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Seminormal composition operators induced by
affine transformations
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Abstract. A class of composition operators on L^{2}(\mu) -spaces induced by nonsingular
affine transformations of d-dimensional Euclidean space is investigated. Criteria for their
boundedness and estimates for their spectral radii (from above as well as from below) are
established. The question of the existence of seminormal composition operators in this
class is studied. Cohyponormal composition operators with nontrivial translation part
are indicated.
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Introduction

The foundations of the theory of composition operators in abstract
L^{2}-spaces are well developed. In particular boundedness, subnormality,
hyponormality etc. of such operators are completely characterized (cf. [3, 4,
8, 10, 11, 13, 18]). However, if we try to apply directly general theory to
concrete classes of composition operators, we get results which are far from
being definitive. An attempt to overcome this problem has been done by
Mlak in [12] and later by the second-named author in [16].

The present paper, which is an extension and continuation of [16], deals
with composition operators on L^{2}(\mathbb{R}^{d}, \mu) induced by affine transformations
T of \mathbb{R}^{d} , where \mu is a positive Borel measure having a radially symmetric
density function. Our aim here is to find criteria for their boundedness and
to calculate their spectral radii. It turns out that the boundedness of C_{T}

depends only on T and the specific behaviour of \mu at infinity (see Theorem
2.2). In general, it is not easy to calculate explicitly the norm of C_{T} in terms
of T and the density function of \mu . This is only the case for very particular
choices of \mu (see Corollary 2.5 and Theorem 5.4). Fortunately, in most cases,
we can estimate the norm of C_{T} and consequently, we can find explicit
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estimates for the spectral radius of C_{T} (see Theorem 3.4). This enables
us to answer the question under what circumstances C_{T} is seminormal.
Except few cases there are no seminormal composition operators induced
by T having nontrivial translation part (see Theorems 4.4, 4.6, 4.7 and
Propositions 4.9 and 4.10). But the exceptional cases (see Theorem 5.4)
permit the existence of cosubnormal composition operators. This will be
investigated in the forthcoming paper.

1. Preliminaries

Given a bounded linear operator B on a (real or complex) Hilbert space
H , we denote by N(B) and \mathcal{R}(B) the kernel and the range of B , respectively.
B is said to be hyponormal (resp. cohyponormal) if BB^{*}\leq B^{*}B (resp.
B^{*}B\leq BB^{*}) . An operator which is either hyponormal or cohyponormal is
called seminormal. If B is a positive operator on \mathbb{R}^{d} . the real d-dimensional
Euclidean space, then B|_{\mathcal{R}(B)} is an invertible operator on \mathcal{R}(B) . Set B^{-1}:=

(B|_{R(B)})^{-1} .
Let us consider a positive Borel measure \mu on \mathbb{R}^{d} given by the formula

d\mu(x)=\varphi(||x||^{2})^{-1}dx , where \varphi : [0, +\infty)arrow(0, +\infty) is an arbitrary Borel
function, dx is the d-dimensional Lebesgue measure and ||x||^{2}= \sum_{k=1}^{d}x_{k^{2}} ,
x= (x_{1}, . . ’ x_{d})\in \mathbb{R}^{d} , is the canonical norm on \mathbb{R}^{d}(d\geq 1) . Assume that we
are given an invertible linear transformation A of \mathbb{R}^{d} and a vector a\in \mathbb{R}^{d} .
Define the affine transformation T by Tx=Ax+a, x\in \mathbb{R}^{d} , and denote by
C_{T} the composition operator on L^{2}(\mu) induced by T :

C_{T}f=f\circ T , f\in L^{2}(\mu) .

It is easy to see that C_{T} is a densely defined closed linear operator in L^{2}(\mu) .
Arguing similarly to [16] one can show that C_{T} is bounded if and only if
ess \sup_{x}\varphi(||Tx||^{2})/\varphi(||x||^{2})<+\infty ; if C_{T} is bounded, then

||C_{T}||^{2}= \frac{1}{|\det A|}ess\sup_{x}\frac{\varphi(||Tx||^{2})}{\varphi(||x||^{2})} . (1.1)

In order to find more useful criteria for the boundedness of C_{T} we
concentrate on functions \varphi which are “smoothly” increasing at infinity.
More precisely let \mathcal{E}_{\tau}(\tau\geq 0) stands for the set of all continuous func-
tions \varphi : [0, +\infty)arrow(0, +\infty) such that \varphi is continuously differentiate on
[\tau, +\infty) , \varphi’\geq 0 on [\tau, +\infty) and \varphi’ is monotonically increasing on [\tau, +\infty) .
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Put \mathcal{E}:=\bigcup_{\tau\geq 0}\mathcal{E}_{\tau} . Roughly speaking, \mathcal{E} is composed of continuous functions
which are continuously differentiable, monotonically increasing and convex
at +\infty . Following [16] we denote by H_{0} the class of all nonconstant entire
functions \varphi such that \varphi(0)>0 and d^{n}\varphi/dz^{n}(0)\geq 0 for every n\geq 1 . It is
clear that H_{0}\subseteq \mathcal{E} .

The following three lemmas will help us to estimate the norm and the
spectral radius of C_{T} .

Lemma 1.1 If \varphi\in \mathcal{E}_{\tau}(\tau\geq 0) , then the following conditions are equiva-
lent
(i) lim \sup_{tarrow+\infty}\varphi’(t)/\varphi(t)<+\infty ,
(ii) for every v>0 , \sup_{t\geq 0}\varphi(t+v)/\varphi(t)<+\infty ,
(iii) there exists v>0 such that \sup_{t\geq 0}\varphi(t+v)/\varphi(t)<+\infty .
Moreover, if \sigma\geq\tau . then

\varphi(t)\leq\varphi(\sigma)\exp(\overline{L}_{\sigma}(t-\sigma)) , t\geq\sigma , (1.2)

\varphi(t)\geq\varphi(\sigma)\exp(\underline{L}_{\sigma}(t-\sigma)) , t\geq\sigma , (1.3)

where \overline{L}_{\sigma}=\sup_{t\geq\sigma}\varphi’(t)/\varphi(t) and \underline{L}_{\sigma}=\inf_{t\geq\sigma}\varphi’(t)/\varphi(t) .

Proof (i)\Rightarrow(ii) Since lim \sup_{tarrow\dagger\infty}\varphi’(t)/\varphi(t)<+\infty , there exists \sigma\geq\tau

such that \overline{L}_{\sigma}<+\infty . Thus we have

\frac{\varphi(t+v)}{\varphi(t)}=\exp(\int_{t}^{t+v}\frac{\varphi’(s)}{\varphi(s)}ds)\leq\exp(\overline{L}_{\sigma}v) , t\geq\sigma . (1.2)

On the other hand \sup_{t\in[0,\sigma]}\varphi(t+v)/\varphi(t)<+\infty , because \varphi is continuous.
(iii)\Rightarrow(i) . By the Lagrange theorem, for any t\geq\tau there exists \theta\in

(0,1) such that

+ \infty>\sup_{s\geq 0}\frac{\varphi(s+v)}{\varphi(s)}\geq\frac{\varphi(t+v)}{\varphi(t)}=1+\frac{v\varphi’(t+\theta v)}{\varphi(t)}\geq\frac{v\varphi’(t)}{\varphi(t)} .

Inequality (1.2) follows from (1.4); the proof of (1.3) is similar. \square

Lemma 1.2 If \varphi\in \mathcal{E}_{\tau}(\tau\geq 0) , then the following conditions are equiva-
lent
(i) lim \sup_{tarrow+\infty}\sqrt{t}\varphi’(t)/\varphi(t)<+\infty ,
(ii) for every v>0 , \sup_{t\geq 0}\varphi(t^{2}+vt)/\varphi(t^{2})<+\infty ,
(iii) there exists v>0 such that \sup_{t\geq 0}\varphi(t^{2}+vt)/\varphi(t^{2})<+\infty .
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Moreover, if \sigma\geq\tau , then

\varphi(t)\leq\varphi(\sigma) exp (2\overline{M}_{\sigma}(t^{1/2}-\sigma^{1/2})) , t\geq\sigma , (1.5)

\varphi(t)\geq\varphi(\sigma)\exp(2\underline{M}_{\sigma}(t^{1/2}-\sigma^{1/2})) , t\geq\sigma , (1.6)

where \overline{M}_{\sigma}=\sup_{t\geq\sigma}\sqrt{t}\varphi’(t)/\varphi(t) and \underline{M}_{\sigma}=\inf_{t\geq\sigma}\sqrt{t}\varphi’(t)/\varphi(t) .

Proof. (i)\Rightarrow(ii) Since lim \sup_{tarrow+\infty}\sqrt{t}\varphi’(t)/\varphi(t)<+\infty , there exists
\sigma\geq\tau such that \overline{M}_{\sigma}<+\infty . Hence

\frac{\varphi(t^{2}+vt)}{\varphi(t^{2})}\leq\frac{\varphi((t+\frac{1}{2}v)^{2})}{\varphi(t^{2})}

= \exp(2\int_{t}^{t+\frac{1}{2}v}\frac{s\varphi’(s^{2})}{\varphi(s^{2})}ds)

\leq\exp(\overline{M}_{\sigma}v) , t\geq\sigma^{1/2} . (1.7)

Since \varphi is continuous, we have \sup_{t^{2}\in[0,\sigma]}\varphi(t^{2}+vt)/\varphi(t^{2})<+\infty .
(iii)\Rightarrow(i) . Again, by the Lagrange theorem, for any t\geq\tau^{1/2} there

exists \theta\in(0,1) such that

+ \infty>\sup_{s\geq 0}\frac{\varphi(s^{2}+vs)}{\varphi(s^{2})}\geq\frac{\varphi(t^{2}+vt)}{\varphi(t^{2})}

=1+ \frac{vt\varphi’(t^{2}+\theta vt)}{\varphi(t^{2})}\geq\frac{vt\varphi’(t^{2})}{\varphi(t^{2})} .

Inequality (1.5) follows from (1.7). The proof of (1.6) is similar. \square

Lemma 1.3 If \varphi\in \mathcal{E}_{\tau}(\tau\geq 0) , then the following conditions are equiva-
lent
(i) lim \sup_{tarrow+\infty}t\varphi’(t)/\varphi(t)<+\infty ,
(ii) for every v>1 , \sup_{t\geq 0}\varphi(vt)/\varphi(t)<+\infty ,
(iii) there exists v>1 such that \sup_{t\geq 0}\varphi(vt)/\varphi(t)<+\infty .
Moreover, if \sigma\geq\tau\geq 1 , then

\varphi(t)\leq\varphi(\sigma)(\frac{t}{\sigma})^{\overline{N}_{\sigma}} , t\geq\sigma ,

\varphi(t)\geq\varphi(\sigma)(\frac{t}{\sigma})^{\underline{N}_{\sigma}} t\geq\sigma ,
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where \overline{N}_{\sigma}=\sup_{t\geq\sigma}t\varphi’(t)/\varphi(t) and \underline{N}_{\sigma}=\inf_{t\geq\sigma}t\varphi’(t)/\varphi(t) .

Proof. Applying Lemma 1.1 to the function \varphi\circ\exp\in \mathcal{E}_{\ln\tau} we get the
conclusion. \square

2. Boundedness

In this section we present necessary and sufficient conditions for the
composition operator C_{T} to be bounded. We first investigate the behaviour
of the quadratic form \triangle(x):=||Tx||^{2}-||x||^{2} , x\in \mathbb{R}^{d} . at infinity.

Lemma 2.1 (i) lim \sup_{||x||arrow+\infty}\triangle(x)/||x||^{2}=||A||^{2}-1 ,
(ii) lim \sup_{||x||arrow+\infty}\triangle(x)/||x||<+\infty\Leftrightarrow||A||\leq 1 ,
(ii) lim \sup_{||x||arrow+\infty}\triangle(x)<+\infty\Leftrightarrow||A||\leq 1 and a\in \mathcal{R}(I-AA^{*}) .
Moreover, if lim \sup_{||x||arrow+\infty}\triangle(x)<+\infty , then

\sup_{x}\triangle(x)=\max_{x}\triangle(x)=\triangle((I-A^{*}A)^{-1}A^{*}a)=((I-AA^{*})^{-1}a, a) .

Proof. The proof of (i) is left to the reader.
(ii) If ||A||\leq 1 , then for any v>2||A^{*}a|| there exists t_{0}>0 such

that \triangle(x)=||Ax||^{2}-||x||^{2}+2(x, A^{*}a)+||a||^{2}\leq 2||A^{*}a||||x||+||a||^{2}\leq v||x||

for ||x||\geq t_{0} , so lim \sup_{||x||arrow+\infty}\triangle(x)/||x||<+\infty . The converse implication
follows from (i).

(hi) For abbreviation we put W:=I-A^{*}A and V:=I-AA^{*} . Let us
assume that lim \sup_{||x||arrow+\infty}\triangle(x)<+\infty . Then, by (i), we have ||A||\leq 1 .
If x\in N(W) , then \sup_{t\in \mathbb{R}}(2t(x, A^{*}a)+||a||^{2})=\sup_{t\in \mathbb{R}}\triangle(tx)<+\infty , so
(x, A^{*}a)=0 . Thus we have shown that N(W)\subseteq(A^{*}a)^{\perp} , which implies
that a\in \mathcal{R}(V) .

Suppose now that ||A||\leq 1 and a\in \mathcal{R}(V) . Since a\in \mathcal{R}(V) is equivalent
to A^{*}a\in \mathcal{R}(W) , we can define c:=W^{-1}A^{*}a\in \mathcal{R}(W) . Then

A^{*}a=Wc . (2.1)

The last equality yields

\triangle(x)=-(Wx, x)+2(x, Wc)+||a||^{2}

=-(W(x-c), x-c)+(Wc, c)+||a||^{2} .



382 A. Daniluk and J. Stochel

According to our assumptions W\geq 0 , so

\sup_{x}\triangle(x)=\max_{x}\triangle(x)=\triangle(c)=(Wc, c)+||a||^{2} ,

which shows that lim \sup_{||x||arrow+\infty}\triangle(x)<+\infty .
Now we prove the equality (Wc, c)+||a||^{2}=(V^{-1}a, a) . By (2.1) we

have

a=A^{*-1}Wc=VA^{*-1}c

and consequently

A^{*-1}c=V^{-1}a .

This and (2.1) imply

(Wc, c)+||a||^{2}=(A^{*}a, c)+||a||^{2}

=(AA^{*}a, A^{*-1}c)+||a||^{2}

=(AA^{*}a, V^{-1}a)+||a||^{2}

=(a, (AA^{*}+V)V^{-1}a)

=(a, V^{-1}a) ,

which completes the proof. \square

Define the quantity \tau\tau (depending on \tau\geq 0 and T) as the maximum
of \tau and \sup\{||x||^{2} : ||Tx||^{2}\leq\tau\} . Notice that if ||x||^{2}>\tau_{T} , then ||x||^{2}>\tau

and ||Tx||^{2}>\tau .

Theorem 2.2 If \varphi\in \mathcal{E} and a\neq 0 , then C_{T} is bounded if and only if one
of the following conditions holds
(i) ||A||<1 ,
(ii) ||A||=1 , a\in \mathcal{R}(I-AA^{*}) and lim \sup_{tarrow+\infty}\varphi’(t)/\varphi(t)<+\infty ,
(iii) ||A||=1 , a\not\in \mathcal{R}(I-AA^{*}) and lim \sup_{tarrow+\infty}\sqrt{t}\varphi’(t)/\varphi(t)<+\infty ,
(iv) lim \sup_{tarrow+\infty}t\varphi’(t)/\varphi(t)<+\infty .

Proof. Let \tau\geq 0 be such that \varphi\in \mathcal{E}_{\tau} .
Sufficiency. Notice that the boundedness of C_{T} will be proved once

we show that \sup_{||x||^{2}>t_{0}}\varphi(||Tx||^{2})/\varphi(||x||^{2}) is finite for some t_{0}\geq 0 .
If ||A||<1 , then by Lemma 2.1 (i) there exists t_{0}\geq\tau_{T} such that
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\triangle(x)\leq 0 for ||x||^{2}\geq t_{0} . This and the monotonicity of \varphi in [\tau, +\infty) imply

\frac{\varphi(||Tx||^{2})}{\varphi(||x||^{2})}=\frac{\varphi(||x||^{2}+\triangle(x))}{\varphi(||x||^{2})}\leq 1 , ||x||^{2}>t_{0} .

If ||A||=1 , a\in \mathcal{R}(I-AA^{*}) and lim \sup_{tarrow+\infty}\varphi’(t)/\varphi(t)<+\infty , then
by Lemma 2.1 (iii) there exist t_{0}\geq\tau\tau and v>0 such that ||Tx||^{2}\leq||x||^{2}+v

for ||x||^{2}\geq t_{0} . This and Lemma 1.1 (ii) imply

\frac{\varphi(||Tx||^{2})}{\varphi(||x||^{2})}\leq\frac{\varphi(||x||^{2}+v)}{\varphi(||x||^{2})}\leq\sup_{t\geq 0}\frac{\varphi(t+v)}{\varphi(t)}<+\infty , ||x||^{2}>t_{0} .

If ||A||=1 and lim \sup_{tarrow+\infty}\sqrt{t}\varphi’(t)/\varphi(t)<+\infty , then by Lemma
2.1 (ii) there exist t_{0}\geq\tau_{T} and v>0 such that ||Tx||^{2}\leq||x||^{2}+v||x|| for
||x||^{2}\geq t_{0} . This and Lemma 1.2 (ii) yield

\frac{\varphi(||Tx||^{2})}{\varphi(||x||^{2})}\leq\frac{\varphi(||x||^{2}+v||x||)}{\varphi(||x||^{2})}\leq\sup_{t\geq 0}\frac{\varphi(t^{2}+vt)}{\varphi(t^{2})}<+\infty , ||x||^{2}>t_{0} .

Assume that lim \sup_{tarrow+\infty}t\varphi’(t)/\varphi(t)<+\infty . Applying Lemma 2.1 (i)
we can find t_{0}\geq\tau_{T} and v>1 such that ||Tx||^{2}\leq v||x||^{2} for ||x||^{2}\geq t_{0} . This
and Lemma 1.3 (ii) imply

\frac{\varphi(||Tx||^{2})}{\varphi(||x||^{2})}\leq\frac{\varphi(v||x||^{2})}{\varphi(||x||^{2})}\leq\sup_{t\geq 0}\frac{\varphi(vt)}{\varphi(t)}<+\infty , ||x||^{2}>t_{0} .

Necessity. Suppose that C_{T} is bounded. We can assume that ||A||\geq 1 .
If ||A||>1 , then taking a normalized vector x_{0} such that ||A(x_{0})||=||A||

and fixing v\in(1, ||A||^{2}) we can find t_{0}\geq\tau such that

||T(\sqrt{t}x_{0})||^{2}=t||A||^{2}+2\sqrt{t}(x_{0}, A^{*}a)+||a||^{2}\geq vt , t\geq t_{0} .

This yields

\frac{\varphi(vt)}{\varphi(t)}\leq\frac{\varphi(||T(\sqrt{t}x_{0})||^{2})}{\varphi(||\sqrt{t}x_{0}||^{2})}\leq\sup_{x}\frac{\varphi(||Tx||^{2})}{\varphi(||x||^{2})}<+\infty , t>t_{0} .

Applying Lemma 1.3 we get (iv).
Assume that ||A||=1 . Then W:=I-A^{*}A\geq 0 and N(W)\neq\{0\} .

Notice that a\not\in \mathcal{R}(I-AA^{*}) if and only if there exists x_{0}\in N(W) such that
(x_{0}, A^{*}a)>0 . Indeed: a\in \mathcal{R}(I-AA^{*})\Leftrightarrow A^{*}a\in \mathcal{R}(W)\Leftrightarrow A^{*}a\in N(W)^{\perp}

\Leftrightarrow N(W)\subseteq(A^{*}a)^{\perp}\Leftrightarrow(x, A^{*}a)=0 for each x\in N(W) .
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If a\in \mathcal{R}(I-AA^{*}) , then taking x_{0}\in N(W) such that ||x_{0}||=1 we have
||T(\sqrt{t}x_{0})||^{2}=t+||a||^{2} for t\geq 0 , so

\frac{\varphi(t+||a||^{2})}{\varphi(t)}=\frac{\varphi(||T(\sqrt{t}x_{0})||^{2})}{\varphi(||\sqrt{t}x_{0}||^{2})}\leq\sup_{x}\frac{\varphi(||Tx||^{2})}{\varphi(||x||^{2})}<+\infty , t\geq 0 ,

which in virtue of Lemma 1.1 implies (ii).
If a\not\in \mathcal{R}(I-AA^{*}) , then there exists a normalized vector x_{0}\in N(W)

such that (x_{0}, A^{*}a)>0 . Taking any v\in(0,2(x_{0}, A^{*}a)) we can find t_{0}\geq\sqrt{\tau}

such that

||T(tx_{0})||^{2}=t^{2}+2t(x_{0}, A^{*}a)+||a||^{2}\geq t^{2}+vt , t\geq t_{0} .

Therefore

\frac{\varphi(t^{2}+vt)}{\varphi(t^{2})}\leq\frac{\varphi(||T(tx_{0})||^{2})}{\varphi(||tx_{0}||^{2})}\leq\sup_{x}\frac{\varphi(||Tx||^{2})}{\varphi(||x||^{2})}<+\infty , t>t_{0} ,

so (iii) follows from Lemma 1.2. This completes the proof. \square

The case a=0, not included in Theorem 2.2, is much simpler. Namely
we have the following criterion.

Proposition 2.3 If \varphi\in \mathcal{E} and a=0, then C_{T} is bounded if and only if
||A||\leq 1 or lim \sup_{tarrow\dagger\infty}t\varphi’(t)/\varphi(t)<+\infty .

Proof It is enough to modify appropriate parts of the proof of TheO-
rem 2.2. \square

Corollary 2.4 Let \varphi\in \mathcal{H}_{0} . If a\neq 0 , then C_{T} is bounded if and only if
one of the following conditions holds
(i) ||A||<1 ,
(ii) ||A||=1 , a\in \mathcal{R}(I-AA^{*}) and lim \sup_{tarrow+\infty}\varphi’(t)/\varphi(t)<+\infty ,
(iii) ||A||=1 , a\not\in \mathcal{R}(I-AA^{*}) and lim \sup_{tarrow+\infty}\sqrt{t}\varphi’(t)/\varphi(t)<+\infty ,
(iv) \varphi is a polynomial.
If a=0, then C_{T} is bounded if and only if ||A||\leq 1 or \varphi is a polynomial.

Proof Apply Theorem 2.2, Proposition 2.3, Lemma 1.3 and the fact that
any entire function of polynomial growth is a polynomial. \square

In general, it seems to be hopeless to find more explicit formula for the
norm of C_{T} . However it is possible in the particular case of the Gaussian
measure \mu .
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Corollary 2.5 If \varphi=\exp 7 then C_{T} is bounded if and only if ||A||\leq 1

and a\in \mathcal{R}(I-AA^{*}) . Moreover

||C_{T}||^{2}= \frac{1}{|\det A|} exp (((I-AA^{*})^{-1}a, a))= \prod_{j=1}^{n}\frac{1}{t_{j}} exp ( \frac{|(a,h_{j})|^{2}}{1-t_{j}^{2}})-

where t_{1} , . . , t_{n} are all eigenvalues of |A^{*}| which are less than 1, listed in an
order taking account of their multiplicities and h_{1} , . . ’

h_{n} are corresponding
normalized eigenvectors which are pairwise orthogonal.

Proof. The first part of the conclusion follows from Theorem 2.2 and
Proposition 2.3, while the other from Lemma 2.1 as

||C_{T}||^{2}= \frac{1}{|\det A|}\sup_{x} exp (\triangle(x))

= \frac{1}{|\det A|} exp (((I-AA^{*})^{-1}a, a))

= \prod_{j=1}^{n}\frac{1}{t_{j}} exp ( \frac{|(a,h_{j})|^{2}}{1-t_{j}^{2}})

The proof of the last equality is left to the reader. \square

3. Spectral Radius

In this section we will estimate the spectral radius r(C_{T}) of C_{T} . We
begin by proving some preliminary results concerning operators that come
from iterations of a contraction. First, recall that any contraction B on a
(real or complex) Hilbert space K possesses a unique orthogonal decomp0-
section B=B_{u}\oplus B_{c} , where B_{u} is a unitary operator on D(B_{u}) and B_{c} is a
completely nonunitary operator on D(B_{c}) (cf. [17]).

Lemma 3.1 Assume that ||A||\leq 1 . If V_{n}:=I-A^{n}A^{*n} for n\geq 0 , then
(i) \{V_{n}\}_{n=0}^{\infty} is a monotonically increasing sequence of positive opera-

tors and \{\mathcal{R}(V_{n})\}_{n=0}^{\infty} is a monotonically increasing sequence of subspaces.
(ii) There exists n_{0} such that \mathcal{R}(V_{n})=\mathcal{R}(V_{n_{0}})=D(A_{c}) for n\geq n_{0} .

Proof. We have only to prove (ii). Since, by (i), the sequence of finite
dimensional subspaces \{N(V_{n})\}_{n=0}^{\infty} is monotonically decreasing, it must
stabilize beginning from some n_{0} . Notice that H:= \bigcap_{n\geq 0}N(V_{n})=N(V_{n_{0}})

is invariant for A^{*} and A^{*}|_{H} is an isometry. However H is finite dimensional,
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so H reduces A^{*} to a unitary operator, which completes the proof. \square

The following lemma describes the behaviour (at infinity) of the se-
quence \{a_{n}\}_{n=1}^{\infty} defined recursively by T^{n}x=A^{n}x+a_{n} , x\in \mathbb{R}^{d} , n\geq 1 .

Lemma 3.2 (i) If ||A||<1 , then the sequence \{a_{n}\}_{n=1}^{\infty} is bounded.
(i) If ||A||=1 and a\in \mathcal{R}(I-AA^{*}) , then a_{n}\in \mathcal{R}(I-A^{n}A^{*n}) for

every n\geq 1 and the sequences \{a_{n}\}_{n=1}^{\infty} and \{((I-A^{n}A^{*n})^{-1}a_{n}, a_{n})\}_{n=1}^{\infty} are
bounded.

(i) If ||A||\leq 1 , then \lim_{narrow+\infty}a_{n}/n=Pa , where P is the orthogonal
projection of \mathbb{R}^{d} onto N(I-A) .

Proof It is easy to see that

a_{n}=A^{n-1}a+A^{n-2}a+ +Aa+a, n\geq 1 . (3.1)

(i) If ||A||<1 , then by (3.1) we have

||a_{n}|| \leq\frac{||a||}{1-||A||} , n\geq 1 .

(ii) Suppose that ||A||=1 and a\in \mathcal{R}(I-AA^{*}) . We first show that

a_{n}\in \mathcal{R}(I-A^{n}A^{*n}) , n\geq 1 . (3.2)

We proceed by induction. Assume that a_{n}= (I – A^{n}A^{*n})h . Then

Aa_{n}=Ah-A^{n+1}A^{*n}h

=(AA^{*}-A^{n+1}A^{*(n+1)})A^{*-1}h

=(AA^{*}-I)A^{*-1}h+(I-A^{n+1}A^{*(n+1)})A^{*-1}h

\in \mathcal{R}(I-AA^{*})+\mathcal{R}(I-A^{n+1}A^{*(n+1)}) .

By Lemma 3.1 (i), Aa_{n} is in \mathcal{R}(I-A^{n+1}A^{*(n+1)}) and consequently so is
a_{n+1}=Aa_{n}+a .

It is well-known (cf. [17]) that 1 is not the eigenvalue of A_{c} , so I-A_{c}

is invertible. By Lemma 3.1 (ii) there exists n_{0}\geq 1 such that

D(A_{c})=\mathcal{R}(V_{n_{0}})=\mathcal{R}(V_{n}) , n\geq n_{0} , (3.3)

so in virtue of (3.1) and (3.2) we conclude

(I-A_{c})a_{n}=(I-A_{c}^{n})a , n\geq n_{0} .
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Therefore

a_{n}=(I-A_{c})^{-1}(I-A_{c}^{n})a , n\geq n_{0} . (3.4)

This in turn implies the boundedness of \{a_{n}\}_{n=1}^{\infty} .
Notice that the bounded sequence \{I-A_{c}^{n}A_{c}^{*n}\}_{n=0}^{\infty} of positive operators,

being monotonically increasing, is norm-convergent. However, by (3.3), we
have N(I-A_{c}^{n_{0}}A_{c}^{*n_{0}})=\{0\} , which implies ||A_{c}^{n_{0}}||=||A_{c}^{*n_{0}}||<1 . Since the
sequence \{I-(A_{c}^{n_{0}})^{n}(A_{c}^{*n_{0}})^{n}\}_{n=0}^{\infty} is convergent to I , so is \{I-A_{c}^{n}A_{c}^{*n}\}_{n=0}^{\infty} .
This in turn implies that the sequence \{(I-A_{c}^{n}A_{c}^{*n})^{-1}\}_{n=0}^{\infty} is convergent
to I . By (3.2) and (3.3) we have

(V_{n}^{-1}a_{n}, a_{n})=((I-A_{c}^{n}A_{c}^{*n})^{-1}a_{n}, a_{n}) , n\geq n_{0} ,

which together with the boundedness of \{a_{n}\}_{n=1}^{\infty} implies (ii).
(iii) By (3.1), this is exactly the mean ergodic theorem (cf. [14]).

\square

The following lemma will be exploited in the proof of Theorem 3.4.
\mathbb{R}^{d}No.te

that it still holds if we replace T by an arbitrary homeomorphism of

Lemma 3.3 For every r\geq 0 , \sup_{||x||\leq r}||Tx||=\sup_{||x||=r}||Tx|| .

Proof. Denote by K_{r} (resp. S_{r} ) the closed ball (resp. the sphere) cen-
tered at 0 with radius r . Since T is a homeomorphism of \mathbb{R}^{d} , we have
T(S_{r}) =T(\partial K_{r}) =\partial(T(K_{r})) , so \sup_{x\in K_{r}}||Tx|| = \sup_{y\in T(K_{r})}||y|| =
\sup_{y\in\partial(T(K_{r}))}||y||=\sup_{y\in T(S_{r})}||y||=\sup_{x\in S_{r}}||Tx|| , which completes the
proof. \square

We can now formulate the explicit estimates for the spectral radius of
C_{T} .

Theorem 3.4 Assume that \varphi\in \mathcal{E} and C_{T} is bounded.
(i) If ||A||\leq 1 and a\in \mathcal{R}(I-AA^{*}) , then

r(C_{T}) |\det A|=1 .

(ii) If ||A||=1 and a\not\in \mathcal{R}(I-AA^{*}) , then

exp (\underline{M}||Pa||)\leq r(C_{T}) |\det A|\leq\exp(\overline{M}||Pa||) ,

where \underline{M}:=\lim\inf_{tarrow+\infty}\sqrt{t}\varphi’(t)/\varphi(t) , \overline{M}:=\lim\sup_{tarrow+\infty}\sqrt{t}\varphi’(t)/\varphi(t)
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(3.5)

and P is the orthogonal projection of \mathbb{R}^{d} onto N(I-A) .
(iii) If ||A||>1 , then

\max\{1, r(A)\}^{\underline{N}}\leq r(C_{T}) | \det A|\leq\max\{1, r(A)\}^{\overline{N}} ,

where \underline{N}:=\lim\inf_{tarrow+\infty}t\varphi’(t)/\varphi(t) and \overline{N}:=\lim\sup_{tarrow+\infty}t\varphi’(t)/\varphi(t) .

Proof. Let \tau\geq 1 be such that \varphi\in \mathcal{E}_{\tau} . Set \kappa_{\sigma}:=\sup_{[0,\sigma]}\varphi/\inf_{[0,\sigma]}\varphi for
\sigma\geq 0 . Then the following inequality holds for \sigma\geq\tau (with the convention
sup \emptyset:=0 )

\sup_{x}\frac{\varphi(||Tx||^{2})}{\varphi(||x||^{2})}

\leq\kappa_{\sigma} max \{1 , sup \{\frac{\varphi(||Tx||^{2})}{\varphi(||x||^{2})} : ||Tx||^{2}\geq||x||^{2}\geq\sigma\}\}

Indeed, if ||Tx||^{2}\leq\sigma , then the monotonicity of \varphi implies \varphi(||Tx||^{2})/

\varphi(||x||^{2})\leq\kappa_{\sigma} . The same reasoning applies to the case ||x||^{2}\geq\sigma and
||Tx||^{2}\geq\sigma . If ||x||^{2}\leq\sigma and ||Tx||^{2}\geq\sigma , then one can conclude from
Lemma 3.3 that

\frac{\varphi(||Tx||^{2})}{\varphi(||x||^{2})}\leq\underline{\varphi(\sup\{||Ty||^{2}}\cdot
. ||y||^{2}=\sigma,

||Ty||^{2} \varphi(\sigma)\geq\sigma\})\frac{\varphi(\sigma)}{\varphi(||x||^{2})}

\leq\kappa_{\sigma} sup \{\frac{\varphi(||Ty||^{2})}{\varphi(||y||^{2})} : ||Ty||^{2}\geq||y||^{2}\geq\sigma\} .

which proves (3.5).
Note now that the following estimate is always true

r(C_{T}) |\det A|\geq 1 . (3.6)

Indeed, by (1.1), we have

||C_{T}^{n}||^{2} \geq\frac{1}{|\det A|^{n}}\frac{\varphi(||a_{n}||^{2})}{\varphi(0)}\geq\frac{1}{\kappa_{\tau}|\det A|^{n}} , n\geq 1 ,

so, by the Gelfand formula (cf. [15]), r(C_{T}) = \lim_{narrow+\infty}||C_{T}^{n}||^{1/n} \geq

1/\sqrt{|\det A|} .
(i) Due to (3.6) we have only to prove that r(C_{T})\leq 1/\sqrt{|\det A|} . If

||A||<1 (or ||A||=1 and a=0), then by Lemma 3.2 (i), the sequence
\{||a_{n}||\}_{n=1}^{\infty} is bounded by some \alpha\geq 0 , so ||T^{n}x||\leq||A^{n}x||+||a_{n}||\leq
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||A||||x||+\alpha for n\geq 1 . Taking \sigma:=\max\{\tau, \alpha^{2}/(1-||A||)^{2}\} we get
||T^{n}x||^{2}\leq||x||^{2} for ||x||^{2}\geq\sigma . Applying (3.5) with T^{n} in place of T we
conclude that \sup_{x}\varphi(||T^{n}x||^{2})/\varphi(||x||^{2})\leq\kappa_{\sigma} . This and (1.1) imply

||C_{T}^{n}||^{2} \leq\frac{\kappa_{\sigma}}{|\det A|^{n}} .

Using the Gelfand formula we get r(C_{T})\leq 1/ |\det A| .
Assume now that ||A||=1 and a\in \mathcal{R}(I-AA^{*})\backslash \{0\} . Then, by Theorem

2.2, \overline{L}_{\tau}:=\sup\{\varphi’(t)/\varphi(t) : t\geq\tau\}<+\infty . It follows from Lemma 3.2 (ii)
that the sequence \{((I-A^{n}A^{*n})^{-1}a_{n}, a_{n})\}_{n=1}^{\infty} is bounded by some \beta\geq 0 .
Applying Lemma 3.2 (ii) and Lemma 2.1 (the latter to T^{n} in place of T),
we get ||T^{n}x||^{2}\leq||x||^{2}+((I-A^{n}A^{*n})^{-1}a_{n}, a_{n})\leq||x||^{2}+\beta for n\geq 1 . This
and Lemma 1.1 imply

\frac{\varphi(||T^{n}x||^{2})}{\varphi(||x||^{2})}\leq\exp(\overline{L}_{\tau}(||T^{n}x||^{2}-||x||^{2}))\leq\exp(\overline{L}_{\tau}\beta) ,

provided ||T^{n}x||^{2}\geq||x||^{2}\geq\tau and n\geq 1 . By (3.5) we have | det A|^{n}||C_{T}^{n}||^{2}\leq

\kappa_{\tau}\exp(\overline{L}_{\tau}\beta) for n\geq 1 . The Gelfand formula gives us |\det A|r(C_{T})\leq 1 .
(ii) Take an arbitrary \sigma\geq\tau . Let \underline{M}_{\sigma} and \overline{M}_{\sigma} be as in Lemma 1.2.

Then, by Theorem 2.2, \overline{M}_{\sigma} is finite. It follows from Lemma 1.2 that

\frac{\varphi(||T^{n}x||^{2})}{\varphi(||x||^{2})}\leq\exp(2\overline{M}_{\sigma}(||T^{n}x||-||x||))\leq\exp(2\overline{M}_{\sigma}||a_{n}||) ,

provided ||T^{n}x||^{2}\geq||x||^{2}\geq\sigma and n\geq 1 . Applying (3.5) and the Gelfand
formula we obtain

| det A|r(C_{T})^{2} \leq\exp(2\overline{M}_{\sigma}\lim_{narrow+\infty}||a_{n}||/n) ,

which, by Lemma 3.2 (iii), yields

|\det A|r(C_{T})\leq\exp(\overline{M}_{\sigma}||Pa||) .

Letting \sigmaarrow+\infty we get one of the inequalities in (ii).
To prove the other one, it is sufficient to consider the case Pa\neq 0

(because of (3.6)). It follows from Lemma 3.2 (iii) that for any \sigma\geq\tau , there
exists n_{0}\geq 1 such that ||a_{n}||^{2}\geq\sigma for n\geq n_{0} . Consequently, by Lemma
1.2, we have

| det A|^{n}||C_{T}^{n}||^{2} \geq\frac{\varphi(||a_{n}||^{2})}{\varphi(0)}
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\geq\frac{1}{\kappa_{\sigma}}\frac{\varphi(||a_{n}||^{2})}{\varphi(\sigma)}

\geq\frac{1}{\kappa_{\sigma}}\exp(2\underline{M}_{\sigma}(||a_{n}||-\sqrt{\sigma})) , n\geq n_{0} .

Arguing similarly to the previous paragraph we infer the desired inequality.
(iii) Take an arbitrary \sigma\geq\tau . Let \underline{N}_{\sigma} and \overline{N}_{\sigma} be as in Lemma

1.3. Due to Theorem 2.2 and Proposition 2.3, \overline{N}_{\sigma} is finite. Without loss
of generality we may assume that ||A^{n}||>1 for all n\geq 1 (consequently
r(A)\geq 1) . Otherwise there exists n\geq 1 such that ||A^{n}||<1 , so we
can apply (i), or ||A^{n}||=1 , so we can apply either (i) or (ii) (because
\underline{M}=\overline{M}=0) .

Since ||A||>1 , one can deduce from Lemma 2.1 (i) that the set {x :
||Tx||^{2}\geq||x||^{2}\geq\sigma\} is nonempty. It follows from Lemma 1.3 and (3.5) that

( \sup\{\frac{||Tx||^{2}}{||x||^{2}} : ||Tx||^{2}\geq||x||^{2}\geq\sigma\})^{\underline{N}_{\sigma}}

(3.7)

\leq| det A|||C_{T}||^{2}

\leq\kappa_{\sigma}(\sup\{\frac{||Tx||^{2}}{||x||^{2}} : ||Tx||^{2}\geq||x||^{2}\geq\sigma\})^{N_{\sigma}}

Lemma 2.1 (i) gives us \sup\{||Tx||^{2}/||x||^{2} : ||Tx||^{2}\geq||x||^{2}\geq\sigma\}\geq||A||^{2} .
Thus ||A||^{2\underline{N}_{\sigma}} \leq | det A|||C_{T}||^{2} . Letting \sigmaarrow +\infty we get ||A||^{\underline{N}}\leq

\sqrt{|\det A|}||C_{T}|| . Replacing T by T^{n} in the last inequality and using the
Gelfand formula we obtain r(A)^{\underline{N}}\leq |\det A|r(C_{T}) .

Take \theta>r(A) . Then the sequence \{||A^{n}||/\theta^{n}\}_{n=1}^{\infty} tends to 0 and conse-
quently so does the sequence \{n^{-1} (1+||A||\theta^{-1}+\cdot +||A^{n}||\theta^{-n})\}_{n=1}^{\infty} . This
in turn implies that 1+||A||+\cdot\cdot+||A^{n}||\leq n\theta^{n} for n large enough (because
\theta>r(A)\geq 1) . Using (3.1) we get the following estimate for n large enough
and \sigma\geq||a||^{2}

\frac{||T^{n}x||}{||x||}\leq||A^{n}||+\frac{||a_{n}||}{\sqrt{\sigma}}\leq 1+||A||+\cdot +||A^{n}||\leq n\theta^{n} ,

provided ||x||^{2}\geq\sigma . Applying (3.7) to T^{n} in place of T we get

|\det A|^{n}||C_{T}^{n}||^{2}\leq\kappa_{\sigma}(n\theta^{n})^{2\overline{N}_{\sigma}} .

for n large enough. Using once more Gelfand’s formula, then letting \sigmaarrow
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+\infty and finally letting \thetaarrow r(A) we get the conclusion. \square

Corollary 3.5 Assume that \varphi\in \mathcal{E} and C_{T} is bounded. If A is a contrac-
tion and a\in D(A_{c}) , then

r(C_{T}) |\det A|=1 .

Proof. Note that a\in D(A_{c})\subseteq N(I-A)^{\perp} , so the conclusion follows from
parts (i) and (ii) of Theorem 3.4. \square

Theorem 3.4 enables us to calculate spectral radius of C_{T} in case the
appropriate limits exist.

Theorem 3.6 Assume that \varphi\in \mathcal{E} and C_{T} is bounded.
(i) If r(A)\leq 1 and there exists M= \lim_{tarrow+\infty}\sqrt{t}\varphi’(t)/\varphi(t)\leq+\infty ,

then

r(C_{T}) |\det A|=\exp(M||Pa||) , (3.8)

with the usual convention \infty 0=0;P is the orthogonal projection of \mathbb{R}^{d}

onto N(I-A) .
(ii) If r(A)>1 and there exists N= \lim_{tarrow+\infty}t\varphi’(t)/\varphi(t)\leq+\infty ,

then

r(C_{T}) |\det A|=r(A)^{N} . (3.8)

Proof. We first consider the case ||A||>1 . Then, by Theorem 2.2,
Proposition 2.3 and Theorem 3.4 (iii), we have \overline{N}<+\infty and

\max\{1, r(A)\}^{\underline{N}}\leq r(C_{T}) | \det A|\leq\max\{1, r(A)\}^{\overline{N}} (3.10)

It is clear that (ii) is a consequence of (3.10). On the other hand if r(A)\leq 1 ,
then (3.10) implies (3.8) as M=0 (the latter follows from \overline{N}<+\infty ).

Consider now the case ||A||\leq 1 . If a\in \mathcal{R}(I-AA^{*}) , then Pa=0, so
(3.8) follows from Theorem 3.4 (i). If ||A||=1 and a\not\in \mathcal{R}(I-AA^{*}) , then
we can apply Theorem 3.4 (ii). This completes the proof. \square

In general, the quantities \underline{M} and \overline{M} (resp. \underline{N} and \overline{N} ) appearing in
Theorem 3.4 do not coincide. It may happen that \underline{M}\neq\overline{M} even for entire
functions \varphi\in H_{0} (see [2] for a general method of constructing such exam-
ples). On the other hand, if \varphi\in H_{0} and ||A||>1 , then \underline{N}=\overline{N} . Indeed, due
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to Corollary 2.4, \varphi is a polynomial, so \underline{N}=\overline{N}=\deg\varphi . This observation,
Corollary 2.4 and Theorem 3.4 lead to the following

Corollary 3.7 Assume that \varphi\in H_{0} and C_{A} is bounded. Then

r(C_{A})=\{

\frac{1}{\sqrt{|\det A|}} if \varphi is not a polynomial

\frac{1}{\sqrt{|\det A|}}\max\{1, r(A)\}^{\deg\varphi} if \varphi is a polynomial.

Note that Corollary 3.7 can be deduced from [16, Lemma 2.1] and [16,
Prop. 2.2]. Applying these last two results one can also show that

r(C_{A})<||C_{A}|| \Leftrightarrow ( ||A||>1 and r(A)<||A|| )

(then obviously \varphi has to be a polynomial). The case \varphi(0)=0 is a little
bit more complicated; it can be described with help of [16, Lemma 2.1] and
[16, Prop. 2.2].

4. Lack of Seminormality

In this section we investigate the question: do there exist bounded semi-
normal composition operators with nontrivial translation part ? Roughly
speaking, the answer is in the negative in all but one case where ||A||=1 ,
a\not\in \mathcal{R}(I-AA^{*}) and lim \sup_{tarrow+\infty}\sqrt{t}\varphi’(t)/\varphi(t)<+\infty .

To begin with we state some more or less known characterizations of
normal matrices.

Lemma 4.1 (i) If r(A)=||A|| , then there is a nonzero linear subspace
H reducing A to a multiple of a unitary operator such that ||A|_{H}||=||A|| .
(ii) A is normal if and only if

||x||^{2}\leq||Ax||||A^{-1}x|| , x\in \mathbb{R}^{d} . (4.1)

(iii) A is a multiple of a unitary operator if and only if
||x||^{2}\geq||Ax||||A^{-1}x|| , x\in \mathbb{R}^{d} (4.2)

Proof (i) Without loss of generality we can assume that ||A||=1 . It
follows from Lemma 3.1 (ii) that D(A_{u})=N(I-A^{s}A^{*s}) for some s\geq 1 .
However ||A^{s}||=1 , because r(A)=||A||=1 , so D(A_{u})\neq\{0\} .
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(ii) If (4.1) holds, then ||Ax||^{2}\leq||A^{2}x||||x|| ( i.e . A is paranormal), so
r(A)=||A|| (cf. [9, Th. 7.1.7]). Repeated application of (i) leads to the
conclusion.

(iii) If (4.2) holds, then

||Ax||||A^{-1}x||\leq||x||^{2}=(A^{*}x, A^{-1}x)\leq||A^{*}x||||A^{-1}x|| ,

which implies that A^{*} is hyponormal and consequently normal. This in turn
yields ||Ax||||A^{-1}x||=||x||^{2} . Due to the proof of step 3 of [16, Prop. 2.3], A
is a multiple of a unitary operator. \square

It is worth while to note that in general, the part (ii) of Lemma 4.1 is
no longer true in infinite dimensional Hilbert spaces (cf. [9, Th. 8.3.29] for
some generalizations). On the other hand the part (iii) of Lemma 4.1 is
always true (this will be proved in a separate paper).

The following estimate from below on the norm of C_{T} will be used in
the sequel.

Lemma 4.2 Assume that \varphi\in \mathcal{E} is strictly increasing on [\tau, +\infty)(\tau\geq 0) ,
a\neq 0 and C_{T} is bounded. If \tau=0 or ||A||\geq 1 , then

||C_{T}|| |\det A|>1 .

Proof. If \tau=0 , then ||C_{T}||^{2}| det A|\geq\varphi(||a||^{2})/\varphi(0)>1 . Assume that
||A||\geq 1 . Take x_{0} such that ||x_{0}||=1 , ||A||=||Ax_{0}|| and (x_{0}, A^{*}a)\geq 0 .
Since ||A||\geq 1 we have

||T(\sqrt{\tau}x_{0})||^{2}=\tau||A||^{2}+2\sqrt{\tau}(x_{0}, A^{*}a)+||a||^{2}>\tau .

This and the monotonicity of \varphi imply

| det A|||C_{T}||^{2} \geq\frac{\varphi(||T(\sqrt{\tau}x_{0})||^{2})}{\varphi(||\sqrt{\tau}x_{0}||^{2})}>\frac{\varphi(\tau)}{\varphi(\tau)}=1 ,

which completes the proof. \square

Remark 4.3 Note that a function \varphi\in \mathcal{E} is strictly increasing in some
neighbourhood of+\infty if and only if \varphi is not constant in any neighbour-
hood of+\infty , which in turn is equivalent to \lim_{tarrow+\infty}\varphi(t)=+\infty . We can
strengthen a part of Lemma 4.2 as follows:

\circ Let \varphi be a positive Borel function such that \lim_{tarrow+\infty}\varphi(t)=+\infty .
If C_{T} is bounded, a\neq 0 and ||A||\geq 1 , then ||C_{T}|| |\det A|>1 .
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Indeed, since \varphi(||T(\sqrt{t}x_{0})||^{2})/\varphi(||\sqrt{t}x_{0}||^{2})=\varphi(t+\delta(t))/\varphi(t) , where x_{0} is
as in the proof of Lemma 4.2 and \delta(t):=t(||A||^{2}-1)+2\sqrt{t}(x_{0}, A^{*}a)+||a||^{2} ,
it is sufficient to show that there exists t\geq 0 such that \varphi(t+\delta(t))>\varphi(t) .
Suppose, contrary to our claim, that \varphi(t+\delta(t))\leq\varphi(t) for every t\geq 0 .
Define the sequence \{t_{n}\}_{n=0}^{\infty} by t_{0}=0 and t_{n+1}:=t_{n}+\delta(t_{n}) for n\geq 0 . Then
\{\varphi(t_{n})\}_{n=0}^{\infty} is monotonically decreasing and \lim_{narrow+\infty}t_{n}=+\infty (because
t_{n+1}-t_{n}\geq||a||^{2}>0) . Thus lim \inf_{t}

-
+\infty\varphi(t)<+\infty , which contradicts

\lim_{tarrow+\infty}\varphi(t)=+\infty .

One can show (similarly to [16]) that a bounded C_{T} is hyponormal
(resp. cohyponormal) if and only if

\varphi(||Tx||^{2})\varphi(||T^{-1}x||^{2})\leq\varphi(||x||^{2})^{2} , x\in \mathbb{R}^{d}

(resp. \varphi(||Tx||^{2})\varphi(||T^{-1}x||^{2})\geq\varphi(||x||^{2})^{2} , x\in \mathbb{R}^{d} ). (4.3)

We are now in a position to state the first result excluding the existence
of seminormal composition operators C_{T} with a\neq 0 in case ||A||\leq 1 and
a\in \mathcal{R}(I-AA^{*}) .

Theorem 4.4 Assume that \varphi\in \mathcal{E} is strictly increasing on [\tau, +\infty)

(\tau\geq 0) , a\neq 0 and C_{T} is bounded. If any of the following three condi-
tions holds
(i) r(A)<1 and \tau=0 ,
(ii) ||A||=1 and Pa=0 (P is the orthogonal projection onto N(I-A) ),
(iii) r(A)\leq 1 and ||A||>1 ,
then C_{T} is not seminormal.

Proof. (i) Suppose that C_{T} is seminormal. Then (cf. [1]) r(C_{T})=||C_{T}||

and consequently (cf. [15]) ||C_{T}^{n}||=||C_{T}||^{n} for n\geq 1 , which in turn implies

r(C_{T}^{n})=||C_{T}^{n}|| n\geq 1 . (4.4)

Since r(A)<1 , there exists k\geq 1 such that ||A^{k}||<1 . Hence N(I-A)=
\{0\} and, consequently, a_{k}=(I-A)^{-1}(I-A^{k})a\neq 0 (compare with (3.4)),
so by Lemma 4.2 and Theorem 3.4 (i) we have

||C_{T}^{k}|| |\det A^{k}|>1=r(C_{T}^{k}) |\det A^{k}| ,

which contradicts (4.4).
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(ii)\ (iii) It follows from Theorem 3.4 that r(C_{T}) |\det A|=1 . Since,
by Lemma 4.2, ||C_{T}|| |\det A|>1 , we conclude that C_{T} is not seminormal.

\square

An inspection of the proof of Theorem 4.4 shows that under its assump-
tions C_{T} is not even normaloid, i.e. r(C_{T})\neq||C_{T}|| .

Example 4.5 It may happen that C_{T} is cohyponormal, while ||A||<1 ,
a\neq 0 and \varphi\in \mathcal{E} is monotonically increasing but not strictly increasing.
Consequently, we have ||C_{T}|| |\det A|=1 .

Let 0<\alpha<1 , a\neq 0 , Ax=\alpha x . Then there exists t_{0}\geq 0 such that
||Ax+a||^{2}+||A^{-1}(x-a)||^{2}\geq 2||x||^{2} for ||x||^{2}\geq t_{0} . Define \varphi as follows

\varphi(t)=\{

\exp(t_{0}) if t<t_{0}

\exp(t) if t\geq t_{0} .

To prove the cohyponormality of C_{T} it is enough to show (see (4.3)) that

\varphi(||Tx||^{2})\varphi(||T^{-1}x||^{2})\geq\varphi(||x||^{2})^{2} .

Consider two cases. If ||x||^{2}<t_{0} , then

\varphi(||Tx||^{2})\varphi(||T^{-1}x||^{2})\geq\exp(2t_{0})=\varphi(||x||^{2})^{2} .

On the other hand, if ||x||^{2}\geq t_{0} , then

\varphi(||Tx||^{2})\varphi(||T^{-1}x||^{2})\geq\exp(||Tx||^{2}) exp (||T^{-1}x||^{2})

\geq\exp(2||x||^{2})

=\varphi(||x||^{2})^{2} ,

which proves the cohyponormality of C_{T} .

The case r(A)>1 is investigated below.

Theorem 4.6 Assume that \varphi\in \mathcal{E} and \lim_{tarrow+\infty}\sqrt{t}(N-\frac{t\varphi’(t)}{\varphi(t)})=0 for
some N>0 . If C_{T} is seminormal, then A is normal and a=0 .

Proof Let \tau\geq 1 be such that \varphi\in \mathcal{E}_{\tau} . Since N= \lim_{tarrow+\infty}t\varphi’(t)/\varphi(t) ,
the operator C_{T} is bounded. First we show that \varphi fulfills the condition

\lim_{tarrow+\infty}\sqrt{t}(N-\underline{N}_{t})=0 . (4.5)
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Indeed, since for every t\geq\tau there exists s\geq t such that s\varphi’(s)/\varphi(s)-\underline{N}_{t}<

t^{-1} . we have

| \sqrt{t}(N-\underline{N}_{t})|\leq\sqrt{t}|N-\frac{s\varphi’(s)}{\varphi(s)}|+\sqrt{t}(\frac{s\varphi’(s)}{\varphi(s)}-\underline{N}_{t})

\leq\sqrt{s}|N-\frac{s\varphi’(s)}{\varphi(s)}|+\frac{1}{\sqrt{t}} ,

which implies (4.5).
We split the proof into a few steps.
Step 1. If r(A)\geq 1 and r(C_{T})=||C_{T}|| , then r(A)=||A|| . Moreover,

(Ax, a)=0 for every x\in \mathbb{R}^{d} such that ||Ax||=||A||||x|| .
Take x such that ||Ax||=||A||||x|| . Without loss of generality we can

assume that ||x||=1 and (Ax, a)\geq 0 . Then ||T(\sqrt{t}x)||^{2}\geq||\sqrt{t}x||^{2} for
t\geq\tau . Applying Theorem 3.4 and Lemma 1.3 we obtain

r(A)^{2N}\geq| det A|r(C_{T})^{2}=| det A|||C_{T}||^{2}

\geq\frac{\varphi(||T(\sqrt{t}x)||^{2})}{\varphi(||\sqrt{t}x||^{2})}

\geq(\frac{||T(\sqrt{t}x)||^{2}}{t})^{\underline{N}_{t}}

\geq(||A||^{2}+\frac{(Ax,a)}{\sqrt{t}})^{\underline{N}_{t}}

\geq||A||^{2\underline{N}_{t}}(1+\frac{(Ax,a)}{\sqrt{t}||A||^{2}})^{\underline{N}_{t}} , t\geq\tau . (4.6)

In particular, we have r(A)^{N}\geq||A||^{\underline{N}_{t}} for t\geq\tau . Letting t – +\infty we get
r(A)=||A|| . The last equality and (4.6) imply

r(A)^{2\sqrt{t}(N-\underline{N}_{t})} \geq(1+\frac{(Ax,a)}{\sqrt{t}||A||^{2}})^{\sqrt{t}\underline{N}_{t}}\geq 1+\underline{N}_{t}\frac{(Ax,a)}{||A||^{2}}

for t large enough. Hence, by (4.5), (Ax, a)=0 .
Step 2. If r(A)\geq 1 and C_{T} is seminormal, then there exists H\neq\{0\}

which reduces A to a normal operator and a\perp H .
Since C_{T} is seminormal we have r(C_{T})=||C_{T}|| . Due to Step 1,

r(A)=||A|| . Let H be as in Lemma 4.1 (i). If x\in H , then ||Ax||=||A||||x|| .
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Hence, by Step 1, (Ax, a)=0 for every x\in H or equivalently a\perp H .
Step 3. If C_{T} is seminormal, K\neq \mathbb{R}^{d} is a linear space which reduces

A to a normal operator and a\perp K , then there exists a linear space \tilde{K} ,
essentially larger than K. which reduces A to a normal operator and a\perp\tilde{K} .

The transformation T decomposes into the orthogonal sum T=T_{1}\oplus T_{2} ,
where T_{1}=T|_{K} is a normal linear operator in K and T_{2}=A_{2}+a with
A_{2}:=A|_{K^{\perp}} . It follows from (4.3) that C_{T_{2}} is seminormal. If r(A_{2})\geq 1 ,
then, by Step 2, there exists H\neq\{0\} which reduces A_{2} to a normal operator
and a\perp H . It is clear that the space \tilde{K}:=K\oplus H has the required
properties.

Suppose that r(A_{2})<1 . Then r(A_{2}^{-1})>1 , C_{T_{2}^{-1}}=C_{T_{2}}^{-1} is bounded
and seminormal (use Theorem 2.2 and Proposition 2.3). By Step 2, there
exists H\neq\{0\} which reduces A_{2}^{-1} to a normal operator and A_{2}^{-1}a\perp H .
Consequently, H reduces A to a normal operator and a\perp(A_{2}^{*})^{-1}(H)=H .
Therefore the space \tilde{K}:=K\oplus H has the required properties.

The conclusion of the theorem follows from Step 3. \square

It may happen that the limit \lim_{tarrow+\infty}\sqrt{t}(N-\frac{t\varphi’(t)}{\varphi(t)}) does not exist.
This case is treated in the following theorem.

Theorem 4.7 Let \varphi\in \mathcal{E} be such that lim \sup_{tarrow+\infty}t\varphi’(t)/\varphi(t)<+\infty .
Assume that \varphi(t)=\alpha t^{N}+O(t^{N-\epsilon}) for some positive reals \alpha , N, \epsilon . If C_{T}

is seminormal, then A is normal. If moreover \epsilon>1/2 , then a=0 .

Proof. Put \rho(t):=\varphi(t)-\alpha t^{N} Without loss of generality we may assume
that N is a positive integer. Otherwise we can consider \varphi^{\theta} instead of \varphi

with appropriate \theta>1 still preserving seminormality of C_{T} (use (4.3)). For
simplicity we assume also that \alpha=1 , \epsilon<N .

First we show that A is normal. If C_{T} is cohyponormal, then, by (4.3),
we have

1 \leq\lim_{tarrow+\infty}\frac{\varphi(||T(tx)||^{2})\varphi(||T^{-1}(tx)||^{2})}{\varphi(||tx||^{2})^{2}}

= \lim_{tarrow+\infty}\frac{\varphi(||T(tx)||^{2})}{||T(tx)||^{2N}}\frac{\varphi(||T^{-1}(tx)||^{2})}{||T^{-1}(tx)||^{2N}}\frac{||T(tx)||^{2N}||T^{-1}(tx)||^{2N}}{||tx||^{4N}}

= \lim_{tarrow+\infty}(\frac{||T(tx)||||T^{-1}(tx)||}{||tx||^{2}})^{2N}
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=( \frac{||Ax||||A^{-1}x||}{||x||^{2}})^{2N} x\neq 0 . (4.7)

It follows from Lemma 4.1 (ii) that A is normal. Similar arguments can be
applied to deduce the normality of A from the hyponormality of C_{T} .

To prove the other part of the conclusion, assume that C_{T} is seminormal
and \epsilon>1/2 . Since A is normal, A can be decomposed as

A= \sum_{j=1}^{m}\oplus\kappa_{j}U_{j} ,

where \kappa_{1}>\kappa_{2}> . >\kappa_{m}>0 and U_{j} is a unitary operator on H_{j}\neq\{0\} .
Take any j such that \kappa_{j}\neq 1 . We show that the orthogonal projection a_{j}

of a onto H_{j} vanishes. Take x\in H_{j} such that ||x||=1 . First notice that
\rho(||T(tx)||^{2})=\rho(O(t^{2}))=O((t^{2})^{N-\epsilon})=o(|t|^{2N-1}) and \rho(||T^{-1}(tx)||^{2})=

o(|t|^{2N-1}) . This in turn implies

\varphi(||T(tx)||^{2})=t^{2N}||Ax||^{2N}

+2Nt^{2N-1}||Ax||^{2N-2}(Ax, a)+o(|t|^{2N-1}) ,
\varphi(||T^{-1}(tx)||^{2})=t^{2N}||A^{-1}x||^{2N}

-2Nt^{2N-1}||A^{-1}x||^{2N-2}(A^{-1}x, A^{-1}a)

+o(|t|^{2N-1}) ,
\varphi(||tx||^{2})=t^{2N}+o(|t|^{2N-1}) .

Consequently

\varphi(||T(tx)||^{2})\varphi(||T^{-1}(tx)||^{2})-\varphi(||tx||^{2})^{2}

=t^{4N}((||Ax||||A^{-1}x||)^{2N}-1)

+2Nt^{4N-1}(||Ax||||A^{-1}x||)^{2N-2}(||A^{-1}x||^{2}(Ax, a)

-||Ax||^{2}(A^{-1}x, A^{-1}a))+o(|t|^{4N-1})

=2Nt^{4N-1}(\kappa_{j}^{-1}(U_{j}x, a_{j})-(x, a_{j}))+o(|t|^{4N-1}) .

Since 4N-1 is odd and the first term of the above chain of equalities is
either globally nonnegative or globally nonpositive we get

\kappa_{j}^{-1}(U_{j}x, a_{j})-(x, a_{j})=0 , x\in H_{j} ,

which in turn implies that U_{j}^{*}a_{j}=\kappa_{j}a_{j} . However \kappa_{j}\neq 1 , so a_{j}=0 .
If there exists n such that \kappa_{n}=1 (n is unique), then by what has been
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proved in the previous paragraph, a=a_{n}\in H_{n} . We show that a_{n}=0 .
Set T_{n}=U_{n}+a_{n} and note that C_{T_{n}} is seminormal. Suppose, contrary to
our claim, that a_{n}\neq 0 . Since \lim_{tarrow+\infty}\varphi(t)=+\infty , Remark 4.3 implies
that ||C_{T_{n}}|| |\det U_{n}|>1 . On the other hand a_{n}\not\in \mathcal{R}(I-U_{n}U_{n}^{*}) and
\underline{M}=\overline{M}=0 (as lim \sup_{tarrow+\infty}t\varphi’(t)/\varphi(t)<+\infty ), so, by Theorem 3.4 (ii),
r(C_{T_{n}})\sqrt{|\det U_{n}|}=1 , which contradicts the seminormality of C_{T_{n}} . This
completes the proof. \square

Remark 4.8 It is worth while to notice that Theorem 4.6 does not imply
Theorem 4.7 and vice verse. Indeed, the function

\varphi(t)=t^{N}(1-\frac{1}{\sqrt{t}\ln t}) ,

where N>1 , satisfies all the assumptions of Theorem 4.6 but not those of
Theorem 4.7. More precisely \varphi is not of the form \varphi(t)=\alpha t^{N}+O(t^{N-\epsilon}) for
any \epsilon>1/2 .

On the other hand, the function

\varphi(t)=t^{N}+t^{N-\epsilon}\cos(t^{1-\epsilon}) ,

where N>1 and 2/3<\epsilon\leq 3/4 , satisfies all the assumptions of Theorem
4.7, but \lim_{tarrow+\infty}\sqrt{t}(N-\frac{t\varphi’(t)}{\varphi(t)}) does not exist. In fact, we have

- \lim_{tarrow+}\inf_{\infty}\sqrt{t}(N-\frac{t\varphi’(t)}{\varphi(t)})

= \lim_{tarrow+}\sup_{\infty}\sqrt{t}(N-\frac{t\varphi’(t)}{\varphi(t)})=\{

+\infty \epsilon<\frac{3}{4}

\frac{1}{4} \epsilon=\frac{3}{4} .

Details are left to the reader.

Among functions \varphi satisfying the assumptions of Theorems 4.6 and 4.7,
there are polynomials of degree n\geq 1 with nonnegative coefficients.

Proposition 4.9 If \varphi is a nonconstant polynomial with nonnegative c0-

efficients, then the following conditions are equivalent
(i) C_{T} is bounded and cohyponormal,
(ii) A is normal and a=0,
(iii) C_{T} is bounded and cosubnormal.
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Proof. Note that if C_{T} is bounded, then \varphi(0)>0 or a=0. Indeed,
otherwise \lim_{xarrow}0\varphi(||Tx||^{2})/\varphi(||x||^{2})=+\infty , which contradicts (1.1).

(i)\Rightarrow(ii) That a=0 follows from the above observation and TheO-
rem 4.7. Applying (4.7) with N=\deg\varphi and Lemma 4.1 we conclude that
A is normal.

(ii)\Rightarrow(iii) This is a consequence of [16, Th. 2.5]. \square

Proposition 4.10 Let \varphi be a nonconstant polynomial with nonnegative
coefficients. If \varphi is a monomial (resp. \varphi is not a monomial), then the
following conditions are equivalent
(i) C_{T} is bounded and hyponormal,
(ii) A is a multiple of a unitary operator (resp. A is unitary) and a=0,
(iii) C_{T} is bounded and normal (resp. C_{T} is unitary).

Proof. (i)\Rightarrow(ii) Analysis similar to that in the proof of Proposition 4.9
shows that a=0 and A is a multiple of a unitary operator. The remaining
part of (ii) follows from [16, Prop. 2.3].

The implication (ii)\Rightarrow(iii) can be verified directly (see also [16, (NO)
and (UN) ]) . \square

5. Cohyponormality.

In this section we distinguish a class of cohyponormal composition op-
erators with nontrivial translation part. According to Section 4., such op-
erators may exist only in case ||A||=1 and a\not\in \mathcal{R}(I-AA^{*}) . We show
that the convexity of the function t\mapsto ln \varphi(t^{2}) characterizes cohyponor-
mal composition operators induced by pure translations. First we formulate
an elementary fact concerning convex functions.

Lemma 5.1 If \omega : \mathbb{R}arrow IR is an even function, then \omega is convex if and
only if \omega|_{[0,+\infty)} is convex and monotonically increasing.

Proposition 5.2 Assume that \varphi is continuous and C_{A+a} is bounded for
all a in a linear subspace H ofN(I-A) .

(i) If H\neq\{0\} and C_{A+a} is cohyponormal for all a\in H , then t\mapsto

ln \varphi(t^{2}) is convex on \mathbb{R} .
(ii) If A=A^{*} and t\mapsto ln \varphi(t^{2}) is convex on \mathbb{R} , then C_{A+a} is cohy-

ponormal for all a\in H .

Proof. Set \omega(t)=\ln\varphi(t^{2}) , t\in \mathbb{R} .
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(i) It follows from (4.3) that

\omega(||x||)\leq\frac{\omega(||x+a||)+\omega(||x-a||)}{2} , x , a\in H . (5.1)

Take s , t\in \mathbb{R} and a normalized vector v\in Hr Setting x= \frac{1}{2}(s+t)v and
a= \frac{1}{2}(s-t)v in (5.1), we get

\omega(\frac{s+t}{2})\leq\frac{\omega(s)+\omega(t)}{2} . (5.2)

Since \varphi is continuous, (5.2) implies that \omega is convex.
(ii) Take a\in H and set, as usual, T=A+a. If A=A^{*} , then

||(A^{-1}+A)x||^{2}=((A^{-2}+2+A^{2})x, x)

=4||x||^{2}+((A^{-1}-A)^{2}x, x)

\geq 4||x||^{2} .

so

||Tx||+||T^{-1}x||\geq||Tx+T^{-1}x||=||(A^{-1}+A)x||\geq 2||x|| .

Since, by Lemma 5.1, the function \omega|_{[0,+\infty)} is monotonically increasing and
convex, we have

\omega(||x||)\leq\omega(\frac{||Tx||+||T^{-1}x||}{2})\leq\frac{\omega(||Tx||)+\omega(||T^{-1}x||)}{2} .

This in turn implies

\varphi(||x||^{2})^{2}\leq\varphi(||Tx||^{2})\varphi(||T^{-1}x||^{2}) ,

which is equivalent to the cohyponormahty of C_{T} (use (4.3)). \square

Corollary 5.3 If \varphi is continuous and C_{I+a} is bounded for all a , then
C_{I+a} is cohyponormal for all a if and only if t\mapsto ln \varphi(t^{2}) is convex on \mathbb{R} .

Corollary 5.3 is related to Lemma 3.3 in [5] via the discussion carried
in [7, Example 4.2].

Theorem 5.4 Let \varphi\in \mathcal{E}_{0} be such that M:= \sup_{t\geq 0}\sqrt{t}\varphi’(t)/\varphi(t)<+\infty .
Assume that t\mapsto ln \varphi(t^{2}) is convex on [0, +\infty) . If ||A||=1 and Aa=a,
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then C_{T} is bounded and

r(C_{T})=||C_{T}||= \frac{1}{\sqrt{|\det A|}}\exp(M||a||) .

Moreover, if A=A^{*} . then C_{T} is cohyponormaL

Proof Set \psi(t):=\varphi(t^{2}) , t\geq 0 . The function \psi is monotonically increas-
ing because \varphi\in \mathcal{E}_{0} . Since ln \psi is convex, the function (ln \psi)’ is monoton-
ically increasing. Consequently \lim_{tarrow+\infty}\sqrt{t}\varphi’(t)/\varphi(t)=\frac{1}{2} sup \psi’/\psi=M .
Applying Theorem 3.4 we obtain

r(C \tau)^{2}=\frac{1}{|\det A|} exp (2M||a||) . (5.3)

Since \psi\in \mathcal{E}_{0} , the inequality (1.2) of Lemma 1.1 yields

| det A|||C_{T}||^{2}= \sup_{x}\frac{\psi(||Tx||)}{\psi(||x||)}

\leq\sup_{x}\frac{\psi(||x||+||a||)}{\psi(||x||)}

\leq\exp(||a||\sup\frac{\psi’}{\psi})

This and (5.3) imply the first part of the conclusion. The other one follows
from Lemma 5.1 and Proposition 5.2 (ii) with H=N(I-A) . \square

Note that the functions \varphi_{1}(t)=\cosh(\sqrt{t}) and \varphi_{2}(t)=\sinh(\sqrt{t})/\sqrt{t}

(t>0) satisfy all the assumptions of Theorem 5.4 and both belong to
7\{_{0} . It turns out that if d=1 , then C_{I+a} is a cosubnormal operator on
L^{2}(\varphi_{j}(||x||^{2})^{-1}dx) for j=1,2. This can be proved by repeating some
reasonings from [6] via analysis carried in [7, Example 4.2].

6. Concluding Remarks

1^{0} . In this paper we have investigated composition operators C_{T} on
the Hilbert space L^{2}(\varphi(||x||^{2})^{-1}dx) , where the (continuous) function \varphi has
been assumed to be convex, monotonically increasing and continuously dif-
ferentiable in some neighbourhood of infinity. It is easily seen that the
implications (i)\Rightarrow(ii) of Lemmata 1.1, 1.2 and 1.3, which play the essential
role in all the estimates of ||C_{T}|| and r(C_{T}) , hold for \varphi which is monoton-
ically increasing and continuously differentiable in some neighbourhood of
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infinity. Consequently, for such \varphi all Theorems of the paper, except the
“only if” part of Theorem 2.2, remain true provided we add, everywhere
where it is necessary, one of the conditions (i)\div(iv) of Theorem 2.2 (which
of course implies the boundedness of C_{T} ). The details are left to the reader.

2^{0} . All the results of the paper remain true if we replace the canonical
norm ||\cdot|| involved in the definition of L^{2}(\varphi(||x||^{2})^{-1}dx) by an arbitrary one
coming from an inner product on \mathbb{R}^{d} .

3^{0} . As in 2^{0} all the results of the paper remain true for composition
operators induced by complex affine isomorphisms T of \mathbb{C}^{d} ; we only have
to replace the quantity | det A| by the new one | det A|^{2} , where in the latter
case det A stands for the determinant of a complex matrix associated with
A .

4^{0} . Set \rho(x)=\varphi(||x||^{2})^{-1} . It is a matter of direct verification to show
that

C_{T,1/\rho}=U_{\rho} ( | det A|^{-1}C_{T^{-1},\rho}^{*} ) U_{\rho}^{-1} (6.1)

where Cs,\omega stands for the composition operator induced by S on L^{2}(\omega(x)dx)

and U_{\rho} : L^{2}(\rho(x)dx)arrow L^{2}(\rho(x)^{-1}dx) is the unitary operator defined by
U_{\rho}f=f\rho for f\in L^{2}(\rho(x)dx) (compare with (AD) and (UE) in [16]). The
equality (6.1) should be understood as follows: C_{T,1/\rho} is bounded if and
only if so is C_{T^{-1},\rho} ; if this is the case, then (6.1) holds. Basing on (6.1) one
can easily formulate appropriate versions of all the results of the paper for
composition operators induced by T on L^{2}(\varphi(||x||^{2})dx) .
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