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C^{l}-determinacy of weighted homogeneous germs
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Abstract. We provide new estimates on the degree of C^{\ell}- G-determinacy (G is one of

Mather’s groups \mathcal{R} , C or \mathcal{K} ) of weighted homogeneous map germs satisfying a convenient
Lojasiewicz condition. The results give an explicit order such that the C^{\ell} geometrical
structure of a weighted homogeneous polynomial map-germ is preserved after higher order

perturbations. As an application of our results, we use the degree of C^{1} -determinacy and
the Newton diagram to obtain equisingular deformations in the Briangon-Speder example.
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Introduction

The determinacy of map-germs is a fundamental subject in singularity
theory, and many works are devoted to the characterization of finite (infi-
nite) determinacy and to estimating the order of determinacy, with respect
to various equivalence relations. In particular, finding the accurate order
of determinacy of a map-germ is important for applications or practical
problems as well as for pure mathematical theory.

In this paper we provide new estimates on the degree of C^{\ell}-G-determi-
nacy (G is one of Mather’s groups \mathcal{R} , C or \mathcal{K} ) of weighted homogeneous
map germs satisfying a convenient Lojasiewicz condition. We generalize
previous results on homogeneous map-germs given by the first author in [9].
The results give an explicit order such that the C^{\ell} geometrical structure
of a weighted homogeneous polynomial map-germ is preserved after higher
order perturbations. Our method consists of constructing controled vector
fields based on weighted homogeneous standard control functions.

The question of determining the degree of C^{0}- G-determinacy of weighted
homogeneous map germs has been considered by several authors (e.g. [3],
[4], [8] ) , but these results do not include the C^{\ell} case, 0<\ell<\infty . As
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an application of our results, we use the degree of C^{1} -determinacy and
the Newton diagram to obtain equisingular deformations in the Brian\caon-
Speder example.

After completing this work, the authors came across a paper of Bromberg
and L\’opes de Medrano [2] that contains similar results. They consider only
germs of functions and the group G=\mathcal{R} , but their estimates for the degree
of C^{\ell}-determinacy apply to germs of class C^{\ell+1},0\leq\ell<\infty .

1. Basic definitons

The basic notation is the same as in [9] or [12]. Let C(n, p) be the space
of smooth map-germs f : \mathbb{R}^{n} , 0 -arrow \mathbb{R}^{p} , 0.

The groups C^{\ell}- G , G=\mathcal{R} , C or \mathcal{K} , 0\leq\ell<\infty are defined as the groups
\mathcal{R} , C or \mathcal{K} , taking diffeomorphisms of class C^{\ell} , \ell\geq 1 or homeomorphisms,
when \ell=0 . These groups act on the space of C^{\ell} map-germs. Our interest
however, is rather in the induced equivalence relation, C^{\ell}- G equivalence in
the space C(n, p) .

A C^{\infty} map germ f : \mathbb{R}^{n} , 0 –
\mathbb{R}^{p} , 0 is k- C^{\ell_{-}}G-determined, 0\leq\ell<\infty ,

( G=\mathcal{R} , C or \mathcal{K} ) if for each germ g such that j^{k}g(0)=j^{k}f(0) , g is C^{\ell_{-}}G-

equivalent to f . The ring of C^{\infty} function-germs f : \mathbb{R}^{n} , 0arrow \mathbb{R} , 0 is denoted
by C_{n} and m_{n} denotes its maximal ideal.

As in [12], given f : \mathbb{R}^{n} , 0 –
\mathbb{R}^{p} , 0 we denote by I_{\mathcal{R}}f the ideal of C_{n}

generated by the p\cross p minors of the Jacobean matrix of f , by I_{C}f the ideal
generated by the coordinate functions of f , and by I_{\mathcal{K}}f the ideal I_{\mathcal{R}}f+I_{C}f .

Let N_{C}f(x)=|f(x)|^{2} , N_{\mathcal{R}}f(x)=|df(x)|^{2}= \sum_{j}M_{j}^{2} , where the M_{j} are
the generators of I_{\mathcal{R}}f and N_{\mathcal{K}}f=N_{\mathcal{R}}f+N_{C}f . We say that N_{G}f satisfies
a Lojasiewicz condition if there exist constants c>0 and \alpha>0 such that
N_{G}f(x)\geq c|x|^{\alpha} .

Proposition 1.1 [12] N_{G}f(x) satisfifies a Lojasiewicz condition if and
only if f is fifinitely C^{\ell_{-}}G -determined for any \ell , 0\leq\ell<\infty .

Definition 1.2 Given (r_{1}, \ldots , r_{n} : d_{1}, . , d_{p}) , r_{i} , d_{j}\in \mathbb{Q}^{+} . a map germ

f : \mathbb{R}^{n} , 0 –
\mathbb{R}^{p} , 0 is weighted homogeneous of type (r_{1}, . , r_{n} : d_{1}, . . , d_{p})

if for all \lambda\in \mathbb{R}-\{0\} :

f (\lambda^{r_{1}}x_{1}, \lambda^{r_{2}}x_{2}, . , \lambda^{r_{n}}x_{n})=(\lambda^{d_{1}}f_{1}(x), \lambda^{d_{2}}f_{2}(x) , . . ’
\lambda^{d_{p}}f_{p}(x)) .

Definition 1.3 Given (r_{1}, \ldots, r_{n}) , for any monomial x^{\alpha}=x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}} . . x_{n}^{\alpha_{n}} ,
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we define fifil (x^{\alpha})= \sum_{i=1}^{n}\alpha_{i}r_{i} .

We define a filtration in the ring C_{n} via the function defined by fil(/)=
\inf_{\alpha}\{

exten
fi1(x^{\alpha})|(\frac{\partial^{\alpha}f}{\partial x^{\alpha}})(0)\neq 0\} , for any germ f in C_{n} . This definition can be
ded to C_{n+r} , the ring of r-parameter families of germs in n-variables,

by defining fil (x^{\alpha}t^{\beta})=fifi1(x^{\alpha}) .
For any map germ f= (f_{1}, \ldots, f_{p}) in C(n, p) we call fifi1(f)=(d_{1}, \ldots, d_{p}) ,

where d_{i}=fifi1(f_{i}) for each i=1 , \ldots , p .

2. Estimates for the degree of C^{\ell}-determinacy

Definition 2.1 Let (r_{1}, r_{2}, \ldots, r_{n}; 2k) be fixed. We define the standard
control function \rho_{k}(x) by \rho_{k}(x)=x_{1}^{2\alpha_{1}}+x_{2}^{2\alpha_{2}}+\cdots+x_{n}^{2\alpha_{n}} , where the \alpha_{i} are
chosen in such a way that the function \rho_{k} is weighted homogeneous of type
(r_{1}, r_{2}, . . ’ r_{n}; 2k) .

We observe that \rho_{k}(x) satisfies a Lojasiewicz condition \rho_{k}(x)\geq c|x|^{2\alpha}

for some constants c and \alpha .

Lemma 1 Let h(x) be a weighted homogeneous polynomial of type ( r_{1} , . . ’

r_{n} ; 2k) and h_{t}(x) , t\in[0,1] a deformation of h , which is weighted homoge-
neous of the same type as h . Then:
a . There exists a constant c_{1} such that |h_{t}(x)|\leq c_{1}\rho_{k}(x) .
b . If there exist constants c and \alpha such that |h_{t}(x)|\geq c|x|^{\alpha} ,

then |h_{t}(x)|\geq c_{2}\rho_{k}(x) for some constant c_{2} .

Proof. Let M= { (y , t)\in \mathbb{R}^{n}\cross[0,1] such that \rho_{k}(y)=1 }.
To prove (a), we first observe that for each pair (x, t) , x\neq 0 , fixed,

there is a pair (y, t)\in M , and a real number \lambda\neq 0 , such that (x, t)=
(\lambda^{r_{1}}y_{1}, \ldots , \lambda^{r_{n}}y_{n}, t) .

Now, let c_{1}= \sup { h_{t}(y) such that (y, t)\in M }. Then:

h_{t}(x)=h_{t}(\lambda y)=\lambda^{2k}h_{t}(y)\leq\lambda^{2k}c_{1}\rho_{k}(y)=c_{1}\rho_{k}(x) .

To prove (b), let c_{2}= \inf { h_{t}(y) such that (y, t)\in M}. From the hy-
pothesis, c_{2}>0 , hence:

c_{2}\rho_{k}(x)=c_{2}\lambda^{2k}\rho_{k}(y)\leq\lambda^{2k}h_{t}(y)=h_{t}(x) .

\square

Lemma 2 Let h(x) be a weighted homogeneous polynomial of type (r_{1} , .
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r_{n} ; 2k), with r_{1}\leq r_{2}\leq \leq r_{n} , \rho(x) be the standard control of same type
as h(x) and h_{t}(x) be a deformation of h such that:

fifi1(h_{t})\geq 2k+\ell r_{n}+1 , t\in[0,1] , \ell\geq 1 .

Then the function \nu(x)=h_{t}(x)/\rho(x) is differentiable of class C^{\ell} .

Proof. We will proceed by induction on the class of differentiability.
First we consider \ell=1 . The gradient of \nu(x) is

\nabla\nu(x)=\frac{\nabla h_{t}(x)}{\rho(x)}-\frac{\nabla\rho(x)h_{t}(x)}{\rho(x)^{2}} , with \inf_{i}\{fifi1(\frac{\partial\rho}{\partial x_{i}}(x))\geq 2k-r_{n}\}

and fifi1(h_{t}(x))\geq 2k-r_{n}+1 , then fifi1|\nabla\rho(x) h_{t}(x)|\geq 4k+1 .
Each term of \nabla\nu(x) is of form g(x)\cdot m(x)/\rho(x) , where m(x) is weighted

homogeneous of type (r_{1}, \ldots, r_{n};2k) and \lim_{xarrow 0}g(x)=0 . It follows from
Lemma 1 that m(x)/\rho(x) is bounded, hence \nabla\nu(x) is continuous.

Let us assume by induction that for all function \nu=h(x)/\rho(x) with
fifi1(h)\geq 2k+(\ell-1)r_{n}+1 , \nu is of class C^{\ell-1} .

Let lJ =h(x)/\rho(x) with fifi1(h)\geq 2k+\ell r_{n}+1 . Then \nabla\nu(x)=H(x)/\rho(x)

with fifi1(H)\geq 2k+(\ell-1)r_{n}+1 is of class C^{\ell-1} , and lJ is of class C^{\ell} . \square

Case 1: G=\mathcal{R} .

Proposition 2.2 Let f : \mathbb{R}^{n} , 0 -
\mathbb{R}^{p} , 0 be a weighted homogeneous poly-

nomial map germ of type (r_{1}, \ldots, r_{n} ; d_{1}, . . ’ d_{p}) with r_{1}\leq\cdot . \leq r_{n} , d_{1}\leq

\leq d_{p} , satisfying a Lojasiewicz condition N_{\mathcal{R}}f(x)\geq c|x|^{\alpha} , for constants
c and \alpha . Then:
(a) Deformations of f defifined by f_{t}(x)=f(x)+t\Theta(x) , \Theta=(\Theta_{1}, \ldots, \ominus_{p})

with fifi1(\Theta_{i})\geq d_{i}-r_{1}+\ell r_{n}+1 , for all i , \ell\geq 1 and t\in[0,1] are
C^{\ell_{-}}\mathcal{R}- tr\dot{v}vial .

(b) If f_{t} is a deformation of f which is weighted homogeneous of the same
type as f , then the family f_{t} is C^{0_{-}}\mathcal{R}-trivial for small t .

We observe that for each p\cross p minor M_{I} of d/ , there is an s_{I} such that
M_{I} is weighted homogeneous of type (r_{1}, \ldots, r_{n};s_{I}) .

Let N_{\mathcal{R}}^{*}f be defined by N_{\mathcal{R}}^{*}f= \sum_{I}M_{I}^{2\alpha_{I}} , where \alpha_{I}=k/s_{I} , and k=
l.c.m.(s_{I}) . Then, N_{\mathcal{R}}^{*}f is a weighted homogeneous control function of type
(r_{1}, . . , r_{n}; 2k) .

For deformations f_{t} of f . we define the control N_{\mathcal{R}}^{*}f_{t} by N_{\mathcal{R}}^{*}f_{t}=

\sum_{I}M_{t_{I}}^{2\alpha_{I}} , where M_{t_{I}} are the p\cross p minors of J_{ft} , and the \alpha_{I} are the
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same as above. If f_{t} is weighted homogeneous of same type as f , then
N_{\mathcal{R}}^{*}f_{t} is weighted homogeneous of type (r_{1}, \ldots, r_{n}; 2k) for all t . If f_{t}(x)=

f(x)+t\Theta(x) and fifi1(\Theta_{i})\geq d_{i} , it follows that fifi1(N_{\mathcal{R}}^{*}f_{t})\geq fifi1(N_{\mathcal{R}}^{*}f) .

Lemma 3 There exist constants c_{1} and c_{2} such that:

c_{2}\rho_{k}(x)\leq N_{\mathcal{R}}^{*}f_{t}\leq c_{1}\rho_{k}(x) .

Proof. When f_{t} is weighted homogeneous of the same type as f . the result
follows from Lemma 1.

If fifi1(f_{t})>fifi1(f) , we write N_{\mathcal{R}}^{*}f_{t}=N_{\mathcal{R}}^{*}f+tR(x, t) where R(x, t) is a
polynomial with fifil (R(x, t)) >fifi1(N_{\mathcal{R}}^{*}f) .

Then N_{\mathcal{R}}^{*}f\leq N_{\mathcal{R}}^{*}f_{t}+|R_{t}(x)| , for 0\leq t\leq 1 . By Lemma 1, there exists
a constant c_{2} such that: c_{2}\rho_{k}(x)\leq N_{\mathcal{R}}^{*}f\leq N_{\mathcal{R}}^{*}f_{t}+|R_{t}(x)| .

Since fifil (R(x, t)) >fifi1(N_{\mathcal{R}}^{*}f) , it follows that \lim_{xarrow 0}|R_{t}(x)|/\rho_{k}(x)=0

(Lemma 2). Thus c_{2}\rho_{k}(x)\leq N_{\mathcal{R}}^{*}f_{t} .
It is easy to see that there exists a constant c_{1} such that N_{\mathcal{R}}^{*}f_{t}\leq c_{1}\rho(x)

for small t . \square

Proof of the Proposition 2.2
(a) Let M_{t_{I}} a p\cross p minor of J_{ft} , I=(i_{1}, i_{2}, . . ’ i_{p})\subset(1,2, . , n) .

Then, there exists a vector field W_{I} associated to M_{t_{I}} , such that: \frac{\partial f_{t}}{\partial t}M_{t_{I}}=

df(W_{I}) , where

W_{I}= \sum_{1}^{n}w_{i^{\frac{\partial}{\partial x_{i}}}} , with \{

w_{i}=0 ; if i\not\in I

w_{i_{m}}= \sum_{j=1}^{p}N_{ji_{m}}(\frac{\partial ft}{\partial t})_{j} ; if i_{m}\in I

and N_{ji_{m}} is the (p-1)\cross(p-1) minor cofactor of \frac{\partial f_{j}}{\partial x_{i_{m}}} in df . (See [4] or

[9] for more details).
Since fifi1(w_{i_{m}})=\min_{j=1,\ldots,p}(fifi1(N_{ji_{m}})+fifi1(\frac{\partial ft}{\partial t})_{j}) , and fifi1(w_{i_{m}})=d-

r_{I}+r_{i_{m}}-r_{1}+\ell r_{n}+1 , where d=d_{1}+d_{2}+\cdots+d_{p} and r_{I}=r_{i_{1}}+r_{i_{2}}+\cdots+r_{i_{p}} ,
the least possible filtration of w_{i} for i=1 , \ldots , n is fifi1(w_{1})=d-r+\ell r_{n}+1 ,
where r=r_{1}+r_{2}+\cdot 1+r_{p} .

Then \frac{\partial f_{t}}{\partial t}N_{\mathcal{R}}^{*}f_{t}=df_{t}(W_{R}) , where W_{R}= \sum_{I}M_{I}^{2\alpha_{I}-1}w_{i} , with fifi1(W_{R})=

2k+\ell r_{n}+1 .
Let \nu : \mathbb{R}^{n}\cross \mathbb{R} , 0 – \mathbb{R}^{n}\cross \mathbb{R} , 0 be the vector field defined by \nu(x)=

W_{R}/N_{\mathcal{R}}^{*}f_{t} . By Lemma 2, \nu is of class C^{\ell} .
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The equation \frac{\partial ft}{\partial t}(x, t)=(df_{t})_{x}(x, t)(\nu(x, t)) implies the C^{\ell_{-}}\mathcal{R}-triviality
of the family f_{t}(x) in a neighbourhood of t=0. Since the same argument
is true in a neighbourhood of t=\overline{t} , for all t\in[0,1] , the proof is complete.

(b) The vector field is constructed as in case (a). Here, fifi1(W_{R})\geq

2k+r_{1} , and fifi1(W_{R_{i}})\geq 2k+r_{i} , where the W_{R_{i}} are the components of
W_{R} . Then, the vector field \nu(x)=W_{R}/N_{\mathcal{R}}^{*}f_{t} is continuous. Furthermore,
\nu(x, t)\leq c|x| , and this condition implies the integrability of the vector field
\nu ([7]) \square

Case 2: G=C .

Let N_{C}^{*}f= \sum_{i=1}^{p}f_{i}^{2\beta_{i}} , where \beta_{i}=k/d_{i} , and k=l.c.m.(d_{i}) .
Given a deformation f_{t} of f . f_{t}=f+t\Theta , let N_{C}^{*}f_{t}= \sum_{i}f_{ti}^{2\beta_{i}} . where

each \beta_{i} is the same as above.

Proposition 2.3 Let f : \mathbb{R}^{n} , 0arrow \mathbb{R}^{p} , 0 be a weighted homogeneous poly-
nomial map germ of type (r_{1}, \ldots , r_{n}; d_{1}, \ldots, d_{p}) with r_{1}\leq \cdot . \leq r_{n} , d_{1}\leq

. . \leq d_{p} , satisfying a Lojasiewicz condition N_{C}(f(x))\geq c|x|^{\alpha} , for constants
c and \alpha . Then:
(a) Deformations f_{t}=f+t\Theta of f , with fifil(O-_{i})\geq d_{p}+\ell r_{n}+1 , for all

i , t\in[0,1] and \ell\geq 1 are C^{\ell} -C-trivial.
(b) Small deformations of f , with fifil(\Theta_{i})=d_{p}+1 , i=1 , . , p are C^{0_{-}}C-

trivial.

Proof. (a) C^{\ell_{-}}C-triviality of the family f_{t} is obtained by constructing
map germs V_{i} of class C^{\ell} , V_{i} : \mathbb{R}^{n}\cross \mathbb{R} , 0arrow \mathbb{R}^{p} , 0; V_{i}= (V_{i_{1}}, V_{i_{2}}, \ldots.V_{i_{p}}) ,
with V_{i_{j}}(x, 0)=\delta_{i_{j}}(x) in such a way that: \frac{\partial ft}{\partial t}=\sum_{i=1}^{p}V_{i}(x, t)(f_{ti}) .

Since \frac{\partial f_{t}}{\partial t}=(\frac{\partial f_{t}}{\partial t}

( \sum_{i=1}^{p}(f_{t})_{i}^{2\beta_{i}-1})/N_{C}^{*}f_{t} ) (f_{ti}) , we define:

W_{i}(x, t)=(f_{ti})^{2\beta_{i}-1}( \frac{\partial f_{t}}{\partial t}) . Then \frac{\partial f_{t}}{\partial t}=(\sum_{i=1}^{p}W_{i}(x, t)/N_{C}^{*}f_{t})(f_{ti}) with

fil (W_{i}(x, t))\geq 2k+\ell r_{n}+1 for all i .
Let V : \mathbb{R}^{n}\cross \mathbb{R}^{p}\cross \mathbb{R} , 0arrow \mathbb{R}^{n}\cross \mathbb{R}^{p}\cross \mathbb{R} , 0 be the vector field defined by:

(0, V_{p}, 0) , where V_{p}(x, y, t)=( \sum_{i=1}^{p}W_{i}(x, t)/N_{C}^{*}f_{t})y_{i} .
As V is of class C^{\ell} , the result follows by integrating V \square

Case (b) is analogous to (a).
In order to obtain a better estimate, as in [9] we prove the following

lemma:
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Lemma 4 Let c be a constant such that |f_{ti}(x)|^{2}\leq c\rho(x) , and V and U
be neighbourhoods of the region |y|<c\rho(x)^{1/2} in \mathbb{R}^{n}\cross \mathbb{R}^{p}\cross \mathbb{R}-\{0,0, t\} ,

V=\{(x, y, t) such that |y|\leq c_{1}\rho(x)^{1/2} . with c_{1}>c\}

and U is chosen in such a way that U\subset\overline{U}\subset V

There exists a conic bump function p : \mathbb{R}^{n}\cross \mathbb{R}^{p}\cross IR –
\mathbb{R} such that:

p_{1\mathbb{R}^{n}}\cross \mathbb{R}^{p}\cross \mathbb{R}-\{0,0, t\}
is smooth, and

\{

p(x, y, t)=1 , for all (x, y, t)\in\overline{U}

p(x, y, t)=0 , outside of V
0\leq p(x, y, t)\leq 1 , in V-\overline{U}

p(0,0, t)=0 , for all t .

Proof We define the function p(x, y_{i})=h(\ominus_{i}) , with \Theta_{i}=y_{i} \rho(x)^{-1/2} ,
where for each i , the set |y_{i}|\leq c\rho(x)^{1/2} , is in \mathbb{R}^{n}\cross \mathbb{R}^{p} and h:\mathbb{R}arrow \mathbb{R} is the

usual bump function \{

h(O-)=1 , if 0\leq-\leq\Theta_{1} ;
h(\ominus)=0 , if \Theta\geq\Theta_{2} ;
0\leq h(\Theta)\leq 1 , if \ominus_{1}<\Theta<\Theta_{2}

Since |f_{t_{i}}|\leq c\rho(x)^{1/2} , for a constant c , we have:

\{

h(\Theta_{i})\leq 1 if |y_{i}|\leq c\rho(x)^{1/2}

0\leq h(\Theta_{i})\leq 1 if c\rho(x)^{1/2}\leq|y_{i}|\leq c_{1}\rho(x)^{1/2}

h(\Theta_{i})=0 if c_{1}\rho(x)^{1/2}\leq|y_{i}|

The desired conic bump function is defined by:

p(x, y, t)=p(x, y_{1})p(x, y_{2})\cdots p(x, y_{p}) .

\square

Proposition 2.4 Let f : \mathbb{R}^{n} , 0arrow \mathbb{R}^{p} , 0 6e a weighted homogeneous poly-
nomial map germ of type (r_{1}, \ldots , r_{n}; d_{1}, \ldots, d_{p}) with r_{1}\leq\cdot . \leq r_{n} , d_{1}\leq

. . \leq d_{p} , satisfying a Lojasiewicz condition: N_{C}|f(x)|\geq c|x|^{\alpha} , for constants
c and \alpha . Then:
(a) Deformations f_{t}=f+t\Theta of f , with fifil(\Theta_{i})\geq d_{p}+\ell r_{n} , i=1 , . , p ,

t\in[0,1] and \ell\geq 1 are C^{\ell} -C-trivial.
(b) Small deformations of f , with fifil(\Theta_{i})=d_{p} , i=1 , . , p are C^{0} -C-

trivial.
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Proof. (a) Let V be the vector field defined by V=W/N_{C}^{*}f_{t} , where W

is defined in a neighbourhood of \{0, 0, t\} in \mathbb{R}^{n}\cross \mathbb{R}^{p}\cross \mathbb{R} , with W_{j}(x, y, t)=

p(x, y, t)w_{j}(x, y, t) for i\leq j\leq p , and w_{j} are defined as in Proposition 1.3.
We just have to check the class of differentiability of W_{j}=(w_{j1}, , w_{jp})

where: w_{ji}=(h_{ji}/\rho_{k}(x))p(x, y, t)y_{i} , and h_{ji}=\Theta_{i}f_{tj}^{2\beta_{j}-1} Then, fifi1(h_{ji})\geq

2k+\ell r_{n} , and

|W_{ji}|=|h_{ji}/\rho(x)||py_{j}|\leq|h_{ji}/\rho(x)|(\rho(x))^{1/2} .

Applying Lemmas 4 and 2, we see that each W_{ji} is of class C^{\ell} and W
is of class C^{\ell} . As in proposition 2.3, case (b) is analogous to (a). \square

Case 3: G=\mathcal{K} .

Proposition 2.5 Let f : \mathbb{R}^{n} , 0 –
\mathbb{R}^{p} , 0 be a weighted homogeneous poly-

nomial map germ of type (r_{1}, \ldots , r_{n}; d_{1}, \ldots, d_{p}) with r_{1}\leq \cdot\cdot\leq r_{n} , d_{1}\leq

. . \leq d_{p} , satisfying a Lojasiewicz condition N_{\mathcal{K}}f(x)|\geq c|x|^{\alpha} , for constants
c and \alpha . Then:
(a) Deformations f_{t}=f+t\ominus off , with fifil(\Theta_{i})\geq d_{p}+\ell r_{n} , i=1 , \ldots , p ,

t\in[0,1] and \ell\geq 1 are C^{\ell_{-}}\mathcal{K} -trivial.
(b) Small deformations of f , with fifil(\Theta_{i})=d_{p} , i=1 , \ldots , p are C^{0}- \mathcal{K}

-

trivial.

Proof. Since the group C^{\ell}- \mathcal{K} is the semi-direct product of the groups
C^{\ell}- \mathcal{R} and C^{\ell}- C , the vector fields are defined as in cases G=\mathcal{R} and C , and
the control function N_{\mathcal{K}}^{*}f is defined by: N_{\mathcal{K}}^{*}f=N_{\mathcal{R}}^{*}f^{\alpha}+N_{C}^{*}f^{\beta} where \alpha and
\beta are constants such that N_{\mathcal{K}}^{*}f is weighted homogeneous. \square

As a consequence of the above results, we obtain a general estimate for
the degree of C^{\ell}- G-determinacy ( G=\mathcal{R} , C or \mathcal{K} ).

Proposition 2.6 Let f : \mathbb{R}^{n} , 0arrow \mathbb{R}^{p} , 0 be a weighted homogeneous polynO-
mial map germ of type (r_{1}, \ldots, r_{n};d_{1}, \ldots, d_{p}) , r_{1}\leq \cdot\tau\leq r_{n} , d_{1}\leq \cdot\cdot\leq d_{p} ,
satisfying a Lojasiewicz condition: N_{G}f(x)|\geq c|x|^{\alpha} , for constants c and \alpha .
(a) f is k- C^{\ell_{-}}G -determined, where k is the least integer bigger than or

equal to: ((d_{p}+\ell r_{n}+1-2r_{1})/r_{1}) , 0<\ell<\infty ,
(b) f is k- C^{0} -G-determined, where k=d_{p}/r_{1} ,
(c) Small deformations of f , of degree d_{p}/r_{1} are C^{0} -G-lrivial.

Example.
Let f : \mathbb{R}^{2}

–
\mathbb{R}^{2} given by f(x, y)=(x^{a}-y^{b};xy) , with a\geq b even
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integers. f is a weighted homogeneous map germ of type (r, s;d, r+s) ,
where d=l.c.m.(a, b) and r=d/a, s=d/b.

Let f_{t}=f+t\ominus,withO-=(\Theta_{1}, \Theta_{2}) a deformation of f.
If fifi1(\Theta_{1})=d and fifi1(\Theta_{2})=s+r , the family f_{t} is C^{0}- \mathcal{R}-trivial for small

t .
The family f_{t} is C^{\ell}- \mathcal{R}-trivial for all t if fifi1(-O_{1})\geq d-r+\ell s+1 and

fifi1(\Theta_{2})\geq(\ell+1)s+1 .
The function f is k- C^{0}- G-determined, where k= \sup(d, r+s)/r , for all

G=\mathcal{R} , C or \mathcal{K} .
If 0<\ell<\infty , the function f is k- C^{\ell}- G-determined, where k is the least

integer bigger than or equal to: ( \sup(d, r+s)+\ell s-2r+1)/r .

The Briangon-Speder example
Let f:k^{3} , Oarrow k , 0, ( k=\mathbb{R} or \mathbb{C} ) be defined by f(x, y, z)=z^{5}+y^{7}x+x^{15} ,

which is a weighted homogeneous map-germ of type (1,2,3;15).
When k=\mathbb{C} , the family F(x, y, z, t)=z^{5}+y^{7}x+x^{15}+ty^{6}z is topolog-

ically trivial, since the Milnor number \mu(f_{t}) is constant for all t . Brian\caon
and Speder showed in [1] that the variety F^{-1}(0) in \mathbb{C}^{4} is not equisingu-
lar along the parameter space 0 \cross \mathbb{C} at 0. A complete description of all
equisingular deformations of f is given in [10]: the variety F^{-1}(0) , defined
by F(x, y, z, t)=f(x, y, z)+tx^{a}y^{b}z^{c} is equisingular along the parameter
space at 0, if and only if the monomial x^{a}y^{b}z^{c} is in the Newton polyhedron
determined by the points \{(15,0,0), (0, 8, 0), (0, 0, 5), (1, 7, 0)\} .

We consider here the analogous question for the real family F:\mathbb{R}^{3}\cross

\mathbb{R} , 0arrow \mathbb{R} , 0; F(x, y, z, t)=f(x, y, z)+tx^{a}y^{b}z^{c} . Applying the Proposition
2.2 we obtain that deformations f_{t}(x, y, z)=f(x, y, z)+tx^{a}y^{b}z^{c} are topolog-
ically trivial for t small, if fifi1(x^{a}y^{b}z^{c})=a+2b+3c\geq 15 and are C^{\ell_{-}}\mathcal{R} trivial,
(\ell\geq 1) if fifi1(x^{a}y^{b}z^{c})=a+2b+3c\geq 15+3\ell . Hence the variety F^{-1}(0)

is Whitney-equisingular along the parameter space 0 \cross \mathbb{R} at 0, whenever
a+2b+3c\geq 18 .

It is easy to check that, for sufficiently small values of t , the deformations
f_{t}(x, y, z)=f(x, y, z)+tx^{a}y^{b}z^{c} , with (a, b, c) equal to (15, 0, 0), (0, 0, 5) and
(1, 7, 0) are indeed C^{\infty} -trivial, hence the Whitney equisingularity of the pair
\{F^{-1}(0), 0\cross \mathbb{R}\} also holds for them.

To obtain the equisingularity of F^{-1}(0) , when F(x, y, z, t)=f(x, y, z)+
ty^{8} , we can show that y^{8} is in the integral closure of the ideal
m_{3} \langle\frac{\partial F}{\partial x} , \frac{\partial F}{\partial y} , \frac{\partial F}{\partial z}\rangle . These calculations can be found in [10]. In the real
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analytic case, the integral closure of an ideal I is defined as the set of all el-
ements h such that for all analytic curve \phi:\mathbb{R} , 0arrow \mathbb{R}^{n} , 0, h\circ\phi\in(\phi^{*}I)C_{n+1}

(see Gaffney, [6]).
Gaffney also shows that if the smooth points of each component of

F^{-1}(0) are dense on that component, then a necessary condition for the
Whitney equisingularity of the pair \{F^{-1}(0), 0\cross \mathbb{R}\} is that \frac{\partial F}{\partial t} is in the

integral closure of the ideal generated by \{x_{i}\frac{\partial F}{\partial x_{j}}\}i,j=1,\ldots,n .

Using this result, we can show that the real analogue of the Brian\caon-
Speder family F(x, y, z, t)=f(x, y, z)+ty^{6}z is also non equisingular. In
fact, we see that y^{6}z does not belong to the integral closure of the ideal
m_{3} \langle\frac{\partial F}{\partial x} , \frac{\partial F}{\partial y} , \frac{\partial F}{\partial z}\rangle , since the above condition fails for the curve \psi:\mathbb{R}arrow \mathbb{R}^{4} .

defined by \psi(\lambda)=(\lambda^{5}, \lambda^{5}, \lambda^{8}, -5\lambda^{2}) .
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