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Some applications of pseudo-differential
operators to elasticity
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Abstract. The paper deals with four basic boundary value problem of static elasticity
(BPET). It was calculated the principal symbol of a pseudo-differential operator on the
boundary whose eigenvalues are the Cosserat eigenvalues of the original BPET. This
principal symbol is presented in terms of the principal curvatures and the coefficients
of the first quadratic form of the boundary. It was found the principal term in the
asympotics of the Cosserat eigenvalues.
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Introduction

This paper deals with four basic boundary value problems of static
elasticity theory; from now on, we shall call them BPETs. The main tool
in our investigation is the calculus of pseudo-differential operators (¥YDO).
These methods have been used over the last few years by various authors
for investigation both BPET and Stokes problems , @, , , [12], [13].

Let Q C R3 be a bounded domain with an infinitely smooth boundary T
and let an isotropic, homogeneous elastic body fill Q. It is well-known that
the vector of displacement u = u(z) = (ug,us,u3)t satisfies the following
Lamé equation (or the Navier equation according to Gurtin [8, p.90]):

L,u = Au 4 wgraddivu = 0, z €0 (0.1)

where A is the Laplace operator in R3, w = (1—20)~! and o is the Poisson
constant. The upper index ¢ denotes the transposition.

Let g(z) = (g91,92,93)" be a given vector-function on I', i.e. at z € T.
Let also N = (N, N, N3)! be the inner unit normal vector, 7; and 7
be orthogonal tangent vectors at each point of boundary I" (71,72, N form
a basis). We shall consider four BPETs following [8], [16, §40] and [14,
Chap.3].
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The first and second BPETs are defined by the following boundary
conditions, respectively:

yu = g(2) (0.2)

3
Oou;  Ouyy,
w—lNdivu—l—E (—+ )Nm]: z),
i ( ) ! me1 Bzm 821 gl( )

1=1,2,3 (0.3)

where 7y is the operator of the restriction to the boundary I' of a function
with the domain Q@ = QUT.

Denote by T, the matrix differential operator which assigns the stress
vector T,,u to the displacement vector u. Its components are the expressions

in square brackets on the left-hand sides of [[0.3).

Let v1 = v and v2 = T,. Then the boundary conditions and
can be written as

YU =g (0.4)
and
YU = g (0.5)

The third and fourth BPETSs are defined by the following conditions
respectively:

{ (vou — N(N,y2u), 7%) = gi(2), k=12 (0.6)
(yu, N) = g3(2)
and
{ (N, v2u) = g1(2) (0.7)
(yu— N(N,yu), 7)) = gt1(2), k=12

where ( , ) means the usual inner product in R3.

Denote by 3 the matrix operator generated by the left-hand side of the
equation (0.6) and by 74 the matrix operator generated by the left-hand side
of the equation (0.7). Then the boundary conditions (0.6) and (0.7) can be
rewritten as

YU =g
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and

Yu =g (0.9)

We observe that the conditions (0.6) and (0.7) are equivalent respec-
tively to the following equalities:

You — N(N,yu) = h, (N,vu) = hy
and
Y1u — N(N,mu) = h, (N, y2u) = hy,

where h and h4 are respectively vector and scalar functions given on I'.

We observe also that the first BPET is usually called the problem with
given displacements. The second is called the problem with given stresses,
the third is called the problem of a hard contact and the fourth is called
the problem of a soft contact.

Consider the operator P; which is generated by the j-th BPET for
w = s where » > 1/3 is a fixed number (for the first BPET » > —1 is
possible).

Pju := (Au + s graddivu, 'yju)t, j=1,2,3,4 (0.10)

In the boundary operators v; we also put w = . According to the gen-
eral theory of elliptic boundary value problems, the operator P; is invertible
on the space of pairs (F, g). Here F' and g are vector-valued functions defined
respectively in 2 and on I' and orthogonal in the space [Lo(Q)]?®[L2(T)]3
to the co-kernel of the j-th BPET. Denote by A; the operator which is
inverse to P;. Put f = (o + 3)vdiv 4;(0,9)*, j = 1,2, 3,4, where a; are the
following constants: a; =2, as =0, ag =1, ag = 1.

It has been proved in , that the j-th BPET, j = 1,2, 3,4 for each
w7#—1,00 can be reduced to the equivalent Fredholm regular integral equa-
tion on I' relative to unknown function 6:

(aj+ 200+ (w—x)K;0 = f (0.11)

where K; are ¥DO on I' of order —1, i.e. compact in Ly(I") integral opera-
tors with a weak singularity of the first order.

Let w be a spectral parameter. A spectrum of the operator pencil
induced by the first and the second boundary value problems for the Lamé
equation Au + wgraddivu = 0 was studied by E. and F. Cosserat and later
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by S.G. Mikhlin and V.G. Mazya. A bibliography can be found in .
In particular, the limit points for finite-multiple eigenvalues (the Cosserat
spectrum) of the first and the second problems have been obtained in this
paper.

The asymptotics of the Cosserat spectrum has been investigated in
. It has been proved that for the j-th BPET, j = 1,2, 3,4, outside the
e neighborhood of the limit point there are Cje~2 + o(¢~2) finite-multiple
eigenvalues as ¢ — 0. The coefficients C; have not been found.

It should be noted that the point w = —1 is an isolated infinite-multiple
eigenvalue of the j-th BPET, j = 1,2. This fact has been proved in .

In this paper we obtain the principal symbols of ¥DOs K; (see [0.11)).
Using the formulae for the principal symbols we establish the kernels of the
corresponding integral operators. We also find the coefficients C; in the
asymptotics of the Cosserat spectrum.

Let us now formulate the basic results. Denote by k; and ko the prin-
cipal curvatures of the surface I' and by F; and E5 the coefficients of the
first quadratic form of T'.

Theorem 1 VDOs K; j =1,2,3,4 (see (0.11)) have the following prin-
cipal symbols:

oo(K1) = (3+2) é REEIEN T - R)NENT,
oo(Kz) = 37 lﬁ;(’ﬂ — kBT EIEN)IEN
oo(K3) = (s+ 1)1l§?;szf1£?II€’ll’3,
oo(Kq) = (o + 1)1l22;kz|}5’n“1,

where & € R, & € R, & = (€1,&)", |1¢'||* = E{'& + By '€

Corollary  The principal symbols of the YDOs K;, j = 1,2,3,4 (see
(0.11)) induce the following integral operators Bj :

Bjo(x 271_/ b ( :1: ,x ——y (y')\/ElEgdy'
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with the kernels:

( ) = —(k1h? + koh3)|h| > (3c+2) 71,

( ) = (kih? + koh2)|h| 2571,
bg(x',:v —y) = (k1h? + k2h2)\h| (%-I— 1)1

( ) = (k1 + ko)A~ (e 4+ 1)

where h = (h1,h2) = (VE1(z1 — y1), VE2(22 — 12)), | b |* = h3 4+ h%, k1, ko,
E1, By are the functions in the local coordinates x1,x2; ¢ is a function in
the local coordinates y1,y2; ' = (z1,72), ¥ = (y1,¥2)-

It has been proved in that the Cosserat eigenvalues of the j-th
BPET has the unique limit point —a;.

Theorem 2 There are Cje™2 4 0(72) as ¢ — 0 finite-multiple Cosserat
eigenvalues of the j-th BPET, j = 1,2,3,4 outside of the e-neghborhood of
the limit point and

C1=Cr=Cy = o / VE B3 (3% + 3k2 + 2k ky)dT,
T

Cy = E/ VE1 By (k1 + k2)2dT
r

At the end of the paper we study some spectral properties of operator

divAy lgrad where Ay ! is an operator solving the Dirichlet problem for the
Poisson equation:

Aglzf—MJ, where Av=f in, v=0 onl.

The operator acts in the Sobolev spaces and it is important for the Stockes
problem from hydromechanics (see [12], [13]).

The plan of the paper is as follows:

In Section 1 we introduce all the necessary notations and obtain the
auxiliary results.

In Section 2 we find the principal symbols of the ¥DO K; (see [0.11))
and the kernels of the respective integral operators.

In Section 3 the asymptotics of the Cosserat spectrum are studied.

Section 4 deals with the operator divA, lgrad.
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1. The Auxiliary Results

Let us take an arbitrary point z € I' and introduce the local coordinate
system in its neighborhood. Let the boundary I' of the domain 2 be given
locally by infinitely differentiable functions z; = z;(x1,z2) [ = 1,2,3 in the
variables x1,x9. These variables are chosen so that the coordinate lines
x1 = const, x9 = const are the curvature lines. We enumerate 1, z2 so that
the direction of the vector product (aa—jl)x(g—;z) coincides with the inner
unit normal N(z') to ', where 2’ = (z1, z2).

Introduce in the neighborhood of I" the coordinates z1, xo, 3, where z3

is the distance from the point z = (21, 23, z3) €  to I'. Then
z=2(z") + z3N(z') = f(z),

where z(z') € T, z3 € (—¢,e). Here € > 0 is taken so small that the
representation of z in terms of z(2’) € I' and z3 € (—¢,¢) is unique and
smooth, i.e., f is bijective and is C* with C'* inverse, from I' X (—¢,¢) to
the set f(I' x (—e,¢)) C R3.

Near I' there is defined a normal vector field N(z) = (Ni(z), Nao(x),
N3(x)), as follows:

N(z) = N(:g’) for z of the form z = z(wl) + ﬂUSN(CE,)a

where z(z') € T, z3 € (—¢,e). The derivative along N is denoted Dy
(the normal derivative): Dyg = —i Y31 Ni(2)(8/0zy)g defined for = €
f(I x (—¢,¢)) C R3.
Let the first and the second quadratic forms of the surface I' be
I(z' dz") = E1(z')(dz1)? + Eo(z')(dz2)?,
II(ZC,, dil?,) = Ll(ﬁfl)(dﬂfl)Z + Lg(ml)(dwg)z.

The following orthogonality relations are valid:
0z
—,N)=0
<3£Cz’ >

0z 0Oz
= 2N = B,
<axl’a:cm> .

: (1.1)

where 0;,,, is the Kronecker delta, [,m =1, 2.
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We shall also need the Rodrigues relations:

ON 0z
—=—k— 1=1,2 1.2

where k; are the principal normal curvatures.
The following equality holds for k;:

ki = Li(z")/E/(x) (1.3)

We have thus introduced the local coordinate system (x1,x2,x3). The
coordinate line x3 is directed as the normal N. We assume that I' has no
umbilical points.

In the constructed local coordinate system the operators 3/0z,, have
the form

22:1 k) 1E—1azm 9 N, 9 1,2,3
- m y M =1,z
Bzm — 3k1) ox; Ox Oxs

We denote by 71 and 7 the umt vectors tangent to I', which are collinear
to 8z/0x1, 0z/0x5. Then 7, = (3z/8mk) =1,2.

All the vectors N, 7 are cons1dered as column-vectors.

Let E be the unit matrix of dimensions 3x3 and 3 be a column-vector

B = (61, B2, B3)! such that
2
8= E;V’1(1 —ask;)™!, where ¢=(61,6)€R>.
j=1

Let : = v/—1 and
2 D o
1€ II° = (1 — z3k1) °E7 €} + (1 — z3ka) By '€3;

Denote by T, the matrix of differential operators corresponding to the sec-

ond BPET (see (0.3)).

Hence in the introduced local coordinate system the following formulae

hold for the principal symbols og(B) of various operators B connected with
BPET.

00(8/8zm) = 16m + 1§3 Ny, (1.4)

oo(grad) = i3 + i&3N, (1.5)
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oo(div) = i8" + i&3N?, (1.6)
00(Ty) = iBN* +i€3E + is€3NN* +i(sc — 1)N G, (1.7)
00(TL) = i(3— 1)BN* +i&3E + isx€3NN' + iN (1.8)

ao(A) = —(|ll € ||| + &)E

00(A + segraddiv) = ~(||| €' |II° +&)E
—5(BB" + &(BN' + NB') + ENN),

Let II,, be a parametrix of the Lamé operator L,, = A + s graddiv.
This means that the product II,.L,, is equal to the identity operator up to
infinitely smoothing operator. Then

oo(IL) (1.10)
_ AP+ #Ea(NB + BN) + 53NN — (1 + #)([| € |II* + E)E
(L+ 5911 & |II” +€3)?

Let py = Efl/zflﬁ, p2 = Ez—l/zszz-

Lemma 1 In the introduced local coordinate system at x3 = 0 the follow-

ing formulae hold for next to the principal symbols o1(L,.) and o1(11,,) of
VDO L, andI1,,

01 (L%)

2 2
=SB e - hig) B+ 3 BB S
=1

2 2 t
: . (O Y
+ E ik (Nuf — mrfés) 4 s E zm(—%—;) § 1 (1.11)
=1 Im=1

o1(I1,,)

2
E
:{Zz( 29 l§l+kl§3)E—— Z E; 1E,;18 L¢nE
O,
=1 =1
2

V1
+ —%+ N Z’Lkl (Tle§3 - Nuf)
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h zlm( b )}ngu—‘*

OF
-2 l
{kalE "¢ &E — 21;119 oz, Em i EmE
OF
+ = Z 2NN'i (2sz[1&2€3 — kig5 — By l£z£3)
x+1 =1
2
x . t t —1¢2 o2
OFE,, _
252 53( m sl 2*£ml))

+2(8“l N'+ N ( am)) m1€m§3:|

O0xm 0T,
2

i
+— > (N ph€s + 1pN'Es
x+1 lym,p=1
2
1 _, O,
+ Yl + NN BB

s=1

+2(m<gg:;)t+§5; ) m € = upu§£m<2kmgp—153
o (G + g v 250 ) e

2

»n .

+o {3 [NNtsz b3 (VU o+ 6
x+1 =1 m=1

2

£ 3 it (~2my; 15153+ZE*2§E’ Fiere ) blel,

m,p=1

(1.12)

where ||€|* = €3 + ||€'|1%, |1€')12 = B €2 + E; €2

Proof. The following formulae hold for the principal and next to the
principal symbols of the product of two YDOs A and B [9):

00(AB) = 0¢(A)oo(B)
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01(AB) = 01(A)oo(B) + 00(A)o1(B)
+ ) (—i)0¢00(A)d%o0(B) (1.13)
lv|=1
Here v = (v1, v, v3), 1 are non-negative integers | = 1,2, 3, |v| = vy +vo+vs3,
8; = (8”1 /6$1V1 )(8'/2/83321/2)(8”3 /8$3V3).
It is obvious that 01(8/0z)) = 0,1 =1,2,3, o1(grad) = 0, o;1(div) = 0.

We obtain applying to (1.4), (1.5), (1.6). We also use
orthogonality relations (1.1) and Rodrigues relations here.

Since II,, is a parametrix of L,,, then
01(IL.) = —(o0(I)o1 (L)
+ 3 (~1)800(I,) 800 (L) ) 70 (ILc) (1.14)

lv|=1

Because of [1.14), (1.9), and [1.11), we obtain (1.12). is
proved. []

The following presents some particular case of a result proved
in [5, p.499].

Lemma 2 Let Q be a differential operator of order d in R3, written in the
form

d
Qf =Y SDyf,

=0

where S; is a differential operator of order d — I, which does not contain
derivatives with respect to x3, f € C§(Q). Let P be a parametriz of an
elliptic differential operator in R3. Then

rtPQet f —rtPetrtQet f

d—1 d
= > (=) > rT(PS D™ ((vDRf)ér),
m=0 l=m+1

where ép is a distribution in R® such that ép(p) = Jpdl for any ¢ €
CS°(R3); e denotes the "extension by zero” operator mapping a function
u into a function etu, equal to u in Q and equal to 0 in R3\Q; r denotes
the restriction operator into Q.

Lemma 3 Let ucC>(Q) satisfy the homogeneous Lamé equation: L,u =
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0 in Q and let I1,, be a parametriz of the Lamé operator L,, in R3. Then
u = ILT((vu)dr) + IL((v2w)ér) + LV ((yu)dp) + -+ (1.15)

Here dots denote an integral operator with infinitely smooth kernel and V

s a YDO.
The symbol of V' at 3 = 0 has the form:

oo(V) = —(k1(1 + sery ) + ko(1 + »1o7s)).

Proof.  We put Q = L,, and P = IL,,. Applying and using also

(1.9) and [1.11), we obtain:
rT 1, Letu = r et rtL,etu
+ (=i)r " (ILS1((vu)dr) + M,.S2 D ((yu)ér)
+ 1L.S2((vDyu)ér), (1.16)

where
2
S, = Z i(l—mgkm)_l{—km(l—}—%’rmn%)
m=1
0z 9z \*\ 0o
5 (e + ¥ (52m) )3 )
2 <8xm * Oz, 0T,

SQ = —(1 —l—%NNt)

One can easily to see, that the expression in the left-hand part of
is equal to (u + T_oou), where T_, is the integral operator with infinitely
smooth kernel. The first term in the right-hand part of is equal to
zero, since L,;u = 0. The other terms can be reduced to the form:

IL T, ((vu)ér) + ILo((you)dr) + LV ((yu)6r).
Thus we obtain (1.15). []

Lemma 4 Let p € C°(T') and Q be a ¥DO in the domain Q and let each
term of its symbol 3 12, qi(x, &) be a rational function of € in the given local
coordinate system. Then the operator Q¢ = YD Q(pér) is a $DO on T
with the symbol Y72 ¢ (z',¢') and

G €)= — /F (Dy + &) a2, 0, £)dés,

:27r
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I =0, --00, &' = (x1,22), & = (&,&2). Here the contour “T'}” is a circle
in the semiplane Im&3 > 0 with all the singularities of the symbol q(z',0,§)
within it.

Proof of can be found in [10].

Lemma 5 Let Q be a YDO in Q and let each term of its symbol
Yz qi(z, &) be a rational function of € and A be the operator of the har-
monic continuation in €1, i.e. the function u = Ag is a solution of the
boundary value problem: Au = 0 in Q, u = g on I'. Then the operator
A=7QA is a ¥DO on I with the symbol Y 2, a;(z',&') and

a0z, ) = (2mi)”! /F (& — ill€']) " qo(z’, 0, €)dés,
a@,€) = )" [ {ie—ieh ae,0,8
+ (6 + 1€~ a0(e’,0,8)01(/,0,8)

+ 3" (i0¢q0(a’,0,6)8%0(a’,0,€)

lv|=1
— % (a0(’,0,)0(a’,0,€)) 2% (1€
- QO(:E,’ 07 5)900(33/7 07 6)902(33/1 ‘5,)) }d€3
Here contour I'y is the same as in Lemma 4;

oz, &) = oo(IL,,) at 3 = 0;
§01(CC,,0, 5) = Ul(H%) at »x=0, x3=0;

o o~ & 1 OE
@2(:1:,{;‘):%Zkl(Ellllg’ll|2+l) QZE12 RS

Pt Pt oz ||€||
_ aE‘l — 6 gm

+ E'E-1—— ( + E7L 5L )
Z : oz ez e

Proof.  Denote by ® a parametrix of the operator A in R3. Lemma 1 and

Lemma 3 (at 3 = 0) induce the following formula for the harmonic function
f in Q:

f=1i®((vDnf)br) +1@Dn((vf)ér) + 2Va((vf)ér) +---, (1.17)
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where 0o(V1)(2,0,€&) = —(k1+k2); 00(®)(z, &) =00(I1,,) and o1(P)(z’,0,&) =
o1(IL,.) (2,0, &) at = 0.
Applying the operator v to equality (1.17), we get:

vf = ((y®DN +v2V1)((vf)ér) = iv®((vDn f)ér) +-- - .

We denote fo = vf and fi = vDyf. We also denote by A; and Ag the

following operators:

Arfr == 1y®(f1ér), Aofo := (iv(2Dn) + v2V1)(for).

By Lemma 4, these operators are ¥DOs.
Since f1 = vDnAfy then

(I — Ag)fo = A1(YDnA)fo+ - --,

where dots denote the operator of order —oo.

Hence the principal and next to the principal symbols of the operator
I — Ay are equal to the principal and next to the principal symbols of the
operator A;(yDnA), respectively.

Using the calculus of ¥YDO and Lemma 4, we obtain the principal and
next to the principal symbols of the operator yDyA:

oo(YDnA) = ill€']) (1.18)
o1(YDnA)
. 2 2
_ %;kl(El—l ||§'l||2 _ 1) = %;El—zg_fll”é_i”
+ il:;_ B g (1 B o 1)

Applying to (1.17) first YDO @ and then operator 7, we get

YRAfo = YQP((vDnAfo)dr)
+ 1yQ®Dn (fodr) + 1vQP®V:1 (foér) + - --
Using the calculus of YDO, Lemma 4 and also the relations and

(1.19), we obtain the principal and next to the principal symbols of the
operator A. is proved. O]
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2. Calculation of the Principal Symbols of Y¥DO K;

First we consider a scheme of the reducing of the j-th BPET to an
equivalent Fredholm integral equation. (see [13]).

Let us rewrite the j-th BPET using a fixed number s > 1/3 (possibly,
»x > —1 for the first BPET). We have

Au + xgraddivu = (3 — w)graddivu

Yju = g + b9 (3¢ — W)Nvdivu + 845 (3¢ — w)iydivu
where 7 = (1,0,0)", 6;; is the Kronecker delta (j = 1,2, 3,4). We put
Pju := (Au + s»graddivu, vju)*

It is known from the general theory of elliptic boundary value problems
that the operator P; is invertible on a set of pairs (F, g) so that F and g are
vector-valued functions defined respectively in Q and on I and orthogonal

to co-kernel of the j-th BPET. These co-kernels are described in [8], [13],
[14], [16].

Denote by A; an operator inverse to P;. Then
u = Aj((»—w)graddivu, g+ 6;(3¢ — w)Nvdivu
+ 845 (5 — w)iydiv ).
It follows from this
u+ (w — ) A;(graddiv u, 8o; Nydivu + 847vdivu)’ = A;(0,9)".

Applying successively to the latter equality the operators div and v and
replacing vdivu by 6, we get

0+ (w—)L;0=f j=1234, (2.1)

where L;60 = ~vdiv Aj(grad Af, 82; N6 + 64510)", f = vdiv A;(0, g)*.

Thus it is proved that if the vector-function u satisfies the j-th BPET
then the function 8 = ~vdiv u satisfies the integral equation .

Vice versa, if § € C*°(T") satisfies the integral equation [2.1), then we
put

u = (3 —w)A;(grad A8, 83;N0 + 64;10)° + A;(0,g)*.

It can be verified that this vector-function u satisfies the j-th BPET.
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The investigation of the YDO L; allows us to prove that the equation
is regular. More precisely, let A; be the operator which solves for
w = » the j-th BPET. Then it holds

L; = ~divIl,grad A — vdiv Ajv;IL,.grad A
+ 09jvdiv Ag N + 6457ydiv Agi. (2.2)

Each term in the right-hand part of is a DO of zero order on I'.

By virtue of we obtain the principal symbols of the operators L;.
It has been proved in that oo(L;) = 1/(oj + x), where a; = 2,ap =
0,a3 = 1, a4 = 1. This allowes us rewrite in the following form:

(aj +w)f + (w—2)K;0 = (0o +3)f, j=1,2,3,4,

where K are different ¥DOs on I' of order —1, i.e. compact integral oper-
ators with a weak singularity of the first order.
It is obvious that

(To(Kj) = (Oéj + %)Ul(Lj). (2.3)

To obtain the principal symbol of the operator K; one should therefore
calculate the next to the principal symbol of the operator L;, which is
actually its subprincipal symbol.

Proof of from Introduction. Our aim is to calculate the princi-
pal and next to the principal symbols of YDOs contained in the right-hand

part of (2.2).

First we consider the operators vdivA;, j = 1,2, 3,4. It has been shown
in that the principal symbols of these ¥DO are the following:

oo(vdivAy) = & (iwt—NtHf’H) (2.4)
(e +2)\ =
2
o(rdiv Aa) = = (S iutl¢'| 7 - ), (25
=1
. 1 ~1/2 €1 ~1/2 €2 /
oo (vdiv Az) = _pTY2 AL g2 82 o gnen) (2.6
o(rdiv o) = s (~B Vi B <€), o
oo(ydiv Ay) = (%_1*_1) (1, 2E1_1/2i€1, 2E2—1/2i§2). (2.7)
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We now calculate the next to the principal symbols of these operators.
If a function u satisfies the Lamé equation L,u = 0, then according to

Lemma 3, it satisfies equality [1.15). Applying to both parts of (1.15) the

operator vy, we get

Yu = LT ((yu)br) — MLV ((vu)ér) = yTLe((v2u)8p) + -,

where dots denote an operator of order —oo.

Let {vQ}(yu) := ’yQ((’yu)ép) where @ is a YDO in .

Hence we have the following equality for the operator v2A1, which maps
Yu into you :

v2h1 = {YIL} (1 = {(Y(IL.TL)} = {y(ILV)}) + -, (2.8)

where {7IL.}~! is a parametrix of the operator YIL((-)ér) and I is the
identity operator.

Applying to the both parts of [1.15) first the operator div and then the
operator -y, we get

vdivu = ydivILT,((yu)ér) + vdiv Hz((72A1(7U))5F)
+ ydiv LV ((vu)p) + - - .
Hence
vdiv A1 = {vdivILT,} 4+ {vdivIL.}y2A; + {ydivILV} + - .
By virtue of [2.8), we have

vdiv Ay = {ydivII, Tt}

+ {rdiv ILY ({15~ (1~ {(V(ILIL) MLV ) + - )
+ {ydivIL,V} +--. .

Using calculus of YDO, Lemmas 1 and 4, we obtain the next to the
principal symbol of the operator ydiv A;:

. . 1 2 1 512 t g, 2 b,
o1(ydivA;) = ‘(%_1_2)2;@(1 E, ”5,“)<2N + mzzjl ||5/“>

1 : _om—20E; i
+2<z+2>l§{ B S e (29)
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OF 1 & 1€m
E 1E 1 l E 1Y Nt
+ Z oo (14 ||§’||>\|§'|| |

Tm

The boundary conditions (0.6), (0.7) and also the equality imply
formulae for the principal and next to the principal symbols of the operators
v3A1 and v44A,.

The next to the principal symbols of the operators vdivA;, j = 2,3,4
are obtained from the following equations:

(vdiv A2)(y2A1) = ~div Ay,
(’ydiVAg)(’)@Al) - ’ydiVAl,
(vdiv Ag)(y4A1) = ~div A;.

Thus we have

0'1(’)/diVA2)
Erleride ) e ong £ )
= e’ 2 uen R
1 & & (OF aEz
- E (e e
2%l,mZ:1 l H£/”3 837[6 gl H 5
1 2 _10F; _ f £
+ — E'ES! <1+3E 12 > E_ub . 2.10
4%1,,,%;:1 P Oz S TIEVATIE (2.10)
o1(vdiv Ag)

_ . 1 -1/2 €1 3%"’1) -1 flz
‘{( ) ns'n?[41+2 < i D) ||£'||2>}

_ E
L1 g 1/2]32_1[3-732+ 1 90 1D’

20c+2) 1 logn) (%—I— 1) Oz
1 ~1/2 162 (3xe+1) 4 512
——FF ko k E
20 +1) " ||£’||2[4 +Z l( (e+1) ||€’||2>]
1 1p 4 [0E, 1 OB
TGyl M {amQ T oD 8331})

1 2 1 ~(%—1) 1 512
(”+1)Zkl||€’|| (1 (5 + l)El “5/“2))}' (2.11)
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o1(ydiv Ay)
B %+2Z E1/2 laE2 1 8E1]
2 l||s'n +2> 01 | (sc+ 1) Oy
L 2B 1/2' i E21/2E1_1 {aE1 1 aEQ]
(e +1)2 €]l & (e 2) |om T e 1) 0y
1/2
+(2E2 > Ilé’lzk} (2.12)

Now we consider the operators ydivII,.grad A and v,II,.grad A, j = 1, 2, 3, 4.
The principal symbols of these ¥DOs are as follows:

oo(ydivIL.gradA) = (>c+1)7}, (2.13)
B T 1
ca(mTlgrad ) =~ (Z oE V) @
(2 1) an,
oo(y2ll.grad A) = 2(%+1) — %+1 Z e (2.15)
oo(ysI,.grad A)
1 —1/2 1 —1/2 €2 1 !
-+ g BV 2.16
e 5 el B e e (218)
oo(v4IL.grad A)
(22 +1) 1 ~1/2 €1 1 _1y2 &
= - E — E
{2(%+ )7 AGe+1)0 g 4(e+ 1) H&’Ilz}
(2.17)
(see [13]).

We obtain the formulae for the next to the principal symbols of the
operators ydiv II,.,grad A, v;1l,.grad A, ~»Il,.,grad A using calculus of ¥DOs

and Lemmas 1 and 5.
It holds that

o1(ydivIl,.grad A) = 0, (2.18)
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o1(711IL,grad A)
2

:?f@lﬁ Z{ [ 1||Z§'||5

m=1

2 §2 _ 18E
Em ||5'||4( "l )
&2, &p

1 & \OF,
+-Y E 1T (1 + 4E; 1 > ]
2,,2 P Oz, 1§12/ 1€11*

30w .y bm } 1 2 { (0B &
e E — N F —_—
*3 dzm ™ €| +8(%+1) 2 \E <3$z) €3

=1

2

ki 1 -1 18El 1 fz €m
- - — E E~ 3E; 2.
e 2 2 BBy, <” l ||§'||2> ||£'||3>} (2.19)

m=1

o1(7eIL, grad A)
1 2 22kl ikm -1 §r2n
4(%“)2{ e Z(nen2< e 1)

B 1|§|r3<8E P >>

el P Oy ™ e lI2 €711

2
Om_p -1 m oy R (Bpa & 2.2
"2 Z oz ™ TEE T ns'n(z INFEIE >} (220)

We obtain the formulae for the next to the principal symbols of the
operators y3Il,grad A and y4I1,.grad A using the boundary conditions (0.6),
(0.7) and also the equalities (2.19) and (2.20).

Thus we get
o1(ysIlgrad A)
- 1){Efl/2§;[‘i’5f2fﬁ?(%%€ )
(o am ) Lty
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2

+;ZEZ 'E- 1 OF; (1+3E 18 )515"”‘],

AT
E;/Zg‘iEl 2 ||§l||3 (51 * )
e (65 i) i
4 3 BB e (14957 k) ]

2 3_, & 1 1 __,0E, i
Z[ ( stsh ||s'||2>ue||2+éEl o2, TP

=1
) L& N itn 1)
E1E-1 E L .
Zl o <1+3l ||<'||2>||fs'n3]}’ (221)

o1(v4ll, grad A)
1 1 ki (o, &
= N 2 (R _
<x+1>{2l§nen(l HE 1)’

2
E1—1/2Z[_%El~2 & <3El§ aEl&) —zk B £6

2 T \ B IETF
*éiEl e (14 4560 )

B E 3 e (et 5ns) + e L
+§§El B (”4|r§f2||2>ﬁ§f|ﬂ}t 222

To complete the proof of Theorem 1 we consider the equality [2.2). It
implies the following formula for the next to the principal symbol of the
DO L; (j=1,2,3,4)

o1(L;)
= 01 (ydivIl,.grad A)
— {01 (vdiv Aj)oo(viIegrad A) + og(ydiv Aj)oq (v;I,grad A)
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+ Z i)0¢ o0 (vdiv A;)0z ao(v;11L.grad A)}

|a|]=1
+ 62J{01 (vdiv Ag) N + Z 8€ oo(ydiv AQ)BQN}
|a|=1
+ 64j0'1 (’ydiv A4)€

Now using the expressions [2.4)2.7), (2.9)-(2.22) and the latter for-
mula, we obtain

_ g1 &
7l = x+22Z e (B e 1) (22
= g 2.24
zzzus'u( 5 o) .

L kg

L3) = 1 2150 2.25
7(Ls) %+12§ HE (22)
o1(Lg) = %sz ”5,” (2.26)

The formulae for the principal symbols of the operators K; follow from
the equalities (2.3) and [2.23)-{2.26). This completes the proof of Theorem|
1. ]

implies from Introduction.

Proof of |Corollary from Introduction
We denote by F~!(oo(K;)) the inverse Fourier transformation of oo(K;):

1 o
(271')2 /]R? eZ<y ’§>UO(Kj))($/,§/)d§'

where (¢, &) = y1&1 + -+ + yYn—1&n—1. Let B; be a DO induced by the
symbol o¢(K;)(z’,£'). It holds

F~oo(K;))(«',y') =

Bjp = /F (oo(K;)) (', 2" — o )o(y)dy’ (2.27)

(see [9]), where ¢ is a function defined on T.
It is well known that

G+ )7V = @2m) N (o? +2d)7? (2.28)
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THENE +€3) ) = (2n)ad (e + 25) (2.29)

The proof of follows directly from and equalities
(Z.27)-(2.29). 0]

3. Proof of the Theorem 2 from Introduction

Since Kj, 7 =1,2,3,4 is a ¥DO of order —1 on I' it follows that Kj is
a compact operator in L?(I") and hence its eigenvalues A\; — 0 as k — oo.
Moreover, according to [1], the following formula of asymptotic distribution
of these eigenvalues takes place:

N(A) = Z 1=C; "2+ 0172, as A —0, (3.1)
| Ak |>A

where C;j = (47)72 [1. [o(00(K;)(z',€"))%dS dT', S is a boundary of the unit

circle in the plane (&,&2),1.e. S={ (&,&) eR2: 2+ =11
First we calculate the coefficient Cy. By from the Introduc-
tion we get

(e + 2)2/5(00(1(1) )2dS = / kl? ?1’;25715 )51) ds.
1 2 52

(3.2)

Using the polar coordinates we can rewrite (3.2) in the form:

/27r (k1Ey ! cos? <,0—|—k2E1 sin? )2
0

de. 3.3
(E7'sin? ¢ + E5 ! cos? )3 v (3:3)

We use the following formulae [4, sect. 3.642]:

I — /71'/2 Sinn*l 1 cos 1 rd - B (%, %) | (3 4)
o (a2 cos?z + b2sin? )"  2(ab)" ’ :
b= / " sin™ 2da - (@n—Dlx (3.5)
. 0 (a2 cos?x + b?sin? x)"“ on+1plgh2ntl’ .
Ia: = /w/2 cos?™ zdzx _ (@2n-Dlr (36)
. 0 (a?cos?zx + b2 sin? g;)”"'l ont1plg2ntlp’ :
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where ab >0, n=1,2,--- and

22i_2 /01 (1- t2)$”1 dt.

In particular, for n = 3 we have from (3.7) and {(3.4)

3 3 T T
B(Z,2)==, L= .
(2 2) 8 P 16(ab)®

For n = 2 from and (3.6) it follows that

B 3 B 3T
27 94gp5” 37 9445

Using (3.2) and {3.3), we get
(e+2)° [ (o0(Ko)(@' €))dS
= (7T/4)\/ E1E2(3k% + 3]6% + 2k1k2).

B (z,z) =

Thus

Cy = (32m) H(se +2)72 / V E1Ey(3k? + 3k2 + 2k ko) dT.
r
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(3.7)

(3.8)

The formulae for the coefficients Cy, C5,Cy are obtained in the same

way.

In view of the equivalence of the j-th BPET to the corresponding
boundary integral equation with operator Kj;, [13, Theorem 3 of Intro-
duction] the eigenvalues A; of the operator K; and the eigenvalues wy of
the j-th BPET are related by the equality Ay = (o +wg)/(wk — 3). Solving

the inequality

a; + Wk

k| = > A
Akl a; + wi — (aj + )
we get since wy < s that
; A ; A

1-—A 1+ A
Define the number f {wy : wy € A} := ZwkeA 1. Then

twn s wr € Jag — (g +29A1 = X) 71 a5+ (a5 + )AL+ M) [ }

=CiA" 24 0(172).

(3.10)
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Let & = (o + %) A(1 — A) 7" then A~! = (aj + 3)e™1 +1 and the equality
can be rewritten in the form

f{wp:wp ¢laj—e, aj+e—e [} =Ce 2+ 0(e7?), (3.11)

where €1 = 2e2(a; + 3+ 2¢) 7! and C; = Cj(a; + »)?, j = 1,2,3,4.
Let now € = (o + ) A (1 + )" then A™' = (aj + 3)e™! —1 and the
equality can be rewritten in the form

f{wk :wp €l —e—e2, aj+e|}=Cie? +o(e7?). (3.12)

where e = 2¢%(aj + 2 — 2¢) 71,
Subtracting (3.12) from (3.11) we get

ﬁ{wk:wk - [Oéj—é‘—f:‘g, aj—s]U[aj+€—€1,ij+€]}
20(5_2).

It follows from this equality and from that
flwk :wp Elaj—e, aj+e|} = Cj€_2+0(8_2).
This completes the proof of [Theorem 2. []

4. On spectral properties of operator divA; lgrad

The spectrum sp(T) of the operator T' = divA; ! grad in L? (Q) /R has
been considered in [2]. It has been proved that sp(T') C]0,1]. It has been
proved also that the point 1 is an eigenvalue of T.

It is more naturally from the point of view of application (see [12], [13])
to consider the restriction of T' to the space {u € L? () /R: Au=0in Q}.
By [13, Theorem 1, p.270] the restriction equals %(I — K), where K is a
compact operator. Hence the spectrum of the restriction is discrete and 1/2

is the unique limit point of its eigenvalues. It follows immediately from [13,

[Theorem 1, p.270] that the spectrum of the restriction C]0, 1[.

Remark. (Correction to an earlier paper). There is an error in the proof
of the following assertion [13, p.272]: the point A = —1 is not an eigenvalue
of the operator K and consequently the equation divAj lgradp = p has a
nontrivial solution p # 0, which is a harmonic function. (In [13, p.272] it
was erroneously written p+divA, loradp = 0, i.e. divAgy loradp = —p).

To prove the assertion suppose now that it is false. Then the point 1
is an eigenvalue of the restriction of T' and a nontrivial harmonic function
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p is a corresponding eigenfunction, i.e. divAy lgradp = p, p # 0. Denote by
u the function Ag'gradp. Then u € [C™(0)]® and satisfies the equations
Au—graddivu = 0 in © and v = 0 on I'. Since Au—graddivu = —rot2u,

it follows that rot>u = 0. Since 0 = (rot?u,u) = ||rotul|? , rotu = 0,
(L>(2)p®

ie. u € ker(rot). By [17, Appendix I, Proposition 1.1] u =grad® and
® € C*(Q). Since divA;'gradp =divu = p and Ap = 0, A2d = 0 in Q.
Since u =grad® and u« = 0 on I, we obtain % /0N = 0 and ® =const on I.
It follows that ® =const is a unique solution to the boundary value problem
A%® =0in Q, 9®/ON =0, ® =const on I'. Hence u =grad® = 0 in  and
p = divu = 0 in €2, a contradiction.
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