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Triangular forms of subdiagonal algebras
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Abstract. In this note, we study the triangular forms of subdiagonal algebras and

discuss the triangular decomposition of subdiagonal algebras.
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1. Introduction and Preliminaries

In [1], Arveson introduced the notion of subdiagonal algebras to give
a unified approach to the theory of non-selfadjoint operator algebras. The
algebra is not only a noncommutative analogue of weak*-Dirichlet algebras
but also a generalization of the work of Helson-Lowdenslager in [4]. Thus,

the algebra has many analytic properties as the algebra of generalized ana-
lytic functions. Several concrete examples were considered in [1]. Further,

Loebl-Muhly [7] and Kawamura-Tomiyama [6] gave systematic examples of
subdiagonal algebras from the theory of spectral subspaces determined by
flows on a von Neumann algebra. We refer the readers to [1] for the elemen-
tary properties of subdiagonal algebras. On the other hand, the notion of
nest algebras was introduced by Ringrose [8] to study the triangular forms
for operators. The structure of nest algebras was studied by many authors
and we refer the readers for the details to Davidson’s book [3], Our aim in
this note is to study the triangular forms of subdiagonal algebras related to
the theory of nest algebras.

At first, we start by giving the definition of subdiagonal algebras. Let
\mathcal{M} be a von Neumann algebra on a complex Hilbert space \mathcal{H} and let \Phi be a
faithful normal positive linear map of \mathcal{M} onto a von Neumann subalgebra
\mathfrak{D} of \mathcal{M} which is idempotent, that is, let \Phi be a faithful normal expectation
of \mathcal{M} onto \mathfrak{D} . A subalgebra \mathfrak{U} of \mathcal{M} , containing \mathfrak{D} , is called a subdiagonal
algebra in \mathcal{M} with respect to \Phi if

(i) \mathfrak{U}\cap \mathfrak{U}^{*}=\mathfrak{D} ;
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(ii) \Phi is multiplicative on \mathfrak{U} ; and
(iii) \mathfrak{U}+\mathfrak{U}^{*} is \sigma-weakly dense in \mathcal{M} .

The algebra \mathfrak{D} is called the diagonal of \mathfrak{U} . We say that \mathfrak{U} is a maximal sub-
diagonal algebra in \mathcal{M} with respect to \Phi in case \mathfrak{U} is not properly contained
in any other subalgebra of \mathcal{M} which is subdiagonal with respect to \Phi .

Although subdiagonal algebras are not assumed to be \sigma-weakly closed
in [1], the \sigma-weak closure of a subdiagonal algebra is again a subdiagonal
algebra ([1, Remark 2.1.2]). In this note, we assume henceforth that our
subdiagonal algebras are always \sigma-weakly closed.

Let \mathfrak{U} be a subdiagonal algebra in \mathcal{M} acting on a Hilbert space \mathcal{H} and
put \mathfrak{U}_{0}=\{X\in \mathfrak{U} : \Phi(X)=0\} . Then it is clear that \mathfrak{U}_{0} is a \sigma-weakly
closed tw0-sided ideal of \mathfrak{U} . For every n\in \mathbb{N} , we define the closed subspace
\mathcal{H}_{n}=[\mathfrak{U}_{0}^{n}ft] , where \mathfrak{U}_{0}^{n}=\{A_{1}A_{2} \cdot A_{n} : A_{i}\in \mathfrak{U}_{0}(1\leq i\leq n)\} and, for a
subset S of fl , [S] is the closed linear span of S . Further, we set \mathcal{H}_{0}=\mathcal{H}

and \mu_{\infty}=\bigcap_{n=0}^{\infty}\mathcal{H}_{n} , respectively. For every n\in \mathbb{N}\cup\{0, \infty\} , let P_{n} be the
orthogonal projection from \mathcal{H} onto \mathcal{H}_{n} . Then it is clear that the family
\{P_{n} : 0\leq n\leq\infty\} of projections is a decreasing sequence in \mathcal{M} , such that
P_{n}\downarrow P_{\infty} . Then we define the following notion.

Definition 1.1 Keep the notation as above. Then a subdiagonal algebra
\mathfrak{U} is said to be pure if P_{\infty}=0 . Further, if P_{1}=I , then the subdiagonal
algebra \mathfrak{U} is called to be non-degenerate.

In this note, we investigate the purity of subdiagonal algebras. In \S 2,
we consider the case that it is on a finite dimensional Hilbert space. If \mathfrak{U} is a
subdiagonal algebra in \mathcal{M} , more generally, \mathfrak{U} is a subalgebra of \mathcal{M} such that
\mathfrak{U}+\mathfrak{U}^{*}=\mathcal{M} , then we show that \mathfrak{U} is a nest subalgebra of \mathcal{M} (Theorem 2.1).
In particular, every subdiagonal algebra in the finite dimensional case is
pure in the sense of Definition 1.1. In \S 3, we shall show that a subdiagonal
algebra \mathfrak{U} of \mathcal{M} is pure if and only if \mathfrak{U} is a nest subalgebra in \mathcal{M} determined
by \{ P_{n} : 0\leq n\leq\infty\} , that is, \mathfrak{U}=\{A\in \mathcal{M} : (I-P_{n})AP_{n}=0,0\leq n\leq\infty\}

(Theorem 3.2). Finally, we shall discuss the triangular decomposition of a
subdiagonal algebra \mathfrak{U} of \mathcal{M} (Theorem 3.3).

2. Finite dimensional case

In this section, we assume that the Hilbert space \mathcal{H} is finite dimensional.
Then we shall study the structure of subdiagonal algebras in \mathcal{M} , more
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generally, subalgebras of \mathcal{M} satisfying \mathfrak{U}+\mathfrak{U}^{*}=\mathcal{M} . At first we have the
following theorem.

Theorem 2.1 Let \mathfrak{U} be a subalgebra of \mathcal{M} , containing the identity, such
that \mathfrak{U}+\mathfrak{U}^{*}=\mathcal{M} . Then \mathfrak{U} is a nest subalgebra of von Neumann algebra \mathcal{M} .

To prove this, we need the following lemmas.

Lemma 2.2 Keep the assumptions as in Theorem 2.1. If \mathfrak{U}\subset\neq \mathcal{M} , then
there exists a non-trivial projection P in A4 such that P\in Lat\mathfrak{U} , where
Lat \mathfrak{U} is the lattice of all \mathfrak{U} -invariant subspaces of \mathcal{H} .

Proof. If \mathcal{M} is not a factor, then we may take a non-trivial central
projection P in \mathcal{M} . Thus we may suppose that \mathcal{M} is a factor. Since \mathcal{H} is
finite dimensional, \mathcal{M} is a type I_{k} -factor for some k . By [5, Theorem 6.6.1],
there exists a *-isomorphism \ominus from \mathcal{M} onto B(K) for a Hilbert space
\mathcal{K} with dim \mathcal{K}=k . Since \ominus(\mathfrak{U}) is a proper subalgebra of B(K) , by [2,
Proposition 2.12], there is a non-trivial projection Q in B(K) such that
Q\in Lat\ominus(\mathfrak{U}) . Putting P=\ominus^{-1}(Q) , P has the desired property. This
completes the proof. \square

Lemma 2.3 Keep the assumptions as in Theorem 2.1. If P\in \mathcal{M}\cap Lat\mathfrak{U} ,
then P\in \mathfrak{U} .

Proof If a projection P\in \mathcal{M} and \mathfrak{U}+\mathfrak{U}^{*}=\mathcal{M} , then there exists an
element C\in \mathfrak{U} such that P=C+C^{*} . Considering the Hilbert space
decomposion \mathcal{H}=P\mathcal{H}\oplus P^{\perp}\mathcal{H} , we can write the matrix representation of
C as follows:

C=(\begin{array}{ll}C_{11} C_{12}0 C_{22}\end{array})

Since P=P^{*} , we have C_{12}=0 , C_{11}+C_{11}^{*}=I_{P\mathcal{H}} and C_{22}+C_{22}^{*}=0 . Thus
C_{11} and C_{22} are of the forms

C_{11}= \frac{1}{2}I_{P\mathcal{H}}+iK_{1} and C_{22}=iK_{2}

for some self-adjoint operators K_{1}\in B(P\mathcal{H}) and K_{2}\in B(P^{\perp}\mathcal{H}) . This
implies that C is a normal operator in \mathfrak{U} with \sigma(C)=\sigma(C_{11})\cup\sigma(C_{22}) ,
where \sigma(A) is the spectrum of an operator A . Since \sigma(C_{11})\subset { \frac{1}{2}+i\lambda : \lambda\in

\mathbb{R}\} and \sigma(C_{22})\subset\{i\lambda : \lambda\in \mathbb{R}\} respectively, we have \sigma(C_{11})\cap\sigma(C_{22})=\emptyset .
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We now choose two bounded open subsets \Omega_{1} and \Omega_{2} in \mathbb{C} with the following
properties:

(1) \sigma(C_{11})\subset\Omega_{1} and \sigma(C_{22})\subset\Omega_{2} ;
(2) \overline{\Omega}_{1}\cap\overline{\Omega}_{2}=\emptyset ; and
(3) (\overline{\Omega}_{1}\cup\overline{\Omega}_{2})^{c} is connected.

Put f=\chi_{\Omega_{1}} , where \chi_{\Omega_{1}} is the characteristic function of \Omega_{1} . By the func-
tional calculus and [9, Theorem 13.7], we have f(C)=P\in \mathfrak{U} . This com-
pletes the proof. \square

Proof of Theorem 2.1. We may assume that \mathfrak{U}\neq \mathcal{M} . By Lemma 2.2, there
exists a maximal nest N in \mathcal{M}\cap Lat\mathfrak{U} . We set N =\{Q_{k}\}_{k=0}^{n} satisfying

0=Q_{0}<Q_{1}<Q_{2}< . . <Q_{n}=I .

Since N \subset \mathfrak{U} by Lemma 2.3, it is enough to prove that \mathfrak{U}=\mathcal{M}\cap agN . It is
trivial that \mathfrak{U}\subseteq \mathcal{M}\cap agN Put E_{k}=Q_{k}-Q_{k-1} (k=1,2, \ldots , n) . By the
maximality of N and Lemma 2.2, we have E_{k}\in \mathfrak{U} and EkXEk =EkMEk .
Let T\in \mathcal{M}\cap agN Then E_{k}TE_{j}=0 for k>j . Since \mathfrak{U}+\mathfrak{U}^{*}=\mathcal{M} , we
take A and B in \mathfrak{U} such that A+B^{*}=T By a simple calculation, then
we have E_{k}TE_{j}\in \mathfrak{U} (k, j=1,2, , n) and so T\in \mathfrak{U} . This completes the
proof. \square

Let \mathfrak{U} be a subdiagonal algebra in \mathcal{M} with respect to \Phi . As in the
proof of Theorem 2.1, there exists a finite nest N =\{Q_{k}\}_{k=1}^{n} in \mathcal{M} such
that \mathfrak{U}=\mathcal{M}\cap agN Further, we easily show that \Phi(X)=\sum_{k=1}^{n}E_{k}XE_{k}

for every X\in \mathcal{M} and \mathfrak{U}_{0}^{n}=0 . Thus we have the following corollary.

Corollary 2.4 If \mathfrak{U} is a subdiagonal algebra in \mathcal{M} with respect to \Phi , then
\mathfrak{U} is a nest subalgebra of \mathcal{M} with a finite nest, in particular, \mathfrak{U} is pure in
the sense of Definition 1.1.

In [10, Theorem 2], the third author and Watatani showed that if \mathfrak{D} is
a subfactor of a finite dimensional factor \mathcal{M} , then there exist no maximal
subdiagonal algebras of \mathcal{M} with diagonal \mathfrak{D} unless \mathfrak{D}=\mathcal{M} . More generally,
we have the following corollary.

Corollary 2.5 Let \mathcal{M} be a finite dimensional von Neumann algebra and
let \mathfrak{D} be a subfactor of \mathcal{M} . Then there exist no subdiagonal algebras in \mathcal{M}

with diagonal \mathfrak{D} unless \mathfrak{D}=\mathcal{M} .

Proof. Let \mathfrak{U} be a subdiagonal algebra in \mathcal{M} with diagonal \mathfrak{D} . By TheO-
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rem 2.1, \mathfrak{U} is a nest subalgebra of \mathcal{M} with a nest N in \mathfrak{D}\cap \mathfrak{D}’- Since \mathfrak{D} is
a subfactor of \mathcal{M} , we have N=\{0, I\} and so \mathfrak{D}=\mathfrak{U}=\mathcal{M} . This completes
the proof. \square

3. Pure subdiagonal algebras

In this section, we investigate the purity of a subdiagonal algebra in
\mathcal{M} acting on an infinite dimensional Hilbert space \mathcal{H} . Note that P_{n} is the
orthogonal projection from \# t onto [\mathfrak{U}_{0}^{n}\mathcal{H}] defined in \S 1. At first we have
the following proposition.

Proposition 3.1 For every n in \mathbb{N}\cup\{0, \infty\} , P_{n} is a central projection of
\mathfrak{D} .

Proof. Since \{P_{n} : 0\leq n\leq\infty\}\subseteq Lat \mathfrak{U}\subseteq \mathfrak{D}’ , it is enough to prove that
\{P_{n} : 0\leq n\leq\infty\}\subseteq \mathfrak{D} . To do this, we need only to prove that \Phi(P_{n})=P_{n}

for every n=0,1,2 , \ldots , \infty . Putting E_{n}=P_{n}\ominus P_{n+1}(n\geq 0) , then we have

I=( \sum_{n=0}^{\infty}\oplus E_{n})\oplus P_{\infty} .

Since \mathfrak{U}_{0}\mathcal{H}_{n}\subseteq \mathcal{H}_{n+1} , we have E_{n}\mathfrak{U}_{0}E_{n}=0 . Since X-\Phi(X)\in \mathfrak{U}_{0} for every
X\in \mathfrak{U} and \mathfrak{U}+\mathfrak{U}^{*} is \sigma-weakly dense in \mathcal{M} , it follows that

E_{n}XE_{n}=E_{n}\Phi(X)E_{n} (n\geq 0)

for every X\in \mathcal{M} . In particular,

E_{n}\Phi(E_{k})E_{n}=\{
0, n\neq k

E_{n} , n=k .

Thus we have

\Phi(E_{k})=\sum_{n=0}^{\infty}E_{n}\Phi(E_{k})+P_{\infty}\Phi(E_{k})

= \sum_{n=0}^{\infty}E_{n}\Phi(E_{k})E_{n}+P_{\infty}\Phi(E_{k})P_{\infty}

=E_{k}+P_{\infty}\Phi(E_{k})P_{\infty}

which implies that \Phi(E_{k})\geq E_{k}(k\geq 0) . Since \Phi is faithful and idempotent,
\Phi(E_{k})=E_{k}(k\geq 0) and so \Phi(P_{k})=P_{k}(k\geq 0) . This completes the proof.

\square
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Our goal in this section is the following theorem.

Theorem 3.2 Let \mathfrak{U} be a subdiagonal algebra in \mathcal{M} . Then \mathfrak{U} is pure if and
only if there exists a finite or infinite decreasing nest N =\{Q_{n} : 0\leq n\leq\infty\}

in \mathcal{M} such that \mathfrak{U}=\mathcal{M}\cap agN

Proof. (\Rightarrow) Suppose that \mathfrak{U} is pure. Put M =\{P_{n} : 0\leq n\leq\infty\} .
Since P_{\infty}=0 , as in the proof of Proposition 3.1, we have E_{n}\mathcal{M}E_{n}\subseteq \mathfrak{D}\subseteq \mathfrak{U}

for every n\geq 0 and

\Phi(X)=\sum_{n=0}^{\infty}E_{n}XE_{n} (X\in \mathcal{M}) .

Since P_{n}ft (=[\mathfrak{U}_{0}^{n}\mathcal{H}]) is \mathfrak{U}-invariant, it is clear that \mathfrak{U}\subseteq \mathcal{M}\cap agN

Conversely, if T\in \mathcal{M}\cap agN , then it is clear that E_{j}TE_{k}=0 for
j<k and T= \sum_{j\geq k}E_{j}TE_{k} in the \sigma-weak topology. We next prove that
E_{j}TE_{k}\in \mathfrak{U} . We know E_{k}TE_{k}\in \mathfrak{D}(k\geq 1) by Proposition 3.1. When
j>k , there are two nets \{A_{\alpha}\} and \{B_{\alpha}\} in \mathfrak{U} such that T= \lim_{\alpha}(A_{\alpha}+B_{\alpha}^{*})

\sigma-weakly. Since \mathfrak{U}\subseteq \mathcal{M}\cap agN we have E_{j}B_{\alpha}^{*}E_{k}=0 for j>k . Then
E_{j}TE_{k}= \lim_{\alpha}E_{j}A_{\alpha}E_{k}\in \mathfrak{U} for j>k . Thus T\in \mathfrak{U} and we show that
\mathfrak{U}=\mathcal{M}\cap agN

(\Leftarrow) Suppose that there exists a decreasing nest N=\{Q_{n} : 0\leq n\leq

\infty\} in \mathcal{M} such that \mathfrak{U}=\mathcal{M}\cap agN Thus we have \mathfrak{D}=N’\cap \mathcal{M} and
\Phi(X)=\sum_{n=0}^{\infty}F_{n}XF_{n} , where F_{n}=Q_{n}\ominus Q_{n+1}(n\geq 0) . Since \mathfrak{U}_{0} may be
regarded as the strictly lower triangular algebra with entries in \mathcal{M} , we have

[\mathfrak{U}_{0}^{n}\mathcal{H}]\subseteq Q_{n}\mathcal{H} ,

which implies that \bigcap_{n=0}^{\infty}[\mathfrak{U}_{0}^{n}\mathcal{H}]=\{0\} . Thus \mathfrak{U} is pure. This completes the
proof. \square

In general, taking a projection E\in \mathfrak{D} , we define the faithful normal
expectation \Phi_{E} from E\mathcal{M}E onto E\mathfrak{D}E by \Phi_{E}(EXE)=E\Phi(X)E . Note
that E\mathfrak{U}E is a subdiagonal algebra in E\mathcal{M}E with respect to \Phi_{E} .

If P_{\infty}\neq 0 , then we have [\mathfrak{U}_{0}P_{\infty}\mathcal{H}]=P_{\infty}\mathcal{H} . Since P_{\infty}\in \mathfrak{D} , P_{\infty}\mathfrak{U}P_{\infty}

is a non-degenerate subdiagonal algebra in P_{\infty}\mathcal{M}P_{\infty} with respect to \Phi_{P_{\infty}} .
On the other hand, P_{\infty}^{\perp}\mathfrak{U}P_{\infty}^{\perp} is a pure subdiagonal algebra in P_{\infty}^{\perp}\mathcal{M}P_{\infty}^{\perp} with
respect to \Phi_{P_{\infty}^{\perp}} and P_{\infty}\mathfrak{U}P_{\infty}^{\perp}=P_{\infty}\mathcal{M}P_{\infty}^{\perp} . Thus we have a decomposition
of a subdiagonal algebra. Moreover, since P_{\infty}\mathfrak{U}^{*}P_{\infty} is also a subdiagonal
algebra in P_{\infty}\mathcal{M}P_{\infty} , we may also consider the decomposition of P_{\infty}\mathfrak{U}^{*}P_{\infty} .
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Then we easily have the following decomposition.

Theorem 3.3 Let \mathfrak{U} be a subdiagonal algebra in \mathcal{M} with respect to \Phi .
Then there exist three mutually orthogonal projections E_{1} , E_{2} and E3 in \mathfrak{D}

such that
(i) E_{1}+E_{2}+E_{3}=I and E_{1} , E_{1}+E_{2}\in Lat\mathfrak{U} ,

(ii) \mathfrak{U} has the following matrix decomposition:

\mathfrak{U}=(\begin{array}{lll}\mathfrak{U}_{ll} \mathfrak{U}_{12} \mathfrak{U}_{13}0 \mathfrak{U}_{22} \mathfrak{U}_{23}0 0 \mathfrak{U}_{33}\end{array}) ,

where \mathfrak{U}_{11}^{*} (resp. \mathfrak{U}_{33} ) is a pure subdiagonal algebra in E_{1}\mathcal{M}E_{1} (resp.
E_{3}\mathcal{M}E_{3}) , \mathfrak{U}_{22} and \mathfrak{U}_{22}^{*} are non-degenerate subdiagonal algebras in E_{2}\mathcal{M}E_{2}

and \mathfrak{U}_{jk}=E_{j}\mathcal{M}E_{k} for j<k .
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