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On the number of singularities of a generic surface
with boundary in a 3-manif0ld
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Abstract. We consider a c\infty generic map f : Marrow N of a compact surface M with
boundary into a 3-manifold N with boundary which is neat (i.e., f^{-1}(\partial N)=\partial M ). The

isolated singularities of the image f(M) are triple points, cross caps and boundary double

points. Under certain homological conditions, we give some formulae relating the numbers

of these singularities. We also obtain some geometrical applications of these results.

Key words: singular surface, triple point, cross cap, boundary double point, selftranslation
surface.

1. Introduction

It is well known that a C^{\infty} generic map f : Marrow N of a closed surface
M into a 3-manifold N is an immersion with normal crossings except at
isolated points, at which f has cross caps (for example, see [9]). Thus the
singular part of f(M) is made by the curve of double points of f with
intersections at the triple points and with end points at the cross caps. In
particular, there are a finite number of triple points and cross caps. In [18],
Sz\"ucs gives the following congruence relating the number of triple points to
the number of cross caps.

Theorem 1.1 Let f : Marrow R^{3} be a C^{\infty} generic map of a closed surface
M into R^{3} . Then

T(f) \equiv\sum_{i=1}^{k}n(x_{i}, f)+\chi(M) mod 2,

where T(f) is the number of triple points of f , \chi(M) is the Euler character-
islic of M, x_{1} , . , x_{k}\in f(M) are the cross caps of f , and n(x_{i}, f)(\in\{0,1\})

is the index of the cross cap x_{i} conveniently defined.
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Note that in [18], the class modulo 2 of the sum \sum_{i=1}^{k}n(x_{i}, f) is called
the linking number of f . Moreover, the theorem is also true if we consider
a connected 3-manifold N such that either H_{1}(N)=0 or f_{*}[M]=0 in
H_{2}(N) , instead of R^{3} , where [M]\in H_{2}(M) is the fundamental class of M
(the homologies are always considered with Z_{2} -coefficients). Note also that
the above theorem is a generalization of Banchoff result [1].

The above theorem has been a topological background of some previous
geometrical results, implicitly or explicitly, as follows. Banchoff, Gaffney
and McCrory in [2] applied it to the dual surface of a generic space curve
\alpha : S^{1}

- R^{3} , getting a congruence between the numbers of tritangent
planes and the zero torsion points of the curve (see also Ozawa [15]). We
can also apply the theorem to the dual surface of an immersed surface

f : M -arrow R^{3} to prove a theorem by Ozawa [14], which gives a congruence
between the numbers of tritangent planes and the godron points of the
surface (see [13]). In fact, Theorem 1.1 can be used in some other new
situations, like the tangent developable of a generic space curve so that we
obtain a congruence between the numbers of “pyramids” (triple points of
the tangent developable) and the zero torsion points of the curve (see [13]).
Furthermore, we can also apply Theorem 1.1 to the discriminant set of a
stable map into 3-manifolds, obtaining a modulo 2 formula concerning the
numbers of triple points of the discriminant set and the swallowtails of the
stable map (see [16]).

The purpose of this paper is to extend the result to the case where
ill and N have boundaries and the map f is neat (i.e., f^{-1}(\partial N)=\partial M ).
Generic maps in this class can allow a new kind of a singular point, namely
a boundary double point. We can also define the index n’(y, f) of such a
point y\in f (ill), and the main result in this case is the following.

Theorem 1.2 Let f : \Lambda l – N be a C^{\infty} generic neat map of a compact
surface \Lambda I with boundary into a connected 3-manifold N with boundary.
We assume one of the following:
(1) M is orientable and H_{1}(N)=0 ;
(2) M is orientable and f_{*}[M, \partial M]=0 in H_{2}(N, \partial N) , where [M, \partial JI]\in

H_{2}(\Lambda l, \partial M) is the fundamental class of M ;
(3) \partial N is orientable and f_{*}[M, \partial M]=0 in H_{2}(N, \partial N) .
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Then

T(f) \equiv\sum_{i=1}^{k}n(x_{i}, f)+\sum_{j=1}^{m}n’(y_{j}, f)+\chi(M)+\beta_{0}(\partial M) mod 2,

where x_{1} , , x_{k}\in f(M) are the cross caps, y_{1} , \ldots , y_{m}\in f(\partial\Lambda I) are the
boundary double points of f and \beta_{0} denotes the number of connected com-
ponents.

(The formula is obtained in cases (1) and (2) in Theorem 3.7 and ill
case (3) in Corollary 4.8.)

To prove Theorem 1.2, we begin with the case where M is oriented. In
this particular case, we obtain a stronger result, since we get an integral
formula instead of a modulo 2 congruence. We define a colouration in the
set D\subset f(M) of double points of f , so that D consists of red and blue
edges. Then

2E(f)=3T(f)+ \sum_{i=1}^{k}n(x_{i}, f)+\sum_{j=1}^{m}n’(y_{j}, f) ,

where E(f) is the number of red edges of D .
In the last part of this paper, we use Theorem 1.2 in order to obtain

an interesting geometrical application: the selftranslation surface associated
with a generic space curve \alpha : S^{1}

- R^{3} is the image of a M\"obius strip by a
generic map. We prove that if the curve \alpha is convex, this surface must have
at least either a triple point or a cross cap, thus improving a result given in
[12].

Remark. In this paper we consider only C^{\infty} generic maps. However, all
the results are true also for topologically stable singular surfaces in the
sense of [9]. In fact, any topologically stable singular surface f : M – N
is topologically equivalent to a C^{\infty} generic map and all the results exposed
here are preserved by topological equivalences. For instance, the tangent
developable and the dual surface of a generic space curve are not generic;
however, they give topologically stable singular surfaces.

Throughout the paper all maps and manifolds are of class C^{\infty} and
the homology groups are always with Z_{2} -coefficients. The symbol ”\cong ”

denotes a diffeomorphism between manifolds or an appropriate isomorphism
between algebraic objects.
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2. Proof of Theorem 1.1 in the oriented case

In this section we prove the integral formula for the case where M is
oriented and M and N have no boundary. We start by defining the index
of a cross cap and follow the same process as in [2] for the definition of the
index of a topological cross cap of the dual surface \alpha^{*} of a generic space
curve \alpha : S^{1} -arrow R^{3} . However, there is a problem: in their definition, they
use the fact that the dual surface is the boundary of a region in (P^{3})^{*} . and
this region is given in a natural way by the geometry of the curve \alpha . We
solve this with the following Two Colour Theorem.

Lemma 2.1 Let f : M -arrow N be a generic map of a closed surface M into
a connected 3-manifold N such that either H_{1}(N)=0 or f_{*}[M]=0 in
H_{2}(N) . Then

N\backslash f(itl)=R\cup B ,

where R and B are disjoint nonempty open sets with common boundary
f(M) (we call R the red part of N\backslash f(M) , and B the blue part).

Proof. Let x_{0}\in N\backslash f(M) be a fixed point. Then for every x\in N\backslash f(M)

we take a piecewise regular curve \gamma connecting x_{0} to x such that \gamma intersects
f(M) transversely in a finite number of regular simple points. We prove
that the parity of this number, \#(\gamma\cap f(M)) , does not depend on the chosen
curve \gamma . In fact, let \gamma’ be another curve as above. Then

\#(\gamma\cap f(11l))+\#(\gamma’\cap f(M))\equiv[\gamma\cup\gamma’] [f(M)]\equiv 0 mod 2,

where [\gamma\cup\gamma’]\cdot[f(M)] is the modulo 2 intersection number of the homology
class represented by the closed curve \gamma\cup\gamma’ and that represented by f(M) ,
provided that either H_{1}(N)=0 or f_{*}[M]=0 in H_{2}(N) . Thus we can define

R= { x\in N\backslash f(M) : \#(\gamma\cap f(M)) is even},
B= { x\in N\backslash f(\Lambda I) : \#(\gamma\cap f(M)) is odd}.

With this definition, it is obvious that R and B are disjoint nonempty sets.
Moreover, the local form of f(M) implies that \partial R=\partial B=f(M) . \square

In Figure 1 we have the local distributions of the colours in N\backslash f(M)
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B

Fig. 1.

(_{\sim\nearrow}^{\nearrow^{\backslash }\backslash }e_{\sim\succ}P^{\{e^{PvA\prime}}f\backslash ,)--

Fig. 2.

when we are in a neighbourhood of a regular point, a double point, a triple
point or a cross cap. Note that in the case of the cross cap there would be
another dual situation which is not equivalent to this: the “inside” comp0-

nents are red and the “outside” component is blue. Precisely, this fact will
determine the index of a cross cap as follows.

Definition 2.2 Let f : M – N be a generic map of a closed surface M



522 J.J. Nu\tilde{n}0 -Ballesteros and O. Saeki

into a connected 3-manifold N such that either H_{1}(N)=0 or f_{*}[M]=0 in
H_{2}(N) . Then we define the index n(x, f) of a cross cap x\in f(M) by

n(x, f)=\chi(S_{\epsilon}\cap\overline{B}) ,

where S_{\epsilon} is a small 2-sphere in N centered at x and \chi denotes the Euler
characteristic.

We can see in Figure 2 that n(x, f)=1 if and only if the inside com-
points of N\backslash f\{M ) in a neighbourhood of x are blue, and n(x, f)=0 if
and only if these components are red.

Note that the index of a cross cap depends on the colouration of N\backslash

f(M) as in Lemma 2.1. However, the parity of the sum \sum_{i=1}^{k}n(x_{i}, f) over
all cross caps x_{i} of f does not so depend, since the number of cross caps is
always even.

Now we look at the graph structure of the singular part of f(M) . The
edges of this graph are given by the double points of f and the vertices by
the triple points and the cross caps. Moreover, the incidence rules are as
follows: each triple point is incident to six edges and each cross cap to one.
The following lemma asserts that when \Lambda l is oriented, the colouration of
N\backslash f(M) induces a colouration in the edges of the graph.

Lemma 2.3 Let f : M -arrow N be as in Lemma 2.1. In addition we suppose
that \Lambda l is oriented. Then the colouration of N\backslash f(M) induces a colouration
in the set D\subset f(M) of double points of f with the following properties:
(1) at each triple point of f(M) there are three red edges and three blue

edges of D ;
(2) at a cross cap of f , the incident edge of D is red if the index is 1 or

blue if the index is 0.

Proof. We have that D and f^{-1}(D) are smooth 1-manifolds, and that
the map f|f^{-1}(D) : f^{-1}(D) -arrow D is a double covering map. Given a
point y\in D such that f^{-1}(y)=\{x_{1}, x_{2}\} , we choose a nonzero tangent
vector v\in T_{y}D . Then there exist tangent vectors u_{i}\in T_{x_{i}}f^{-1}(D) such that
Tf(u_{i})=v for i=1,2 , where Tf denotes the differential of f . Each one
of these vectors can be completed to an oriented basis \{u_{i}, w_{i}\} of T_{x_{i}}M ,
and we consider the vectors Tf(w_{1}) , Tf(w_{2}) in T_{y}N . On the other hand,
let V be a small neighbourhood of y in N such that V\backslash f(M) has exactly
four connected components. Then we say that the point y is red or blue
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according to the colour of the quadrant determined by the tangent vectors
Tf(w_{1}) and Tf(w_{2}) . It is not difficult to see that this definition does not
depend on the chosen vectors (see Figure 3).

u_{1} fu_{2}

-\approx
x_{1}

x_{2}
w_{1} w_{2}

Fig. 3.

In particular, when the double point y\in D is close enough to a cross
cap, the component determined by the tangent vectors Tf(w_{1}) and Tf(w_{2})

is precisely the corresponding part of the outside component. Therefore,
this point will be red when the index is 1, and blue when the index is 0 (see
Figure 4). The local situation for a triple point is that we have six edges
of D incident to this point, and three of these edges must be red and the
other three must be blue (see Figure 4). \square

red part of D
– blue part of D

triple point cross cap with index 1 cross cap with index 0

Fig. 4.
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Note that the colouration in the set D depends on the orientation of M
in general. However, if M is connected, then it does not so depend.

Theorem 2.4 Let f : M -arrow N be a generic map of a closed oriented
surface M into a connected 3-manifold N such that either H_{1}(N)=0 or
f_{*}[M]=0 in H_{2}(N) . Then

2E(f)=3T(f)+ \sum_{i=1}^{k}n(x_{i}, f) ,

where T(f) is the number of triple points of f , x_{1} , \ldots , x_{k}\in f(M) are the
cross caps, and E(f) is the number of red edges of the set D of double points

of f . (Here we do not count the circle components of D. )

Proof. We just consider the graph structure of the red part of D . Each
triple point is a vertex of order 3 and each cross cap with index 1 is a vertex
of order 1. Then, by applying the classical theorem of graph theory, which
asserts that the number of edges of a graph is equal to one half the sum of
the orders of its vertices, we have the desired result. \square

Since \chi(\Lambda l) is even for any closed orientable surface M , the following
immediate consequence of Theorem 2.4 is the orientable version of TheO-
rem 1.1.

Corollary 2.5 Let f : M - N be as in Theorem 2.4. Then

T(f) \equiv\sum_{i=1}^{k}n(x_{i}, f) mod 2,

where T(f) is the number of triple points of f and x_{1} , . . ’ x_{k}\in f(M) are
the cross caps.

Remark. In [18], Sz\"ucs proves Theorem 1.1, using the theorem of Banchoff
[1] concerning the number of triple points of an immersed surface in R^{3}

and using a surgery technique. Here we give another proof using a recent
result of Carter and Saito [4], [5] concerning the normal Euler number of
an embedded surface in R^{4} .

First we review their result. We start with a closed embedded surface M
in R^{4} and consider a generic projection into R^{3} . Then the projected surface
is a stable surface in R^{3} , and we define the sign (=\pm 1) of each cross cap
and each triple point, using the embedded surface M in R^{4} . Furthermore,
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we use the Two Colour Theorem to define the colour (red or blue) of each
cross cap. Here the cross cap is blue if and only if the index in our sense
is 1. Define T to be the number of positive triple points minus the number
of negative ones, B to be the number of positive blue cross caps minus the
number of negative blue ones, and R to be the number of positive red cross
caps minus the number of negative red ones. Then Carter and Saito have
shown the following formula:

T+R+2B= \frac{3}{2}e ,

where e is the normal Euler number of the original embedded surface M in
R^{4} .

If we use their result, we can recover our modulo 2 formula (TheO-
rem 1.1) concerning the numbers of triple points and cross caps as follows.
First note that e is always even and that e/2 is congruent modulo 2 to the
Euler characteristic of the surface by the Whitney congruence [19]. Conse-
quently, since B+R is always even, we see that T+B is congruent modulo
2 to the Euler characteristic of the surface, using their formula. This is
nothing but our modulo 2 formula, since T is congruent modulo 2 to the
number of triple points and B is congruent modulo 2 to the sum of the
indices of cross caps we defined.

Note that not every stable surface in R^{3} can be lifted to an embedded
surface in R^{4} (see [7]). However, it is always lifted to an immersion with
normal crossings into R^{4} (see, for example, [17]). Furthermore, we can
generalize the formula of Carter and Saito modulo 2 to one for immersed
surfaces in R^{4} as follows:

T+R+2B \equiv\frac{3}{2}e+d mod 2,

where d is the number of double points of the immersed surface in R^{4} . Note
that, in this case, e/2+d is congruent modulo 2 to the Euler characteristic
of the surface (see [17]). Thus, we can prove our formula for an arbitrary
stable surface in R^{3} .

3. Extension of the results to the boundary case –the oriented
case

In this section, we extend Theorems 1.1 and 2.4 to the case where lII
and N have boundaries. The first step toward such an extension is to define
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a reasonable class of maps of surfaces with boundary into 3-manifolds with
boundary.

Definition 3.1 A smooth map f : M - N is said to be neat if f^{-1}(\partial N)=

\partial M . A smooth neat map f : M -arrow N is said to be generic if the following
conditions are satisfied:
(1) f| int(M) : int(M) – int(\^A) is generic in the sense of the preceding

sections;
(2) f is an immersion at every boundary point;
(3) f|\partial M : \partial M – \partial N is a selftransverse immersion; i.e., it has only

simple or transverse double points;
(4) if x\in\partial M is a boundary point, then the planes Tf(T_{x}M) and T_{f(x)}\partial N

are in general position in T_{f(x)}N .
Note that the conditions (2)-(4) imply the following:
(5) if x_{1} and x_{2} are distinct boundary points of M with f(x_{1})=f(x_{2})=

y , then the planes Tf(T_{x_{1}}M) , Tf(T_{x_{2}}M) and T_{y}(\partial N) are in general
position in T_{y}N .

If f : M – N is a generic neat map, then the local form of f(M) in N
is determined by the above conditions. We get a new kind of an isolated
singular point: the boundary double point (see Figure 5).

Fig. 5.

We denote by N^{\infty}(M, N) the space of the smooth neat maps from M
to N endowed with the Whitney C^{\infty} topology. We will prove that the set
of the generic neat maps is open and dense in this space, provided that M
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is compact.

Lemma 3.2 If \partial M is compact, then every map f\in N^{\infty}(M, N) can be
C^{\infty} approximated by a map g\in N^{\infty}(M, N) which is generic on some open
collar neighbourhood of \partial M in Mt

Proof. Let W and Z be open collars of \partial M and \partial N in M and N re-
spectively, and let h : W -arrow\partial M\cross[0,1) and k : Z - \partial N\cross[0,1) be
diffeomorphisms. Taking W smaller if necessary, we may assume that
k\circ f(W)\subset\partial N\cross[0,1-\delta] for some \delta with 0<\delta<1 . Define \alpha_{t} : \partial M - \partial N

(t\in[0,1)) and \beta_{x} : [0, 1) -arrow[0,1)(x\in\partial M) by

k\circ f\circ h^{-1}(x, t)=(\alpha_{t}(x), \beta_{x}(t)) .

Note that \beta_{x}^{-1}(0)=0 and that f is transverse to \partial N if and only if

\frac{d\beta_{x}}{dt}(0)\neq 0 (\forall x\in\partial M) .

Take a sufficiently small positive real number \epsilon such that 0<\epsilon<\delta .
Furthermore, let \xi : [0, 1) -arrow[0,1] be a C^{\infty} function such that

\xi(t)=\{
1 (t\in[0,1/3])

0 (t\in[2/3,1)) .

Then the function

\beta_{x,\epsilon}(t)=\beta_{x}(t)+\epsilon t\xi(t)

C^{\infty} approximates \beta_{x} and satisfies \beta_{x,\epsilon}^{-1}(0)=0 and

\frac{d\beta_{x,\epsilon i}}{dt}(0)\neq 0 (\forall x\in\partial\Lambda I) .

On the other hand, we can regard \alpha_{t} : \partial M – \partial N(t\in[0,1)) as a
1-parameter family of smooth maps of a closed 1-dimensional manifold
into a surface. Then there exists a C^{\infty} approximation of the family, say
\{\alpha_{t,\epsilon}\}_{t\in[0,1)} , such that \alpha_{0,\epsilon} is a selftransverse immersion and that \alpha_{t,\epsilon}=\alpha_{t}

for all t\geq 2/3 . Note that, since \partial M is compact, \alpha_{t,\epsilon} is a selftransverse
immersion not only for t=0 , but also for all t in the interval [0, \gamma] for some
\gamma with 0<\gamma<1 . Then the map

g’=k^{-1}\circ\varphi_{\epsilon}\circ h : Warrow Z

is a generic neat map on a sufficiently small neighbourhood of \partial M and C^{\infty}
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approximates f| W. where \varphi_{\epsilon} : \partial M\cross[0,1) -arrow\partial N\cross[0,1) is the smooth
map defined by \varphi_{\epsilon}(x, t)=(\alpha_{t,\epsilon i}(x), \beta_{x,\epsilon}(t)) . Furthermore, g’=f outside of
the closed collar neighbourhood W’=h^{-1}(\partial M\cross[0,2/3]) . Then the map
g : M – N defined by

g=\{
g’ on W

f on M-W’
is a required map. This completes the proof. \square

Proposition 3.3 If M is compact, then the set of the generic neat maps
is open and dense in N^{\infty}(M, N) .

In the following, for smooth manifolds X , Y and positive integers s , k ,
we denote by J_{s}^{k}(X, Y) the s-fold k-jet bundle of smooth maps of X into Y
(for details, see [8], for example). Furthermore, we set Y^{s}=\{(y_{1}, \ldots, y_{s})\in

Y\cross , . \cross Y }, \triangle_{Y}^{s}= \{(y, \ldots, y)\in Y^{s} : y\in Y\} , and we denote by \pi_{Y} :
J_{s}^{k}(X, Y) -arrow Y^{s} the natural projection and by d : Y^{s} - Y the projection
to the first factor. For the proof of the above proposition, we need the
following, which is proved in [11], \S 3.

Lemma 3.4 Let f : X – Y be a smooth map between manifolds. Let W
be a submanifold of J_{s}^{k}(X, Y) such that \pi_{Y}(W)\subset\triangle_{Y}^{s} . Suppose that U is
an open subset of Y and that \mathcal{V} is an open neighbourhood of f in C^{\infty}(X, Y) .
Then there exists a smooth map g:X -arrow Y such that

(1) g\in \mathcal{V} ,
(2) g=f on f^{-1}(U)=g^{-1}(U) ,
(3) j_{s}^{k}g is transverse to W on W\cap\pi_{Y}^{-1}(d^{-1}(Y-\overline{U})) .

Proof of Proposition 3.3. Let us begin by proving the density. Take an
f\in N^{\infty}(M, N) . By Lemma 3.2 we can C^{\infty} approximate it by a map
g\in N^{\infty}(M, N) which is generic on an open collar W of \partial M in M . Since
M is compact, there exists a closed collar neighbourhood \tilde{Z} of \partial N in N
such that \tilde{W}=g^{-1}(\tilde{Z})(\subset W) is a closed collar neighbourhood of \partial M in
M and that g|\tilde{W} : \tilde{W}

–

\tilde{Z} is a generic neat map. Then, by Lemma 3.4,
we see that there exists a C^{\infty} approximation g’ of g such that g=g’ on
g^{-1}(Z)=(g’)^{-1}(Z) and that g’ is a generic neat map on (g’)^{-1}(N-(\tilde{Z}-Z)) ,
where Z(\cong\partial N\cross(0,1)) is the topological interior of \tilde{Z} in N . Since g’

is a C^{\infty} approximation of g , we may assume that g’ is also transverse to
\tilde{Z}-Z(\cong\partial N) . Then it is easy to see that g=g’ on (g’)^{-1}(\tilde{Z})=\overline{(g’)^{-1}(Z)}=
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\overline{g^{-1}(Z)}=g^{-1}(\tilde{Z}) . Thus g’ is a generic neat map which C^{\infty} approximates

f .
For the openness, first it is easy to see that the conditions (2) (4) of

Definition 3.1 are open conditions. In other words, for every generic neat
map f : M -arrow N. every sufficiently close approximation satisfies the three
conditions. Then one can choose a small closed collar neighbourhood \tilde{Z} of
\partial N in N such that every sufficiently close approximation f_{\epsilon;} of f satisfies
the following.
(1) f_{\epsilon;} is transverse to \partial\tilde{Z} .
(2) \tilde{W}_{\epsilon}=f_{\epsilon}^{-1}(\tilde{Z}) is a closed collar neighbourhood of \partial M in M1

(3) Let \tilde{h}_{\xi j} : \tilde{W}_{\epsilon}
-arrow\partial M\cross[0,1] and \tilde{k} : \tilde{Z}

– \partial N\cross[0, 1] be appropriate
diffeomorphisms, where \partial M\cross\{0\} and \partial N\cross\{0\} correspond to \partial M

and \partial N respectively. Define \alpha_{t,\epsilon} : \partial lll -arrow\partial N(t\in[0,1]) and \beta_{x,\epsilon} :
[0, 1] – [0, 1] (x\in\partial M) by \tilde{k}\circ f_{\xi j}\circ\tilde{h}_{\epsilon}^{-1}(x, t)=(\alpha_{t,\epsilon}(x), \beta_{x,\epsilon}(t)) . Then

\frac{d\beta_{x,\epsilon}}{dt}(t)>0 (^{\forall}t\in[0,1]) ,

and the family \{\alpha_{t,\epsilon i}\}_{t\in[0,1]} is a 1-parameter family of selftransverse
immersions without bifurcations.

Note that, as a consequence of the above conditions (1)-(3) , the following
is also satisfied:
(4) f_{\epsilon:}|\tilde{W}_{\epsilon j} : \tilde{W}_{\epsilon}arrow\tilde{Z} is a generic neat map.

Let \{f_{n}\} be a sequence in N^{\infty}(M, N) converging to f such that no
f_{n} satisfies the condition (1) of Definition 3.1. For sufficiently large n ,
f_{n} satisfies the above conditions (1)-(4) , if we replace f_{\epsilon j} with f_{n} . Since
M is compact, we may also assume that the images of f_{n} are contained
in a fixed compact neighbourhood V of f(M) in N . Then there exists a
point y_{n}\in f_{n}(M) such that the stability condition (Definition 3.1 (1)) is
broken at y_{n} for f_{n} . Since f_{n} satisfies the above conditions (1)-(4) , we
have y_{n}\in V\cap(\overline{N-\tilde{Z}}) . Since V\cap(\overline{N-\tilde{Z}}) is compact, the sequence \{y_{n}\}

has a co\underline{nverge}nt subsequence. This implies that there exists a point in
f(M)\cap(N-\tilde{Z}) such that the stability condition is broken at y for f . This
is a contradiction. Thus for sufficiently large n , f_{n} satisfies the condition
(1) of Definition 3.1. Thus the set of the generic neat maps is open in
N^{\infty}(M, N) . This completes the proof. \square

Now we return to the initial purpose of this section, which is to extend
Theorems 1.1 and 2.4 to the boundary case. For this purpose, we first need
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the Two Colour Theorem for generic neat maps.

Lemma 3.5 Let f : M - N be a generic neat map of a compact surface
M with boundary into a connected 3-manifold N with boundary such that
either H_{1}(N)=0 or f_{*}[M, \partial M]=0 in H_{2}(N, \partial N) . Then

N\backslash f(M)=R\cup B ,

where R and B are disjoint nonempty open sets with common boundary
f(M) . (Here the boundary of R (or B ) is defined to be \overline{R}\backslash R (resp. \overline{B}\backslash B) .)

The above lemma can be proved by an argument similar to the proof
of Lemma 2.1. Just use [f(M), f(\partial M)]\in H_{2}(N, \partial N) instead of [f(M)]\in
H_{2}(N) .

Using Lemma 3.5, we define the index n(x, f) of a cross cap x of a
generic neat map f : M – N in exactly the same way as in Definition 2.2.

We first consider the case where the surface M is oriented. As before,
we look at the graph structure of the singular part of f(M) . The edges
of this graph are given by the double points of f and the vertices by the
triple points, the cross caps and the boundary double points. Moreover,
the incidence rules are similar to the boundaryless case. We must note that
each boundary double point is incident to one edge. Furthermore, under
the homological assumption as in Lemma 3.5, using the same method as in
the proof of Lemma 2.3, we can give a colouration to the set D\subset f(M)

of double points of f so that the conditions (1) and (2) of Lemma 2.3 are
satisfied.

Definition 3.6 Let f : M – N be a generic neat map as in Lemma 3.5.
When M is oriented, we can give a colouration to the set D of double points
of f as remarked above. Then we define the index n’(y, f) of a boundary
double point y\in f(\partial M) as n’(y, f)=1 if the edge of D incident to y is
red, and n’(y, f)=0 if it is blue.

Remark. In the above situation, reversing the orientation of a component

of M changes the indices of even number of boundary double points. This
fact is proved as follows. Let M_{1} be a component of M . It is enough to show
that f(\partial M_{1}) meets with c=f(\partial M\backslash \partial M_{1}) at an even number of points.
Suppose that f(\partial M_{1}) intersects with c at an odd number of points. Then
the modulo 2 intersection number f_{*}[M_{1}, \partial M_{1}] [c] in N does not vanish,
which implies that [c]\in H_{1}(N) is not zero. This is a contradiction, since c
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is the boundary of f(M\backslash M_{1}) .
Note that the index as in Definition 3.6 depends both on the colouration

of N\backslash f(M) as in Lemma 3.5 and on the orientation of M . However, from
the above fact together with the fact that k+m is always even, it follows that
the parity of the sum \sum_{i=1}^{k}n(x_{i}, f)+\sum_{j=1}^{m}n’(y_{j}, f) over all cross caps and
all boundary double points does not depend on the colouration of N\backslash f(M)

nor on the orientation of M .

By the same graph theoretical argument as in the proof of Theorem 2.4,
we obtain the following.

Theorem 3.7 Let f : M – N be a generic neat map of a compact ori-
ented surface M with boundary into a connected 3-manifold N with bound-
ary such that H_{1}(N)=0 or f_{*}[M, \partial M]=0 in H_{2}(N, \partial N) . Then

2E(f)=3T(f)+ \sum_{i=1}^{k}n(x_{i}, f)+\sum_{j=1}^{m}n’(y_{j}, f) ,

where T(f) is the number of triple points of f, E(f) is the number of red
edges of the set D of double points of f, x_{1} , , x_{k}\in f(M) are the cross
caps and y_{1} , \ldots , y_{m}\in f(\partial\Lambda l) are the boundary double points of f . {Here
we do not count the circle components of D. )

We have the following immediate consequence of Theorem 3.7, which
is Theorem 1.2 in the case where M is orientable.

Corollary 3.8 Let f : M -arrow N be as above. Then

T(f) \equiv\sum_{i=1}^{k}n(x_{i}, f)+\sum_{j=1}^{m}n’(y_{j}, f) mod 2,

where T(f) is the number of triple points of f , x_{1} , . , x_{k}\in f(M) are the
cross caps of f and y_{1} , \ldots , y_{m}\in f(\partial M) are the boundary double points of
f .

4. Extension of the results to the boundary case –the general
case

For the general case, we must modify the arguments of the previous
section. First we prove the following refinement of Lemma 3.5.
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Lemma 4.1 Let f : M – N be a generic neat map of a compact sur-
face M with boundary into a connected 3-manifold N with boundary. If
f_{*}[M, \partial M]=0 in H_{2}(N, \partial N) , then there exists a twO-colour decomposition
N\backslash f(M)=R\cup B as in Lemma 3.5 such that \overline{B} is compact.

Proof. Let us assume that in a tw0-colour decomposition N\backslash f(ill)=

R\cup B , neither \overline{R} nor \overline{B} is compact. Then we see that there exists an
embedded proper arc in N which intersects f(M) transversely at an odd
number of points. Let \gamma\in H_{1}^{c}(N) be the class represented by this proper
arc, where H_{*}^{c} denotes the homology with closed support (or the homology
of infinite chains). Then the modulo 2 intersection number \gamma\cdot f_{*}[M, \partial M] in
N does not vanish. This contradicts our assumption. Thus, choosing the
colours appropriately, we may assume that \overline{B} is compact. This completes
the proof. \square

Remark. A tw0-colour decomposition as above does not always exist in
general even if H_{1}(N)=0 . For example, consider the embedding D^{2}=

D^{2}\cross\{0\}\mapsto D^{2}\cross R.

Theorem 4.2 Let f : M - N be a generic neat map of a compact surface
M with boundary into a connected 3-manifold N with boundary. Suppose
that f_{*}[M, \partial M]=0 in H_{2}(N, \partial N) . We fix a twO-colour decomposition
N\backslash f(M)=R\cup B as in Lemma 3.5 such that \overline{B} is compact (see Lemma 4.1).
Then

T(f) \equiv\sum_{i=1}^{k}n(x_{i}, f)+\chi(M)+\chi(B\cap\partial N) mod 2,

where x_{1} , \ldots , x_{k}\in f(M) are the cross caps of f .

Proof. We prove the theorem by using surgeries on f . Let x\in f(M) be
a triple point. Then we can eliminate the triple point by performing the
surgery operation as in Figure 6.

Note that this does not affect the hypotheses on homology and on B .
Note also that two cross caps with distinct indices are created. Under this
surgery operation, T(f) decreases by 1, \chi(M) decreases by 2, \sum_{i=1}^{k}n(x_{i}, f)

increases by 1, and \chi(B\cap\partial N) is invariant. Thus the changes modulo 2
on the two sides of the required congruence are the same. Thus we may
assume that f has no triple points.

Let \gamma be a double point arc of f connecting two cross caps. Then we
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surgery

Fig. 6.

(1) surgery

(2) surgery

Fig. 7.

perform the surgery operation as in Figure 7. Note that this does not affect
the hypotheses on homology and on B . Furthermore, no triple point is
created. Under the surgery operation as in Figure 7 (1), \chi(M) increases by
2, \sum_{i=1}^{k}n(x_{i}, f) is invariant or decreases by 2, since the two cross caps have
the same index, and \chi(B\cap\partial N) is invariant. Under the surgery operation
as in Figure 7 (2), \chi(M) increases by 1, \sum_{i=1}^{k}n(x_{i}, f) decreases by 1, since
the two cross caps have distinct indices, and \chi(B\cap\partial N) is invariant. Thus
we may assume that f has no such double point arcs nor triple points.
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Consider a double point circle of f in int N. We can eliminate it by
using an argument similar to that used in [10], Lemma 2.3.1 (see also [10],
proof of Theorem 1.3.2). In this case, all the quantities in the required
congruence are invariant. Thus we may assume that f has no double point
circles.

Let \gamma be a double point arc connecting a cross cap and a boundary
double point. Then we perform the surgery operation as in Figure 8. Note
that this does not affect the hypotheses on homology and on B . Under the
surgery operation as in Figure 8 (1), \chi(M) increases by 1, \sum_{i=1}^{k}n(x_{i}, f)

decreases by 1, and \chi(B\cap\partial N) is invariant. Under the surgery operation
as in Figure 8 (2), \chi(M) increases by 1, \sum_{i=1}^{k}n(x_{i}, f) is invariant, and
\chi(B\cap\partial N) decreases by 1. Thus we may assume that f has no such double
point arcs.

(1)

surgery

(2)

Fig. 8.

Let \gamma be a double point arc connecting two boundary double points of
f . Then we perform the surgery operation as in Figure 9. Then all the
quantities in question are invariant and we may assume that f has no such
double point arcs.

Thus we may assume that f is an embedding from the beginning. In
this case, W=\overline{B} is a compact 3-manifold with \partial W=f(M)\cup(B\cap\partial N) .
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surgery

Fig. 9.

Hence we have

0\equiv\chi(\partial W)\equiv\chi(f(M))+\chi(B\cap\partial N) mod 2

and hence

\chi(M)\equiv\chi(B\cap\partial N) mod 2.

Note that in this case T(f)=0 and \sum_{i=1}^{k}n(x_{i}, f)=0 . Thus the required
congruence holds in this case. This completes the proof. \square

Remark. Here we give an alternative proof of Theorem 4.2, which relies on
Theorem 1.1. The union of f(\underline{M)} with \overline{B}\cap\partial N is topologically equivalent
to the image of a closed surface M under a generic smooth map \tilde{f} into int N
having additional cross caps corresponding to the boundary double points
of \underline{f.} Note that all of these additional cross caps have index 1 and that
\tilde{f}_{*}[M]=0 in H_{2}(N) . Then, applying Theorem 1.1, we have

T(f) \equiv\sum_{i=1}^{k}n(x_{i}, f)+\partial d(f)+\chi(\overline{M}) mod 2,

where \partial d(f) is the number of boundary double points of f . (Recall that
Theorem 1.1 holds for maps into a connected 3-manifold N instead of R^{3}

under our homological condition, as noted in the introduction.) Further-
more, it is not difficult to see that

\chi(\overline{M})=\chi(M)-\partial d(f)+\chi(B\cap\partial N) .
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Hence we have the conclusion.
We note that this proof is inspired by the proof of Theorem 2 of [6].
Obviously, the above proof relies on Theorem 1.1. However, the proof

which we have given just before this remark is independent of Theorem 1.1.
Thus our proof also gives an alternative proof of Theorem 1.1 (and also
Theorem 2 of [18] ) , since Theorem 1.1 is an easy corollary of Theorem 4.2.

Remark. In Theorem 4.2, \sum_{i=1}^{k}n(x_{i}, f)+\chi(B\cap\partial N) modulo 2 is invariant
under the change of the colouration, provided that N is compact. Note also
that

\chi(B\cap\partial N)\equiv\chi(\overline{R}\cap\partial N) mod 2,

provided that N is compact.

As a corollary to Theorem 4.2, we have the following, which has origi-
nally been pointed out in [6] (see also [3]).

Corollary 4.3 Let f : M - D^{3} be a generic neat immersion, where M
is a compact connected surface with one boundary component. Then

T(f)\equiv\chi(M)+\beta_{0}(B\cap\partial D^{3}) mod 2
\equiv\chi(M)+\beta_{0}(R\cap\partial D^{3}) mod 2,

where D^{3}\backslash f(M)=R\cup B is a twO-colour decomposition as in Lemma 3.5
and \beta_{0} denotes the number of connected components.

Proof. By Theorem 4.2, we have

T(f)\equiv\chi(M)+\chi(B\cap\partial D^{3}) mod 2.

Since f(\partial M) is connected, we see easily that each connected component of
\partial D^{3}\backslash f(\partial M) is homeomorphic to the open 2-disk. Hence we have \chi(B\cap

\partial D^{3})=\beta_{0}(B\cap\partial D^{3}) . This completes the proof. \square

In view of Theorem 4.2, we need to clarify the quantity \chi(B\cap\partial N) .
For this purpose, we first define an index of a double point of an immersion
with normal crossings of a 1-dimensional manifold into a surface as follows.

Let F be an orientable surface and \alpha : \Gamma -arrow F an immersion with
normal crossings, where \Gamma=\Gamma_{1}\cup \cup\Gamma_{s} and each \Gamma_{i} is diffeomorphic
to S^{1} . We suppose that \alpha_{*}[\Gamma]=0 in H_{1}(F) , where [\Gamma]\in H_{1}(\Gamma) is the
fundamental class of \Gamma Then by an argument similar to that in the proof
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of Lemma 2.1, we see that F\backslash \alpha(\Gamma)=R\cup B , where R and B are disjoint
nonempty open sets with common boundary \alpha(\Gamma) . In the following, we fix
such a colouration.

Definition 4.4 Fix an orientation of \Gamma For a double point y\in\alpha(\Gamma) of
\alpha , we define the index i_{y} of y by

i_{y}=\{
0 if y is as in Figure 10 (1),

1 if y is as in Figure 10 (2).

(1) (2)

Fig. 10.

Lemma 4.5 The parity of the sum \sum_{y}i_{y} over all double points y of \alpha

does not depend on the orientation of \Gamma

Proof. In the following, the symbol “. ” denotes the intersection num-
ber modulo 2 in F . First note that the selfintersection number modulo 2
(\alpha_{*}[\Gamma_{1}]) (\alpha_{*}[\Gamma_{1}]) in F vanishes, since F is orientable. Thus we have

(\alpha_{*}[\Gamma_{1}]) (\alpha_{*}[\Gamma_{2}]+\cdot\cdot+\alpha_{*}[\Gamma_{s}])

=(\alpha_{*}[\Gamma_{1}]) (\alpha_{*}[\Gamma])-(\alpha_{*}[\Gamma_{1}]) (\alpha_{*}[\Gamma_{1}])

=0,

since \alpha_{*}[\Gamma]=0 in H_{1}(F) by our assumption. Thus the number of intersec-
tion points of \alpha(\Gamma_{1}) with \alpha(\Gamma_{2}\cup \cup\Gamma_{s}) is even.

Now let y\in\alpha(\Gamma) be a double point of \alpha . If y is a double point of
\alpha(\Gamma_{1}) , then the index i_{y} does not change when we reverse the orientation
of \Gamma_{1} . If y is an intersection point of \alpha(\Gamma_{1}) with \alpha(\Gamma_{2}\cup\cdots\cup\Gamma_{s}) , the index
i_{y} changes when we reverse the orientation of \Gamma_{1} . However, the number
of such intersection points is always even by the argument in the previous
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paragraph so that the sum \sum_{y}i_{y} modulo 2 over all double points y of \alpha(\Gamma)

does not change when we reverse the orientation of \Gamma_{1} . Similar argument
can be applied to \Gamma_{2} , . . , \Gamma_{s} . This completes the proof. \square

Remark. If we drop the hypothesis that F be orientable, the above lemma
does not hold. Consider two simple closed curves in the projective plane
RP^{2} intersecting transversely with each other at exactly one point.

Lemma 4.6 Suppose that \overline{B} is compact. Then

\chi(B)\equiv\sum_{y\in\triangle(\alpha)}i_{y}+\beta_{0}(\Gamma)
mod 2,

where \triangle(\alpha) is the set of double points of \alpha .

Proof. We prove the lemma by using surgeries on \alpha . The following proof
can be regarded as a 1-dimensional version of the proof of Theorem 4.2.
We proceed by the induction on the number of elements of \triangle(\alpha) , which we
denote by n . When n=0, we see that \chi(B)+\beta_{0}(\Gamma) is even, since \overline{B} is a
compact orientable surface with \beta_{0}(\partial\overline{B})=\beta_{0}(\Gamma) and \chi(B)=\chi(\overline{B}) . Thus
the required congruence holds. When n>0 , take a point y\in\triangle(\alpha) and
consider the surgery operation on \alpha as in Figure 11, which decreases n by
1. Note that this does not affect our homological hypothesis on \alpha_{*}[\Gamma] nor

surgery(1)

surgery
(2)

Fig. 11.
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the compactness of \overline{B} . In the first case as in Figure 11 (1), \chi(B) decreases
by 1, \beta_{0}(\Gamma) changes by\pm 1 , and \sum_{y\in\triangle(\alpha)}i_{y} does not change. In the second
case as in Figure 11 (2), \chi(B) does not change, \beta_{0}(\Gamma) changes by +1, and
\sum_{y\in\triangle(\alpha)}i_{y} decreases by 1. In both cases, \chi(B)+\beta_{0}(\Gamma)+\sum_{y\in\triangle(\alpha)}i_{y} modulo
2 does not change. Thus by the induction hypothesis, this must be even.
This completes the proof. \square

Remark. Let J,I be a compact oriented surface and f : M - N a generic
neat map, where N is a connected 3-manifold with \partial N orientable. Suppose
that H_{1}(N)=0 or f_{*} [ill, \partial M ] =0 in H_{2}(N, \partial N) . Then it is easy to show
that for every boundary double point y of f , the index n’(y, f) defined in
Definition 3.6 coincides with the index i_{y} with respect to the immersion with
normal crossings f|\partial M : \partial M - \partial N as defined in Definition 4.4, where \partial M

is oriented as the boundary of M .

Definition 4.7 Consider the situation as in Theorem 4.2. We suppose
that \partial N is orientable. For a boundary double point y of f . define the
index n’(y, f) to be the index i_{y} with respect to the immersion with normal
crossings f|\partial M : \partial \mathbb{J}l

-arrow\partial N . By the above remark, this definition is
compatible with that given in Definition 3.6 when M is oriented.

As a corollary to the above observations, we have the following imme-
diately.

Corollary 4.8 Under the hypothesis of Theorem 4.2, if \partial N is orientable,
then

T(f) \equiv\sum_{i=1}^{k}n(x_{i}, f)+\sum_{j=1}^{m}n’(y_{j}, f)+\chi(M)+\beta_{0}(\partial M) mod 2,

where y_{1} , . . ’
y_{m}\in f(\partial M) are the boundary double points of f .

Theorem 3.7 together with Corollary 4.8 implies Theorem 1.2 in the
introduction.

Remark. Consider the embedding f : Farrow F\cross\{0\}carrow F\cross[-1,1] , where
F is the M\"obius strip. Then the congruence in Theorem 4.2 holds, but
not the congruence in Corollary 4.8. This is because \partial(F\cross[-1,1]) is not
orientable. This example also shows that in Theorem 1.2, the orientability
hypothesis on either M or \partial N is essential.
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Izumiya and Marar [9] have shown that for a map as in Theorem 4.2,
we have

\chi(f(M))=\chi(M)+T(f)+\frac{C(f)-\partial d(f)}{2} ,

where C(f) is the number of cross caps and \partial d(f) is the number of boundary
double points of f . This formula together with our Corollary 4.8 implies
the following.

Proposition 4.9 Under the hypothesis of Theorem 4.2, if \partial N is ori-
entable, then

\chi(f(M))\equiv\frac{(B_{c}(f)-R_{c}(f))-(B_{b}(f)-R_{b}(f))}{2}+\beta_{0}(\partial M) mod 2,

where

B_{c}(f)=\#\{x_{i} : n(x_{i}, f)=0\}

(number of blue cross cap points),

R_{c}(f)=\beta\{x_{i} : n(x_{i}, f)=1\}

(number of red cross cap points),

B_{b}(f)=\#\{y_{j} : n’(y_{j}, f)=0\}

(number of blue boundary double points),

R_{b}(f)=\#\{y_{j} : n’(y_{j}, f)=1\}

(number of red boundary double points),

x_{1} , \ldots , x_{k}\in f(M) are the cross caps of f , and y_{1} , , y_{m}\in f(\partial l1l) are the
boundary double points of f .

Note that the above proposition generalizes [10], Theorem 1.3.2.

5. A geometrical application

In this last section we apply Theorem 1.2 in a particular case: the
selftranslation surface of a generic space curve \alpha : S^{1} -arrow R^{3} . This surface
has been studied in [12] and it is defined as the image of the map \mathcal{T} :
S^{1}\cross S^{1} -arrow R^{3} given by \mathcal{T}(s_{1}, s_{2})=(1/2)(_{-}\alpha(s_{1})+\alpha(s_{2})) . Because of
the symmetry of \mathcal{T} , it induces another map \mathcal{T} : S^{1}\cross S^{1}/\simarrow R^{3} whose
domain, S^{1}\cross S^{1}/\sim , is homeomorphic to the M\"obius strip. The boundary
corresponds to the diagonal of S^{1}\cross S^{1} and its image is the curve \alpha(S^{1}) .
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In [12] it is proved that when the curve \alpha is generic, the map \tilde{\mathcal{T}} is stable.
Moreover, it is obtained as a geometrical application of this result that when
\alpha is convex, the selftranslation surface cannot be embedded and hence it
must have a double point. This double point is the center of a parallelogram
inscribed in the curve.

This result can be improved by using our theorem. A curve \alpha : S^{1} -arrow R^{3}

is convex, by definition, if \alpha(S^{1}) lies in the boundary of its convex hull, which
is homeomorphic to the closed 3-disk. If \alpha is generic, then the interior of
the selftranslation surface is contained in the interior of the convex hull.
In this way, the map \overline{\mathcal{T}} is a generic neat map in the sense of the previous
sections with no boundary double points.

Corollary 5.1 Let \alpha : S^{1} -arrow R^{3} be a generic convex curve. Then

T( \overline{\mathcal{T}})\equiv\sum_{i=1}^{k}n(s_{i}, t_{i},\overline{\mathcal{T}})+1 mod 2,

where T(\overline{\mathcal{T}}) is the number of triple points and (s_{1}, t_{1})\underline, \ldots , (s_{k}, t_{k})\in S^{1}\cross

S^{1}/\sim are the cross caps of the selftranslation surface \mathcal{T} associated with \alpha .

Note that a cross cap of the selftranslation surface is the middle point
of a pair of points of the curve with parallel tangents, and a triple point is
the center of a (nonregular) octahedron inscribed in the curve.

Corollary 5.2 Let \alpha : S^{1} -arrow R^{3} be a generic convex curve. Then there
exists either a pair of points of the curve with parallel tangents, or an octa-
hedron inscribed in the curve.

Remark. We can also prove Corollary 5.2 directly, using a result of [1].
Indeed, the map \overline{\mathcal{T}} extends to a generic map of RP^{2} (seen as a M\"obius

strip with a 2-disk attached) to R^{3} , the extension f being an embedding on
the 2-disk. If f is an immersion, then it is known to have at least a triple
point by [1]; if it is not an immersion, then obviously it has a cross cap.

We can generalize the above corollary to a more general class of space
curves as follows. Let \alpha : S^{1}

– R^{3} be an immersion with a finite number
of selfintersection points such that at each intersection point, there exist
exactly two branches of \alpha and that they are not tangent to each other. We
call such \alpha a normal space curve. For a normal space curve \alpha , we can also
define \mathcal{T} and \overline{\mathcal{T}} as above. Furthermore, when \alpha is generic, \overline{\mathcal{T}} is a generic
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neat map except in a neighbourhood of the double points of \alpha . Then we
have the following.

Proposition 5.3 Let \alpha : S^{1}arrow R^{3} be a generic convex normal space
curve. Let \partial C(\alpha)\backslash \alpha(S^{1})=R\cup B be a twO-colour decomposition as in the
paragraph just before Definition 4.4, where C(\alpha) is the convex hull of \alpha . If
\beta_{0}(R) or \beta_{0}(B) is odd, then there exists either a pair of points of the curve
with parallel tangents, or an octahedron inscribed in the curve.

Fig. 12.

Proof. Let y\in\alpha(S^{1})- be a double point of \alpha . It is not difficult to see
that the image of \mathcal{T} in a neighbourhood of y looks like as in Figure 12.
Then, modifying \overline{\mathcal{T}} slightly in a neighbourhood of the double points of \alpha ,
we obtain a generic neat map f : M -arrow C(\alpha) of the M\"obius strip M with
the following properties:
(1) f(\partial M)=\alpha(S^{1}) ,
(2) the cross caps of f are in one to one correspondence with the cross

caps of \overline{\mathcal{T}} ,
(3) the triple points of f are in one to one correspondence with the union

of the triple points of \overline{\mathcal{T}} and the double points of \alpha .
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Now suppose that \overline{\mathcal{T}} has neither cross caps nor triple points. In this case, f
is a generic neat immersion. Then by Corollary 4.3 we see that the number
of double points of \alpha is congruent modulo 2 to \beta_{0}(R) and \beta_{0}(B) . On the
other hand, since f is a generic neat immersion, the number of boundary
double points is even. Thus \beta_{0}(R) and \beta_{0}(B) are even. This contradicts our
assumption. Thus \overline{\mathcal{T}} has either a cross cap or a triple point. This completes
the proof. \square

Remark. Note that Proposition 5.3 is a generalization of Corollary 5.2.
Furthermore, in Proposition 5.3, the condition that \beta_{0}(R) or \beta_{0}(B) be odd
is equivalent to that either the number of double points of \alpha with index 0
or that with index 1 (in the sense of Definition 4.4) be odd.
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