Biharmonic green domains in \mathbb{R}^n

Victor ANANDAM and Moustafa DAMLAKHI

(Received September 17, 1997)

Abstract. The properties of biharmonic functions with a singularity at a finite or infinite point in \mathbb{R}^n , $n \geq 2$, are investigated, leading to a generalization of the classical Bôcher theorem for harmonic functions with positive singularity, when $2 \leq n \leq 4$. This latter result is useful in identifying some biharmonic Green domains in \mathbb{R}^n .

Key words: biharmonic point singularities in \mathbf{R}^n .

1. Introduction

The behaviour of a biharmonic function u(x) in 0 < |x| < 1 in \mathbb{R}^n , $n \ge 2$, is considered, leading to a necessary and sufficient condition for u to extend as a distribution in |x| < 1; a case of particular interest is when u is bounded.

The corresponding results when the biharmonic function is defined outside a compact set K in \mathbb{R}^n lead to an analogue of Bôcher's theorem (after a Kelvin transformation) for positive harmonic functions in $\mathbb{R}^n \setminus K$; but this is valid only when $2 \le n \le 4$. A corollary to this is: let Ω be a domain in \mathbb{R}^n , $2 \le n \le 4$ such that $\mathbb{R}^n \setminus \Omega$ is compact. Then Ω is not a biharmonic Green domain; that is, a biharmonic Green function cannot be defined on Ω .

2. Preliminaries

For $n \geq 2$, let E_n and S_n denote the fundamental solutions of the Laplacian Δ and Δ^2 in \mathbb{R}^n ; that is, $\Delta E_n = \delta$ and $\Delta^2 S_n = \delta$ in the sense of distributions.

Given a locally integrable function f on \mathbb{R}^n , let M(r, f) denote the mean value of f(x) on |x| = r.

Proposition 2.1 Let u(x) be a harmonic function in 0 < |x| < 1 in \mathbb{R}^n . Then the following are equivalent:

1) u extends as a distribution in |x| < 1 (in which case, it is of order

¹⁹⁹¹ Mathematics Subject Classification : 31B30.

 $\begin{array}{l} m \ for \ an \ integer \ m \ge 0). \\ 2) \quad u(x) = v(x) + \sum_{|k| \le m} a_k \partial^k E_n(x) \ where \ v(x) \ is \ harmonic \ in \ |x| < 1. \\ 3) \quad u(x) \ge \varphi(x) \ in \ 0 < |x| < 1 \ where \ M(r, |\varphi|) = o(r^{1-m-n}) \ when \\ |x| = r \to 0. \end{array}$

Proof.

1) \Rightarrow 2): If u extends as a distribution in |x| < 1, Δu is a distribution in |x| < 1 with point support {0} and hence $\Delta u = \sum_{|k| \le m} a_k \partial^k \delta$ for some integer $m \ge 0$.

Consequently, the distribution $T = u - \sum_{|k| \le m} a_k \partial^k E_n$ in |x| < 1 satisfies the equation $\Delta T = 0$ and hence T is equal a.e. to a harmonic function v in |x| < 1.

Since $u - \sum_{|k| \le m} a_k \partial^k E_n$ is continuous in 0 < |x| < 1, we have $u(x) = v(x) + \sum_{|k| \le m} a_k \partial^k E_n(x)$ in 0 < |x| < 1.

2) \Rightarrow 3): This follows from the observation $\partial^k E_n(x) = O(|x|^{2-k-n})$ when $|x| \rightarrow 0$ (Mizohata [9], p. 145).

3) \Rightarrow 1): Setting h(x) = -u(x), we note that $h^+(x) \leq |\varphi(x)|$ and hence by hypothesis, $r^{m+n-1}M(r,h^+) \rightarrow 0$ when $|x| = r \rightarrow 0$.

Now the series expansion of u(x) in 0 < |x| < 1 (M. Brelot [7], p. 201) gives $h(x) = -u(x) = -v(x) + \sum_k a_k \partial^k E_n(x)$, where v(x) is harmonic in |x| < 1. However here the series reduces to a finite number of terms, since the assumption $r^{m+n-1}M(r,h^+) \to 0$ when $r \to 0$ implies that $a_k = 0$ if $|k| \ge m+1$.

Thus, $u(x) = v(x) - \sum_{|k| \le m} a_k \partial^k E_n(x)$ in 0 < |x| < 1 extends as a distribution of order $\le m$ in |x| < 1.

Corollary 2.2 Let u(x) be harmonic in 0 < |x| < 1 in \mathbb{R}^n . Then the following are equivalent:

- 1) u(x) is bounded on one-side.
- 2) $u(x) = v(x) + \alpha E_n(x)$ where v(x) is harmonic in |x| < 1.
- 3) $|x|^{n-1}u(x)$ tends to 0 when $|x| \to 0$.
- 4) $r^{n-1}M(r, |u|) \rightarrow 0$ when $r \rightarrow 0$.
- 5) $u(x) \ge \varphi(x)$ in 0 < |x| < 1 where $M(r, |\varphi|) = o(r^{1-n})$ when $r \to 0$.

Proof. This is an immediate consequence of the above Proposition 2.1 when we remark that if u is lower bounded, it extends as a superharmonic function in |x| < 1 (M. Brelot [7], p. 39). Consequently it is a locally

integrable function and defines a distribution of order 0. \Box

An application of the Kelvin transformation gives the following equivalent version of the above Corollary 2.2, stated here for m = 0 in which form it is used later.

Corollary 2.3 Let u(x) be a harmonic function in |x| > R in \mathbb{R}^n , $n \ge 2$. Then the following are equivalent:

1)
$$u(x) = o(|x|) \text{ when } |x| \to \infty.$$

2) $\liminf_{|x|\to\infty} \frac{u(x)}{|x|} \ge 0$
3) $u(x) = \begin{cases} \alpha \log |x| + b(x) & \text{if } n = 2\\ \alpha + b_1(x) & \text{if } n \ge 3 \end{cases}$

where α is a constant; b(x) and $b_1(x)$ are harmonic functions in |x| > Rsuch that $\lim_{|x|\to\infty} b(x)$ is finite and $\lim_{|x|\to\infty} b_1(x) = 0$.

4) There exists a locally integrable function $\varphi(x)$ such that $u(x) \geq \varphi(x)$ outside a compact set and $M(R, |\varphi|) = o(R)$ when $R \to \infty$.

Remark. The above two corollaries are variously known as the Bôcher theorem or the Picard principle for harmonic functions with point singularity ([1], [8] and [5]). In the next section we prove similar results for biharmonic functions.

3. Removable biharmonic point singularities

Let u be a biharmonic function in 0 < |x| < 1 in \mathbb{R}^n . Since Δu is harmonic in 0 < |x| < 1, using its series expansion we can obtain the series expansion for u(x) as $u(x) = b(x) + \sum_{\alpha} a_{\alpha} \partial^{\alpha} S_n(x) + \sum_{\alpha} b_{\alpha} \partial^{\alpha} E_n(x)$, 0 < |x| < 1, where b(x) is biharmonic in |x| < 1 (Aronszajn et al. [4] p. 82).

Lemma 3.1 Let u(x) be biharmonic in 0 < |x| < 1 in \mathbb{R}^n . Then u extends as a distribution in |x| < 1 if and only if $u(x) = b(x) + \sum_f a_\alpha \partial^\alpha S_n(x)$ where \sum_f stands for a finite sum and b(x) is biharmonic in |x| < 1.

Proof. Suppose u extends as a distribution in |x| < 1. Then $\Delta^2 u$ is a distribution with point support $\{0\}$. Hence $\Delta^2 u = \sum_f a_\alpha \partial^\alpha \delta = \sum_f a_\alpha \partial^\alpha (\Delta^2 S_n)$.

Consequently, $T = u - \sum_{f} a_{\alpha} \partial^{\alpha} S_{n}$ is a distribution in |x| < 1 such that $\Delta^{2}T = 0$; this implies that there exists a biharmonic function b(x) in

|x| < 1 such that T = b a.e.

That is, $u = b + \sum_{f} a_{\alpha} \partial^{\alpha} S_{n}$ in 0 < |x| < 1 because of continuity. The converse is obvious.

Theorem 3.2 Let u(x) be biharmonic in 0 < |x| < 1 in \mathbb{R}^n . Then the following are equivalent:

1) u extends as a distribution in |x| < 1 and $\Delta u \ge \varphi$ in 0 < |x| < 1where $M(r, |\varphi|) = o(r^{1-n})$ when $r \to 0$.

2) $u(x) = b(x) + \alpha S_n(x)$ where b(x) is biharmonic in |x| < 1.

Proof.

1) \Rightarrow 2): Since u extends as a distribution in |x| < 1, by Lemma 3.1, $u = b + \sum_{f} a_{\alpha} \partial^{\alpha} S_{n}$ in 0 < |x| < 1 and hence $\Delta u =$ (a harmonic function in |x| < 1) $+ \sum_{f} a_{\alpha} \partial^{\alpha} E_{n}$.

But Δu being harmonic in 0 < |x| < 1 and $\Delta u \ge \varphi$ where $M(r, |\varphi|) = o(r^{1-n})$ when $r \to 0$, $\Delta u =$ (a harmonic function in |x| < 1) + βE_n by Corollary 2.2.

This implies that $a_{\alpha} = 0$ if $|\alpha| > 0$ and consequently $u(x) = b(x) + a_0 S_n(x)$ in 0 < |x| < 1.

 \square

2) \Rightarrow 1): Obvious.

Corollary 3.3 Let u(x) be biharmonic in 0 < |x| < 1 in \mathbb{R}^n . Then u extends as a biharmonic function in |x| < 1 if both M(r, |u|) and $M(r, |\Delta u|)$ are $o(E_n(r))$ when $r \to 0$.

Proof. Since Δu is harmonic in 0 < |x| < 1 and by the assumption on $M(r, |\Delta u|)$, there exists a harmonic function h in |x| < 1 such that $\Delta u = h$ in 0 < |x| < 1 (Corollary 2.2).

If b is a biharmonic function in |x| < 1 such that $\Delta b = h$, there exists a harmonic function H(x) in 0 < |x| < 1 such that u(x) = b(x) + H(x) in 0 < |x| < 1; and by the assumption on u, $M(r, |H|) = o(r^{1-n})$ when $r \to 0$. Hence, by Corollary 2.2, H extends as a harmonic function in |x| < 1.

This proves the corollary.

Bounded biharmonic functions with point singularity. The above corollary in particular implies that a bounded biharmonic function u(x) in 0 < |x| < 1 in \mathbb{R}^n , $n \ge 2$, extends as a biharmonic function in |x| < 1 if and only if $M(r, |\Delta u|) = o(E_n(r))$ when $r \to 0$.

However, when $n \ge 4$ we have a better result relating to the removability

of the point singularity.

Theorem 3.4 Let u be a bounded biharmonic function in 0 < |x| < 1 in \mathbf{R}^n , $n \geq 4$. Then u extends as a biharmonic function in |x| < 1.

Define $u(0) = \liminf_{x\to 0} u(x)$. Thus defined, u is a l.s.c. function Proof. in |x| < 1, bounded and a distribution.

Hence by Lemma 3.1, it is of the form $u(x) = b(x) + \sum_{f} a_{\alpha} \partial^{\alpha} S_{n}(x)$ in 0 < |x| < 1, where b(x) is biharmonic in |x| < 1.

Since $n \ge 4$, the form of $S_n(x)$ together with the fact that u is bounded near 0 implies that $a_{\alpha} = 0$ for every α .

Hence u(x) extends as a biharmonic function in |x| < 1.

Corollary 3.5 (Sario et al. [11] p. 152) There exist no nonconstant bounded biharmonic functions on the punctured Euclidean n-space |x| > 0if $n \geq 4$.

Proof. Let u(x) be a bounded biharmonic function in |x| > 0. By the above Theorem 3.4, u extends as a bounded biharmonic function in \mathbb{R}^n and hence is a constnat.

Proposition 3.6 Let u be a bounded biharmonic function in 0 < |x| < 1in \mathbb{R}^3 . Then $u(x) = b(x) + \alpha |x| + \frac{\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3}{|x|}$ where $x = (x_1, x_2, x_3)$ and b(x) is biharmonic in |x| < 1.

Since u extends as a distribution in |x| < 1, by Lemma 3.1, Proof. $u(x) = b(x) + \sum_{f} a_{\alpha} \partial^{\alpha} S_{3}(x)$ in 0 < |x| < 1, where b(x) is biharmonic in |x| < 1.

Now $S_3(x) = |x|$ and $\frac{\partial S_3}{\partial x_i}(x) = \frac{x_i}{|x|}$ (i = 1, 2, 3). Consequently, the assumption that u is bounded near 0 implies that $a_{\alpha} = 0$ if $|\alpha| \ge 2$. Hence u(x) is of the form $u(x) = b(x) + \alpha |x| + \frac{\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3}{|x|}$.

Corollary 3.7 (Sario et al. [11] p. 151) Let u(x) be a bounded biharmonic functions in $\mathbb{R}^3 \setminus \{0\}$. Then u is a linear combination of 1, $\frac{x_1}{|x|}$, $\frac{x_2}{|x|}$ and $\frac{x_3}{|x|}$.

Since $u(x) = b(x) + \alpha |x| + \frac{\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3}{|x|}$ in 0 < |x|, b(x) is a Proof. biharmonic function in \mathbf{R}^3 such that $b(x) = -\alpha |x| + (a bounded function)$ near ∞).

Now b(x) is of the form (Almansi), $b(x) = |x|^2 h_1(x) + h_2(x)$ where h_1 and h_2 are harmonic in \mathbb{R}^3 .

Using these two expressions for b(x), when we calculate the mean-value M(r, b), we obtain

 $r^{2}h_{1}(0) + h_{2}(0) = -\alpha r + (a bounded function of r near infinity).$

When r becomes large, we note that we should have $h_1(0) = 0$ and then $\alpha = 0$. Consequently, the first expression for b(x) says that the biharmonic functions b(x) is a bounded function near ∞ , and hence a constant.

Consequently, $u(x) = (a \text{ constant}) + \frac{\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3}{|x|}$ in |x| > 0. This completes the proof of the corollary.

4. Biharmonic functions with singularity at infinity

In this section we consider the superharmonic functions u defined outside a compact set in \mathbb{R}^n , satisfying the condition $\Delta^2 u \ge 0$. For such functions we show that a Bôcher-type representation (Corollary 2.3) is valid if and only if $2 \le n \le 4$.

Theorem 4.1 Let u(x) be a continuous function defined in |x| > 1 in \mathbb{R}^n , $2 \le n \le 4$. Suppose $u \ge 0$, $\Delta u \le 0$ and $\Delta^2 u \ge 0$. Then u is harmonic.

Proof. This is an immediate consequence of the following lemma. \Box

Lemma 4.2 Let u(x) be a superharmonic function in |x| > 1 in \mathbb{R}^n , $2 \le n \le 4$, for which $\Delta^2 u \ge 0$. Suppose u satisfies an additional condition:

1) When n = 2, there exists a superharmonic function v > 0 outside a disc such that $\liminf_{|x|\to\infty} \frac{u(x)}{v(x)} > -\infty$.

2) When n = 3, $\liminf_{|x| \to \infty} \frac{u(x)}{|x|} \ge 0$.

3) When
$$n = 4$$
, $\liminf_{|x| \to \infty} \frac{u(x)}{\log |x|} \ge 0$.

Then u(x) is harmonic in |x| > 1.

Proof.

1) When n = 2, since u is superharmonic in |x| > 1, there exists a superharmonic function s(x) in \mathbb{R}^2 such that $s(x) = u(x) - \alpha \log |x|$ outside a disc [2].

Let $\liminf_{|x|\to\infty} \frac{u(x)}{v(x)} = \beta > -\infty.$

Then, for ϵ small, $u(x) \ge (\beta - \epsilon)v(x)$ outside a disc. Hence, whatever be the sign of $(\beta - \epsilon)$, u(x) majorizes a subharmonic function outside a disc.

Consequently, s has a harmonic minorant outside a compact set in \mathbb{R}^2 . That is, the flux at infinity of s is finite.

Since $t(x) = \Delta u(x) \le 0$ is subharmonic in |x| > 1, t < 0 or $t \equiv 0$ in |x| > 1.

Suppose at some point x, |x| > 1, t(x) < 0; let $\max_{|x|=r>1} t(x) = M$. Then M < 0 and $\Delta u(x) = t(x) \le M$ in |x| > r (since the harmonic measure of the point at infinity of \mathbb{R}^2 is 0). This would imply that the flux at infinity of u and hence that of s is infinite, a contradiction.

Hence $t(x) \equiv 0$ in |x| > 1; that is u(x) is harmonic in |x| > 1.

2) When n = 3, since $t = \Delta u \le 0$ is subharmonic in |x| > 1, t < 0 or $t \equiv 0$ in |x| > 1.

Suppose t < 0 for |x| > 1. Then if r > 1, for some c > 0, $t(x) \le -\frac{c}{|x|}$ on |x| = r.

Let $s(x) = t(x) + \frac{c}{|x|}$ in |x| > r. Then s(x) is subharmonic and $\limsup s(x) \le 0$ when x tends to a finite or infinite boundary point. Hence $s(x) \le 0$ in |x| > r.

Now $s(x) = \Delta(u(x) + \frac{c}{2}|x|)$ in |x| > r and since $s(x) \le 0$, we conclude that $u(x) + \frac{c}{2}|x| = v(x)$ a.e. where v(x) is a superharmonic function in |x| > r.

By the assumption on u, given $\epsilon < \frac{c}{2}$, $u(x) \ge -\epsilon |x|$ outside a compact set. Thus $u(x) + \frac{c}{2}|x|$ is a function in |x| > 1 tending to ∞ at the point at infinity, consequently, the superharmonic function v(x) in |x| > r tends to ∞ at the point at infinity. This would mean that the harmonic measure of the point at infinity of \mathbf{R}^3 is 0, a contradiction.

Hence $\Delta u = t \equiv 0$ in |x| > 1; that is, u is harmonic in |x| > 1.

3) When n = 4, we repeat the arguments for the case n = 3.

With $t = \Delta u \le 0$, if t < 0 for |x| > 1, then for some c > 0, $t(x) \le -\frac{c}{|x|^2}$ on |x| = r > 1.

Then $s(x) = t(x) + \frac{c}{|x|^2} \le 0$ is subharmonic in |x| > r.

But $s(x) = \Delta(u(x) + \frac{c}{2} \log |x|)$. Consequently, using the assumption on u we conclude that $u(x) + \frac{c}{2} \log |x| = v(x)$ a.e. where v(x) is a superharmonic function in |x| > r tending to ∞ at the point at infinity. This is a contradiction since the harmonic measure of the point at infinity of \mathbb{R}^4 is nonzero.

We conclude therefore that u is harmonic in |x| > 1.

This completes the proof of the lemma which leads to a representation analogous to the one in Corollary 2.3 when $2 \le n \le 4$.

Theorem 4.3 Let u(x) be a superharmonic function defined in |x| > 1 in \mathbb{R}^n , $2 \le n \le 4$. Suppose $\Delta^2 u \ge 0$ and $\liminf_{|x|\to\infty} \frac{u(x)}{\log |x|} \ge 0$. Then u(x) is of the form

$$u(x) = \begin{cases} \alpha \log |x| + b(x) & \text{if } n = 2\\ \alpha + b_1(x) & \text{if } n = 3 \text{ or } 4 \end{cases}$$

where α is a constant; b(x) and $b_1(x)$ are harmonic functions in |x| > 1such that $\lim_{|x|\to\infty} b(x)$ is finite and $\lim_{|x|\to\infty} b_1(x) = 0$.

Proof. The assumed conditions on u imply that the conditions stated in Lemma 4.2 are satisfied. Hence u is harmonic.

Again the assumed conditions on u imply that $\liminf_{|x|\to\infty}\frac{u(x)}{|x|} \ge 0$. A condition like this for the harmonic function u gives the representation stated in the theorem.

Remark. A similar extension of the Bôcher Theorem 4.3 is not possible in \mathbb{R}^n when $n \geq 5$. For example, if $u(x) = |x|^{4-n}$ in |x| > 1 in $\mathbb{R}^n, n \geq 5$, $u > 0, \Delta u < 0$ and $\Delta^2 u = 0$.

In analogy with Lemma 4.2, we have the following theorem. Recall that if u is a superharmonic function outside a compact set in \mathbb{R}^n , $n \ge 2$, then

$$\lambda(u) = \begin{cases} \lim_{r \to \infty} \frac{M(r, u)}{\log r} & \text{if } n = 2, \\ \lim_{r \to \infty} M(r, u) & \text{if } n \ge 3 \end{cases}$$

is well-defined and $\lambda(u) < \infty$.

Theorem 4.4 Let Ω be a domain with compact complement in \mathbb{R}^n , $2 \leq n \leq 4$. Let u(x) be a superharmonic function in Ω for which $\Delta^2 u \geq 0$ and $\lambda(u) > -\infty$. Then u(x) is harmonic in Ω .

Proof. Let $\mathbb{R}^n \setminus \Omega \subset \{x : |x| < R\}$. By hypothesis, $t(x) = \Delta u(x) \leq 0$ is subharmonic in Ω and hence $t \equiv 0$ or t < 0 in Ω . Suppose t < 0 in Ω .

1) When n = 2, let $\max_{|x|=R} t(x) = M < 0$; then by the maximum principle, $t(x) \le M$ in $|x| \ge R$.

Let $s(x) = u(x) - \frac{M}{4}|x|^2$; then in |x| > R, $\Delta s(x) = t(x) - M \le 0$ and hence s(x) is superharmonic.

Hence $M(r, u) = M(r, s) + \frac{M}{4}r^2$ if r > R. Since $\lambda(s) < \infty$ and M < 0,

this would imply $\lambda(u) = -\infty$, a contradiction.

2) When n = 3, for some c > 0, $t(x) \le -\frac{c}{|x|}$ on |x| = R which by the maximum principle, as in Lemma 4.2, implies $t(x) \le -\frac{c}{|x|}$ in |x| > R. Then as before we conclude that $s(x) = u(x) + \frac{c}{2}|x|$ is superharmonic in |x| > R.

Hence $M(r, u) = M(r, s) - \frac{c}{2}r$ if r > R. Since c > 0 and $\lambda(s) < \infty$, this would imply $\lambda(u) = -\infty$, a contradiction.

3) When n = 4,

as in Lemma 4.2, we find that $s(x) = u(x) + \frac{c}{2} \log |x|$ is superharmonic in |x| > R for some c > 0. This would again imply that $\lambda(u) = -\infty$, a contradiction.

To conclude, in all the three cases the hypothesis t < 0 in Ω leads to a contradiction. Hence $t \equiv 0$ in Ω ; that is, u(x) is harmonic in Ω . This completes the proof of the theorem.

Liouville's theorem states that a superharmonic function > 0 in \mathbb{R}^2 is a constant. An analogous result using the operator Δ^2 is given in the following

Corollary 4.5 Let u(x) be a superharmonic function in \mathbb{R}^n , $2 \le n \le 4$, for which $\Delta^2 u \ge 0$. Let $u^* = \inf(u, 0)$ and suppose $\lambda(u^*) > -\infty$. Then u is a constant.

Proof. Since $\lambda(u^*) > -\infty$, so is $\lambda(u)$ and hence by the above Theorem 4.4, u is harmonic in \mathbb{R}^n , $2 \le n \le 4$.

Since $M(r, |u|) = M(r, u) + 2M(r, u^{-}) = u(0) - 2M(r, u^{*})$, we conclude that $\lambda(-|u|)$ is finite. This means in particular that the harmonic function u(x) in \mathbb{R}^{n} satisfies the condition $\lim_{r\to\infty} \frac{M(r, |u|)}{r} = 0$.

Hence u is a constant (M. Brelot [7] p. 202).

5. Biharmonic green domains in \mathbb{R}^n

A domain Ω in \mathbb{R}^n , $n \geq 2$, is said to be a (harmonic) Green domain if the Green function G(x, y) exists in Ω .

Definition 5.1 A domain Ω in \mathbb{R}^n , $n \geq 2$, is said to be a biharmonic Green domain if it is a (harmonic) Green domain and if for any $y \in \Omega$ there exists a potential $q_y(x)$ in Ω such that $\Delta q_y(x) = -G_y(x)$ in Ω .

Note This definition is a variant of the one given by L. Sario [10] which is

as follows: Let Ω be a domain in \mathbb{R}^n , $n \geq 2$. Let Ω_n be a regular exhaustion of Ω such that $y \in \Omega_n \subset \overline{\Omega}_n \subset \Omega_{n+1}$ and $\Omega = \bigcup \Omega_n$. Let $p_n(x)$ be the Green potential in Ω_n with pole $\{y\}$. Let $q_n(x)$ be the function in $\overline{\Omega}_n$ such that $\Delta q_n = -p_n$ in Ω_n , $q_n = 0 = \Delta q_n$ on $\partial \Omega_n$. Let $q = \sup q_n$. If $q \not\equiv \infty$, Ω is said to possess biharmonic Green functions, that is Ω is a biharmonic Green domain.

The following Lemma is proved in [3].

Lemma 5.2 A domain Ω in \mathbb{R}^n , $n \geq 2$, is a biharmonic Green domain if and only if there exist potentials p and q in Ω such that $\Delta q = -p$.

Proposition 5.3 Every relatively compact domain Ω in \mathbb{R}^n , $n \geq 2$, is a biharmonic Green domain.

Proof. Let Ω_0 be a relatively compact domain $\supset \overline{\Omega}$. Choose a superharmonic function q_0 in Ω_0 such that $\Delta q_0 = -1$. (M. Brelot [6] has proved that given any measure μ on an open set w in \mathbb{R}^n , there exists a subharmonic functions s in w such that $\Delta s = \mu$).

Since $\Omega \subset \Omega_0$, q_0 has a harmonic minorant in Ω ; if h_0 is the greatest harmonic minorant of q_0 in Ω , $q_1 = q_0 - h_0$ is a potential in Ω such that $\Delta q_1 = -1$ in Ω .

Choose a potential p in Ω such that $p \leq 1$ in Ω . Let s be a superharmonic function in Ω such that $\Delta s = -p$ and let t be a superharmonic function in Ω such that $\Delta t = -(1-p)$.

Then $s + t = q_1 + a$ harmonic function in Ω , which implies that s has a subharmonic minorant in Ω ; hence we can construct the greatest harmonic minorant H of s in Ω .

Then q = s - H is a potential in Ω such that $\Delta q = -p$.

That is, Ω is a biharmonic Green domain.

Theorem 5.4 Let Ω be a domain in \mathbb{R}^n , $2 \le n \le 4$, such that $K = \mathbb{R}^n \setminus \Omega$ is compact (K can be empty). Then Ω is not a biharmonic Green domain.

Proof. Suppose Ω is a biharmonic Green domain; that is, there exist potentials p and q in Ω such that $\Delta q = -p$.

Let r > 0 be large so that $K \subset \{x : |x| < r\}$.

Then q is a positive superharmonic function in |x| > r for which $\Delta^2 q \ge 0$. 0. Then by Lemma 4.2, q is harmonic in |x| > r. This implies that $p \equiv 0$ in Ω , a contradiction.

This completes the proof of the theorem.

However, when $n \ge 5$ there is no place for such exceptions. For we have the following theorem.

Theorem 5.5 Any domain Ω in \mathbb{R}^n , $n \geq 5$, is a biharmonic Green domain.

Proof. Without loss of generality, we'll assume that $0 \in \Omega$. Write r = |x|. Since r^{2-n} is a positive superharmonic function, write $r^{2-n} = p + h$ in Ω where p is a potential in Ω and h is harmonic.

Corresponding to the potential p in Ω , there exists a superharmonic function s in Ω such that $\Delta s = -p \geq -p - h = -r^{2-n} = \Delta u$ where $u = \frac{r^{4-n}}{2(n-4)}$ is a positive superharmonic function in Ω .

Since $\Delta s \geq \Delta u$, there exists a subharmonic function v in Ω such that s = u + v in Ω ; this means, since u > 0, that s has a subharmonic minorant in Ω . Hence we can write s = q + H in Ω where q is a potential in Ω and H is harmonic (not necessarily positive).

Then $\Delta q = \Delta s = -p$ in Ω . Since p and q are potentials in Ω , this means that Ω is a biharmonic Green domain.

Question In \mathbb{R}^2 , a domain Ω is a (harmonic) Green domain if and only if $\mathbb{R}^2 \setminus \Omega$ is not locally polar. In view of Theorem 5.4, can we prove that a harmonic Green domain Ω in \mathbb{R}^n , $2 \le n \le 4$, is a biharmonic Green domain if and only if $\mathbb{R}^n \setminus \Omega$ is not compact?

References

- [1] Al-Gwaiz M. and Anandam V., Representation of harmonic functions with asymptotic boundary conditions. Arab Gulf Journal 13 (1995), 1-11.
- [2] Anandam V., Subharmonic functions outside a compact set in \mathbb{R}^n . Proc. Amer. Math. Soc. 84 (1982), 52–54.
- [3] Anandam V., Biharmonic Green functions in a Riemannian manifold. To appear.
- [4] Aronszajn N., Creese T.M. and Lipkin L.J., Polyharmonic functions. Clarendon Press, Oxford, 1983.
- [5] Bourdon P., Liouville's theorem and Bôcher's theorem. To appear.
- [6] Brelot M., Fonctions sousharmoniques associées à une mesure. Acad. Roumaine, Jasy 3-4 (1951), 114-118.
- [7] Brelot M., Éléments de la théorie classique du potentiel. 4^e édition, C.D.U., Paris, 1969.
- [8] Ishikawa Y., Nakai M. and Tada T., A form of classical Picard principle. Proc. Japan

 \square

Acad. 72. (1996), 6-7.

- [9] Mizohata S., The theory of partial differential equations. Cambridge University Press, 1973.
- [10] Sario L., A criterion for the existence of biharmonic Green's functions. J. Austral. Math. Soc. 21 (1976), 155-165.
- [11] Sario L., Nakai M., Wang C. and Chung L.O., Classification theory of Riemannian manifolds. Springer-Verlag, L.N. 605, 1977.

Victor Anandam Department of Mathematics College of Science King Saud University P.O. Box 2455, Riyadh 11451 Saudi Arabia. E-mail: VANANDAM@KSU.EDU.SA

Moustafa Damlakhi Department of Mathematics College of Science King Saud University P.O. Box 2455, Riyadh 11451 Saudi Arabia.