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Weighted inequalities for multilinear oscillatory
singular integrals

Wengu CHEN and Shanzhen Lu
(Received July 12, 1995; Revised March 29, 1996)

Abstract. For a class of multilinear oscillatory singular integral operators T4, we show
the following weighted norm inequalities:

/ T4 f (@) Pw(z)dz < C/ |f(@)[Pw(z)dz, 1<p < oo,
n RT
if w € Ap (Muckenhoupt weight class).
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1. Introduction

A classical result due to Coifman and Fefferman states that the
Calderén-Zygmund singular integral operator T satisfies the following in-
equality for w € A, with 1 < p < oo,

| mr@pe@ e [ @), (1.1
Rn R

where C is independent of f. A weight w in R™ will always be a non-negative
locally integrable function.

In this paper, we consider a kind of multilinear oscillatory singular
integral operators as follows.

, Oz —
TAf(:z:) = p.. /n ctP () - —(;nfg_lRm(A;x,y)f(y)dy,

n>2, (1.2)
where m > 2 is an integer, P(z,y) is any real-valued polynomial defined

on R™ x R™ () is homogeneous of degree zero and satisfies the moment
condition

/ " Q0)d0 = 0, |v| =m—1,
Sn—l
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R,,(A; x,y) denotes the m-th remainder of Taylor series of A at x expanded
about y, more precisely,

1 (0% (0%
Rp(4iz,y) = A(z) = ) —D*A(y)(@ —y)",
la|<m
and DA € BMO(R") for all multi-indices of magnitude |a| =m — 1.
T4 is closely related to the multilinear operator which was first studied

by Cohen , and then by Cohen and Gosselin [2]. The operator they
studied is defined by

TAf(x) = p.v./ 2z —y)

R |2 - grrm—t fom(4; 2, y)f(y)dy. (1.3)

Using the method of “good-\” inequality controlled by the maximal func-
tion, Cohen and Gosselin [2] showed that if 2 € Lip;(S™"™!) and w € A,
then

||TAf“p,w <C Z ID*AlBmoll fllpw, 1 <p<oo.

|a|l=m—1

When ( satisfies only a size condition, Hofmann [4] formulated a version of
T1 theorem and proved that if Q € L>®(S™!) and w € Ap, then

1T flpw <C Y IID*AllzMoll fllpws 1 <p < oo

la|=m—1

Unfortunately, the oscillatory factor e*f’ (@.9) prevents us from making use
of Hofmann’s technique to obtain the weighted norm inequality for
oscillatory integral operators T4.

The purpose of this paper is to establish the weighted norm inequality
of the form for T4 by means of the interpolation theorem with change
of measure [7].

Now, we state the result of this paper:

Theorem Let T be defined as (1.2). If € L®(S™ 1), then forw € Ay,
1 < p < 0o, we have

1T flipw < C(n,p, Ap,deg P) Y |D*Allsmoll fllpw»

la|l=m—1

where the constant C(n,p, Ap, deg P) depends only on the dimension n, the
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ezponent p, the A, constant of w and the total degree deg P of polynomial
P(z,y).

2. Proof of Theorem
In order to prove the theorem, we will use some lemmas.

Lemma 1 (See [2]) Let b(z) be a function on R"™ with m-th order deriva-
tives in LI(R™), ¢ > n. Then

B 20)| < Conalz =41 3 (g [, 1070 0dz)

|aj=m
where IY is the cube centered at x, with sides parallel to the azes and whose
diameter is 2¢/n|x — y|.

Lemma 2 Let Q be homogeneous of degree zero and belongs to L>°(S™™1).
Supppose that A has deriwatives of order m — 1 in BMO(R"), and

Mg (@) = supr=m D [ 100 — )R (43 2,)f(v)dy.
r>0 |lz—y|<r
Ifwe Ap, 1 <p<oo, then
IME fllpw <C Y ID*AllBmoll fllpw-

|a|l=m—1

Proof. 1t suffices to prove the lemma for ]\;[61, a variant of M{;,
Mg f(2)

—supy =) [ 9o~ ) Rm(452,5) 1)y
r>0 r/2<|z—y|<r
For fixed z € R, r > 0, let Q(:c, r) be the cube centered at x and have side
length 104/nr. Set
A _ 1 a @
AW) =AW = > ZMgEn (D A

la|=m—1 "

where mg T)(DO‘A) denotes the mean value of D*A on Q(z,r). By an
observation in [2], we have
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So,
Mg f(z)

= supr~(1+m=1) / 1z — y)Rm(A;2,9) f(y)|dy
>0 r/2<|z—y|<r

< supr_(n+m_1) / |Q(z — y)Rm—1(/~1§ z,y) f(y)|dy
T/2<|z—y|<r

r>0

+supr~ (™D / 1z —y)
>0 r/2<|z—y|<r

> D) - ) ) ldy

la|=m—1

=1+1I.
tells us that

‘Rm—l(Aa Z, y)l
|z — y|m™1

[ < supr—™ / 1z — v)f ()] dy
r/2<|z—y|<r

r>0

< Csupr_"/
r>0 r/2<|z—y|<r

= MGy (D A)|dz2) Y q} F(y)ldy

<C Y |ID*AlBmoM f(z),

|o]=m—1

1

— D*A
a1 /., 1PAe)
=m—1 z

|al

where g > n, M f denotes the Hardy-Littlewood maximal function of f. For
any t, 1 < t < oo, let Myf(z) = [M(|f])(z)]/t. By Hélder’s inequality, we
have

IT < Csup<r_"/ |D*A(y)
r/2<|z—y|<r Z

- m@(m’r)

1/t
csup(r )y
r>0 r/2<|z—y|<r

<C Z | D*Al|lsmo M f (),

|o]=m—1

RN
(D> A)|! dy)

where 1 < t/ < oo such that 1/t/ + 1/t = 1. Thus for any 1 <t < oo, we
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obtain
MEf(z)<C Y |ID*AlsmoM.f(z).
|a|=m—1

By the reverse Holder’s inequality, we know that w € A, with 1 < p < o0
implies w € Ap; for some ¢, 1 <t < p. The well-known weighted norm
inequality for M f tells us that if w € 4p,1 < p < oo, then

(/Rn \Méf(;cﬂpw(w)dx)l/p

<C X 1p%alnvo ([ MO P ul)ds)

|a)]=m—1

1/p

<C . [ID*4]smo (/Rn \f(x)bpw(x)dw)l/p-

la|=m—1
This is the desired estimate. L]

Lemma 3 Let K(z,y) be a distribution which agrees with a function away
from the diagonal {x = y} satisfying

Kl < o (4 2,0)

and let ), A be the same as the assumption in Theorem. Suppose that the
operator

Tf(z) = pw. o K(z,y)f(y)dy

is bounded on LP(w),1 < p < oo, whenw € A,. Then the truncated operator
Tof) = [ K@ u)f)dy
lz—y[<1

is also bounded on LP(w) with bound C(||T||+ 3 4j=m-1 | D*AllBMO), where

C s independent of T, and ||T|| denotes the LP(w) — LP(w) operator norm
of T.

Proof.  If we can prove

/|:c—h|<1/4 I Tof (z)["w(w)de < C/ |f(y)Pw(y)dy (2.1)

ly—h|<5/4
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holds for all h € R™ with bound independent of h, then integrating the
above inequality with respect to h yields that

[ mof@pru@dz<c [ 15@)Puwd
R™ R"

So it suffices to prove [2.1). For any fixed h € R", we split f into three
parts f = f1 + f2 + f3, where

fily) = FW)Xgy—nl<1/2y®);

fo(y) = FW)xq/2<ly—hl<5/4}(Y),
and

f3(y) = F(¥)xg5/a<py—n)} (¥)-

Because |z — h| < 1/4 and |y — h| < 1/2 imply |z —y| < 1, it is obvious that
Tofi(z) = T fi(z) when |z — h| < 1/4. In light of the boundedness of T" on
LP(w), we have

/'I_h|<1/4 Tof1(z)|Pw(z)dz = / T f1(z)[Pw(z)dz

|le—h|<1/4

<ITP [ 1n@Pe@dy =TI [ 1f@)Fdy

ly—h|<1/2

<z [ | P

If1/2<|y—h|<5/4 and |x — h| < 1/4, then |z —y| > 1/4. Thus

QUx —
Moo < [ e R (i) o)

< CM fa(z).

Lemma 2 tells us that
/ T fo(z) P (z)da
|z—h|<1/4
<C [ 1M h@)Pul)de
Rn

<C Y D ARo [ 1F@)Pu@)dy.
|a':zn:l_1 BMO ly—h|<5/4
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Note that |z — h| < 1/4 and |y — h| > 5/4 imply |z — y| > 1. Clearly
To f3(x) = 0 when |z —h| < 1/4. Thus we establish [2.1), and then complete
the proof of [Lemma. 3. ]

Now we turn our attention to proving [Theoreml.

We shall carry out the argument by a double induction on the degree
in z and y of the polynomial . By the result of Hofmann , it is obvious
that holds if the polynomial P(z,y) depends only on z or only
on y. Let k and [ are two positive integer. Suppose that the polynomial
P(z,y) has degree k in z and [ in y. We assume that Thoerem is true for all
polynomials which are sums of monomials of degree less than k in z times
monomials of any degree in y, together with monomials which are of degree
k in x times monomials which are of degree less than [ in y .

We proceed to the proof of the inductive step. Write

Plz,y)= Y. a5’y + R(z,y),
|Bl=Fk,|v|=l

where R(z,y) satisfies the inductive hypothesis. By dilation- invariance, we
may assume that 35 _ 1,1 [agy| = 1. Decompose T4 as

T4f(z)

< / Py 2z =) ~Rm(A;2,9) f(y)dy
|z — y|<1 |z — y[rtme

Uz —y)
+ / iP(z,y) R (A; z, d
Z -1 gyt 7 = g[rtm (A;2,y) f(y)dy

z) + _Z T# f ()

For h € R", rewriting P(z,y) as
Pz,y)= ), apy(z~h)’(y—h)" +R(z,y,h),
|Bl=k,|v|=l
where the inductive hypothesis applies to R(x,y,h). We split T§ f into
T f(z) < / R YR+ agy (y—h)P+7]

lz—y|<1

Qz —
|z —(z|n+?£—1Rm(A3 z,y) f(y)dy
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'+./' (iP@Y) _ iRy m T asy(y—h) ]y
lz—y|<1

Me—y) p (A;z,9) f(y)dy

& —y[rm—t
= T f(z) + Tz f ().
By the inductive hypothesis and Lemma 3, we get
| @)

<C Y 1D Al [ If@) u(a)de 2.2

la|=m—1

When |z — h| < 1/4 and |z — y| < 1, it is easy to see that
|eiP (@) _ (ilRE R+ ag, (y=h) "+,

<C Y agllz—y|=Clz —yl.
1Bl /=1

If we denote fi(y) = f(y)x{y—n|<5/4}(¥), then Tisf(z) = T fu(x) when
|z — h| < 1/4. Thus

Q(z — y)|
Tz f ()] < C i o= gz B (42 9) fa(w) dy
T—Y|>

< CMG fu().

It follows from Lemma 2 that
/ T F () Po(e)dz
|le—h|<1/4

<O Y DA [ F@)Pudy.

laj=m—1 ly—h|<5/4
Integrating the above inequality with respect to h yields that
[ T35 @Pw()ds
<C Y ID" Al [ If@)Fu(z)d 2:3)

|o|=m—1

Combining with [2.3), we get the desired estimate for T3 f.
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Now we consider T]A f, 7 > 1. Obviously

T f ()|

IN

Qx —
/z | (y’n+Z1)|—1 |Rm(A52,9) f(y)|dy

i-1<ja—y|<27 |T —
< CMg f(x),
where C' is independent of j. When w € A,, 1 < p < 0o, by the reverse

Holder’s inequality again, there exists an € > 0 such that w!t€ € Ap. It
follows from that

T fllpwr+e <C S I D*Allgmoll £ llpwise, (2.4)

|o|=m—1

where C' is independent of j. If we can obtain a refined L? estimate for T]A f
as follows.

IT £, < C27° 3" ID*Allsmollf llps (2.5)

|a|=m—1

where 6 > 0, and C depends only on the total degree of P(z,y), then when

w € Ap, 1 < p < oo, by the interpolation theorem with change of measure
between (2.4) and [2.5), we get

T fllpw < C277% ™ ID*Allsmo || fllprws (2.6)

|aj=m—1

with 0 < 6 < 1. Summing the above inequality over all j > 1 , together
with the estimate for T¢' f gives that

IT4fllpw <C Y ID*Allsumollf]

|a|l=m—1

p,wy

where C' depends only on n, p, A, constant of w and the total degree deg P.
Now the proof of reduces to prove the estimate [2.5). By
Lemma 2, it is easy to see that

IT 5|, < C > ID*Allsmoll fllps 1< p < oo

la|l=m—1

So, in order to prove , we only to prove

T fllz < C279% S~ [D*Allgmoll £ (2.7)

|ae)]=m—1
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To prove (2.7), we may assume »_,_n,_; [D*A|lBMo = 1. Define
T} (x)
Oz —y)

= iP(277 2,297 y) R(4; d
- € m )x7 .
v/1<|a:—y|§2 |:L‘ — y|n+m—1 ( y)f(y) Y

By dilation invariance, it is enough to prove that
I fll2 < 27| f - (2.8)

Decompose R™ into R™ = |J I;, where I; is a cube with side length 1, and
the cubes have disjoint interiors. Set f; = fx,. Since the support of TJA fiis
contained in a fixed multiple of I;, so that the supports of the various terms
T ]A fi have bounded overlaps. Thus we have the “almost orthogonality”

property
I/ 115 < C Y NT i3,
i
and therefore it suffices to show
IT fill5 < C27 £ill3. (2.9)

For fixed i, denote I; = 100nl;. Let ¢;(x) € C°(R™) such that 0 <
¢i < 1, ¢; is identically one on 10y/nl; and vanishes outside of 50,/nl;,

| D7 ¢illoo < C for all multi-index . Let o be a point on the boundary of
80+/nI;. Denote

A% (y) = Rpn—1(A() = Y i7"'%(17“14)(')“;,7J,9L’0)<15z'(.y)

a! .
|a|=m—1

and for multi-index «, define
S A,
Tj f(z)

. i1 _— Q(w . y)
= P27 2,27 y) — 2 F(u)d
— e w )
»/1<|:1:—y|s2 ‘x _ y|n+m—1 ( y) f(y) Yy

It is easy to see that
T fi(z)

. i Qz — ,
1<|z—y|<2 |z |
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= AR @TAf@) — Y ST A% ) (@)

la|]<m—1 "
1 o s
_l |Z L (D A% f;) ()
aj=m-—1
=14 11+ IIL

Before we estimate these terms, let us state a lemma.

Lemma 4 There exists a positive constant 6 = 6(n,deg P) such that for
any 7 > 1 and multi-index a,

: Qz —y)
iP(z,y) e d
€ T

D
< o @rmledi|f| 1< p < oo,

where constant C is independent of j, f and coefficients of P(z,y).

Recall that P(xz,y) = 32 5<,y|<i ag,@Py" and 218|=k,y|=t [y = 1.
can be proved by an argument used in . We omit the details
here.

We return to the estimates of I, IT and III. Note that for multi-index 23,
8] <m -1,

D’@A¢i (y) = Z Cp,uRm—|,u|—1(Du(A(')

B=u+v
1
- > mi(DTA)());y,20)
lo|=m~-1 "~
x DY ¢i(y).

Since that supp ¢; C 504/nl;, by Lemma 1, we have

1/t
al=m-—1 Zo

< C,
where t > n. Thus, it follows from that

. = A, Y
e < 1A% oI T5 0 fill2 < C27%| £i]2.
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Similarly, we have
ITl2 < C27%7| il

It remains to estimate the third term III. Note that for any 0 < v < n,

T f(2)| < C 2z — y) f(y)|dy

1<|z—y|<L2

q 1/q'
< 419 pagsn1y (/1 _Mdy)

<|z—y|<L2 |z — y|n=

< |l asnn L (F17) @),

where I, denotes the usual fractional integral of order v. If p > ¢’ and
o > 0, we take a v such that 0 <y <n/p,and 1/(p+0) =1/p—v/n. By
the Hardy-Littlewood-Sobolev theorem [6], we get

-4
757 fllp+o < ClULasn-1)llfllpy p>4d, o >0.
By the last inequality and [Lemma 4], an interpolation will give
4 L
1T fllp+e < C277| fllp, 1<p<oo, >0, (2.10)
where ¢ is a positive constant. On the other hand, if |3| = m — 1, then,

DﬂA¢i(y) = Z Cp,uRm—1—|,u|(Du(A(')
B=p+tv,|ul<m—1
1

= > i (DTA)()%);y,20)
|a|=m—1 "

X D"¢i(y)

+ Y (DUA(Y) - my, (D*A)éi(y)-
|a|=m—1

Thus, it follows that
DAt <c(1+ X IDTAQ) - my(0°4))),
la|=m—1
and this shows that for any ¢t > 1,

|DP A%, < C,.
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Combining the above inequality and [2.10), we obtain

I, < 0275 S DA% fills-,

la|]=m—1

<02 DA,

|a|=m—1

< C27%| fila,

where we choose 0 >0 and 1 <t < oo such that 1/2+ 1/t =1/(2 — o).
All above estimates imply that is true.
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