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Biharmonic green domains in R^{n}
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Abstract. The properties of biharmonic functions with a singularity at a finite or in-
finite point in R^{n} , n\geq 2 , are investigated, leading to a generalization of the classical
B\^ocher theorem for harmonic functions with positive singularity, when 2\leq n\leq 4 . This
latter result is useful in identifying some biharmonic Green domains in R^{n} .
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1. Introduction

The behaviour of a biharmonic function u(x) in 0<|x|<1 in R^{n} .

n\geq 2 , is considered, leading to a necessary and sufficient condition for u to
extend as a distribution in |x|<1 ; a case of particular interest is when u is
bounded.

The corresponding results when the biharmonic function is defined out-
side a compact set K in R^{n} lead to an analogue of B\^ocher’s theorem (after
a Kelvin transformation) for positive harmonic functions in R^{n}\backslash K ; but this
is valid only when 2\leq n\leq 4 . A corollary to this is: let \Omega be a domain in
R^{n} , 2\leq n\leq 4 such that R^{n}\backslash \Omega is compact. Then \Omega is not a biharmonic
Green domain; that is, a biharmonic Green function cannot be defined on
\Omega .

2. Preliminaries

For n\geq 2 , let E_{n} and S_{n} denote the fundamental solutions of the
Laplacian \triangle and \triangle^{2} in R^{n} ; that is, \triangle E_{n}=\delta and \triangle^{2}S_{n}=\delta in the sense of
distributions.

Given a locally integrable function f on R^{n} , let M(r, f) denote the
mean value of f(x) on |x|=r .

Proposition 2.1 Let u(x) be a harmonic function in 0<|x|<1 in R^{n} .
Then the following are equivalent:

1) u extends as a distribution in |x|<1 (in which case, it is of order
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m for an integer m\geq 0 ).
2) u(x)=v(x)+ \sum_{|k|\leq m}a_{k}\partial^{k}E_{n}(x) where v(x) is harmonic in |x|<1 .
3) u(x)\geq\varphi(x) in 0<|x|<1 where M(r, |\varphi|)=o(r^{1-m-n}) when

|x|=rarrow 0 .

Proof.
1)\Rightarrow 2) : If u extends as a distribution in |x|<1 , \triangle u is a distribution

in |x|<1 with point support {0} and hence \triangle u=\sum_{|k|\leq m}a_{k}\partial^{k}\delta for some
integer m\geq 0 .

Consequently, the distribution T=u- \sum_{|k|\leq m}a_{k}\partial^{k}E_{n} in |x|<1 satis-
fies the equation \triangle T=0 and hence T is equal a.e . to a harmonic function
v in |x|<1 .

Since u- \sum_{|k|<m}a_{k}\partial^{k}E_{n} is continuous in 0<|x|<1 , we have u(x)=
v(x)+ \sum_{|k|\leq m}a_{k}\partial^{\overline{k}}E_{n}(x) in 0<|x|<1 .

2)\Rightarrow 3) : This follows from the observation \partial^{k}E_{n}(x)=O(|x|^{2-k-n})

when |x|arrow 0 (Mizohata [9], p. 145).
3)\Rightarrow 1) : Setting h(x)=-u(x) , we note that h^{+}(x)\leq|\varphi(x)| and

hence by hypothesis, r^{m+n-1}M(r, h^{+})arrow 0 when |x|=rarrow 0 .
Now the series expansion of u(x) in 0<|x|<1 (M. Brelot [7], p. 201)

gives h(x)=-u(x)=-v(x)+ \sum_{k}a_{k}\partial^{k}E_{n}(x) , where v(x) is harmonic in
|x|<1 . However here the series reduces to a finite number of terms, since
the assumption r^{m+n-1}M(r, h^{+}) -arrow 0 when rarrow 0 implies that a_{k}=0 if
|k|\geq m+1 .

Thus, u(x)=v(x)- \sum_{|k|<m}a_{k}\partial^{k}E_{n}(x) in 0<|x|<1 extends as a
distribution of order \leq m in |x\overline{|}<1 . \square

Corollary 2.2 Let u(x) be harmonic in 0<|x|<1 in R^{n}- Then the
following are equivalent:

1) u(x) is bounded on one-side.
2) u(x)=v(x)+\alpha E_{n}(x) where v(x) is harmonic in |x|<1 .
3) |x|^{n-1}u(x) tends to 0 when |x|arrow 0 .
4) r^{n-1}M(r, |u|) -arrow 0 when r -arrow 0 .
5) u(x)\geq\varphi(x) in 0<|x|<1 where M(r, |\varphi|)=o(r^{1-n}) when

r-*0 .

Proof. This is an immediate consequence of the above Proposition 2.1
when we remark that if u is lower bounded, it extends as a superharmonic
function in |x|<1 (M. Brelot [7], p. 39). Consequently it is a locally
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integrable function and defines a distribution of order 0. \square

An application of the Kelvin transformation gives the following equiva-
lent version of the above Corollary 2.2, stated here for m=0 in which form
it is used later.

Corollary 2.3 Let u(x) be a harmonic function in |x|>R in R^{n} . n\geq 2 .

Then the following are equivalent:
1) u(x)=o(|x|) when |x|arrow\infty .

2) \lim\inf\frac{u(x)}{|x|}|x|arrow\infty\geq 0

3) u(x)=\{
\alpha\log|x|+b(x) if n=2
\alpha+b_{1}(x) if n\geq 3

where \alpha is a constant; b(x) and b_{1}(x) are harmonic functions in |x|>R
such that \lim_{|x|arrow\infty}b(x) is fifinite and \lim_{|x|arrow\infty}b_{1}(x)=0 .

4) There exists a locally integrable function \varphi(x) such that u(x)\geq

\varphi(x) outside a compact set and M(R, |\varphi|)=o(R) when Rarrow\infty .

Remark. The above two corollaries are variously known as the B\^ocher the
orem or the Picard principle for harmonic functions with point singularity
([1], [8] and [5]). In the next section we prove similar results for biharmonic
funct ions.

3. Removable biharmonic point singularities

Let u be a biharmonic function in 0<|x|<1 in R^{n} . Since \triangle u is
harmonic in 0 <|x|<1 , using its series expansion we can obtain the
series expansion for u(x) as u(x)=b(x)+ \sum_{\alpha}a_{\alpha}\partial^{\alpha}S_{n}(x)+\sum_{\alpha}b_{\alpha}\partial^{\alpha}E_{n}(x) ,

0<|x|<1 , where b(x) is biharmonic in |x|<1 (Aronszajn et al. [4] p. 82).

Lemma 3.1 Let u(x) be biharmonic in 0<|x|<1 in R^{n} . Then u extends
as a distribution in |x|<1 if and only if u(x)=b(x)+ \sum_{f}a_{\alpha}\partial^{\alpha}S_{n}(x) where
\sum_{f} stands for a finite sum and b(x) is biharmonic in |x|<1 .

Proof. Suppose u extends as a distribution in |x|<1 . Then \triangle^{2}u

is a distribution with point support {0}. Hence \triangle^{2}u=\sum_{f}a_{\alpha}\partial^{\alpha}\delta=

\sum_{f}a_{\alpha}\partial^{\alpha}(\triangle^{2}S_{n}) .
Consequently, T=u- \sum_{f}a_{\alpha}\partial^{\alpha}S_{n} is a distribution in |x|<1 such

that \triangle^{2}T=0 ; this implies that there exists a biharmonic function b(x) in
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|x|<1 such that T=ba.e .
That is, u=b+ \sum_{f}a_{\alpha}\partial^{\alpha}S_{n} in 0<|x|<1 because of continuity. The

converse is obvious. \square

Theorem 3.2 Let u(x) be biharmonic in 0<|x|<1 in R^{n} . Then the
following are equivalent:

1) u extends as a distribution in |x|<1 and \triangle u\geq\varphi in 0<|x|<1
where M(r, |\varphi|)=o(r^{1-n}) when r -0.

2) u(x)=b(x)+\alpha S_{n}(x) where b(x) is biharmonic in |x|<1 .

Proof.
1)\Rightarrow 2) : Since u extends as a distribution in |x|<1 , by Lemma 3.1,

u=b+ \sum_{f}a_{\alpha}\partial^{\alpha}S_{n} in 0<|x|<1 and hence \triangle u=(a harmonic fucntion in
|x|<1)+ \sum_{f}a_{\alpha}\partial^{\alpha}E_{n} .

But \triangle u being harmonic in 0<|x|<1 and \triangle u\geq\varphi where M(r, |\varphi|)=

o(r^{1-n}) when r -arrow 0 , \triangle u= (a harmonic function in |x|<1 ) +\beta E_{n} by
Corollary 2.2.

This implies that a_{\alpha}=0 if |\alpha|>0 and consequently u(x)=b(x)+
a_{0}S_{n}(x) in 0<|x|<1 .

2)\Rightarrow 1) : Obvious. \square

Corollary 3.3 Let u(x) be biharmonic in 0<|x|<1 in R^{n} . Then u
extends as a biharmonic function in |x|<1 if both M(r, |u|) and M(r, |\triangle u|)

are o(E_{n}(r)) when rarrow 0 .

Proof. Since \triangle u is harmonic in 0<|x|<1 and by the assumption on
M(r, |\triangle u|) , there exists a harmonic function h in |x|<1 such that \triangle u=h

in 0<|x|<1 (Corollary 2.2).
If b is a biharmonic function in |x|<1 such that \triangle b=h , there exists

a harmonic function H(x) in 0<|x|<1 such that u(x)=b(x)+H(x) in
0<|x|<1 ; and by the assumption on u , M(r, |H|)=o(r^{1-n}) when rarrow 0 .
Hence, by Corollary 2.2, H extends as a harmonic function in |x|<1 .

This proves the corollary. \square

Bounded biharmonic functions with point singularity. The above
corollary in particular implies that a bounded biharmonic function u(x) in
0<|x|<1 in R^{n} , n\geq 2 , extends as a biharmonic function in |x|<1 if
and only if M(r, |\triangle u|)=o(E_{n}(r)) when rarrow 0 .

However, when n\geq 4 we have a better result relating to the removability
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of the point singularity.

Theorem 3.4 Let u be a bounded biharmonic function in 0<|x|<1 in
R^{n} , n\geq 4 . Then u extends as a biharmonic function in |x|<1 .

Proof. Define u(0)= \lim\inf_{xarrow 0}u(x) . Thus defined, u is a l.s.c. function
in |x|<1 , bounded and a distribution.

Hence by Lemma 3.1, it is of the form u(x)=b(x)+ \sum_{f}a_{\alpha}\partial^{\alpha}S_{n}(x) in
0<|x|<1 , where b(x) is biharmonic in |x|<1 .

Since n\geq 4 , the form of S_{n}(x) together with the fact that u is bounded
near 0 implies that a_{\alpha}=0 for every \alpha .

Hence u(x) extends as a biharmonic function in |x|<1 . \square

Corollary 3.5 (Sario et al. [11] p. 152) There exist no nonconstant
bounded biharmonic functions on the punctured Euclidean n-space |x|>0
if n\geq 4 .

Proof. Let u(x) be a bounded biharmonic function in |x|>0 . By the
above Theorem 3.4, u extends as a bounded biharmonic function in R^{n} and
hence is a constnat. \square

Proposition 3.6 Let u be a bounded biharmonic function in 0<|x|<1
in R^{3} . Then u(x)=b(x)+ \alpha|x|+\frac{\alpha_{1}x_{1}+\alpha_{2}x_{2}+\alpha_{3}x_{3}}{|x|} where x=(x_{1}, x_{2}, x_{3}) and
b(x) is biharmonic in |x|<1 .

Proof. Since u extends as a distribution in |x|<1 , by Lemma 3.1,
u(x)=b(x)+ \sum_{f}a_{\alpha}\partial^{\alpha}S_{3}(x) in 0<|x|<1 , where b(x) is biharmonic in
|x|<1 .

Now S_{3}(x)=|x| and \frac{\partial S_{3}}{\partial x_{i}}(x)=\frac{x_{i}}{|x|}(i=1,2,3) . Consequently, the
assumption that u is bounded near 0 implies that a_{\alpha}=0 if |\alpha|\geq 2 .

Hence u(x) is of the form u(x)=b(x)+ \alpha|x|+\frac{\alpha x+\alpha x+\alpha x}{|x|} . \square

Corollary 3.7 (Sario et al. [11] p. 151) Let u(x) be a bounded biharmonic
fnctions in R^{3}\backslash \{0\} . Then u is a linear combination of 1, \frac{x_{1}}{|x|} , \frac{}{1}x_{2,x|}

, and \frac{x}{1}\overline{x}a| .

Proof. Since u(x)=b(x)+ \alpha|x|+\frac{\alpha_{1}x_{1}+\alpha_{2}x_{2}+\alpha_{3}x_{3}}{|x|} in 0<|x| , b(x) is a
biharmonic function in R^{3} such that b(x)=-\alpha|x|+(a bounded function
near \infty ).

Now b(x) is of the form (Almansi), b(x)=|x|^{2}h_{1}(x)+h_{2}(x) where h_{1}

and h_{2} are harmonic in R^{3} .
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Using these two expressions for b(x) , when we calculate the mean-value
M(r, b) , we obtain

r^{2}h_{1}(0)+h_{2}(0)=-\alpha r+ (a bounded function of r near infinity).

When r becomes large, we note that we should have h_{1}(0)=0 and then
\alpha=0 . Consequently, the first expression for b(x) says that the biharmonic
functions b(x) is a bounded function near \infty , and hence a constant.

Consequently, u(x)=( aconstant)+\frac{\alpha x+\alpha x+\alpha x}{|x|} in |x|>0 . This
completes the proof of the corollary. \square

4. Biharmonic functions with singularity at infinity

In this section we consider the superharmonic functions u defined out-
side a compact set in R^{n} . satisfying the condition \triangle^{2}u\geq 0 . For such func-
tions we show that a B\^ocher-type representation (Corollary 2.3) is valid if
and only if 2\leq n\leq 4 .

Theorem 4.1 Let u(x) be a continuous function defifined in |x|>1 in R^{n} ,
2\leq n\leq 4 . Suppose u\geq 0 , \triangle u\leq 0 and \triangle^{2}u\geq 0 . Then u is harmonic.

Proof. This is an immediate consequence of the following lemma. \square

Lemma 4.2 Let u(x) be a superharmonic function in |x|>1 in R^{n} .

2\leq n\leq 4 , for which \triangle^{2}u\geq 0 . Suppose u satisfifies an additional condition:

1) When n=2, there exists a superharmonic function v>0 outside
a disc such that lim \inf_{|x|arrow\infty}\frac{u(x)}{v(x)}>-\infty .

2) When n=3 , lim \inf_{|x|arrow\infty}\frac{u(x)}{|x|}\geq 0 .

3) When n=4, lim \inf_{|x|arrow\infty}\frac{u(x)}{1og|x|}\geq 0 .

Then u(x) is harmonic in |x|>1 .

Proof.
1) When n=2 , since u is superharmonic in |x|>1 , there exists a

superharmonic function s(x) in R^{2} such that s(x)=u(x)-\alpha log |x| outside
a disc [2].

Let lim \inf_{|x|arrow\infty}\frac{u(x)}{v(x)}=\beta>-\infty .
Then, for \epsilon small, u(x)\geq(\beta-\epsilon)v(x) outside a disc. Hence, whatever

be the sign of (\beta-\epsilon) , u(x) majorizes a subharmonic function outside a disc.
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Consequently, s has a harmonic minorant outside a compact set in R^{2} .

That is, the flux at infinity of s is finite.
Since t(x)=\triangle u(x)\leq 0 is subharmonic in |x|>1 , t<0 or t\equiv 0 in

|x|>1 .
Suppose at some point x , |x|>1 , t(x)<0 ; let \max_{|x|=r>1}t(x)=M .

Then M<0 and \triangle u(x)=t(x)\leq M in |x|>r (since the harmonic measure
of the point at infinity of R^{2} is 0). This would imply that the flux at infinity
of u and hence that of s is infinite, a contradiction.

Hence t(x)\equiv 0 in |x|>1 ; that is u(x) is harmonic in |x|>1 .
2) When n=3 , since t=\triangle u\leq 0 is subharmonic in |x|>1 , t<0 or

t \equiv 0 in |x|>1 .
Suppose t<0 for |x|>1 . Then if r>1 , for some c>0 , t(x) \leq-\frac{c}{|x|}

on |x|=r .
Let s(x)=t(x)+ \frac{c}{|x|} in |x|>r . Then s(x) is subharmonic and

lim sup s(x)\leq 0 when x tends to a finite or infinite boundary point. Hence
s(x)\leq 0 in |x|>r .

Now s(x)= \triangle(u(x)+\frac{c}{2}|x|) in |x|>r and since s(x)\leq 0 , we conclude
that u(x)+ \frac{c}{2}|x|=v(x)a.e . where v(x) is a superharmonic function in
|x|>r .

By the assumption on u , given \epsilon<\frac{c}{2} , u(x)\geq-\epsilon|x| outside a compact
set. Thus u(x)+ \frac{c}{2}|x| is a function in |x|>1 tending to \infty at the point at
infinity, consequently, the superharmonic function v(x) in |x|>r tends to
\infty at the point at infinity. This would mean that the harmonic measure of
the point at infinity of R^{3} is 0, a contradiction.

Hence \triangle u=t\equiv 0 in |x|>1 ; that is, u is harmonic in |x|>1 .
3) When n=4, we repeat the arguments for the case n=3 .
With t=\triangle u\leq 0 , if t<0 for |x|>1 , then for some c>0 , t(x) \leq-\frac{c}{|x|^{2}}

on |x|=r>1 .
Then s(x)=t(x)+ \frac{c}{|x|^{2}}\leq 0 is subharmonic in |x|>r .
But s(x)=\triangle ( u(x)+ \frac{c}{2} log |x| ). Consequently, using the assumption on

u we conclude that u(x)+ \frac{c}{2}\log|x|=v(x)a.e . where v(x) is a superhar-
monic function in |x|>r tending to \infty at the point at infinity. This is a
contradiction since the harmonic measure of the point at infinity of R^{4} is
nonzero.

We conclude therefore that u is harmonic in |x|>1 .
This completes the proof of the lemma which leads to a representation

analogous to the one in Corollary 2.3 when 2\leq n\leq 4 . \square
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Theorem 4.3 Let u(x) be a superharmonic function defifined in |x|>1 in
R^{n} , 2\leq n\leq 4 . Suppose \triangle^{2}u\geq 0 and lim \inf_{|x|arrow\infty}\frac{u(x)}{1og|x|}\geq 0 . Then u(x) is
of the form

u(x)=\{
\alpha log |x|+b(x) if n=2
\alpha+b_{1}(x) if n=3 or 4

where \alpha is a constant; b(x) and b_{1}(x) are harmonic functions in |x|>1
such that \lim_{|x|arrow\infty}b(x) is finite and \lim_{|x|arrow\infty}b_{1}(x)=0 .

Proof The assumed conditions on u imply that the conditions stated in
Lemma 4.2 are satisfied. Hence u is harmonic.

Again the assumed conditions on u imply that lim \inf_{|x|arrow\infty}\frac{u(x)}{|x|}\geq 0 .
A condition like this for the harmonic function u gives the representation
stated in the theorem. \square

Remark. A similar extension of the B\^ocher Theorem 4.3 is not possible in
R^{n} when n\geq 5 . For example, if u(x)=|x|^{4-n} in |x|>1 in R^{n} , n\geq 5 ,
u>0 , \triangle u<0 and \triangle^{2}u=0 .

In analogy with Lemma 4.2, we have the following theorem. Recall that
if u is a superharmonic function outside a compact set in R^{n} , n\geq 2 , then

\lambda(u)=\{

\lim_{rarrow\infty}\frac{M(r,u)}{1ogr} if n=2,

\lim_{rarrow\infty}M(r, u) if n\geq 3

is well-defined and \lambda(u)<\infty .

Theorem 4.4 Let \Omega be a domain with compact complement in R^{n} , 2\leq

n\leq 4 . Let u(x) be a superharmonic function in \Omega for which \triangle^{2}u\geq 0 and
\lambda(u)>-\infty . Then u(x) is harmonic in \Omega .

Proof Let R^{n}\backslash \Omega\subset\{x : |x|<R\} . By hypothesis, t(x)=\triangle u(x)\leq 0 is
subharmonic in \Omega and hence t\equiv 0 or t<0 in \Omega . Suppose t<0 in \Omega .

1) When n=2,
let \max_{|x|=R}t(x)=M<0 ; then by the maximum principle, t(x)\leq M in
|x|\geq R .

Let s(x)=u(x)- \frac{M}{4}|x|^{2} ; then in |x|>R , \triangle s(x)=t(x)-M\leq 0 and
hence s(x) is superharmonic.

Hence M(r, u)=M(r, s)+ \frac{M}{4}r^{2} if r>R . Since \lambda(s)<\infty and M<0 ,
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this would imply \lambda(u)=-\infty , a contradiction.
2) When n=3,

for some c>0 , t(x) \leq-\frac{c}{|x|} on |x|=R which by the maximum principle, as
in Lemma 4.2, implies t(x) \leq-\frac{c}{|x|} in |x|>R . Then as before we conclude
that s(x)=u(x)+ \frac{c}{2}|x| is superharmonic in |x|>R .

Hence M(r, u)=M(r, s)- \frac{c}{2}r if r>R . Since c>0 and \lambda(s)<\infty , this
would imply \lambda(u)=-\infty , a contradiction.

3) When n=4,
as in Lemma 4.2, we find that s(x)=u(x)+ \frac{c}{2}\log|x| is superharmonic
in |x|>R for some c>0 . This would again imply that \lambda(u)=-\infty , a
contradiction.

To conclude, in all the three cases the hypothesis t<0 in \Omega leads to
a contradiction. Hence t\equiv 0 in \Omega ; that is, u(x) is harmonic in \Omega . This
completes the proof of the theorem. \square

Liouville’s theorem states that a superharmonic function >0 in R^{2}

is a constant. An analogous result using the operator \triangle^{2} is given in the
following

Corollary 4.5 Let u(x) be a superharmonic function in R^{n} , 2\leq n\leq 4 ,

for which \triangle^{2}u\geq 0 . Let u^{*}= \inf(u, 0) and suppose \lambda(u^{*})>-\infty . Then u

is a constant.

Proof. Since \lambda(u^{*})>-\infty , so is \lambda(u) and hence by the above Theorem
4.4, u is harmonic in R^{n} , 2\leq n\leq 4 .

Since M(r, |u|)=M(r, u)+2M(r, u^{-})=u(0)-2M(r, u^{*}) , we conclude
that \lambda(-|u|) is finite. This means in particular that the harmonic function
u(x) in R^{n} satisfies the condition \lim_{rarrow\infty}\frac{M(r,|u|)}{r}=0 .

Hence u is a constant (M. Brelot [7] p. 202). \square

5. Biharmonic green domains in R^{n}

A domain \Omega in R^{n} , n\geq 2 , is said to be a (harmonic) Green domain
if the Green function G(x, y) exists in \Omega .

Definition 5.1 A domain \Omega in R^{n} , n\geq 2 , is said to be a biharmonic
Green domain if it is a (harmonic) Green domain and if for any y\in\Omega there
exists a potential q_{y}(x) in \Omega such that \triangle q_{y}(x)=-G_{y}(x) in \Omega .

Note This definition is a variant of the one given by L. Sario [10] which is
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as follows: Let \Omega be a domain in R^{n} , n\geq 2 . Let \Omega_{n} be a regular exhaustion
of \Omega such that y\in\Omega_{n}\subset\overline{\Omega}_{n}\subset\Omega_{n+1} and \Omega=\cup\Omega_{n} . Let p_{n}(x) be the Green
potential in \Omega_{n} with pole \{y\} . Let q_{n}(x) be the function in \overline{\Omega}_{n} such that
\triangle q_{n}=-p_{n} in \Omega_{n} , q_{n}=0=\triangle q_{n} on \partial\Omega_{n} . Let q= \sup q_{n} . If q\not\equiv\infty , \Omega is
said to possess biharmonic Green functions, that is \Omega is a biharmonic Green
domain.

The following Lemma is proved in [3].

Lemma 5.2 A domain \Omega in R^{n} . n\geq 2 , is a biharmonic Green domain if
and only if there exist potentials p and q in \Omega such that \triangle q=-p .

Proposition 5.3 Every relatively compact domain \Omega in R^{n} , n\geq 2 , is a

biharmonic Green domain.

Proof. Let \Omega_{0} be a relatively compact domain\supset\overline{\Omega} . Choose a superhar-
monic function q_{0} in \Omega_{0} such that \triangle q_{0}=-1 . (M. Brelot [6] has proved that
given any measure \mu on an open set w in R^{n} , there exists a subharmonic
functions s in w such that \triangle s=\mu ).

Since \overline{\Omega}\subset\Omega_{0} , q_{0} has a harmonic minorant in \Omega ; if h_{0} is the greatest
harmonic minorant of q_{0} in \Omega , q_{1}=q_{0}-h_{0} is a potential in \Omega such that
\triangle q_{1}=-1 in \Omega .

Choose a potential p in \Omega such that p\leq 1 in \Omega . Let s be a super-
harmonic function in \Omega such that \triangle s=-p and let t be a superharmonic
function in \Omega such that \triangle t=-(1-p) .

Then s+t=q_{1}+a harmonic function in \Omega , which implies that s has a
subharmonic minorant in \Omega ; hence we can construct the greatest harmonic
minorant H of s in \Omega .

Then q=s-H is a potential in \Omega such that \triangle q=-p .
That is, \Omega is a biharmonic Green domain. \square

Theorem 5.4 Let \Omega be a domain in R^{n} , 2\leq n\leq 4 , such that K=R^{n}\backslash \Omega

is compact (K can be empty). Then \Omega is not a biharmonic Green domain.

Proof. Suppose \Omega is a biharmonic Green domain; that is, there exist
potentials p and q in \Omega such that \triangle q=-p .

Let r>0 be large so that K\subset\{x:|x|<r\} .
Then q is a positive superharmonic function in |x|>r for which \triangle^{2}q\geq

0 . Then by Lemma 4.2, q is harmonic in |x|>r . This implies that p\equiv 0

in \Omega , a contradiction.
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This completes the proof of the theorem. \square

However, when n\geq 5 there is no place for such exceptions. For we have
the following theorem.

Theorem 5.5 Any domain \Omega in R^{n} . n\geq 5 , is a biharmonic Green d0-
mam.

Proof. Without loss of generality, we’ 11 assume that 0\in\Omega . Write r=|x| .

Since r^{2-n} is a positive superharmonic function, write r^{2-n}=p+h in \Omega

where p is a potential in \Omega and h is harmonic.
Corresponding to the potential p in \Omega , there exists a superharnlonic

function s in \Omega such that \triangle s=-p\geq-p-h=-r^{2-n}=\triangle u where
u= \frac{r^{4-n}}{2(n-4)} is a positive superharmonic function in \Omega .

Since \triangle s\geq\triangle u , there exists a subharmonic function v in \Omega such that
s=u+v in \Omega ; this means, since u>0 , that s has a subharmonic minorant
in \Omega . Hence we can write s=q+H in \Omega where q is a potential in \Omega and
H is harmonic (not necessarily positive).

Then \triangle q=\triangle s=-p in \Omega . Since p and q are potentials in \Omega , this
means that \Omega is a biharmonic Green domain. \square

Question In R^{2} . a domain \Omega is a (harmonic) Green domain if and only
if R^{2}\backslash \Omega is not locally polar. In view of Theorem 5.4, can we prove that a
harmonic Green domain \Omega in R^{n} , 2\leq n\leq 4 , is a biharmonic Green domain
if and only if R^{n}\backslash \Omega is not compact?
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