\pi p/2)\}^{1/2} (yarrow 0+) , (4.2)

E(t)\sim\{t^{-(1+p)}l(t)2\pi B((1-p)/2, p)^{-1}\}^{-1/2} (tarrow\infty) . (4.3)

We begin by recalling the theorem of Pitman [P], and Soni and Soni
[SS]. In our context, this theorem is stated as follows.

Theorem 4.2 ([P], [SS]). Let 0<p<1 , and l\in \mathcal{R}_{0} . Let X be a real sta-
tionary process. Assume that R is non-increasing on (0, \infty) , \lim_{tarrow\infty}R(t)=

0 . Then (4.1) is equivalent to

\triangle(\xi)\sim\xi^{-(1-p)}l(1/\xi)\Gamma(1-p)\pi^{-1}\sin(\pi p/2) (\xiarrow 0+) . (4.4)

See also [BGT, Theorem 4.10.3]. Note that, in Theorem 4.2, we do not
need to a priori assume the existence of a spectral density \triangle . In fact, we
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have

\triangle(\xi)=\frac{1}{\pi}\int_{0}^{\infty-}R(t) cos \xi tdt (\xi\in \mathbb{R}\backslash \{0\}) ,

where \int_{0}^{\infty-} denotes an improper integral \lim_{Marrow\infty}\int_{0}^{M} See [13, Proposition
5.1].

The next proposition will be used in the proof of the implication (4.3)\Rightarrow
(4.1).

Proposition 4.3 Let q<1<p+q , and l_{1} , l_{2}\in \mathcal{R}_{0} . Let g be locally
integrable on [0, \infty) , and let f be measurable on (0, \infty) . Suppose f(t)\sim
t^{-p}l_{1}(t) as t – \infty , and g(t)\sim t^{-q}l_{2}(t) as t – \infty . Then f(t+\cdot)g(\cdot) is
integrable on (0, \infty) for sufficiently large t , and U(t):= \int_{0}^{\infty}f(t+s)g(s)ds

satisfies
U(t)\sim t^{-(p+q-1)}l_{1}(t)l_{2}(t)B(p+q-1, 1-q) (t -\infty) .

Proo/. If f(t)\sim t^{-p}l_{1}(t) and g(t)\sim t^{-q}l_{2}(t) as t – \infty , then \int_{X}^{\infty}|f(t+

s)g(s)|ds<\infty for sufficiently large X . Since p>0 , we have \sup_{0<s<\infty}|f(t+

s)|<\infty for sufficiently large t , and so \int_{0}^{X}|f(t+s)g(s)|ds<\infty . Thus U(t)
exists for any t large enough. By [BGT, Corollary 1.4.2], we may choose
M so large that, on [M, \infty) , both f and g are positive, and g is locally
bounded. If we set g_{1}(s)=1 on (0, M) , and =g(s) on [M, \infty) , then

U(t)= \int_{0}^{M}f(t+s)\{g(s)-1\}ds+\int_{0}^{\infty}f(t+s)g_{1}(s)ds .

If t is large enough, then by the Uniform Convergence Theorem (e.g., [BGT,
Theorem 1.5.2]) |f(t+s)/f(t)|\leq 2 for s\in[0, M] . Moreover, \lim_{tarrow\infty}tg(t)=

\infty since 1-q>0 . Thus

\lim_{tarrow\infty}\frac{1}{tf(t)g(t)}\int_{0}^{M}f(t+s)\{g(s)-1\}ds=0 .

Therefore in order to prove the proposition, we may assume that, in [0, \infty) ,
f and g are both positive, and g is locally bounded; this reduction enables
us to apply [BGT, Theorem 1.5.2] in the next step.

Choose \delta(i)(i=1,2,3) so that \max(0, q)<\delta(1)<1 , \delta(2)<p , \delta(3)<

q , and 1<\delta(2)+\delta(3) . Set F_{1}(u)=u^{p}f(u) , G_{1}(u)=u^{\delta(1)}g(u) , F_{2}(u)=
u^{\delta(2)}f(u) , and G_{2}(u)=u^{\delta(3)}g(u) . Then G_{1} is locally bounded on [0, \infty) .
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Now U(t)/\{tf(t)g(t)\}=C(t)+D(t) , where

C(t)= \int_{0}^{1}\frac{F_{1}(t(u+1))}{F_{1}(t)} \frac{G_{1}(tu)}{G_{1}(t)} \frac{1}{(u+1)^{p}u^{\delta(1)}} du,

D(t)= \int_{1}^{\infty}\frac{F_{2}(t(u+1))}{F_{2}(t)} \frac{G_{2}(tu)}{G_{2}(t)} \frac{1}{(u+1)^{\delta(2)}u^{\delta(3)}} du.

In C(t) , by [BGT, Theorem 1.5.2], F_{1}(t(u+1))/F_{1}(t) converges to 1 as
tarrow\infty , and G_{1}(tu)/G_{1}(t) to u^{\delta(1)-q} , both uniformly in u\in(0,1) . Therefore
C(t) converges to \int_{0}^{1}(u+1)^{-p}u^{-q}du as tarrow\infty . In the same way, by [BGT,
Theorem 1.5.2], D(t) converges to \int_{1}^{\infty}(u+1)^{-p}u^{-q}du as tarrow\infty . Thus we
obtain

\lim_{tarrow\infty}\frac{U(t)}{tf(t)g(t)}=\int_{0}^{\infty}\frac{1}{(u+1)^{p}u^{q}}du=B(p+q-1,1-q) ,

hence the theorem follows. \square

The next theorem is a key to prove Theorem 4.1.

Theorem 4.4 Let l\in \mathcal{R}_{0} and p\in \mathbb{R} . Let f be a positive, even and
measurable function on \mathbb{R} such that {log f(\xi) } /(1+\xi^{2}) is integrable on \mathbb{R} .
Suppose f(\xi)\sim\xi^{p}l(1/\xi) as \xiarrow 0+ . Then

exp \{\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{y}{y^{2}+\xi^{2}} log f(\xi)d\xi\}\sim y^{p}l(1/y) (yarrow 0+) .

Proof. If we put

L(x)=x^{p}f(1/x) (x>0) ,

then L is slowly varying and {log L(1/|\xi|) } /(1+\xi^{2}) is integrable on \mathbb{R} . The
Representation Theorem (e.g. , [BGT, Theorem 1.3.1]) yields

log L(x)= \eta(x)+\int_{a}^{x}\epsilon(u)du/u (x\geq a) (4.5)

for some a>0 , where \eta(x) , \epsilon(x) are bounded and measurable on [a, \infty) ,
\eta(x)arrow c\in \mathbb{R} , \epsilon(x)arrow 0 as xarrow\infty . On taking \eta(x)=\log L(x) , \epsilon(x)\equiv 0 on
(0, a) , (4.5) holds for x>0;\epsilon is bounded on (0, \infty) again, but \eta may not
be so. As for \eta , we have the estimate

\int_{-\infty}^{\infty}\frac{|\eta(1/|\xi|)|}{1+\xi^{2}}d\xi\leq 2\sup_{x\geq a}|\eta(x)| \int_{0}^{1/a}\frac{1}{1+\xi^{2}}d\xi
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+2 \int_{1/a}^{\infty}\frac{|\log L(1/\xi)|}{1+\xi^{2}}d\xi<\infty .

For y>0 , making use of the change of variables t=\xi/y , s=yu as
well as the identity

\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{y}{y^{2}+\xi^{2}}\log|\xi|d\xi=\log y ,

we are led to

\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{y}{y^{2}+\xi^{2}} log f(\xi)d\xi- log f(y)=I_{1}(y)+I_{2}(y) , (4.6)

where

I_{1}(y)=\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{y}{y^{2}+\xi^{2}}\eta(1/|\xi|)d\xi-\eta(1/y) ,

I_{2}(y)=\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{1}{1+t^{2}}\{\int_{1}^{1/|t|}\epsilon(s/y)ds/s\}dt .

We claim that I_{1}(y) and I_{2}(y) both converge to 0 as yarrow 0+ . In fact, since
\eta(1/|\xi|)/(1+\xi^{2}) is integrable on 1R and \eta(1/|\xi|)arrow c as \xiarrow 0 , the well
known property of Poisson integral yields I_{1}(y)arrow 0 as yarrow 0+ . As for I_{2} ,
the dominated convergence theorem shows I_{2}(y) –0 as yarrow 0+because
we have

|(1+t^{2})^{-1} \int_{1}^{1/|t|}\epsilon(s/y)ds/s|\leq\sup_{x>0}|\epsilon(x)| \frac{|1og|t||}{1+t^{2}} .

Thus the left-hand side of (4.6) converges to 0 as yarrow 0+ , whence

exp \{\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{y}{y^{2}+\xi^{2}} log f(\xi)d\xi\}\sim f(y)\sim y^{p}l(1/y) (yarrow 0+) ,

and the theorem follows. \square

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Since E is non-increasing and square integrable on
(0, \infty) , E(t) is non-negative and tends to zero as t – \infty . So by (3.2) and
the monotone convergence theorem, R(t) is also non-increasing and tends
to zero as tarrow\infty . Since \triangle is even, by a simple calculation we have

h(iy)= \exp\{\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{y}{y^{2}+\xi^{2}} log \triangle(\xi)d\xi\} (y>0) .
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Therefore, by Theorems 4.2 and 4.4, (4.1) implies (4.2). By (3.1),

h(iy)= \frac{1}{2\pi}\int_{0}^{\infty}e^{-yt}E(t)dt (y>0) ,

so that by Karamata’s Tauberian Theorem (e.g., [BGT, Theorem 1.7.6])
(4.2) implies (4.3). Finally that (4.3) implies (4.1) follows immediately
from Proposition 4.3. \square

5. Boundary cases

In this section, we consider the boundary cases which correspond to p=
0,1 in Theorem 4.1. These are delicate cases in which slowly varying parts
become important. The goal of this section is the following two theorems.

Theorem 5.1 Let l\in \mathcal{R}_{0} such that \int^{\infty}l(s)ds/s<\infty . Let \sigma\in\Sigma^{1} , and
let X be a real stationary process such that R=R_{\sigma} . Then the following are
equivalent:

(1) R\in\Pi_{l} with index -1,
(2) \triangle(\xi)\sim\xi^{-1}l(1/\xi)2^{-1} as \xiarrow 0+ ,
(3) h(iy)\sim\{y^{-1}l(1/y)2^{-1}\}^{1/2} as y – 0+ ,
(4) E(t)\sim\{t^{-1}l(t)2\pi\}^{1/2} as tarrow\infty .

Theorem 5.2 Let X be as in Theorem 5.1. Let l\in \mathcal{R}_{0} such that
\int^{\infty}l(s)ds/s=\infty . Then the following are equivalent:

(1) R(t)\sim t^{-1}l(t) as t – \infty ,
(2) \triangle(1/\cdot)\in\Pi_{l} with index \pi^{-1} ,
(3) h(i/\cdot)\in\Pi_{l_{1}} with index 1, where l_{1}(t)=l(t)\overline{l}(t)^{-1/2}2^{-1}\pi^{-1/2} ,
(4) E(t)\sim t^{-1}l(t)\overline{l}(t)^{-1/2}\pi^{1/2} as tarrow\infty .

We may regard Theorem 5.1 (resp. Theorem 5.2) as corresponding to
the boundary case p=0 (resp. p=1) of Theorem 4.1 with Theorem 4.2.
We remark that the assertion (1)\Leftrightarrow(2) of Theorem 5.2 holds more generally
(see [13]).

Let \sigma , R , \triangle , h and E be as in Theorem 5.1. We set g(y)=h(iy) for
y>0 , and define lJ \in N^{1} by \nu=S^{-1}(\sigma) . Then we have the following
integral representations: R=R_{\sigma} , E=K_{\nu} , g(y)=(2\pi)^{-1}F_{\nu}(iy) for y>0 ,
and

\triangle(\xi)=\frac{1}{\pi}\int_{0}^{\infty}\frac{\lambda}{\lambda^{2}+\xi^{2}}d\sigma(\lambda) (\xi\in \mathbb{R}) .
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See \S 3 as well as [12]. By these representations, R , \triangle , g and E are all of
C^{\infty}(0, \infty) class. In particular,

\triangle(1/x)=\triangle(1)+\int_{1}^{x}\{-\triangle. (1/u)u^{-2}\}du (x\geq 1) ,

g(1/x)=g(1)+ \int_{1}^{x}\{-\dot{g}(1/u)u^{-2}\}du (x\geq 1) .

Proof of Theorem 5.1. Suppose (1) holds. Then by the monotone density
theorem of de Haan [H] (see also [BGT, Theorem 3.6.8]) -\dot{R}(t)\sim t^{-1}l(t)

as tarrow\infty . By the representation R=R_{\sigma} , we have -\dot{R}(t)\downarrow 0 as t – \infty .
Moreover \dot{R} is locally integrable on [0, \infty) because for M>0 ,

\int_{0}^{M}(-\dot{R}(t))dt=\lim_{\epsilonarrow 0+}\int_{\epsilon}^{M} (-\dot{R}(t))dt

= \lim_{\epsilonarrow 0+}(R(\epsilon)-R(M))=R(0)-R(M) .

Hence integration by parts yields

\triangle(\xi)=(\pi\xi)^{-1}\int_{0}^{\infty-}\{-\dot{R}(t)\} sin t\xi dt (\xi>0) .

So by [P, Theorem 1] we obtain (2). By Theorem 4.4, (2) implies (3), while,
by Karamata’s Tauberian Theorem, (3) implies (4). Finally suppose (4)
holds. By the representation E=K_{\nu} , we can justify the equality

- \dot{R}(t)=(2\pi)^{-1}\int_{0}^{\infty}\{-\dot{E}(t+s)\}E(s)ds (t>0) .

For let t\in(a, \infty) , a>0 and s>0 . Then

- \dot{E}(t+s)=\int_{0}^{\infty}\lambda e^{-(t+s)\lambda}d\nu(\lambda)\leq\sup_{0<\lambda<\infty}(\lambda e^{-a\lambda}) E(s) ,

yielding the equality above. By the Monotone Density Theorem, we have
-\dot{E}(t)\sim\{t^{-3}l(t)2^{-1}\pi\}^{1/2} as tarrow\infty . Therefore by Proposition 4.3, -\dot{R}(t)\sim

t^{-1}l(t) as tarrow\infty , hence (1). This completes the proof. \square

Proof of Theorem 5.2. Suppose (1) holds. Then by [P, Theorem 7 (iii)],

\triangle(1/x)-\frac{1}{\pi}\int_{0}^{x}R(t)dt\sim-\frac{\gamma}{\pi}l(x) (xarrow\infty) ,

where \gamma is Euler’s constant. Since the function \int_{0}^{t}R(s)ds in t is in \Pi_{l} with
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index 1, we have for any \lambda\geq 1 ,

\frac{\triangle(1/\lambda x)-\triangle(1/x)}{l(x)}

= \frac{\triangle(1/\lambda x)-\pi^{-1}\int_{0}^{\lambda x}R(t)dt}{l(x)}+\frac{\int_{0}^{\lambda x}R(t)dt-\int_{0}^{x}R(t)dt}{\pi l(x)}

- \frac{\triangle(1/x)-\pi^{-1}\int_{0}^{x}R(t)dt}{l(x)}arrow\pi^{-1}\log\lambda (xarrow\infty) ,

hence (2).
Next suppose (2) holds. By the representation

-\triangle

.
( \xi)=\frac{2\xi}{\pi}\int_{0}^{\infty}\frac{\lambda}{(\lambda^{2}+\xi^{2})^{2}}d\sigma(\lambda) (\xi>0) , (5.1)

log \{-\triangle. (1/x)x^{-2}.\} is slowly decreasing on (0, \infty) . Therefore by [BGT, The-
orem 3.6.10] -\triangle(\xi)\sim\xi^{-1}l(1/\xi)\pi^{-1} as \xi – 0+ , and so \triangle(\xi)\sim\overline{l}(1/\xi)\pi^{-1}

as \xiarrow 0+ . By (5.1) we have

|\triangle

.
(\xi)/\triangle(\xi)|\leq 2\xi^{-1} (\xi>0) . (5.2)

Hence if we set

A(y)= \frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{y}{y^{2}+\xi^{2}} log \triangle(\xi)d\xi (y>0) ,

then -\dot{g}(y)=B(y) exp A(y) for y>0 , where

B(y)= \frac{1}{\pi}\int_{0}^{\infty}\frac{u}{1+u^{2}} \frac{\{-\triangle(yu)\}}{\triangle(yu)}

.
du (y>0) .

By Theorem 4.4, exp A(y)\sim\overline{l}(1/y)^{1/2}\pi^{-1/2} as yarrow 0+ . Now we set

f(x)=-\triangle
.

(1/x)/\{x\triangle(1/x)\} (x>0) .

Then f(x)\sim l(x)\overline{l}(x)^{-1} as x – \infty . Moreover, by (5.2), x^{1/2}f(x) is locally
bounded in [0, \infty) . Therefore by the Uniform Convergence Theorem,

\frac{\pi yB(y)}{f(1/y)}=\int_{0}^{1}\frac{1}{(1+\xi^{2})\xi^{1/2}} \frac{(\xi/y)^{1/2}f(\xi/y)}{(1/y)^{1/2}f(1/y)}d\xi

+ \int_{1}^{\infty}\frac{\xi^{1/2}}{1+\xi^{2}} \frac{(\xi/y)^{-1/2}f(\xi/y)}{(1/y)^{-1/2}f(1/y)}d\xi

arrow\int_{0}^{\infty}\frac{1}{1+\xi^{2}}d\xi=\frac{\pi}{2} (yarrow 0+) ,
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whence

-\dot{g}(1/x)x^{-2}\sim x^{-1}l(x)\overline{l}(x)^{-1/2}2^{-1}\pi^{-1/2} (xarrow\infty) . (5.3)

Now by the representation

- \dot{g}(y)=(2\pi)^{-1}\int_{0}^{\infty}\frac{1}{(y+\lambda)^{2}}d\nu(\lambda) (y>0) ,

\log\{-\dot{g}(1/x)x^{-2}\} is slowly decreasing on (0, \infty) . Therefore by [BGT, The-
orem 3.6.10] we get (3).

Conversely, if (3) holds, then (5.3) holds. Therefore

\int_{0}^{\infty}e^{-yt}tE(t)dt\sim y^{-1}l(1/y)\overline{l}(1/y)^{-1/2}\pi^{1/2} (y - 0+) .

Since \log tE(t) is slowly increasing, we obtain (4) by Karamata’s Tauberian
Theorem.

Finally suppose (4) holds. Then \int_{0}^{t}E(u)du\sim\overline{l}(t)^{1/2}2\pi^{1/2} as t – \infty .
In particular, \lim_{sarrow\infty}E(t+s)\int_{0}^{s}E(u)du=0 for any t>0 . Therefore by
integration by parts we have

R(t)= \frac{1}{2\pi}\int_{0}^{\infty}\{\int_{0}^{s}E(u)du\}\{-\dot{E}(t+s)\}ds (t>0) .

By the Monotone Density Theorem, -\dot{E}(t)\sim t^{-2}l(t)\overline{l}(t)^{-1/2}\pi^{1/2} as tarrow\infty .
Hence (1) by Proposition 4.3. \square

Remark 5.3. In Theorem 4.1, we assumed only the monotonicity of E ,
not the reflection positivity of X . The question thus arises of extending
Theorems 5.1 and 5.2 to this more general setting.

6. Proof of Theorem 1.1

We complete the proof of Theorem 1.1. We also prove Theorems 1.2
and 3.6 in this section.

If f:_{f}(0, \infty) – (0, \infty) is measurable, we define its Laplace-Stieltjes
transform

\check{f}(y):=y\int_{0}^{\infty}e^{-ty}f(t)dt .

If f is non-decreasing, right-continuous, and f(0+)=0, then we have
\check{f}(y)=\int_{[0,\infty)}e^{-ty}df(t) . In addition to the original Abel-Tauber Theorem of
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de Haan [H] (see also [BGT, Theorem 3.9.1]), we need the following variant.

Theorem 6.1 (de Haan’s Abel-Tauber Theorem; a variant). Let c>
0 and l\in \mathcal{R}_{0} . Let f be a positive, non-increasing and right-continuous
function on (0, \infty) . We assume that f is locally integrable on [0, \infty) . Then
f\in\Pi_{l} with index- c if and only if \check{f}(1/\cdot)\in\Pi_{l} with index-c .

Though Theorem 6.1 is a special case of the results of Bingham and
Teugels [BT], we prove it for the reader’s convenience.

Proof of Theorem 6.1. We set g(t)=0 on (0, 1) and =f(1)-f(t) on
[1, \infty) . Then f\in\Pi_{l} with index -c if and only if g\in\Pi_{l} with index c .
Since g is bounded, non-decreasing, right-continuous and g(0+)=0, by de
Haan’s Abel-Tauber Theorem g\in\Pi_{l} with index c if and only if \check{g}(1/\cdot)\in\Pi_{l}

with index c . By integration by parts we have

\check{f}(y)=e^{-y}f(1)+x\int_{0}^{1}e^{-ty}f(t)dt-\check{g}(y) (y>0) .

Since (e^{-1/x}-e^{-1/\lambda x})/l(x) –0 as xarrow\infty for any \lambda\geq 1.\check{g}(1/\cdot)\in\Pi_{l} with
index c if and only if \check{f}(1/\cdot)\in\Pi_{l} with index -c. Thus the theorem follows.

\square

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let h be the outer function of X . We set g(y)=
h(iy) for y>0 . Then by Theorem 3.8 (3) we have

g(y)=\alpha(2\pi)^{-1/2}\{y+\check{\gamma}(y)\}^{-1} (y>0) . (6.1)

By Karamata’s Tauberian Theorem, for any q\in(0,1/2] and l\in \mathcal{R}_{0} ,
\gamma(t)\sim t^{-q}l(t) as tarrow\infty if and only if g(y)\sim y^{-q}l(1/y)^{-1}\alpha(2\pi)^{-1/2}\Gamma(1-

q)^{-1} as y – 0+ . Therefore (1) (resp. (2)) follows immediately from Theorem
4.1 (resp. Theorem 5.1).

We turn to the assertion (3). Let l\in \mathcal{R}_{0} such that \int^{\infty}l(s)ds/s<\infty .
If we set l_{1}(t)=l(t)\overline{l}(t)^{-3}\alpha^{2} , then l_{1}(t)\overline{l_{1}}(t)^{-1/2}2^{-1}\pi^{-1/2}\sim l_{2}(t) as tarrow\infty ,
where

l_{2}(t)=l(t)\overline{l}(t)^{-2}\alpha(2\pi)^{-1/2}

Therefore, by Theorem 5.2, R(t)\sim t^{-1}l(t)\overline{l}(t)^{-3}\alpha^{2} as tarrow\infty if and only if
g(1/\cdot)\in\Pi_{l_{2}} with index 1. Suppose \gamma\in\Pi_{l} with -1. Then Theorem 6.1
yields \check{\gamma}(1/\cdot)\in\Pi_{l} with index -1. Since \gamma(t)=\int_{t}^{\infty}\{-\dot{\gamma}(s)\}ds for t>0 , the
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monotone density theorem of de Haan implies \gamma(t)\sim\overline{l}(t) as tarrow\infty , hence
\check{\gamma}(1/x)\sim\overline{l}(x) as xarrow\infty . Therefore by (6.1) we have for any \lambda\geq 1 ,

\frac{g(1/\lambda x)-g(1/x)}{l_{2}(x)}

=- \frac{\overline{l}(x)}{\{(1/\lambda x)+\check{\gamma}(1/\lambda x)\}} \frac{\overline{l}(x)}{\{(1/x)+\check{\gamma}(1/x)\}}

\cross\frac{1}{l(x)}[(\lambda^{-1}-1)x^{-1}+\{\check{\gamma}(1/\lambda x)-\check{\gamma}(1/x)\}]

arrow log \lambda (xarrow\infty) ,

hence g(1/\cdot)\in\Pi_{l_{2}} with index 1. Conversely, suppose g(1/\cdot)\in\Pi_{l_{2}} with
index 1. Then as in the proof of Theorem 5.2, [BGT, Theorem 3.6.10]
yields g(1/x)\sim\overline{l_{2}}(x)\sim\overline{l}(x)^{-1}\alpha(2\pi)^{-1/2} as xarrow\infty . Therefore by (6.1) we
have for any \lambda\geq 1 ,

\frac{\check{\gamma}(1/\lambda x)-\check{\gamma}(1/x)}{l(x)}

=- \frac{\alpha^{2}}{2\pi}
\frac{1}{g(1/\lambda x)g(1/x)\overline{l}(x)^{2}} \frac{g(1/\lambda x)-g(1/x)}{l_{2}(x)}

-(\lambda^{-1}-1)/\{xl(x)\}arrow- log \lambda (xarrow\infty) ,

hence, by Theorem 6.1, \gamma\in\Pi_{l} with index -1. Thus (3) follows. \square

Proof of Theorem 1.2. Let E be the canonical representation kernel of X .
We set F(t)= \int_{0}^{t}E(s)ds for t\geq 0 . Then \check{F}(y)=\int_{0}^{\infty}e^{-yt}E(t)dt , and so by
[Ol, Theorem 2.2],

\check{F}(y)=\alpha(2\pi)^{1/2}\{\beta+y+\check{\gamma}(y)\}^{-1} (y>0) .

We set c=\alpha\beta^{-2}(2\pi)^{1/2} . Then in the same way as the proof of Theorem
1.1, \gamma\in\Pi_{l} with index -1 if and only if \check{F}(1/\cdot)\in\Pi_{l} with index c . By
de Haan’s Abel-Tauber Theorem, \check{F}(1/\cdot)\in\Pi_{l} with index c if and only if
F\in\Pi_{l} with index c , which, by the monotone density theorem of de Haan,
is equivalent to

E(t)\sim ct^{-1}l(t) (tarrow\infty) . (6.2)
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Since \int_{0}^{\infty}E(t)dt=\alpha\beta^{-1}(2\pi)^{1/2} , Lemma 3.8 of [I1] implies that (6.2) is
equivalent to R(t)\sim t^{-1}l(t)\alpha^{2}\beta^{-3} as tarrow\infty . Thus the theorem follows.

\square

Proof of Theorem 3.6. If \gamma(t)\sim t^{-q}l(t) as t – \infty for q\in(1, \infty) , then
m_{-1}( \rho)=\int_{0}^{\infty}\gamma(t)dt<\infty , and so \rho\not\in M^{1} , which yields (4) with q\in

(1, \infty) . In the same way, if \gamma(t)\sim t^{-1}l(t) as t – \infty for l\in \mathcal{R}_{0} such that
\int^{\infty}l(s)ds/s<\infty , then \rho\not\in M^{1} . For any \rho\in M^{1} , we define 1/\in\Sigma^{1} by
lJ =L^{-1}(1, \rho) . For any \mu\in\Sigma^{1} , K_{\mu} is bounded, hence we have the equality

N^{10}=\{\mu\in\Sigma^{1} : K_{\mu}\in L^{2}[1, \infty)\} .

Therefore \rho\in C if and only if K_{\nu}\in L^{2}[1, \infty) . By the definition of L ,

\int_{0}^{\infty}e^{-yt}K_{\nu}(t)dt=(2\pi)^{1/2}\{y+\check{\gamma}(y)\}^{-1} (y>0) . (6.3)

If 0<q<1 and \gamma(t)\sim t^{-q}l(t) as tarrow\infty , then by Karamata’s Tauberian
Theorem K_{\nu}(t)\sim ct^{-(1-q)}l(t)^{-1} as t – \infty for some c>0 , hence (4) with
q\in(1/2,1) , (2) and (3). We set g(y)=(2 \pi)^{-1}\int_{0}^{\infty}e^{-yt}K_{\nu}(t)dt for y>0 .
If \int^{\infty}l(s)ds/s<\infty and \gamma\in\Pi_{l} with index -1, then, as in the proof of
theorem 1.1, g(1/\cdot)\in\Pi_{l_{2}} for some l_{2}\in \mathcal{R}_{0} , so that K_{\nu}(t)\sim ct^{-1}l_{2}(t) as
t – \infty for some c>0 . Thus (1) follows. Finally suppose \gamma(t)\sim t^{-1}l(t) as
t – \infty for l\in \mathcal{R}_{0} such that \int^{\infty}l(s)ds/s=\infty . If we set f(t)= \int_{0}^{t}\gamma(s)ds

for t\geq 0 , then by (6.3)

\check{K}_{\nu}(y)=(2\pi)^{1/2}\{1+\check{f}(y)\}^{-1} (y>0) .

In the same way as the proof of Theorem 1.1, we have \check{K}_{\nu}(1/\cdot)\in\Pi_{l_{1}}

with index -1, where l_{1}(t)=l(t)\overline{l}(t)^{-2}(2\pi)^{1/2} , which by Theorem 6.1 is
equivalent to K_{\nu}\in\Pi_{l_{1}} with index -1. Therefore K_{\nu}(t)\sim\overline{l}(t)^{-1}(2\pi)^{1/2} ,
hence (4). \square
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