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On the spectrum of Dirac operators with the
unbounded potential at infinity
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Abstract. In this paper we investigate the spectra of Dirac operators

H= \sum_{j=1}^{3}\alpha_{j}D_{j}+p(x)\beta+q(x)I_{4}

in the Hilbert space [L^{2}(R^{3})]^{4} . We show mainly that if |p(x)|arrow\infty , q(x)=o(p(x))
as |x|arrow\infty , then the spectrum of H is purely discrete in the whole line R, and if
p(x)\equiv q(x)arrow\infty as |x|arrow\infty , then the spectrum of H is purely discrete in the half
line R^{+} .
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1. Introduction and Results

In this paper we consider the following type of Dirac operators

L= \sum_{j=1}^{3}\alpha_{j}D_{j}+p(x)\beta+q(x)I_{4} , x\in R^{3} . D_{j}=-i \frac{\partial}{\partial x_{j}} ,

on H =[L^{2}(R^{3})]^{4} , where p(x) and q(x) are real-valued continuous functions,
and

\alpha_{j}=(\begin{array}{ll}0 \sigma_{j}\sigma_{j} 0\end{array}) (1\leq j\leq 3) , \beta=(\begin{array}{ll}I_{2} O0 -I_{2}\end{array}) . I_{4}=(\begin{array}{ll}I_{2} 00 I_{2}\end{array}) ,

\sigma_{1}=(\begin{array}{ll}0 11 0\end{array}) . \sigma_{2}=(\begin{array}{ll}0 -ii 0\end{array}) . \sigma_{3}=(\begin{array}{ll}1 00 -1\end{array}) , I_{2}=(\begin{array}{ll}1 00 1\end{array})

The matrices \alpha_{j}(1\leq j\leq 3) and \alpha_{4}=\beta are Hermitian symmetric matrices
satisfying the anti-commutation relations

\alpha_{j}\alpha_{k}+\alpha_{k}\alpha_{j}=2\delta_{jk}I_{4} (1\leq j, k\leq 4) . (1)
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The symmetric operator L defined on [C_{0}^{\infty}(R^{3})]^{4} is essentially selfadjoint
(see, e.g., J\"orgens [J]). We denote the unique selfadjoint realization by H .

Our interest here is to investigate the spectrum of the Dirac operator
H satisfying

|p(x)|arrow\infty , q(x)=o(p(x)) as |x|arrow\infty (2)

or

p(x)\equiv q(x)arrow\infty as |x|arrow\infty . (3)

Recently, the studies of Dirac operators satisfying (2) or (3) appear in
physical articles (see, e.g., Ikhdair-Mustafa-Sever [IMS], Jena-Tripati [JT],
Ram-Halasa [RH] ) . Although the numerical analysis of the eigenvalues is
studied there, it seems that the mathematical structure of the spectrum of
H is not written explicitely. Their potentials are of types

p(x)=a|x|^{2}+b , q(x)\equiv 0 in [RH],
p(x)\equiv q(x)=a|x|^{\iota/}+b(u=0.1) in [JT] and [IMS],
p(x)\equiv q(x)=a\log|x|+b in [IMS],

where a>0 and b are some real numbers.
If we assume that p(x)\equiv 1 and |q(x)|arrow\infty(|x|arrow\infty) , it is shown

by Titchmarsh [T] and Erd\’elyi [E] that the absolutely continuous spectrum
of H covers the whole line, and the singular spectrum of H is empty under
the condition that q(x)=q(|x|) is spherically symmetric and

\int_{R}^{+\infty}\frac{|q’(r)|}{q(r)^{2}}dr<\infty for some R>0

(see also Thaller [Th], Chapter 4 and Schmidt [Sc]). On the other hand,
if we assume (2) or (3), we have the different structure of spectrum of H,
which we will study in this paper.

Before we state our results, we explain some notations:
\sigma(H)=the spectrum of H, i.e., the complement of the resolvent set of H ,
\sigma_{p}(H)=the set of all the eigenvalues of H,
\sigma d(H)=the set of all the isolated eigenvalues of H with finite multiplicity,
\sigma_{ess}(H)=\sigma(H)\backslash \sigma_{d}(H) ,
R^{+}=(0, +\infty) , R^{-}=(-\infty, 0) .
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Our results are as follows;

Theorem 1 Assume that p(x)\in C^{1} and q(x)\in C^{1} satisfy the following
conditions:

(a-1) |p(x)|arrow\infty as |x|arrow\infty ,
(a-2) There exist positive constants Rand\in 0<1 such that

|q(x)|\leq\in 0|p(x)| (|x|\geq R) .

(a-3) |\nabla p(x)|=O(p(x)) , |\nabla q(x)|=O(p(x)) as |x|arrow\infty .
Then we have \sigma(H)=\sigma_{d}(H) .

Theorem 2 Assume that p(x)\equiv q(x)\in C^{0} satisfies
(b-1) q(x)arrow\infty as |x|arrow\infty .

Then we have \sigma(H)\cap R^{+}=\sigma_{d}(H) .

Concerning the negative spectrum of H under the assumption of The-
orem 2, we have a result for a class of potentials q(x)=O(|x|^{2}) at infinity,
as follows.

Proposition 3 Assume that p(x)\equiv q(x)\in C^{0} with the radial derivative
satisfies

(c-1) q(x)arrow\infty as |x|arrow\infty ,
(c-2) There are positive constants C , R and 1\leq\alpha\leq 2 such that

q(x)\leq C|x|^{\alpha} , \frac{2(\alpha-1)}{r}q(x)\leq\frac{\partial q}{\partial r} (|x|\geq R) ,

where r=|x| . Then we have R^{-}\subset\sigma_{ess}(H) and \sigma_{p}(H)\cap(R^{-}\cup\{0\})=\emptyset .

Theorem 1 will be proved in \S 2, and Theorem 2 in \S 3. The proof of
Proposition 3 and some remarks will be given in \S 4. In Theorems 1, 2 and
Proposition 3 we may allow some local singularities of p(x) and q(x) , which
we omit for the sake of simplicity.

Example. If q(x) is a positive homogeneous function of degree 0<\theta\leq 2 ,
then q(x) satisfies (c-1) and (c-2) with \alpha=1+(\theta/2) . q(x)=\log r satisfies
(c-1) and (c-2) with \alpha=1 .

2. Proof of Theorem 1

We prove under the assumption that the resolvent (H-i)^{-1} is a compact
operator in H =[L^{2}(R^{3})]^{4} . which yields Theorem 1. Let \{f_{n}\}_{n=1,2},\cdots be any
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bounded sequence in H , say, ||f_{n}||\leq C(n=1,2, \cdots) for a positive constant
C , where || || is the norm in H . Then we set

u_{n}=(H-i)^{-1}f_{n}\in H_{loc}^{1}:=[H_{loc}^{1}]^{4}n=1,2 ,

where H_{loc}^{1} is the local Sobolev space of all functions locally in the Sobolev
space H^{1} . The sequence \{u_{n}\}_{n=1,2},\cdots . clearly satisfies

||u_{n}||\leq||f_{n}||\leq C (n=1,2, \cdots) (4)

Let us put P(x)=\sqrt{p(x)^{2}-q(x)^{2}}(|x|\geq R) and P(x)=0(|x|\leq R) . We
show below that the sequence \{u_{n}\}_{n=1,2},\cdots is bounded in a Hilbert space

\gamma\{_{P}=\{g\in H|||g||_{P}^{2}:=||g||^{2}+||Pg||^{2}+\sum_{j=1}^{3}||D_{j}g||^{2}<\infty\}

with the inner product

(f, g)_{P}=(f, g)+(Pf, Pg)+ \sum_{j=1}^{3}(D_{j}f, D_{j}g) ,

where || || and ( , ) are the usual norm and the inner product in \prime H ,
respectively. The assumption (a-2) of Theorem 1 gives

P(x)^{2}=p(x)^{2}-q(x)^{2} \leq p(x)^{2}\leq\frac{1}{1-\in_{0}^{2}}P(x)^{2} (|x|\geq R) . (5)

which implies

H_{P}= \{g\in H|||g||^{2}+||pg||^{2}+\sum_{j=1}^{3}||D_{j}g||^{2}<\infty\} .

The sesquilinear forms (f, g)_{P} and (f, g) are also used for f\in[D’]^{4} and
g\in D^{4} , where D=C_{0}^{\infty}(R^{3}) and D’ is the space of distributions on R^{3} .

Operating \vec{\alpha}\cdot\vec{D}=\sum_{j=1}^{3}\alpha_{j}D_{j} to

(\vec{\alpha}(\vec{D})u_{n}+p(x)\beta u_{n}+q(x)u_{n}-iu_{n}=f_{n}

and using the anti-commutation relation (1) we have

-\triangle u_{n}+[p(x)^{2}-q(x)^{2}+1]u_{n}+[2iq(x)+(\vec{\alpha}\cdot\vec{D}p)\beta+(\vec{\alpha}\cdot\vec{D}q)]u_{n}

=(\vec{\alpha}\cdot\vec{D})f_{n}+[p(x)\beta-q(x)+i]f_{n} . (6)
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Take a C^{\infty} function \gamma(x) such that \gamma(x)=1 (|x|\geq R+1) and \gamma(x)=

0(|x|\leq R) . For any \psi\in D^{4} we have

(\gamma u_{n}, \psi)_{P}=(-\triangle(\gamma u_{n})+[1+P(x)^{2}](\gamma u_{n}), \psi)

=(-(\triangle\gamma)u_{n}-2\vec{\nabla}\gamma\vec{\nabla}u_{n}-\gamma\triangle u_{n}

+[1+P(x)^{2}](\gamma u_{n}) , \psi) ,

and, by using (6),

(\gamma u_{n}, \psi)_{P}=-(u_{n}, (\triangle\gamma)\psi)+2(u_{n},\vec{\nabla} [(\vec{\nabla}\gamma)\psi])

+(f_{n}, (\vec{\alpha}\cdot\vec{D}\gamma)\psi)+(f_{n}, \gamma(\vec{\alpha}\cdot\vec{D})\psi+\gamma[p\beta-q-i]\psi)

+(u_{n}, \gamma[2iq+\beta(\vec{\alpha}\vec{D}p)+(\vec{\alpha}\cdot\vec{D}q)]\psi) .

Therefore we can find a positive constant C_{1} from (4), (5) and the assump-
tions (a-2) , (a-3) such that

|(\gamma u_{n}, \psi)_{P}|\leq C_{1}(||f_{n}||+||u_{n}||) ||\psi||_{P}\leq 2CC_{1}||\psi||_{P}(\forall\psi\in D^{4}) .

Since D^{4} is dense in H_{P} , we have \gamma u_{n}\in H_{P} and

||\gamma u_{n}||_{P}\leq 2CC_{1} , n=1,2 , \cdot

The above inequality and the assumption (a-1) give the relative compact-
ness of the sequence \{u_{n}\}_{n=1,2},\cdots in H (see, e.g., Reed-Simon [RS], Theorem
XIII.65). \square

3. Proof of Theorem 2

Let \lambda be an arbitrary positive number. We show below that \lambda does
not belong to the essential spectrum \sigma_{ess}(H) of H, that is, there is no
orhtonormal system \{u_{n}\}_{n=1,2},\cdots in H such that

\{u_{n}\}_{n=1,2},\cdots\subset D(H) , ||Hu_{n}-\lambda u_{n}||arrow 0 as narrow\infty , (7)

where D(H) denotes the domain of H . Assume that such an orthonormal
system \{u_{n}\}_{n=1,2} , \cdot .. would exist. Then write

u_{n}= (\begin{array}{l}v_{n}w_{n}\end{array}) , (H-\lambda)u_{n}=(\begin{array}{l}f_{nn}g\end{array}) ,

(v_{n}, w_{n}, f_{n}, g_{n}\in h:=[L^{2}(R^{3})]^{2})
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Then we have

(\vec{\sigma}\vec{D})w_{n}+2q(x)v_{n}-\lambda v_{n}=f_{n} , (8)

(\vec{\sigma}\vec{D})v_{n}-\lambda w_{n}=g_{n} , (9)

where ( \vec{\sigma} \vec{D})=\sum_{j=1}^{3}\sigma_{j}D_{j} . In view of Rellich’s theorem we may assume
that \{v_{n}\} and \{w_{n}\} are strongly convergent in [L^{2}(\Omega)]^{2} for any bounded
domain \Omega , by selecting a subsequence if necessary. Operating \vec{\sigma}\vec{D} to (9)
and using (8), we get

-\triangle v_{n}+2\lambda q(x)v_{n}=(\vec{\sigma}\vec{D})g_{n}+\lambda f_{n}+\lambda^{2}v_{n} , (10)

Take a positive number R such that q(x)\geq 1(|x|\geq R) by means of (b-1) ,
and put

Q(x)=\sqrt{2\lambda q(x)}(|x|\geq R) and Q(x)=1 (|x|\leq R) .

Let us prepare a Hilbert space h_{Q} :

h_{Q}=\{g\in h=[L^{2}(R^{3})]^{2}|||g||_{Q}^{2}:=||Qg||_{h}^{2}+\sum_{j=1}^{3}||D_{j}g||_{h}^{2}<\infty\}

with the inner product

(f, g)_{Q}= \langle Qf, Qg\rangle+\sum_{j=1}^{3}\langle D_{j}f, D_{j}g\rangle ,

where ||||_{h} and \langle \rangle are the norm and the inner product in h , respectively.
The sesquihnear forms (f, g)_{Q} and (f, g) are also used as in \S 2 for f\in[D’]^{2}

and g\in D^{2} . Let \gamma(x) be the same function as in \S 2. Then, for any \varphi\in D^{2}

we have

(\gamma v_{n}, \varphi)_{Q}=\langle-\triangle(\gamma v_{n})+2\lambda q(\gamma v_{n}), \varphi\rangle

=\langle-(\triangle\gamma)v_{n}-2\vec{\nabla}\gamma\cdot\vec{\nabla}v_{n}-\gamma\triangle v_{n}+2\lambda q\gamma v_{n}, \varphi\rangle

and, by using (10),

(\gamma v_{n}, \varphi)_{Q}=-\langle v_{n}, (\triangle\gamma)\varphi\rangle+2\langle v_{n},\vec{\nabla} [(\vec{\nabla}\gamma)\varphi]\rangle

+\langle g_{n}, (\vec{\sigma}\cdot\vec{D}\gamma)\varphi\rangle+\langle g_{n}, \gamma(\vec{\sigma}\cdot\vec{D})\varphi\rangle

+\langle\lambda f_{n}+\lambda^{2}v_{n}, \gamma\varphi\rangle .
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Therefore we can find a positive constant C independent of \varphi such that

|(\gamma v_{n}, \varphi)_{Q}|\leq C(||f_{n}||_{h}+||g_{n}||_{h}+||v_{n}||_{h}) ||\varphi||_{Q} .

Noting that D^{2} is dense in h , we have v_{n}\in h_{Q} and

||\gamma v_{n}||_{Q}\leq C(||f_{n}||_{h}+||g_{n}||_{h}+||v_{n}||_{h}) (n=1,2, \cdots) . (11)

Since \{v_{n}\} , \{f_{n}\} and \{g_{n}\} are bounded sequences in h , we select a subse-
quence \{v_{n_{j}}\}_{j=1,2},\cdots of \{v_{n}\} , which is strongly convergent in h , using again
Reed-Simon [RS], Thoerem XIII.65. Since \{u_{n}\} is orhonormal, \{v_{n}\} con-
verges weakly to 0 in h . Therefore we have

v_{n_{j}}arrow 0 as jarrow\infty (12)

strongly in h . The above inequality (11) and

||f_{n}||_{h}+||g_{n}||_{h}arrow 0 as narrow\infty

in view of (7), yield

\gamma(\vec{\sigma}\vec{D})v_{n_{j}}=(\vec{\sigma}\vec{D})(\gamma v_{n_{j}})-(\vec{\sigma}\vec{D}\gamma)v_{n_{j}}arrow 0

strongly in h, . By means of (9) we have

\gamma w_{n_{j}}arrow 0 as jarrow\infty

strongly in h . Since \{w_{n}\} is locally strongly convergent in h , the above
property implies the strong convergence of \{w_{n_{j}}\} in h . Moreover, since it
converges weakly to 0 in h , we have

w_{n_{j}}arrow 0 as jarrow\infty (13)

strongly in h . Thus, (12) and (13) give a contradiction to

||u_{n_{j}}||^{2}=||v_{n_{j}}||^{2}+||w_{n_{j}}||^{2}=1 , j=1,2 , \cdots \square

4. Proof of Proposition 3 and Remarks

We show first the non-existence of eigenvalues of H in R^{-} Suppose

\lambda\leq 0 , u=(\begin{array}{l}vw\end{array}) \in D(H) (v, w\in h) and Hu=\lambda u .

Then we have

(\vec{\sigma}\vec{D})w+2qv=\lambda v ,
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(\vec{\sigma}\cdot\vec{D})v=\lambda w . (14)

Therefore, v satisfies

-\triangle v+2\lambda qv=\lambda^{2}v . (15)

It is well known that if \lambda<0 , the Sch\"odinger operator -\triangle+2\lambda q(x) has
no eigenfunctions in L^{2}(R^{3}) under the conditions (c-1) and (c-2) (see, e.g.,
Uchiyama-Yamada [UY] ) . If \lambda=0 , we obtain from (15) that \triangle v=0 .
Therefore, v\in h means v=0, which and (14) imply w=0 and u=0.

Finally, we prove R^{-}\subset\sigma(H) . The proof is given along the same line
of Arai-Yamada [AY]. Let us denote

B_{R}=\{x\in R^{3}||x|\leq R\} ,
E_{R}=\{x\in R^{3}||x|\geq R\} ,

\Omega=B_{R/2} ,

where R is the number in the assumption (c-2) . and take a C^{\infty} function
\rho(x) such that

\rho(x)=0(x\in\Omega) and \rho(x)=1(x\in E_{R}) .

Let \tilde{H} be a selfadjoint operator in 7{ such that

\tilde{H}=(\vec{\alpha}\cdot\vec{D})+\rho(x)q(x)(\beta+I) .

Since the essential spectrum \sigma_{ess}(H) of H coincides with \sigma_{ess}(\tilde{H}) of \tilde{H} . it
suffices to prove R^{-}\subset\sigma_{ess}(\tilde{H}) . Let \{\mu 0, \mu_{1}, \cdots\} be the totality of eigen-
values of -\triangle|\Omega with Neumann boundary condition, and \{\varphi 0, \varphi_{1}, \cdots\} the
corresponding complete orthonormal system of the eigenfunctions such that

0=\mu_{0}\leq\mu_{1}\leq and \varphi_{0}(x)\equiv[vol(\Omega)]^{-1/2} .

We show below

R^{-}\backslash \{-\sqrt{\mu_{1}}, -\sqrt{\mu_{2}}, \cdots\}\subset\sigma(\tilde{H}) ,

which yields R^{-}\subset\sigma_{ess}(\tilde{H}) . Assume that a negative number \lambda such that

\lambda^{2}\in R^{+}\backslash \{\mu_{1}, \mu_{2}, \cdots\} .

would not belong to \sigma(\tilde{H}) , that is, \lambda would belong to the resolvent set of
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\tilde{H} . Then, for

f(x)={}^{t}(\varphi_{0}, \varphi_{0}) (x\in\Omega) and f(x)=0(x\not\in\Omega)

we can find a unique solution u={}^{t}(v, w)\in D(\tilde{H})\subset H_{loc}^{1}=[H_{loc}^{1}]^{4} such
that

(\tilde{H}-\lambda)u=(\begin{array}{l}f(x)0\end{array})

Then we have

(\vec{\sigma}\cdot\vec{D})w+2\rho(x)q(x)v(x)-\lambda v(x)=f(x) ,

(\vec{\sigma}\cdot\vec{D})v-\lambda w(x)=0 .

and

-\triangle v+2\lambda\rho(x)q(x)v(x)-\lambda^{2}v(x)=\lambda f(x) (x\in R^{n}) .

and, therefore, v\in[H_{loc}^{2}]^{2} . In view of Sobolev’s theorem (Sobolev [So],
p.85) v(r\cdot) and \frac{\partial v}{\partial r}(r\cdot) are strongly continuous in [L^{2}(S^{2})]^{2} with respect
to r>0 . The conditions (c-1) and (c-2) gives that -\triangle+2\lambda q has no
eigenfunctions in L^{2}(E_{R}) without any restriction of boundary conditions
(see, e.g., Uchiyama-Yamada [UY]). Therefore, we have v(x)\equiv 0 in E_{R} .
By the unique continuation property of elliptic operators (e.g., Eastham-
Kalf [EK], \S 6.5, Corollary 6.5.1). we have v(x)\equiv 0 in E_{R/2} and

-\triangle v-\lambda^{2}v(x)=\lambda (\begin{array}{l}\varphi_{0}\varphi_{0}\end{array}) in \Omega , v=0 and \frac{\partial v}{\partial r}=0 on \partial\Omega .

Since each component of v satisfies the Neumann condition on \partial\Omega as seen
above, v can be expanded with \{\varphi_{j}\}_{j=1,2},\cdots . Noting \lambda^{2} is none of eigenvalues
\{\mu_{j}\} , we have

v(x)=- \frac{1}{\lambda} (\begin{array}{l}\varphi_{0}\varphi_{0}\end{array}) in \Omega ,

which contradicts to v=0 on \partial\Omega . \square

Remark 1. In Theorem 1 the discrete spectrum \sigma_{d}(H) is unbounded above
and below. This is proved as follows. For example, assume \sigma_{d}(H) would be
bounded above. Then there exists a positive constant M such that

(Hu, u)\leq M||u||^{2} u\in D(H) .
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Write u={}^{t}(v, w)\in h\cross h . Then we obtain

2{\rm Re}\langle(\vec{\sigma}\cdot\vec{D})v, w\rangle+2\langle(p+q)v, v\rangle+2\langle(p-q)w, w\rangle

\leq M(||v||_{h}^{2}+||w||_{h}^{2}) .

Since p(x) and q(x) are locally bounded functions, we can find a positive
constant C such that

2{\rm Re}\langle(\vec{\sigma}\cdot\vec{D})v, w\rangle\leq C(||v||_{h}^{2}+||w||_{h}^{2}) v , w\in[C_{0}^{\infty}(B_{1})]^{2} . (16)

Substituting w=v and w=-v in (16), we have

|\langle(\vec{\sigma}(\vec{D})v, v\rangle|\leq C||v||_{h}^{2}, v\in[C_{0}^{\infty}(B_{1})]^{2}

which implies that \vec{\sigma}
\vec{D} in B_{1} with Dirichlet boundary condition is a

bounded operator in h , that is,

||(\vec{\sigma}\cdot\vec{D})v||_{h}=||\nabla v||_{h}\leq C||v||_{h} , v\in[C_{0}^{\infty}(B_{1})]^{2} .

This is a contradiction.
Similarly, we obtain that H in Theorem 2 has the discrete spectrum

unbounded in R^{+}

Remark 2. The conditions in Proposition 3 can be weakened. For the non-
existence theorem of eigenvalues of Schr\"odinger operators plays an impor-
tant role in Proposition 3. The non-existence theorem for Schr\"odinger oper-
ators has been studied extensively by many authors (see, e.g., the reference
of [UY], where the reader can find some works concerning the non-existence
theorem.)

It is conjectured in Proposition 3 that the half line R^{-} is included in
the absolutely continuous spectrum \sigma_{ac}(H) .
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