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An oscillation result for a certain linear differential
equation of second order

Katsuya ISHIZAKI
(Received January 4, 1996; Revised May 21, 1996)

Abstract. We consider the second order equation f’+(e^{P_{1}(z)}+e^{P_{2}(z)}+Q(z))f=0 ,
where P_{1}(z)=\zeta_{1}z^{n}+\ldots , P_{2}(z)=\zeta_{2}z^{n}+\ldots , are non-constant polynomials, Q(z) is an
entire function and the order of Q is less than n . Bank, Laine and Langley studied the
cases when Q(z) is a polynomial and \xi_{2}/\xi_{1} is either non-real or real negative, while the
author and Tohge studied the cases when \xi_{1}=\xi_{2} or \xi_{2}/\xi_{1} is non-real. In this paper we
treat the case when \zeta_{2}/\zeta_{1} is real and positive.
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1. Introduction

We are concerned with the zero distribution of solutions of some linear
differential equations of second order

f’+A(z)f=0, (1.1)

where A(z) is an entire function. We assume that the reader is familiar with
the standard notation in Nevanlinna theory (see e.g. [8], [10], [11]). Let f be
a meromorphic function. As usual, m(r, f) , N(r, f) , and T(r, f) denote the
proximity function, the counting function, and the characteristic function of
f . respectively. We denote by S(r, f) any quantity of growth o(T(r, f)) as
r – \infty outside of a possible exceptional set of finite linear measure. We use
the symbols \sigma(f) to denote the order of f , and \lambda(f) to denote the exponent
of convergence of the zer0-sequence of f . The studies and problems on
complex oscillation theory are found in, for instance, Laine [10, Chapter
3-8] and Yang, Wen, Li and Chiang [14, pp. 357-358].

This note is devoted to the study of the equation (1.1) in the case
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A(z)=e^{P_{1}(z)}+e^{P_{2}(z)}+Q(z) , i.e. ,

f’+(e^{P_{1}(z)}+e^{P_{2}(z)}+Q(z))f=0 , (1.2)

where P_{1} , P_{2} are non-constant polynomials:

\{

P_{1}(z)=\zeta_{1}z^{n}+ \zeta_{1} \zeta_{2}\neq 0 , n , m\in \mathbb{N}

P_{2}(z)=\zeta_{2}z^{m}+\cdot
(1.2)

and Q(z) is an entire function of order less than \max\{n, m\} . Further we
assume that e^{P_{1}} and e^{P_{2}} are linearly independent.

Bank, Laine and Langley [4 Theorem 4.1, Corollary 4.2, Theorem 4.3]
obtained the results which imply the following conclusions when Q(z) is a
polynomial and n=m:(i) if \zeta_{2}/\zeta_{1} is non-real then any non-trivial solution
f satisfies \lambda(f)=\infty , (ii) if \zeta_{2}/\zeta_{1} is real and negative then any non-trivial
solution f satisfies \lambda(f)=\infty .

Tohge and the author [9] proved

Theorem A
(i) If n\neq m in (1.2), then for any non-trivial solution of (1.1) we

have \lambda(f)=\infty .
(ii) If n=m and \zeta_{1}=\zeta_{2} in (1.2), then for any non-trivial solution

of (1.2) we have \lambda(f)\geqq n .
(iii) Suppose that n=m and \zeta_{1}\neq\zeta_{2} in (1.2). If \zeta_{1}/\zeta_{2} is non-real,

then for any non-trivial solution of (1.2) we have \lambda(f)=\infty .

In this note we will treat the case when n=m and \rho:=\zeta_{2}/\zeta_{1} is real
and positive. Without loss of generality, we may assume that 0<\rho<1 .

Theorem 1 Consider equation (1.2) when n=m and \rho>0 .
(i) If 0<\rho<1/2 , then for any non-trivial solution of (1.2) we have

\lambda(f)\geqq n .
(ii) Suppose that Q(z)\equiv 0 in (1.2). If 3/4<\rho<1 , then for any

non-trivial solution of (1.2) we have \lambda(f)\geqq n .

Concerning Theorem 1 (i), \rho=1/2 is impossible to get the same con-
clusion which is shown by the following example:

Example 1. We consider the differential equation below having \rho=1/2 .

f ’+(e^{4iz+\log 4}+e^{2iz+\log 4})f=0 . (1.4)
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The function f(z)=\exp(e^{2iz}) , which is zero free, satisfies the equation
(1.4).

This example was given in Bank and Laine [2] as a zer0-free solution of
the equation (1.1) when A(z) is periodic. The case when Q(z) is not iden-
tically zero in Theorem (ii) is treated in the forthcoming paper Tohge [13].
He gives a counter example for the case when Q(z)\not\equiv 0 and \rho=3/4 :

Example 2. The function f(z)= \exp(\frac{1}{2}e^{2z}+ie^{z}-\frac{1}{2}z) solves the equation

f’+(e^{4z+\log(-1)}+e^{3z+\log(-2i)}- \frac{1}{4})f=0 . (1.5)

At the end of this section, we pose a question: is it possible that we
can replace ‘(\lambda(f)\geqq n

” with “
\lambda(f)=\infty

” in the conclusions of Theorem 1.

2. Preliminary Lemmas

We prepare some notations for the proof of Theorem 1. Let P(z) be a
polynomial of degree n\geqq 1:P(z)=(\alpha+\beta i)z^{n}+ . ., \alpha , \beta\in \mathbb{R} . Define for
\theta\in[0,2\pi)

\delta(P, \theta)=\alpha cos n\theta-\beta sin n\theta , \tilde{\delta}(P, \theta)=\beta cos n\theta+\alpha sin n\theta .

We write (_{j}=\alpha_{j}+i\beta_{j}, \alpha_{j} , \beta_{j}\in \mathbb{R} , j=1,2 . Set

S_{j}^{+}=\{\theta|\delta(P_{j}, \theta)>0\} , S_{j}^{-}=\{\theta|\delta(P_{j}, \theta)<0\} , j=1,2 .

We see that S_{j}^{+} and S_{j}^{-} have n components S_{jk}^{+} and S_{jk}^{-} , k=1,2 , . , n ,
respectively. Hence we can write

S_{j}^{+}=\cup S_{jk}^{+}k=1n , S_{j}^{-}=\cup S_{jk}^{-}k=1n , j=1,2 .

To prove Theorem 1 (i), we recall some lemmas below. Lemma B

is given in Bank and Langley [5, Lemma 3]. We also need Lemma C in
Gundersen [7, Corollary 1 to Theorem 2].

Lemma B Let P(z) be a polynomial of degree n\geqq 1 , and let\in>0 be a

given constant. Then we have
(1) If \delta(P, \theta)>0 , then there exists an r(\theta)>0 such that for any r\geqq r(\theta) ,

|e^{P(re^{i\theta})}|\geqq\exp((1-\in)\delta(P, \theta)r^{n}) .
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(2) If \delta(P, \theta)<0 , then there exists an r(\theta)>0 such that for any r\geqq r(\theta) ,

|e^{P(re^{i\theta})}|\leqq\exp((1-\in)\delta(P, \theta)r^{n}) .

Lemma C Let f be a meromorphic function of fifinite order \rho , let\in>0
be a given constant and let k>j\geqq 0 be integers. Then there exists a set
E_{0}\subset[0,2\pi) of linear measure zero, such that if \theta_{0}\in[0,2\pi)\backslash E_{0} , then there
is a constant R_{0}=R_{0}(\theta_{0})>1 such that

| \frac{f^{(k)}(re^{i\theta_{0}})}{f^{(j)}(re^{i\theta_{0}})}|\leqq r^{(k-j)(\rho-1+\in)}

for all r\geqq R_{0} .

Lemma D is the well-known Phragm\’en-Lindel\"of type theorem. We refer
to Titchmarsh [12, 177] . Later we state Lemma 2.3, which is a slightly
modified form of Lemma D.

Lemma D Let f(z) be an analytic function of z=re^{i\theta} , regular in the
region D between two straight lines making an angle \pi/\alpha at the origin, and
on the lines themselves. Suppose that |f(z)|\leqq M on the lines, and that,
as r – \infty|f(z)|=O(e^{r^{\beta}}) , where \beta<\alpha , uniformly in the angle. Then
actually the inequality |f(z)|\leqq M holds throughout the region D .

We need Lemma E in Tohge and the author [9, Theorem 2.1] to prove
(ii).

Lemma E Let A(z) be a transcendental entire function of order \sigma(A) .
Suppose that

K\overline{N} (r, \frac{1}{A})\leqq T(r, A)+S(r, A) , r\not\in E

holds for a K>4 and an exceptional set E of fifinite linear measure. Then
any non-trivial solution f of the equation (1.1) satisfifies \lambda(f)\geqq\sigma(A) .

Moreover, we need the lemmas below.

Lemma 2.1 Let P(z) be a polynomial with \delta(P, \theta)<0 for a fifixed \theta . Then
we have for all r sufficiently large

|1+e^{P(re^{i\theta})}|> \frac{1}{2} . (1.1)
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Further for a set of \theta , say G\subset[0,2\pi) , if \delta(P, \theta)<0 , \theta\in G and there exists
the \max_{\theta\in G}\delta(P, \theta)=\delta_{m}<0 , then we fifind R=R(G) such that (2.1) holds

for r\geqq R and \theta\in G .

Proof of Lemma 2.1 Write

P(z)=(\alpha+\beta i)z^{n}+B(z)=(\alpha+\beta i)z^{n}(1+D(z)) ,

where \alpha , \beta\in \mathbb{R} , |\alpha|+|\beta|\neq 0 , B(z) is a polynomial with deg B\leqq n-1 and
D(z)=B(z)/((\alpha+\beta i)z^{n}) . If we write

D(re^{i\theta})=p(r, \theta)e^{i\varphi(r,\theta)} ,

then we see that p(r, \theta)arrow 0 as r – \infty since deg B\leqq n-1 . For the sake
of brevity we write p(r, \theta)=p and \varphi(r, \theta)=\varphi respectively. By a simple
computation we get

P(re^{i\theta})=r^{n}(\Delta_{1}+\Delta_{2}i) ,

where

\Delta_{1}=\Delta_{1}(r, \theta)=\delta(P, \theta) ( 1+p cos \varphi ) - p\tilde{\delta}(P, \theta) sin \varphi ,
\Delta_{2}=\Delta_{2}(r, \theta)=\tilde{\delta}(P, \theta) ( 1+p cos \varphi ) +p\delta(P, \theta) sin \varphi .

It gives that

|1+e^{P(re^{i\theta})}|=|1+e^{r^{n}\Delta_{1}}\cos(r^{n}\Delta_{2})+e^{r^{n}\Delta_{1}}\sin(r^{n}\Delta_{2})i|

=\sqrt{1+2e^{r^{n}\Delta_{1}}\cos(r^{n}\Delta_{2})+e^{2r^{n}\Delta_{1}}} (2.2)

Since \delta(P, \theta)<0 and parrow 0 as rarrow\infty , we have that \Delta_{1}(r, \theta)<0 for all r
large enough. This implies that e^{r^{n}\Delta_{1}} –0 as rarrow\infty . Hence by (2.2) we
get (2.1) immediately.

We consider the latter part of Lemma 2.1. We have that \max\{|\delta(P, \theta)| ,
|\tilde{\delta}(P, \theta)|\}\leqq\sqrt{\alpha^{2}+\beta^{2}} . Hence we can find an R=R(G) such that for r\geqq R

\Delta_{1}\leqq\delta(P, \theta)+2p\sqrt{\alpha^{2}+\beta^{2}}

\leqq\delta_{m}+2p\sqrt{\alpha^{2}+\beta^{2}}\leqq\frac{1}{2}\delta_{m}<0 , \theta\in G .

As in the same arguments above, the latter part of the assertion of Lemma
2.1 is proved. \square
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Lemma 2.2 Let P_{1}(z) and P_{2}(z) be polynomials:

P_{1}(z)=\zeta z^{n}+B_{1}(z) , P_{2}(z)=\rho\zeta z^{n}+B_{2}(z) , n\geqq 1

where \zeta=\alpha+\beta i , \alpha , \beta\in \mathbb{R} , |\alpha|+|\beta|\neq 0 , \rho\in \mathbb{R} , 0<\rho<1 , B_{1}(z) and
B_{2}(z) are polynomials with degree at most n-1 . Then for any\in>0 , we
have

m(r, e^{P_{1}}+e^{P_{2}})\geqq(1-\in)m(r, e^{P_{1}})+O(r^{\xi}) , as r – \infty (2.3)

where n-1<\xi<n .

Proof of Lemma 2.2 We denote by \theta_{0},0\leqq\theta_{0}<2\pi/n the angle that sat-
isfies \delta(P_{1}, \theta_{0})=0 and \theta_{k}=\theta_{0}+\frac{\pi k}{n} , k=0,1 , . . Let 0<\eta<\pi/2n , be a
real number. We define a set

S( \eta)=S^{+}\cap([0,2\pi)\backslash \cup 2n-1k=0[\theta_{k}-\frac{\eta}{n}, \theta_{k}+\frac{\eta}{n}]) .

We define \sin^{+}\theta=\max\{\sin\theta, 0\} , for \theta\in[0,2\pi) . Then we have

\int_{0}^{2\pi}\log^{+}|e^{\zeta(re^{i\theta})^{n}}|d\theta

= \int_{0}^{2\pi}\log^{+}|e^{r^{n}(\delta(P_{1},\theta)+i\tilde{\delta}(P_{1},\theta))}|d\theta

=r^{n} \int_{0}^{2\pi}\log^{+}|e^{\delta(P_{1},\theta)}|d\theta=r^{n}\int_{s+}\delta(P_{1}, \theta)d\theta

=r^{n} \sqrt{\alpha^{2}+\beta^{2}}\int_{s+}\sin(n\theta_{0}-n\theta)d\theta

=r^{n} \sqrt{\alpha^{2}+\beta^{2}}\sum_{k=0}^{2n-1}\int_{\theta_{k}}^{\theta_{k+1}}\sin^{+}(n\theta_{0}-n\theta)d\theta=2r^{n}\sqrt{\alpha^{2}+\beta^{2}}

While we compute

\int_{S(\eta)}\log^{+}|e^{\zeta(re^{i\theta})^{n}}|d\theta

=r^{n} \sqrt{\alpha^{2}+\beta^{2}}\int_{S(\eta)}\sin(n\theta_{0}-n\theta)d\theta

=r^{n} \sqrt{\alpha^{2}+\beta^{2}}\sum_{k=0}^{2n-1}\int_{\theta_{k}+_{n}^{q}}^{\theta-1}k+1_{n}\sin^{+}(n\theta_{0}-n\theta)d\theta

=2r^{n} cos \eta\sqrt{\alpha^{2}+\beta^{2}} .
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Hence setting \eta being small enough so that cos \eta>1-\in , we get

(1- \in)m(r, e^{\zeta z^{n}})\leqq\frac{1}{2\pi}\int_{S(\eta)}\log^{+}|e^{\zeta(re^{i\theta})^{n}}|d\theta . (2.4)

We have

m(r, e^{\zeta z^{n}})-m(r, e^{-B_{1}})\leqq m(r, e^{P_{1}})\leqq m(r, e^{\zeta z^{n}})+m(r, e^{B_{1}}) ,

which implies that

m(r, e^{P_{1}})=m(r, e^{\zeta z^{n}})+O(r^{\xi}) , as r – \infty . (2.5)

We put P_{3}(z)=(\rho-1)(z^{n}+B_{2}(z)-B_{1}(z) . Then we have max \delta(\theta, P_{3})<0 ,
\theta\in S(\eta)

By Lemma 2.1, we get

m(r, e^{P_{1}}+e^{P_{2}})

\geqq\frac{1}{2\pi}\int_{S(\eta)}\log^{+}|e^{P_{1}(re^{i\theta})}+e^{P_{2}(re^{i\theta})}|d\theta

\geqq\frac{1}{2\pi}\int_{S(\eta)}\log^{+}|e^{\zeta(re^{i\theta})^{n}}||1+e^{P_{3}(re^{i\theta})}|d\theta-O(r^{\xi})

\geqq\frac{1}{2\pi}\int_{S(\eta)}\log^{+}|e^{\zeta(re^{i\theta})^{n}}|d\theta-O(r^{\xi}) , as r – \infty . (2.6)

It follows from (2.4), (2.5) and (2.6) that we obtain the assertion (2.3).
\square

Lemma 2.3 Let U(z) be an analytic function of z=re^{i\theta} . regular in the
region S between two straight lines arg z=\theta_{1} and arg z=\theta_{2} making an
angle \pi/\alpha at the origin, and on the lines themselves. Suppose that |U(z)|\leqq

O(r^{N}) , N\in \mathbb{N} on the line arg z=\theta_{1} and |U(z)|\leqq O(e^{r^{\xi_{0}}}) on the line
arg z=\theta_{2} , and that, |U(z)|=O(e^{r^{\beta}}) , as r – \infty uniformly in the angle
where 0<\xi_{0}<\xi<\beta<\alpha . Then actually the inequality

|U(z)|\leqq O(e^{r^{\xi}}) (2.7)

holds throughout the region S .

Proof of Lemma 2.3 Set g(z)=U(z)/\exp((ze^{-\lrcorner_{\frac{+\theta}{2}}z_{i}})^{\xi})\theta . Then g(z) is reg-
ular in the region between two lines, arg z=\theta_{1} , arg z=\theta_{2} . We infer that
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\cos(\arg((ze^{-^{\theta}\mapsto^{+\theta}i}2)^{\xi}))\geqq\kappa for some \kappa>0 . In fact

- \frac{\pi}{2}<-\frac{\pi\xi}{2\alpha}\leqq-\xi(\frac{\theta_{2}-\theta_{1}}{2})\leqq\arg((ze^{-\frac{\theta_{1}+\theta_{2}}{2}i})^{\xi})

\leqq\xi(\frac{\theta_{2}-\theta_{1}}{2})\leqq\frac{\pi\xi}{2\alpha}<\frac{\pi}{2} .

Hence for \theta_{1}<\theta<\theta_{2}

|g(re^{i\theta})| \leqq|\frac{U(re^{i\theta})}{e^{\kappa r^{\xi}}}|\leqq O(e^{r^{\beta}}) .

It follows from the assumption for some M>0

|g(re^{i\theta})| \leqq\frac{O(r^{N})}{e^{\kappa r^{\xi}}}\leqq M , on the line arg z=\theta_{1} .

and

|g(re^{i\theta})| \leqq\frac{O(e^{r^{\xi_{0}}})}{e^{\kappa r^{\xi}}}\leqq M , on the line arg z=\theta_{2}

By means of Lemma D , we conclude that for any \theta(2.7) holds. \square

3. Proof of Theorem 1

We will follow the reasoning in Bank and Langley [5], Chiang, Laine
and Wang [6] and Ishizaki and Tohge [9] to prove Theorem 1.

Proof of Theorem 1. (i) Suppose that (1.2) possesses a non-trivial s0-

lution f such that \lambda(f)<n . Write f=\pi e^{h} . where \pi is the canonical
product from zeros of f and h is an entire function. From our hypothesis
\sigma(\pi)=\lambda(\pi)<n . From (1.2) we get

(h’)^{2}=-h’-2 \frac{\pi’}{\pi}h’-\frac{\pi’}{\pi}-e^{P_{1}}-e^{P_{2}} –Q. (3.1)

Eliminating e^{P_{1}} from (3.1), we have

2Uh’=-Q’-h’+(P_{1}’-2 \frac{\pi’}{\pi})h’+2(P_{1}’\frac{\pi’}{\pi}-(\frac{\pi’}{\pi})’)h’

+P_{1}’ \frac{\pi’}{\pi}-(\frac{\pi’}{\pi})’+(P_{1}’-P_{2}’)e^{P_{2}} , (3.2)
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where

U=h’- \frac{1}{2}P_{1}’h’ . (3.3)

From (3.2) and (3.3), we get

C_{1}(z)h’=C_{0}(z) , (3.4)

where

C_{0}=(P_{1}’-P_{2}’)e^{P_{2}}-Q’+ \frac{UP_{1}’}{2}-2U\frac{\pi’}{\pi}-U’

+P_{1}’ \frac{\pi’}{\pi}+\frac{\pi’\pi’}{\pi^{2}}-\frac{\pi’}{\pi} , (3.5)

C_{1}=2U-2P_{1}’ \frac{\pi’}{\pi}+P_{1}’\frac{\pi’}{\pi} –2 ( \frac{\pi’}{\pi})^{2}+2\frac{\pi’}{\pi}-\frac{(P_{1}’)^{2}}{4}+\frac{P_{1}’}{2} (3.6)

If we suppose that C_{0}(z)\not\equiv 0 and C_{1}(z)\not\equiv 0 in (3.4), then we have by the
first fundamental theorem

T(r, h’)\leqq T(r, C_{0})+T(r, C_{1})+O(1) . (3.7)

We estimate T(r, h’) , T(r, C_{0}) and T(r, C_{1}) in (3.7) respectively.
We set \max\{\sigma(Q), \lambda(f)\}<\xi_{1}<\xi_{2}<\xi<n . First we consider T(r, h’) .

We see that

T(r, Q)=m(r, Q)\leqq O(r^{\xi_{1}}) , as rarrow\infty .

By applying the Clunie Lemma to (3.1), we obtain

T(r, h’)\leqq m(r, Q)+m(r, \frac{\pi’}{\pi})

+m (r, \frac{\pi’}{\pi} ) +m(r, e^{P_{1}}+e^{P_{2}})+S(r, h’)

\leqq O(r^{n+\epsilon_{0}})+S(r, h’) , for any \in 0>0

which implies that \sigma(h’)\leqq n . Hence, from (3.1) and the theorem on the
logarithmic derivatives

m(r, e^{P_{1}}+e^{P_{2}})\leqq 2m(r, h’)+m(r, Q)

+m (r, \frac{h’}{h}, ) +m(r, \frac{\pi’}{\pi})+m(r , \frac{\pi’}{\pi})

\leqq 2T(r, h’)+O(r^{\xi})+O (log r), as rarrow\infty .
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By means of Lemma 2.2, for 1-2\rho>\in>0 ,

m(r, e^{P_{1}}+e^{P_{2}})\geqq(1-\in)T(r, e^{P_{1}})+O(r^{\xi}) ,

hence we have

T(r, h’) \geqq\frac{1}{2}(1-\in)T(r, e^{P_{1}})+O(r^{\xi}) . (3.8)

Secondly we estimate T(r, C_{0}) and T(r, C_{1}) . To do this, we first esti-
mate the growth of |U(re^{i\theta})| . Since \zeta_{2}/\zeta_{1}=\rho is real and positive, we have
\delta(P_{2}, \theta)=\rho\delta(P_{1}, \theta) which implies that S_{1k}^{+} , k=0,1 , \ldots , n coincide with
S_{2k}^{+} and also S_{1k}^{-} , k=0,1 , . , n coincide with S_{2k}^{-} . Thus for the sake of
simplicity we write S_{1}^{+}=S_{2}^{+}=S^{+} and S_{1}^{-}=S_{2}^{-}=S^{-} We assert that for
any \theta , we have

|U(re^{i\theta})|\leqq O(e^{r^{\xi}}) , as r – \infty . (3.8)

We show (3.9) dividing the proof into two cases when \theta\in S^{+} and \theta\in S^{-}

Assume that \theta\in S^{-}\backslash E_{0} , where E_{0} is of linear measure zero. In the
case |h’(re^{i\theta})|<1 , from (3.3) we have

|U(re^{i\theta})| \leqq|\frac{h’(re^{i\theta})}{h’(re^{i\theta})}|+\frac{1}{2}|P_{1}’(re^{i\theta})| . (3.10)

If |h’(re^{i\theta})|\geqq 1 , then from (3.2),

|2U(re^{i\theta})| \leqq|\frac{h’(re^{i\theta})}{h’(re^{i\theta})}|+(|P_{1}’(re^{i\theta})|+2|\frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|)|\frac{h’(re^{i\theta})}{h’(re^{i\theta})}|

+2 (|P_{1}’(re^{i\theta})|| \frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|+|\frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|+|\frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|^{2})

+|P_{1}’(re^{i\theta})|| \frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|+|\frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|

+| \frac{\pi’(re^{i\theta})\pi’(re^{i\theta})}{\pi(re^{i\theta})^{2}}|+(|P_{1}’(re^{i\theta})|

+|P_{2}’(re^{i\theta})|)|e^{P_{2}(re^{i\theta})}|+ \frac{|Q’(re^{i\theta})|}{|Q(re^{i\theta})|}|Q(re^{i\theta})| . (3.11)

We note that for any fixed \theta we have that |Q(re^{i\theta})|\leqq e^{r^{\xi_{1}}} for all r sufficiently
large. Since Q and h’ are of finite order, by means of Lemma C , (3.10) and
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(3. 11), we obtain

|U(re^{i\theta})|\leqq O(e^{r^{\xi_{2}}}) , as rarrow\infty . (3.12)

Next we treat the case \theta\in S^{+}\backslash E_{0} . We write \delta(P_{1}, \theta) as \delta_{1} for the
simplicity and set \rho\delta_{1}<\sigma_{2}<\sigma_{1}<\delta_{1},0<\in_{1}<1-\sigma_{1}/\delta_{1},0<\in_{2}<

(\sigma_{2}/2-\rho\delta_{1})/(\rho\delta_{1}) . In view of Lemma B , we have

|e^{P_{1}(re^{\iota\theta})}+e^{P_{2}(re^{i\theta})}+Q(re^{i\theta})|

\geqq|e^{P_{1}(re^{i\theta})}||1-|e^{P_{2}(re^{i\theta})-P_{1}(re^{i\theta})}|-\frac{|Q(re^{i\theta})|}{|e^{P_{1}(re^{i\theta})}|}|

\geqq e^{(1-\epsilon_{1})\delta_{1}r^{n}}(1-o(1))

\geqq e^{\sigma_{1}r^{n}}(1-o(1)) , as rarrow\infty . (3.13)

Suppose that there exists an unbounded sequence \{r_{q}\} such that 0 <
|h’(r_{q}e^{i\theta})|\leqq 1 . From (3.1), (3.13) and by Lemma C , we get for an N_{1}

e^{\sigma_{1}r_{q}^{n}}(1+o(1)) \leqq 1+|\frac{h’(r_{q}e^{i\theta})}{h’(r_{q}e^{i\theta})}|+2|\frac{\pi’(r_{q}e^{i\theta})}{\pi(r_{q}e^{i\theta})}|+|\frac{\pi’(r_{q}e^{i\theta})}{\pi(r_{q}e^{i\theta})}|

\leqq O(r_{q}^{N_{1}}) , as qarrow\infty ,

which is absurd. Hence we may assume that |h’(re^{i\theta})|\geqq 1 for all sufficiently
large r . It follows from (3.1) and Lemma C , for an N_{2} ,

|e^{P_{1}(re^{i\theta})}+e^{P_{2}(re^{i\theta})}+Q(re^{i\theta})|

\leqq|h’(re^{i\theta})|^{2}(1+|,\frac{h’(re^{i\theta})}{h(re^{i\theta})}|+2|\frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|+|\frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|)

\leqq|h’(re^{i\theta})|^{2}(1+O(r^{N_{2}})) , as r – \infty . (3.14)

Combining (3.13) and (3.14), we get for all r sufficiently large

|h’(re^{i\theta})|^{2} \geqq\frac{1-o(1)}{1+O(r^{N_{2}})}e^{\sigma_{1}r^{n}}\geqq e^{\sigma_{2}r^{n}}

thus we obtain for all r large enough

|h’(re^{i\theta})|\geqq e^{\frac{1}{2}\sigma_{2}r^{n}} (3.15)

It follows from (3.2) and (3.15) that
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|2U(re^{i\theta})|

\leqq|,\frac{Q(re^{i\theta})}{h(re^{i\theta})}|+|\frac{h’(re^{i\theta})}{h’(re^{i\theta})}|+(|P_{1}’(re^{i\theta})|+2|\frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|)|,\frac{h’(re^{i\theta})}{h(re^{i\theta})}|

+2(|P_{1}’(re^{i\theta})|| \frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|+|\frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|+|\frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|^{2})

+|P_{1}’(re^{i\theta})|| \frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|+|\frac{\pi’(re^{i\theta})}{\pi(re^{i\theta})}|+|\frac{\pi’(re^{i\theta})\pi’(re^{i\theta})}{\pi(re^{i\theta})^{2}}|

+(|P_{1}’(re^{i\theta})|+|P_{2}’(re^{i\theta})|)|, \frac{e^{P_{2}(re^{i\theta})}}{h(re^{i\theta})}|

\leqq O(r^{N_{2}})+(1+o(1)) exp (( \rho\delta_{1}(1+\in_{2})-\frac{\sigma_{2}}{2})r^{n}) . as r – \infty .

Since \rho\delta_{1}(1+\in_{2})-\sigma_{2}/2<0 , it gives that for an N_{3}

|U(re^{i\theta})|\leqq O(r^{N_{3}}) , as rarrow\infty . (3.16)

Now we fix a \gamma(=\gamma_{k})\in S_{k}^{+}\backslash E_{0} , k=1,2, \ldots , n . Then we find \gamma_{1} ,
\gamma_{2}\in S^{-}\backslash E_{0} , \gamma_{1}<\gamma<\gamma_{2} such that \gamma-\gamma_{1}<\pi/n , \gamma_{2}-\gamma<\pi/n . Write
\gamma-\gamma_{1}=\pi/(n+\tau) , \tau>0 . From (3.12) on arg z=\gamma_{1} , we have that
|U(z)|\leqq O(e^{r^{\xi_{2}}}) , as rarrow\infty , \xi_{2}<n+\tau . While from (3.16) on arg z=\gamma

we have |U(z)|\leqq O(r^{N_{3}}) . By Lemma 2.3, we obtain (3.9). Similarly, we
see that (3.9) holds for \gamma<\theta<\gamma_{2} . Hence we conclude that for any \theta(3.9)

holds.
By our assumption \lambda(f)<\xi<n , we have \overline{N}(r, 1/\pi)\leqq O(r^{\xi}) , as

rarrow\infty . From (3.5), (3.9) and by the theorem on the logarithmic derivatives

T(r, C_{0})\leqq 3\overline{N}(r, \frac{1}{\pi})+3m(r, U)+O(\log r)

+2m(r, Q)+m(r, e^{\rho\zeta_{1}z^{n}})+O(r^{\xi})

\leqq\rho T(r, e^{P_{1}})+O(r^{\xi}) , as r – \infty . (3.17)

Similarly from (3.6) and (3.9) we get

T(r, C_{1})\leqq 2\overline{N}(r, \frac{1}{\pi})+m(r, U)+O (log r )

\leqq O(r^{\xi}) , as rarrow\infty . (3.18)
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Combining (3.7), (3.8), (3.17) and (3.18), we obtain

\frac{1}{2}(1-\in)T(r, e^{P_{1}})+O(r^{\xi})\leqq T(r, h’)

\leqq\rho T(r, e^{P_{1}})+O(r^{\xi}) , as r-\infty

which implies that

( \frac{1}{2}(1-\in)-\rho-o(1))T(r, e^{P_{1}})\leqq 0 , as r – \infty .

This yields a contradiction when 0<\rho<1/2 . Hence we conclude that
C_{0}(z)\equiv C_{1}(z)\equiv 0 . It follows from (3.5) that

T(r, e^{P_{2}})\leqq 3\overline{N}(r, \frac{1}{\pi})+3m(r, U)+O (log r ) +2m(r, Q)+O(r^{\xi})

\leqq O(r^{\xi}) , as rarrow\infty ,

which implies \sigma(e^{P_{2}})<\xi<n . This is a contradiction. Hence we have
proved (i).

Now we shall prove (ii). Write

A(z):=e^{P_{1}(z)}+e^{P_{2}(z)}=e^{\zeta_{1}z^{n}+B_{1}(z)}+e^{\rho\zeta_{1}z^{n}+B_{2}(z)}

=e^{\rho\zeta_{1}z^{n}}(e^{(1-\rho)\zeta_{1}z^{n}+B_{1}(z)}+e^{B_{2}(z)}) .

In view of Lemma 2.2, setting 0<\in<4\rho-3,0<\xi<n , we get

T(r, A)\geqq(1-\in)T(r, e^{P_{1}})+O(r^{\xi})

\geqq(1-\in)T(r, e^{\zeta_{1}z^{n}})+O(r^{\xi}) , as r – \infty . (3.19)

We have

N(r, 1/A)\leqq(1-\rho)T(r, e^{\zeta_{1}z^{n}})+O(r^{\xi}) , as r – \infty . (3.20)

It follows from (3.19) and (3.20) that

\frac{1-\in}{1-\rho}N (r, \frac{1}{A})\leqq T(r, A)+S(r, A) , 4< \frac{1-\epsilon}{1-\rho} .

By Lemma E, we obtain \lambda(f)\geqq n . Theorem 1 is thus proved. \square
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