Weighted inequalities for multilinear oscillatory singular integrals

Wengu CHEN and Shanzhen LU

(Received July 12, 1995; Revised March 29, 1996)

Abstract. For a class of multilinear oscillatory singular integral operators T^A , we show the following weighted norm inequalities:

$$\int_{R^n} |T^A f(x)|^p w(x) dx \le C \int_{R^n} |f(x)|^p w(x) dx, \quad 1$$

if $w \in A_p$ (Muckenhoupt weight class).

Key words: multilinear operator, oscillatory integral, A_p weight.

1. Introduction

A classical result due to Coifman and Fefferman [3] states that the Calderón-Zygmund singular integral operator T satisfies the following inequality for $w \in A_p$ with 1 ,

$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \le C \int_{\mathbb{R}^n} |f(x)|^p w(x), \tag{1.1}$$

where C is independent of f. A weight w in \mathbb{R}^n will always be a non-negative locally integrable function.

In this paper, we consider a kind of multilinear oscillatory singular integral operators as follows.

$$T^{A}f(x) = p.v. \int_{\mathbb{R}^{n}} e^{iP(x,y)} \frac{\Omega(x-y)}{|x-y|^{n+m-1}} R_{m}(A; x, y) f(y) dy,$$

$$n \ge 2, \tag{1.2}$$

where $m \geq 2$ is an integer, P(x,y) is any real-valued polynomial defined on $R^n \times R^n$, Ω is homogeneous of degree zero and satisfies the moment condition

$$\int_{S^{n-1}} \theta^{\nu} \Omega(\theta) d\theta = 0, \quad |\nu| = m - 1,$$

¹⁹⁹¹ Mathematics Subject Classification: 42B20, 42B25.

¹Research was supported by NNSF of China.

 $R_m(A; x, y)$ denotes the m-th remainder of Taylor series of A at x expanded about y, more precisely,

$$R_m(A; x, y) = A(x) - \sum_{|\alpha| < m} \frac{1}{\alpha!} D^{\alpha} A(y) (x - y)^{\alpha},$$

and $D^{\alpha}A \in BMO(\mathbb{R}^n)$ for all multi-indices of magnitude $|\alpha| = m - 1$.

 T^A is closely related to the multilinear operator which was first studied by Cohen [1], and then by Cohen and Gosselin [2]. The operator they studied is defined by

$$\tilde{T}^{A}f(x) = p.v. \int_{\mathbb{R}^{n}} \frac{\Omega(x-y)}{|x-y|^{n+m-1}} R_{m}(A; x, y) f(y) dy.$$
 (1.3)

Using the method of "good- λ " inequality controlled by the maximal function, Cohen and Gosselin [2] showed that if $\Omega \in \text{Lip}_1(S^{n-1})$ and $w \in A_p$, then

$$\|\tilde{T}^A f\|_{p,w} \le C \sum_{|\alpha|=m-1} \|D^{\alpha} A\|_{\text{BMO}} \|f\|_{p,w}, \quad 1$$

When Ω satisfies only a size condition, Hofmann [4] formulated a version of T1 theorem and proved that if $\Omega \in L^{\infty}(S^{n-1})$ and $w \in A_p$, then

$$\|\tilde{T}^A f\|_{p,w} \le C \sum_{|\alpha|=m-1} \|D^{\alpha} A\|_{\text{BMO}} \|f\|_{p,w}, \quad 1$$

Unfortunately, the oscillatory factor $e^{iP(x,y)}$ prevents us from making use of Hofmann's technique to obtain the weighted norm inequality (1.1) for oscillatory integral operators T^A .

The purpose of this paper is to establish the weighted norm inequality of the form (1.1) for T^A by means of the interpolation theorem with change of measure [7].

Now, we state the result of this paper:

Theorem Let T^A be defined as (1.2). If $\Omega \in L^{\infty}(S^{n-1})$, then for $w \in A_p$, 1 , we have

$$||T^A f||_{p,w} \le C(n, p, A_p, \deg P) \sum_{|\alpha|=m-1} ||D^{\alpha} A||_{\text{BMO}} ||f||_{p,w},$$

where the constant $C(n, p, A_p, \deg P)$ depends only on the dimension n, the

exponent p, the A_p constant of w and the total degree $\deg P$ of polynomial P(x,y).

2. Proof of Theorem

In order to prove the theorem, we will use some lemmas.

Lemma 1 (See [2]) Let b(x) be a function on \mathbb{R}^n with m-th order derivatives in $L^q(\mathbb{R}^n)$, q > n. Then

$$|R_m(b;x,y)| \le C_{m,n}|x-y|^m \sum_{|\alpha|=m} \left(\frac{1}{|I_x^y|} \int_{I_x^y} |D^{\alpha}b(z)|^q dz\right)^{1/q},$$

where I_x^y is the cube centered at x, with sides parallel to the axes and whose diameter is $2\sqrt{n}|x-y|$.

Lemma 2 Let Ω be homogeneous of degree zero and belongs to $L^{\infty}(S^{n-1})$. Suppose that A has derivatives of order m-1 in BMO (R^n) , and

$$M_{\Omega}^{A} f(x) = \sup_{r>0} r^{-(n+m-1)} \int_{|x-y| < r} |\Omega(x-y) R_{m}(A; x, y) f(y)| dy.$$

If $w \in A_p$, 1 , then

$$||M_{\Omega}^A f||_{p,w} \le C \sum_{|\alpha|=m-1} ||D^{\alpha} A||_{\text{BMO}} ||f||_{p,w}.$$

Proof. It suffices to prove the lemma for \tilde{M}_{Ω}^{A} , a variant of M_{Ω}^{A} ,

$$\tilde{M}_{\Omega}^{A} f(x) = \sup_{r>0} r^{-(n+m-1)} \int_{r/2 < |x-y| < r} |\Omega(x-y) R_{m}(A; x, y) f(y)| dy.$$

For fixed $x \in \mathbb{R}^n$, r > 0, let $\tilde{Q}(x, r)$ be the cube centered at x and have side length $10\sqrt{n}r$. Set

$$\tilde{A}(y) = A(y) - \sum_{|\alpha|=m-1} \frac{1}{\alpha!} m_{\tilde{Q}(x,r)}(D^{\alpha}A) y^{\alpha},$$

where $m_{\tilde{Q}(x,r)}(D^{\alpha}A)$ denotes the mean value of $D^{\alpha}A$ on $\tilde{Q}(x,r)$. By an observation in [2], we have

$$R_m(A; x, y) = R_m(\tilde{A}; x, y).$$

So,

$$\begin{split} \tilde{M}_{\Omega}^{A}f(x) &= \sup_{r>0} r^{-(n+m-1)} \int_{r/2 < |x-y| < r} |\Omega(x-y)R_{m}(\tilde{A};x,y)f(y)| dy \\ &\leq \sup_{r>0} r^{-(n+m-1)} \int_{r/2 < |x-y| < r} |\Omega(x-y)R_{m-1}(\tilde{A};x,y)f(y)| dy \\ &+ \sup_{r>0} r^{-(n+m-1)} \int_{r/2 < |x-y| < r} |\Omega(x-y) \\ &\sum_{|\alpha| = m-1} \frac{1}{\alpha!} D^{\alpha} \tilde{A}(y)(x-y)^{\alpha} ||f(y)| dy \\ &= I + II. \end{split}$$

Lemma 1 tells us that

$$I \leq \sup_{r>0} r^{-n} \int_{r/2 < |x-y| < r} |\Omega(x-y)f(y)| \frac{|R_{m-1}(\tilde{A}; x, y)|}{|x-y|^{m-1}} dy$$

$$\leq C \sup_{r>0} r^{-n} \int_{r/2 < |x-y| < r} \left[\sum_{|\alpha| = m-1} \frac{1}{|I_x^y|} \int_{I_x^y} |D^{\alpha} A(z) - m_{\tilde{Q}(x,r)} (D^{\alpha} A)|^q dz \right] |f(y)| dy$$

$$\leq C \sum_{|\alpha| = m-1} ||D^{\alpha} A||_{\text{BMO}} Mf(x),$$

where q > n, Mf denotes the Hardy-Littlewood maximal function of f. For any t, $1 < t < \infty$, let $M_t f(x) = [M(|f|)^t(x)]^{1/t}$. By Hölder's inequality, we have

$$II \leq C \sup_{r>0} \left(r^{-n} \int_{r/2 < |x-y| < r} \sum_{|\alpha| = m-1} |D^{\alpha} A(y) - m_{\tilde{Q}(x,r)} (D^{\alpha} A)|^{t'} dy \right)^{1/t'}$$

$$\times \sup_{r>0} \left(r^{-n} \int_{r/2 < |x-y| < r} |f(y)|^t dy \right)^{1/t}$$

$$\leq C \sum_{|\alpha| = m-1} ||D^{\alpha} A||_{BMO} M_t f(x),$$

where $1 < t' < \infty$ such that 1/t' + 1/t = 1. Thus for any $1 < t < \infty$, we

obtain

$$\tilde{M}_{\Omega}^{A} f(x) \le C \sum_{|\alpha|=m-1} \|D^{\alpha} A\|_{\text{BMO}} M_t f(x).$$

By the reverse Hölder's inequality, we know that $w \in A_p$ with $1 implies <math>w \in A_{p/t}$ for some t, 1 < t < p. The well-known weighted norm inequality for Mf tells us that if $w \in A_p$, 1 , then

$$\left(\int_{R^{n}} |\tilde{M}_{\Omega}^{A} f(x)|^{p} w(x) dx \right)^{1/p} \\
\leq C \sum_{|\alpha|=m-1} \|D^{\alpha} A\|_{\text{BMO}} \left(\int_{R^{n}} [M(|f|)^{t}(x)]^{p/t} w(x) dx \right)^{1/p} \\
\leq C \sum_{|\alpha|=m-1} \|D^{\alpha} A\|_{\text{BMO}} \left(\int_{R^{n}} |f(x)|^{p} w(x) dx \right)^{1/p}.$$

This is the desired estimate.

Lemma 3 Let K(x,y) be a distribution which agrees with a function away from the diagonal $\{x = y\}$ satisfying

$$|K(x,y)| \le \frac{|\Omega(x-y)|}{|x-y|^{n+m-1}} |R_m(A;x,y)|$$

and let Ω , A be the same as the assumption in Theorem. Suppose that the operator

$$Tf(x) = p.v. \int_{\mathbb{R}^n} K(x, y) f(y) dy$$

is bounded on $L^p(w), 1 , when <math>w \in A_p$. Then the truncated operator

$$T_0 f(x) = \int_{|x-y| \le 1} K(x,y) f(y) dy$$

is also bounded on $L^p(w)$ with bound $C(\|T\| + \sum_{|\alpha|=m-1} \|D^{\alpha}A\|_{BMO})$, where C is independent of T, and $\|T\|$ denotes the $L^p(w) \to L^p(w)$ operator norm of T.

Proof. If we can prove

$$\int_{|x-h|<1/4} |T_0 f(x)|^p w(x) dx \le C \int_{|y-h|\le 5/4} |f(y)|^p w(y) dy \tag{2.1}$$

holds for all $h \in \mathbb{R}^n$ with bound independent of h, then integrating the above inequality with respect to h yields that

$$\int_{\mathbb{R}^n} |T_0 f(x)|^p w(x) dx \le C \int_{\mathbb{R}^n} |f(y)|^p w(y) dy.$$

So it suffices to prove (2.1). For any fixed $h \in \mathbb{R}^n$, we split f into three parts $f = f_1 + f_2 + f_3$, where

$$f_1(y) = f(y)\chi_{\{|y-h|<1/2\}}(y),$$

$$f_2(y) = f(y)\chi_{\{1/2 \le |y-h| < 5/4\}}(y),$$

and

$$f_3(y) = f(y)\chi_{\{5/4 \le |y-h|\}}(y).$$

Because |x-h| < 1/4 and |y-h| < 1/2 imply |x-y| < 1, it is obvious that $T_0 f_1(x) = T f_1(x)$ when |x-h| < 1/4. In light of the boundedness of T on $L^p(w)$, we have

$$\int_{|x-h|<1/4} |T_0 f_1(x)|^p w(x) dx = \int_{|x-h|<1/4} |T f_1(x)|^p w(x) dx
\leq ||T||^p \int_{R^n} |f_1(y)|^p w(y) dy = ||T||^p \int_{|y-h|<1/2} |f(y)|^p dy
\leq ||T||^p \int_{|y-h|<5/4} |f(y)|^p w(y) dy.$$

If $1/2 \le |y-h| < 5/4$ and |x-h| < 1/4, then |x-y| > 1/4. Thus

$$|T_0 f_2(x)| \le \int_{|x-y| \le 1} \frac{|\Omega(x-y)|}{|x-y|^{n+m-1}} |R_m(A; x, y) f_2(y)| dy$$

 $\le C M_{\Omega}^A f_2(x).$

Lemma 2 tells us that

$$\int_{|x-h|<1/4} |T_0 f_2(x)|^p w(x) dx
\leq C \int_{R^n} |M_{\Omega}^A f_2(x)|^p w(x) dx
\leq C \sum_{|\alpha|=m-1} ||D^{\alpha} A||_{BMO}^p \int_{|y-h|<5/4} |f(y)|^p w(y) dy.$$

Note that |x - h| < 1/4 and |y - h| > 5/4 imply |x - y| > 1. Clearly $T_0 f_3(x) = 0$ when |x - h| < 1/4. Thus we establish (2.1), and then complete the proof of Lemma 3.

Now we turn our attention to proving Theorem.

We shall carry out the argument by a double induction on the degree in x and y of the polynomial. By the result of Hofmann [4], it is obvious that Theorem holds if the polynomial P(x,y) depends only on x or only on y. Let k and l are two positive integer. Suppose that the polynomial P(x,y) has degree k in x and l in y. We assume that Thoerem is true for all polynomials which are sums of monomials of degree less than k in x times monomials of any degree in y, together with monomials which are of degree k in x times monomials which are of degree less than l in y.

We proceed to the proof of the inductive step. Write

$$P(x,y) = \sum_{|\beta|=k, |\gamma|=l} a_{\beta\gamma} x^{\beta} y^{\gamma} + R(x,y),$$

where R(x, y) satisfies the inductive hypothesis. By dilation- invariance, we may assume that $\sum_{|\beta|=k, |\gamma|=l} |a_{\beta\gamma}| = 1$. Decompose T^A as

$$T^{A}f(x)$$

$$\leq \int_{|x-y|\leq 1} e^{iP(x,y)} \frac{\Omega(x-y)}{|x-y|^{n+m-1}} R_{m}(A;x,y) f(y) dy$$

$$+ \sum_{j=1}^{\infty} \int_{2^{j-1}<|x-y|\leq 2^{j}} e^{iP(x,y)} \frac{\Omega(x-y)}{|x-y|^{n+m-1}} R_{m}(A;x,y) f(y) dy$$

$$= T_{0}^{A}f(x) + \sum_{j=1}^{\infty} T_{j}^{A}f(x).$$

For $h \in \mathbb{R}^n$, rewriting P(x, y) as

$$P(x,y) = \sum_{|\beta|=k, |\gamma|=l} a_{\beta\gamma} (x-h)^{\beta} (y-h)^{\gamma} + R(x,y,h),$$

where the inductive hypothesis applies to R(x, y, h). We split $T_0^A f$ into

$$T_0^A f(x) \leq \int_{|x-y| \leq 1} e^{i[R(x,y,h) + \sum a_{\beta\gamma}(y-h)^{\beta+\gamma}]} \frac{\Omega(x-y)}{|x-y|^{n+m-1}} R_m(A;x,y) f(y) dy$$

$$+ \int_{|x-y| \le 1} \left\{ e^{iP(x,y)} - e^{i[R(x,y,h) + \sum a_{\beta\gamma}(y-h)^{\beta+\gamma}]} \right\}$$

$$\frac{\Omega(x-y)}{|x-y|^{n+m-1}} R_m(A;x,y) f(y) dy$$

$$= T_{01}^A f(x) + T_{02}^A f(x).$$

By the inductive hypothesis and Lemma 3, we get

$$\int_{R^{n}} |T_{01}^{A} f(x)|^{p} w(x) dx$$

$$\leq C \sum_{|\alpha|=m-1} ||D^{\alpha} A||_{BMO}^{p} \int_{R^{n}} |f(x)|^{p} w(x) dx. \tag{2.2}$$

When |x - h| < 1/4 and $|x - y| \le 1$, it is easy to see that

$$|e^{iP(x,y)} - e^{i[R(x,y,h) + \sum a_{\beta\gamma}(y-h)^{\beta+\gamma}]}|$$

$$\leq C \sum_{|\beta|=k, |\gamma|=l} |a_{\beta\gamma}||x-y| = C|x-y|.$$

If we denote $f_h(y) = f(y)\chi_{\{|y-h| \le 5/4\}}(y)$, then $T_{02}^A f(x) = T_{02}^A f_h(x)$ when |x-h| < 1/4. Thus

$$|T_{02}^{A}f(x)| \leq C \int_{|x-y|\leq 1} \frac{|\Omega(x-y)|}{|x-y|^{n+m-2}} |R_{m}(A;x,y)f_{h}(y)| dy$$

$$\leq C M_{\Omega}^{A} f_{h}(x).$$

It follows from Lemma 2 that

$$\int_{|x-h|<1/4} |T_{02}^A f(x)|^p w(x) dx$$

$$\leq C \sum_{|\alpha|=m-1} ||D^\alpha A||_{\text{BMO}}^p \int_{|y-h|\leq 5/4} |f(y)|^p w(y) dy.$$

Integrating the above inequality with respect to h yields that

$$\int_{R^{n}} |T_{02}^{A} f(x)|^{p} w(x) dx$$

$$\leq C \sum_{|\alpha|=m-1} ||D^{\alpha} A||_{BMO}^{p} \int_{R^{n}} |f(x)|^{p} w(x) dx. \tag{2.3}$$

Combining (2.2) with (2.3), we get the desired estimate for $T_0^A f$.

Now we consider $T_j^A f$, $j \geq 1$. Obviously

$$|T_{j}^{A}f(x)| \leq \int_{2^{j-1}<|x-y|\leq 2^{j}} \frac{|\Omega(x-y)|}{|x-y|^{n+m-1}} |R_{m}(A;x,y)f(y)| dy$$

$$\leq CM_{\Omega}^{A}f(x),$$

where C is independent of j. When $w \in A_p$, $1 , by the reverse Hölder's inequality again, there exists an <math>\epsilon > 0$ such that $w^{1+\epsilon} \in A_p$. It follows from Lemma 2 that

$$||T_j^A f||_{p,w^{1+\epsilon}} \le C \sum_{|\alpha|=m-1} ||D^{\alpha} A||_{\text{BMO}} ||f||_{p,w^{1+\epsilon}},$$
 (2.4)

where C is independent of j. If we can obtain a refined L^p estimate for $T_j^A f$ as follows.

$$||T_j^A f||_p \le C2^{-j\delta} \sum_{|\alpha|=m-1} ||D^{\alpha} A||_{\text{BMO}} ||f||_p,$$
 (2.5)

where $\delta > 0$, and C depends only on the total degree of P(x, y), then when $w \in A_p$, 1 , by the interpolation theorem with change of measure [7] between (2.4) and (2.5), we get

$$||T_j^A f||_{p,w} \le C2^{-j\theta\delta} \sum_{|\alpha|=m-1} ||D^{\alpha} A||_{\text{BMO}} ||f||_{p,w},$$
 (2.6)

with $0<\theta<1$. Summing the above inequality over all $j\geq 1$, together with the estimate for $T_0^A f$ gives that

$$||T^A f||_{p,w} \le C \sum_{|\alpha|=m-1} ||D^{\alpha} A||_{\text{BMO}} ||f||_{p,w},$$

where C depends only on n, p, A_p constant of w and the total degree deg P. Now the proof of Theorem reduces to prove the estimate (2.5). By Lemma 2, it is easy to see that

$$||T_j^A f||_p \le C \sum_{|\alpha|=m-1} ||D^{\alpha} A||_{\text{BMO}} ||f||_p, \quad 1$$

So, in order to prove (2.5), we only to prove

$$||T_j^A f||_2 \le C2^{-j\delta} \sum_{|\alpha|=m-1} ||D^{\alpha} A||_{\text{BMO}} ||f||_2.$$
 (2.7)

To prove (2.7), we may assume $\sum_{|\alpha|=m-1} ||D^{\alpha}A||_{\text{BMO}} = 1$. Define

$$\tilde{T}_{j}^{A}f(x) = \int_{1<|x-y|\leq 2} e^{iP(2^{j-1}x,2^{j-1}y)} \frac{\Omega(x-y)}{|x-y|^{n+m-1}} R_{m}(A;x,y) f(y) dy.$$

By dilation invariance, it is enough to prove that

$$\|\tilde{T}_{i}^{A}f\|_{2} \le C2^{-\varepsilon j}\|f\|_{2}. \tag{2.8}$$

Decompose \mathbf{R}^n into $\mathbf{R}^n = \bigcup I_i$, where I_i is a cube with side length 1, and the cubes have disjoint interiors. Set $f_i = f\chi_{I_i}$. Since the support of $\tilde{T}_j^A f_i$ is contained in a fixed multiple of I_i , so that the supports of the various terms $\tilde{T}_j^A f_i$ have bounded overlaps. Thus we have the "almost orthogonality" property

$$\|\tilde{T}_{j}^{A}f\|_{2}^{2} \leq C \sum_{i} \|\tilde{T}_{j}^{A}f_{i}\|_{2}^{2},$$

and therefore it suffices to show

$$\|\tilde{T}_{j}^{A}f_{i}\|_{2}^{2} \leq C2^{-\varepsilon j}\|f_{i}\|_{2}^{2}.$$
(2.9)

For fixed i, denote $\tilde{I}_i = 100nI_i$. Let $\phi_i(x) \in C_0^{\infty}(\mathbf{R}^n)$ such that $0 \le \phi_i \le 1$, ϕ_i is identically one on $10\sqrt{n}I_i$ and vanishes outside of $50\sqrt{n}I_i$, $||D^{\gamma}\phi_i||_{\infty} \le C_{\gamma}$ for all multi-index γ . Let x_0 be a point on the boundary of $80\sqrt{n}I_i$. Denote

$$A^{\phi_i}(y) = R_{m-1}(A(\cdot) - \sum_{|\alpha| = m-1} \frac{1}{\alpha!} m_{\tilde{I}_i}(D^{\alpha} A)(\cdot)^{\alpha}; y, x_0) \phi_i(y)$$

and for multi-index α , define

$$\tilde{T}_{j}^{A,\alpha}f(x) = \int_{1<|x-y|\leq 2} e^{iP(2^{j-1}x,2^{j-1}y)} \frac{\Omega(x-y)}{|x-y|^{n+m-1}} (x-y)^{\alpha}f(y)dy.$$

It is easy to see that

$$\tilde{T}_{j}^{A} f_{i}(x) = \int_{1 < |x-y| \le 2} e^{iP(2^{j-1}x, 2^{j-1}y)} \frac{\Omega(x-y)}{|x-y|^{n+m-1}} R_{m}(A^{\phi_{i}}; x, y) f_{i}(y) dy$$

$$= A^{\phi_i}(x)\tilde{T}_j^{A,0}f_i(x) - \sum_{|\alpha| < m-1} \frac{1}{\alpha!}\tilde{T}_j^{A,\alpha}(D^{\alpha}A^{\phi_i}f_i)(x)$$
$$- \sum_{|\alpha| = m-1} \frac{1}{\alpha!}\tilde{T}_j^{A,\alpha}(D^{\alpha}A^{\phi_i}f_i)(x)$$
$$= I + II + III.$$

Before we estimate these terms, let us state a lemma.

Lemma 4 There exists a positive constant $\delta = \delta(n, \deg P)$ such that for any $j \geq 1$ and multi-index α ,

$$\left\| \int_{2^{j-1} \le |x-y| < 2^j} e^{iP(x,y)} \frac{\Omega(x-y)}{|x-y|^{n+m-1}} (x-y)^{\alpha} f(y) dy \right\|_{p}$$

$$\leq C 2^{-(\delta+m-|\alpha|)j} \|f\|_{p}, \quad 1$$

where constant C is independent of j, f and coefficients of P(x,y).

Recall that $P(x,y) = \sum_{|\beta| \le k, |\gamma| \le l} a_{\beta\gamma} x^{\beta} y^{\gamma}$ and $\sum_{|\beta| = k, |\gamma| = l} |a_{\beta\gamma}| = 1$. Lemma 4 can be proved by an argument used in [5]. We omit the details here.

We return to the estimates of I, II and III. Note that for multi-index β , $|\beta| < m - 1$,

$$D^{\beta} A^{\phi_i}(y) = \sum_{\beta = \mu + \nu} C_{\mu,\nu} R_{m-|\mu|-1}(D^{\mu}(A(\cdot)))$$
$$- \sum_{|\alpha| = m-1} \frac{1}{\alpha!} m_{\tilde{I}_i}(D^{\alpha} A)(\cdot)^{\alpha}; y, x_0)$$
$$\times D^{\nu} \phi_i(y).$$

Since that supp $\phi_i \subset 50\sqrt{n}I_i$, by Lemma 1, we have

$$|D^{\beta}A^{\phi_{i}}(y)| \leq C \sum_{|\alpha|=m-1} \left(\frac{1}{|I_{x_{0}}^{y}|} \int_{I_{x_{0}}^{y}} |D^{\alpha}A(z) - m_{\tilde{I}_{i}}(D^{\alpha}A)|^{t} dz \right)^{1/t} \\ \leq C,$$

where t > n. Thus, it follows from Lemma 4 that

$$\|\mathbf{I}\|_{2} \leq \|A^{\phi_{i}}\|_{\infty} \|\tilde{T}_{i}^{A,0}f_{i}\|_{2} \leq C2^{-\delta j} \|f_{i}\|_{2}.$$

Similarly, we have

$$\|II\|_2 \le C2^{-\delta j} \|f_i\|_2.$$

It remains to estimate the third term III. Note that for any $0 < \gamma < n$,

$$\begin{split} |\tilde{T}_{j}^{A,\alpha}f(x)| &\leq C \int_{1<|x-y|\leq 2} |\Omega(x-y)f(y)| dy \\ &\leq C_{\gamma} \|\Omega\|_{L^{q}(S^{n-1})} \left(\int_{1<|x-y|\leq 2} \frac{|f(y)|^{q'}}{|x-y|^{n-\gamma}} dy \right)^{1/q'} \\ &\leq C_{\gamma} \|\Omega\|_{L^{q}(S^{n-1})} [I_{\gamma}(|f|^{q'})(x)]^{1/q'}, \end{split}$$

where I_{γ} denotes the usual fractional integral of order γ . If p > q' and $\sigma > 0$, we take a γ such that $0 < \gamma < n/p$, and $1/(p + \sigma) = 1/p - \gamma/n$. By the Hardy-Littlewood-Sobolev theorem [6], we get

$$\|\tilde{T}_{j}^{A,\alpha}f\|_{p+\sigma} \le C\|\Omega\|_{L^{q}(S^{n-1})}\|f\|_{p}, \quad p > q', \quad \sigma > 0.$$

By the last inequality and Lemma 4, an interpolation will give

$$\|\tilde{T}_{j}^{A,\alpha}f\|_{p+\sigma} \le C2^{-\tilde{\sigma}j}\|f\|_{p}, \quad 1 0,$$
 (2.10)

where $\tilde{\sigma}$ is a positive constant. On the other hand, if $|\beta| = m-1$, then,

$$D^{\beta} A^{\phi_{i}}(y) = \sum_{\beta = \mu + \nu, |\mu| < m-1} C_{\mu,\nu} R_{m-1-|\mu|} (D^{\mu}(A(\cdot)) - \sum_{|\alpha| = m-1} \frac{1}{\alpha!} m_{\tilde{I}_{i}} (D^{\alpha} A)(\cdot)^{\alpha}); y, x_{0}) \times D^{\nu} \phi_{i}(y) + \sum_{|\alpha| = m-1} (D^{\alpha} A(y) - m_{\tilde{I}_{i}} (D^{\alpha} A)) \phi_{i}(y).$$

Thus, it follows that

$$|D^{\beta}A^{\phi_i}(y)| \le C\bigg(1 + \sum_{|\alpha|=m-1} |D^{\alpha}A(y) - m_{\tilde{I}_i}(D^{\alpha}A)|\bigg),$$

and this shows that for any t > 1,

$$||D^{\beta}A^{\phi_i}||_t \le C_t.$$

Combining the above inequality and (2.10), we obtain

$$||III||_{2} \leq C2^{-\tilde{\delta}j} \sum_{|\alpha|=m-1} ||D^{\alpha}A^{\phi_{i}}f_{i}||_{2-\sigma}$$

$$\leq C2^{-\tilde{\delta}j} \sum_{|\alpha|=m-1} ||D^{\alpha}A^{\phi_{i}}||_{t}||f_{i}||_{2}$$

$$\leq C2^{-\tilde{\delta}j}||f_{i}||_{2},$$

where we choose $\sigma > 0$ and $1 < t < \infty$ such that $1/2 + 1/t = 1/(2 - \sigma)$. All above estimates imply that (2.7) is true.

Acknowledgment Authors are very grateful to Dr. Hu for providing us the proof of estimate (2.7).

References

- [1] Cohen J., A sharp estimate for a multilinear singular integral in \mathbb{R}^n . Indiana Univ. Math. J. **30** (1981), 693–702.
- [2] Cohen J. and Gosselin J., A BMO estimate for multilinear singular integrals. Illinois J. of Math. 30 (1986), 445–464.
- [3] Coifman R.R. and Fefferman C., Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51 (1974), 241–250.
- [4] Hofmann S., On certain nonstand Calderón-Zygmund operarors. Studia Math. 109 (1994), 105–131.
- [5] Lu S. and Zhang Y., Criterion on L^p-boundedness for a class of oscillatory singular integral with rough kernels. Rev. Mat. Iberoamericana, 8 (1992), 201–219.
- [6] Stein E.M., Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, New Jersey, 1970.
- [7] Stein E.M. and Weiss G., Interpolation of operators with change of measure. Trans. Amer. Math. Soc. 87 (1958), 159–172.

Department of Mathematics Beijing Normal University Beijing 100875 P. R. China E-mail: lusz@ sun.ihep.ac.cn